* C05NDF Example Program Text * Mark 14 Release. NAG Copyright 1989. * .. Parameters .. INTEGER N, LDFJAC, LR PARAMETER (N=9,LDFJAC=N,LR=(N*(N+1))/2) INTEGER NOUT PARAMETER (NOUT=6) DOUBLE PRECISION ONE, TWO, THREE PARAMETER (ONE=1.0D0,TWO=2.0D0,THREE=3.0D0) * .. Local Scalars .. DOUBLE PRECISION EPSFCN, FACTOR, FNORM, XTOL INTEGER ICOUNT, IFAIL, IREVCM, J, K, ML, MODE, MU * .. Local Arrays .. DOUBLE PRECISION DIAG(N), FJAC(LDFJAC,N), FVEC(N), QTF(N), R(LR), + W(N,4), X(N) * .. External Functions .. DOUBLE PRECISION F06EJF, X02AJF EXTERNAL F06EJF, X02AJF * .. External Subroutines .. EXTERNAL C05NDF * .. Intrinsic Functions .. INTRINSIC SQRT * .. Executable Statements .. WRITE (NOUT,*) 'C05NDF Example Program Results' * The following starting values provide a rough solution. DO 20 J = 1, N X(J) = -1.0D0 20 CONTINUE XTOL = SQRT(X02AJF()) DO 40 J = 1, N DIAG(J) = 1.0D0 40 CONTINUE ML = 1 MU = 1 EPSFCN = 0.0D0 MODE = 2 FACTOR = 100.0D0 ICOUNT = 0 IFAIL = 1 IREVCM = 0 * 60 CALL C05NDF(IREVCM,N,X,FVEC,XTOL,ML,MU,EPSFCN,DIAG,MODE,FACTOR, + FJAC,LDFJAC,R,LR,QTF,W,IFAIL) * IF (IREVCM.EQ.1) THEN ICOUNT = ICOUNT + 1 * Insert print statements here to monitor progess if desired. GO TO 60 ELSE IF (IREVCM.EQ.2) THEN * Evaluate functions at given point DO 80 K = 1, N FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1) IF (K.LT.N) FVEC(K) = FVEC(K) - TWO*X(K+1) 80 CONTINUE GO TO 60 END IF * WRITE (NOUT,*) IF (IFAIL.EQ.0) THEN FNORM = F06EJF(N,FVEC,1) WRITE (NOUT,99999) 'Final 2-norm of the residuals after', + ICOUNT, ' iterations is ', FNORM WRITE (NOUT,*) WRITE (NOUT,*) 'Final approximate solution' WRITE (NOUT,99998) (X(J),J=1,N) ELSE WRITE (NOUT,99999) 'IFAIL =', IFAIL IF (IFAIL.GE.2) THEN WRITE (NOUT,*) 'Approximate solution' WRITE (NOUT,99998) (X(J),J=1,N) END IF END IF STOP * 99999 FORMAT (1X,A,I4,A,D12.4) 99998 FORMAT (5X,3F12.4) END