F07PVF (CHPRFS/ZHPRFS) – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F07PVF (CHPRFS/ZHPRFS) returns error bounds for the solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides, AX = B, using packed storage. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

```
SUBROUTINE F07PVF(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,1FERR, BERR, WORK, RWORK, INFO)ENTRYchprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,1FERR, BERR, WORK, RWORK, INFO)INTEGERN, NRHS, IPIV(*), LDB, LDX, INFOrealFERR(*), BERR(*), RWORK(*)complexAP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(*)CHARACTER*1UPLO
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine returns the backward errors and estimated bounds on the forward errors for the solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides, AX = B, using packed storage. The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of the routine in terms of a single right-hand side b and solution x.

Given a computed solution x, the routine computes the *component-wise backward error* β . This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$\begin{aligned} (A+\delta A)x &= b+\delta b\\ |\delta a_{ij}| &\leq \beta |a_{ij}| \quad \text{and} \quad |\delta b_i| \leq \beta |b_i|. \end{aligned}$$

Then the routine estimates a bound for the *component-wise forward error* in the computed solution, defined by:

$$\max |x_i - \hat{x}_i| / \max |x_i|$$

where \hat{x} is the true solution.

For details of the method, see the Chapter Introduction.

4 References

[1] Golub G H and van Loan C F (1996) *Matrix Computations* Johns Hopkins University Press (3rd Edition), Baltimore

5 Parameters

1: UPLO — CHARACTER*1

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been factorized, as follows:

Input

if UPLO = 'U', then the upper triangular part of A is stored and A is factorized as $PUDU^{H}P^{T}$ where U is upper triangular;

if UPLO = 'L', then the lower triangular part of A is stored and A is factorized as $PLDL^{H}P^{T}$ where L is lower triangular.

Constraint: UPLO = 'U' or 'L'.

N — INTEGER 2:

On entry: n, the order of the matrix A.

Constraint: $N \ge 0$.

NRHS — INTEGER 3:

> On entry: r, the number of right-hand sides. Constraint: NRHS ≥ 0 .

AP(*) - complex array 4:

> Note: the dimension of the array AP must be at least $\max(1, N*(N+1)/2)$. On entry: the n by n original Hermitian matrix A as supplied to F07PRF (CHPTRF/ZHPTRF).

AFP(*) - complex array 5:

> Note: the dimension of the array AFP must be at least $\max(1, N*(N+1)/2)$. On entry: details of the factorization of A stored in packed form, as returned by F07PRF (CHPTRF/ZHPTRF).

IPIV(*) — INTEGER array 6:

Note: the dimension of the array IPIV must be at least $\max(1, N)$.

On entry: details of the interchanges and the block structure of D, as returned by F07PRF (CHPTRF/ZHPTRF).

7: B(LDB,*) - complex array

Note: the second dimension of the array B must be at least $\max(1, \text{NRHS})$. On entry: the n by r right-hand side matrix B.

LDB — INTEGER 8:

> On entry: the first dimension of the array B as declared in the (sub)program from which F07PVF (CHPRFS/ZHPRFS) is called.

Constraint: LDB > $\max(1,N)$.

9: X(LDX,*) — *complex* array

Note: the second dimension of the array X must be at least max(1, NRHS).

On entry: the n by r solution matrix X, as returned by F07PSF (CHPTRS/ZHPTRS).

On exit: the improved solution matrix X.

10: LDX — INTEGER

On entry: the first dimension of the array X as declared in the (sub)program from which F07PVF (CHPRFS/ZHPRFS) is called.

Constraint: LDX $\geq \max(1,N)$.

11: FERR(*) - real array

Note: the dimension of the array FERR must be at least $\max(1, \text{NRHS})$.

On exit: FERR(j) contains an estimated error bound for the *j*th solution vector, that is, the *j*th column of X, for $j = 1, 2, \ldots, r$.

Input

Input

Input

Input

Input

Input

Input

Input

Input/Output

Output

12:	$\operatorname{BERR}(*)$ — <i>real</i> array	Output
	Note: the dimension of the array BERR must be at least $\max(1, \text{NRHS})$.	
	On exit: BERR(j) contains the component-wise backward error bound β for the jth solutian that is, the jth column of X, for $j = 1, 2,, r$.	ution vector,
13:	WORK(*) - complex array	Work space
	Note: the dimension of the array WORK must be at least $\max(1,2*N)$.	
14:	$\operatorname{RWORK}(*) - real$ array	Work space
	Note: the dimension of the array RWORK must be at least $\max(1,N)$.	
15:	INFO — INTEGER	Output
	On exit: $INFO = 0$ unless the routine detects an error (see Section 6).	

Error Indicators and Warnings 6

INFO < 0

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 **Further Comments**

For each right-hand side, computation of the backward error involves a minimum of $16n^2$ real floatingpoint operations. Each step of iterative refinement involves an additional $24n^2$ real operations. At most 5 steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax = b; the number is usually 5 and never more than 11. Each solution involves approximately $8n^2$ real operations.

The real analogue of this routine is F07PHF (SSPRFS/DSPRFS).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and backward error bounds, where

$$A = \begin{pmatrix} -1.36 + 0.00i & 1.58 + 0.90i & 2.21 - 0.21i & 3.91 + 1.50i \\ 1.58 - 0.90i & -8.87 + 0.00i & -1.84 - 0.03i & -1.78 + 1.18i \\ 2.21 + 0.21i & -1.84 + 0.03i & -4.63 + 0.00i & 0.11 + 0.11i \\ 3.91 - 1.50i & -1.78 - 1.18i & 0.11 - 0.11i & -1.84 + 0.00i \end{pmatrix}$$
$$B = \begin{pmatrix} 7.79 + 5.48i & -35.39 + 18.01i \\ -0.77 - 16.05i & 4.23 - 70.02i \end{pmatrix}$$

and

$$B = \begin{pmatrix} 7.79 + 5.48i & -35.39 + 18.01i \\ -0.77 - 16.05i & 4.23 - 70.02i \\ -9.58 + 3.88i & -24.79 - 8.40i \\ 2.98 - 10.18i & 28.68 - 39.89i \end{pmatrix}.$$

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by F07PRF (CHPTRF/ZHPTRF).

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
F07PVF Example Program Text
*
     Mark 15 Release. NAG Copyright 1991.
*
      .. Parameters ..
*
      INTEGER
                       NIN, NOUT
     PARAMETER
                       (NIN=5,NOUT=6)
     INTEGER
                       NMAX, NRHMAX, LDB, LDX
                       (NMAX=8,NRHMAX=NMAX,LDB=NMAX,LDX=NMAX)
     PARAMETER
      .. Local Scalars ..
     INTEGER I, IFAIL, INFO, J, N, NRHS
      CHARACTER
                      UPLO
      .. Local Arrays ..
      complex
                       AFP(NMAX*(NMAX+1)/2), AP(NMAX*(NMAX+1)/2),
                       B(LDB,NRHMAX), WORK(2*NMAX), X(LDX,NMAX)
     +
                       BERR(NRHMAX), FERR(NRHMAX), RWORK(NMAX)
     real
     INTEGER
                       IPIV(NMAX)
     CHARACTER
                       CLABS(1), RLABS(1)
      .. External Subroutines ..
                       chprfs, chptrf, chptrs, F06TFF, X04DBF
     EXTERNAL
      .. Executable Statements ...
      WRITE (NOUT,*) 'FO7PVF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) N, NRHS
      IF (N.LE.NMAX . AND. NRHS.LE.NRHMAX) THEN
         Read A and B from data file, and copy A to AFP and B to X
*
         READ (NIN,*) UPLO
         IF (UPLO.EQ.'U') THEN
            READ (NIN,*) ((AP(I+J*(J-1)/2),J=I,N),I=1,N)
         ELSE IF (UPLO.EQ.'L') THEN
            READ (NIN,*) ((AP(I+(2*N-J)*(J-1)/2),J=1,I),I=1,N)
         END IF
         READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,N)
         DO 20 I = 1, N*(N+1)/2
            AFP(I) = AP(I)
   20
         CONTINUE
         CALL F06TFF('General', N, NRHS, B, LDB, X, LDX)
*
         Factorize A in the array AFP
*
         CALL chptrf(UPLO, N, AFP, IPIV, INFO)
         WRITE (NOUT,*)
         IF (INFO.EQ.O) THEN
*
            Compute solution in the array X
            CALL chptrs(UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO)
*
            Improve solution, and compute backward errors and
*
*
            estimated bounds on the forward errors
            CALL chprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR,
```

```
+
                         WORK, RWORK, INFO)
*
*
            Print solution
            IFAIL = 0
            CALL X04DBF('General', ', N, NRHS, X, LDX, 'Bracketed', 'F7.4',
                         'Solution(s)', 'Integer', RLABS, 'Integer', CLABS,
     +
     +
                         80,0,IFAIL)
            WRITE (NOUT,*)
            WRITE (NOUT, *) 'Backward errors (machine-dependent)'
            WRITE (NOUT,99999) (BERR(J), J=1, NRHS)
            WRITE (NOUT,*)
              'Estimated forward error bounds (machine-dependent)'
     +
            WRITE (NOUT, 99999) (FERR(J), J=1, NRHS)
         ELSE
            WRITE (NOUT,*) 'The factor D is singular'
         END IF
      END IF
      STOP
99999 FORMAT ((5X,1P,4(e11.1,7X)))
      END
```

9.2 Program Data

```
      F07PVF Example Program Data
      :Values of N and NRHS

      'L'
      :Value of UPLO

      (-1.36, 0.00)
      :1.58,-0.90) (-8.87, 0.00)

      (1.58,-0.90) (-8.87, 0.00)
      :Value of UPLO

      (2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
      :End of matrix A

      (3.91,-1.50) (-1.78,-1.18) (0.11,-0.11) (-1.84, 0.00)
      :End of matrix A

      (7.79, 5.48) (-35.39, 18.01)
      :End of matrix A

      (-0.77,-16.05) (4.23,-70.02)
      :End of matrix B
```

9.3 Program Results

F07PVF Example Program Results

Solution(s)

1 2 1 (1.0000,-1.0000) (3.0000,-4.0000) 2 (-1.0000, 2.0000) (-1.0000, 5.0000) 3 (3.0000,-2.0000) (7.0000,-2.0000) 4 (2.0000, 1.0000) (-8.0000, 6.0000) Backward errors (machine-dependent) 8.5E-17 8.3E-17 Estimated forward error bounds (machine-dependent) 2.4E-15 3.2E-15