* C05PCF Example Program Text * Mark 14 Revised. NAG Copyright 1989. * .. Parameters .. INTEGER N, LDFJAC, LR PARAMETER (N=9,LDFJAC=N,LR=(N*(N+1))/2) INTEGER NOUT PARAMETER (NOUT=6) * .. Local Scalars .. DOUBLE PRECISION FACTOR, FNORM, XTOL INTEGER IFAIL, J, MAXFEV, MODE, NFEV, NJEV, NPRINT * .. Local Arrays .. DOUBLE PRECISION DIAG(N), FJAC(LDFJAC,N), FVEC(N), QTF(N), R(LR), + W(N,4), X(N) * .. External Functions .. DOUBLE PRECISION F06EJF, X02AJF EXTERNAL F06EJF, X02AJF * .. External Subroutines .. EXTERNAL C05PCF, FCN * .. Intrinsic Functions .. INTRINSIC SQRT * .. Executable Statements .. WRITE (NOUT,*) 'C05PCF Example Program Results' WRITE (NOUT,*) * The following starting values provide a rough solution. DO 20 J = 1, N X(J) = -1.0D0 20 CONTINUE XTOL = SQRT(X02AJF()) DO 40 J = 1, N DIAG(J) = 1.0D0 40 CONTINUE MAXFEV = 1000 MODE = 2 FACTOR = 100.0D0 NPRINT = 0 IFAIL = 1 * CALL C05PCF(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,FACTOR, + NPRINT,NFEV,NJEV,R,LR,QTF,W,IFAIL) * IF (IFAIL.EQ.0) THEN FNORM = F06EJF(N,FVEC,1) WRITE (NOUT,99999) 'Final 2-norm of the residuals =', FNORM WRITE (NOUT,*) WRITE (NOUT,99998) 'Number of function evaluations =', NFEV WRITE (NOUT,*) WRITE (NOUT,99998) 'Number of Jacobian evaluations =', NJEV WRITE (NOUT,*) WRITE (NOUT,*) 'Final approximate solution' WRITE (NOUT,*) WRITE (NOUT,99997) (X(J),J=1,N) ELSE WRITE (NOUT,99996) 'IFAIL = ', IFAIL IF (IFAIL.GT.2) THEN WRITE (NOUT,*) WRITE (NOUT,*) 'Approximate solution:' WRITE (NOUT,*) WRITE (NOUT,99997) (X(J),J=1,N) END IF END IF STOP * 99999 FORMAT (1X,A,D12.4) 99998 FORMAT (1X,A,I10) 99997 FORMAT (1X,3F12.4) 99996 FORMAT (1X,A,I2) END * SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR PARAMETER (ZERO=0.0D0,ONE=1.0D0,TWO=2.0D0,THREE=3.0D0, + FOUR=4.0D0) * .. Scalar Arguments .. INTEGER IFLAG, LDFJAC, N * .. Array Arguments .. DOUBLE PRECISION FJAC(LDFJAC,N), FVEC(N), X(N) * .. Local Scalars .. INTEGER J, K * .. Executable Statements .. IF (IFLAG.EQ.0) THEN * * Insert print statements here when NPRINT is positive. * RETURN ELSE IF (IFLAG.NE.2) THEN DO 20 K = 1, N FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1) IF (K.LT.N) FVEC(K) = FVEC(K) - TWO*X(K+1) 20 CONTINUE ELSE DO 60 K = 1, N DO 40 J = 1, N FJAC(K,J) = ZERO 40 CONTINUE FJAC(K,K) = THREE - FOUR*X(K) IF (K.GT.1) FJAC(K,K-1) = -ONE IF (K.LT.N) FJAC(K,K+1) = -TWO 60 CONTINUE END IF END IF RETURN END