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Introduction

The documentation set for the Signals & Systems Lab consists of a printed book,
the Signals & Systems Lab User’s Guide, and this Signals & Systems Lab
Reference Guide. Both books are available in PDF and HTML versions from the
COMSOL Help Desk. This book contains detailed information about all
commands provided by the Signals & Systems Lab. The commands are listed in
alphabetical order, and the information is arranged under the headings Purpose,

Syntax, Description, and Example(s).
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Summary of Commands

ar on page 8

arx on page 9
arx.estimate on page ||
betadist on page 13
chi2dist on page 14
covT on page I5
covf.estimate on page I8
covf.plot on page 20
dbsignal on page 22
empdist on page 23
exlti on page 25

exnl on page 26

expdist on page 27
exrarx on page 28

fdist on page 30
filtfilt on page 31

fir on page 33

freq on page 34
freq.plot on page 36

1t on page 37

ft.plot on page 39
gammadist on page 4|
getfilter on page 42
getsignal on page 44
getwindow on page 46
histeq on page 47

1t1i on page 49

1ti.bode on page 50
1ti.nyquist on page 52
1ti.rlplot on page 54
1ti.zpplot on page 56
ncfilter on page 58
ndist on page 59
ndist.mceval on page 60
ndist.tt1eval on page 61
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ndist.uteval on page 62
nl on page 63

nl.crlb on page 66

nl.ekf on page 68
nl.estimate on page 71
nl.nl2ss on page 74
nl.nltf on page 76

nl.pf on page 79
nl.simulate on page 82
nls.m on page 84

pdfclass on page 88
pdfclass.estimate on page 91
pdfclass.fusion on page 92
pdfclass.safefusion on page 94
pdftool on page 96

rarx on page 98
rarx.contour on page 100
rarx.estimate on page 102
rarx.expand on page 104
rarx.plot on page 106
rarx.rarx2tfd on page 108
rarx.simulate on page |10
rarx.surf on page ||

sig on page 113
sig.detrend on page |18
sig.interp on page 119
sig.plot on page 120
sig.resample on page 121
sig.sig2covTf on page 122
sig.sig2ft on page 123
sig.sig2spec on page 124
sig.sig2tfd on page 125
Sig.u2y on page 126
sig.uplot on page 127
sig.window on page 128
$ig.x2y on page 129
sig.xplot on page 130
sig.xplot2 on page 131

SUMMARY OF COMMANDS
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spec on page 132
spec.estimate on page 135
spec.plot on page 137
spectool on page 139

SS on page 141
ss.balreal on page 146
$s.c2d on page 148
ss.ctrb on page 149
Ss.d2c on page 150
ss.dlge on page 152
ss.estimate on page 153
Ss.gram on page 155
ss.impulse on page 156
ss.1qge on page 16l
ss.minreal on page 162
ss.modred on page 164
SS.obsv on page 166
ss.simulate on page 167
$s.58s2coVT on page 169
ss.ss2freq on page 171
S$S.S852n1 on page 173
SS.SS2spec on page 174
Ss.S8s2tf on page 176
Ss.step on page 178
Ss.tex on page 180
$S.zpk on page 182
ss2tf on page 184

step on page 185

tdist on page 187
texmatrix on page 188
textable on page 190

tf on page 192

tf.c2d on page 197
tf.d2c on page 198
tf.estimate on page 199
tf.filter on page 202
tf.filtfilt on page 206
tf.impulse on page 208
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tf.
tf.
tf.
tf.
tf.
tf.
tf.
tf.
tf.

minreal on page 210
ncfilter on page 211
simulate on page 213
step on page 215

tex on page 217
tf2freq on page 218
tf2ss on page 219
uncertain on page 221
zpk on page 222

tf2ss on page 223

tfd on page 224
tfd.estimate on page 226
tfdplot on page 228
tftool on page 230

udist on page 231



ar
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Purpose

Syntax

Description

Example

See Also
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The autoregressive (AR) model object.

m=ar(na) AR model structure
m=ar(a) AR model with parameter vector

The AR model is defined by
y(t) = —ay(E-1)—... —a, y(t-n,) +e(t)

1

1 -1 -2
+a1q +a,q +..+a,q

y(t) = Soe(t)

The AR model is a special case of the ARX structure, where there is no deterministic
input. The AR object inherits all methods of the ARX object, which in turn inherits
some methods from the ARMAX object. The AR object has a somewhat simplified

constructor compared to the ARX object.

A multiple output AR model shares the same a polynomial for all output channels

by convention.

For the methods and fields of the AR model object, see arx on page 9.

Generate an AR structure and an AR model:

ar(4)

Unspecified Volatility

ar([1 1 1])

Discrete time AR(2) model (fs=1):
(g2+gt1) y(t) = + e(t)

ar(4)

Unspecified Volatility

ar([1 1 1])

Discrete time AR(2) model (fs=1):
(g"2+g+1) y(t) = + e(t)

arx, arx.estimate, fir



arx

Purpose The AutoRegressive model with eXogenous input (ARX) object.

Syntax The arx object constructor supports the following sets of input arguments:
arx(nn) Constructor of ARX structure, where nn=[na nb nk]
arx(b,a) Constructor of ARX model parameters, implicitly also

defining the structure
arx(nn,th,P) Constructor of uncertain ARX model defined by a

parameter vector and associated covariance matrix P

arx(nn,th,thmMmC) Constructor of uncertain ARX model defined by a

parameter vector Monte Carlo samples

Description The ARX model is defined as

y(t) = —ay(E-1)—.. -a, y(t-n,)
+bou(t—ny) +...+b, u(t—ny—n;) +e(?)

b

-1 ) _
nbo+b1q  +b,yq +...+bann

y(t)=gq

u(t)

a

-1 -2 _
l+a,9 +a,q "+...+a,q

1
+ _nue(t)

-1 )
l+ay,q +ay,q "+..+a,q

Note that the ARX model is specified either by the (a, b) polynomials, or by the
parameter vector 6 with structural parameters (1, ng, np).

A multiple output ARX model shares the same @ polynomial for all output channels

by convention, but has one b polynomial for each input-output combination.

The methods of the ARX object include:

arrayread
display

estimate

info

rand

size
symbolic

tex

Picks out subsystems from MIMO systems. Example: G2=G(:,2);
The overloaded display function gives an ASClI-formatted printout

Estimates an ARX model of specified structure from a signal SIG
object

Displays user-specified information about the signal names

Returns a random ARX model of specified structure or a number of
samples from an uncertain (typically estimated) model

Returns the sizes of the model structure nn
Returns a symbolic string expression for the ARX structure

LaTeX code for displaying the model




arx

The ARX object has the following fields that you can specify:

b Matrix of dimension (ny, nb, nu) with numerator polynomials of
order nb, where each entry specifies the numerator polynomial
from input i to output j.

a Common denominator polynomial for all input-output channels
th Parameter vector of free parameters in b and a

P Covariance matrix of th

nn Structure parameters [na nb nk nu ny]

MC Number of Monte Carlo samples

pe Noise variance (Gaussian assumption) or PDF object (default I)
fs User specified sampling frequency (default 1)

name User specified name

marker Time instants of interest

tlabel Time label

ylabel User-specified names on output signals

ulabel User-specified names on input signals

markerlabel  Label for the marker

method For estimated models, the method and design parameters are
saved here
desc User-specified description of the signal
Example Construct an empty structure, a certain ARX model from polynomials, and an

uncertain model using the parameter vector:

arx([2 2 1])
Unspecified ARX(2,2,1)

arx([4 5 6],[1 2 3])
Discrete time ARX(2,3,0) model (fs=1):
(qr2+2*q+3) y(t) = (4*q"2+5*q+6) u(t) + e(t)

arx([2 3 0],[2 3 4 5 6]',0.1*eye(5))
Discrete time ARX(2,3,0) model (fs=1):
(9"2+2*q+3) y(t) = (4*q"2+5*q+6) u(t) + e(t)
Parameter vector and uncertainties [std=sqrt(P(i,i)]
2 3 4 5 6
0.316 0.316 0.316 0.316 0.316

See also ar,arx.estimate, fir, tf
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arx.estimate

Purpose

Syntax

Description

Example

Estimate an ARX model from data in a signal object.

mhat=estimate(mstruc,z,Propertyi,Valuel,...)

The ARX model is estimated using the least-squares (LS) algorithm as described in
“Simulation and Estimation of ARX Models” on page 199. The input parameters

are given in the following table:

ARGUMENT DESCRIPTION
z signal object with output input data
ms gives the model structure, typically ms=arx([na nb nk nu ny])

Use ms=ar(na) to estimate an AR model, and ms=fir (nb) to estimate a FIR
model.

ms can also include the prior. For example, the following two lines would give the
same result except for some missing data at the border:
m=estimate(ms,z(1:end))
m=estimate(estimate(ms,z(1:100)), z(101:end))
The uncertainty is stored in the covariance matrix P provided by LS algorithm.
However, in case that Monte Carlo simulations of the signal are available, the
corresponding point estimate of the parameter vector th are stored in the columns
of P and used in subsequent functions for representing uncertainty. That is, Monte

Carlo uncertainty has precedence to the one represented by the covariance matrix.

Create a structure, and generate a random model for this. Then, you perform two
experiments. In the first one, simulate one realization of a PRBS response and then
estimate the model. Then simulate 30 realizations and estimate the model. In the

first case, the uncertainty is provided by the LS method’s covariance matrix. In the
second case, the uncertainty is computed from the 30 models estimated from the 30

different signal realizations.

ms=arx([2 2 1]);

m=rand(ms)

Discrete time ARX(2,2,1) model (fs=1):
(9~2-0.468*q+0.14) y(t) = (g-0.999) u(t) + e(t)

z=simulate(m,getsignal('prbs',100));
mhat=estimate(ms,z)

Discrete time ARX(2,2,1) model (fs=1):
(9~2-0.475*q+0.0994) y(t) = (0.827*q-0.765) u(t) + e(t)

Parameter vector and uncertainties [std=sqrt(P(i,i)]



arx.estimate

-0.475 0.0994 0.827 -0.765

0.0906 0.0881 0.15 0.156
m.MC=30;
z=simulate(m,getsignal('prbs',100));
mhat=estimate(ms,z)
Discrete time ARX(2,2,1) model (fs=1):
(9~2-0.416*q-0.0236) y(t) = (1.1*g-1.03) u(t) + e(t)

Parameter vector and uncertainties [std of MC samples]
-0.416 -0.0236 1.1 -1.03
0.0712 0.0973 0.127 0.126

See Also arx

12 | CHAPTER 2: COMMAND REFERENCE



betadist

Purpose

Syntax

Description

Example

See Also

The beta distribution.

X=betadist(a,b)

The probability density function of the beta distribution, and its first two moments,

are given by

xa—1<1_x)b—1

p(x;a,b) =
int(l)uafl(l—u)bfldu
_T@+b) a-1,. -1 _ 1 a-1..  b-1
“Tore” Y TReet Y
EX) = —5,
ab
Var(X) =

(a+b)2(a+b+1).

Both a and b must be positive. This is a child of pdfclass, and all of its methods
apply to this distribution, in particular pdfclass.estimate and the plot functions.

Some sample distributions:

a=[0.5 5
b=[0.5 1
for i=1:5;
plot(X{:})

1 2];
3 5];
X{i}=betadist(a(i),b(i)); end

Probability Density Function

— Beta(0.5,0.5)
Beta(5,1)

10 — Beta(2,2)

5 — Beta(1,3)

Beta(2,5)

I _

~—_
0

0 01 02 03 04 05 06 07 08 09 1
X

pdfclass



chi2dist

Purpose The chi2 distribution.
Syntax X=chi2dist(n)
Description The probability density function of the chi2 distribution, and its first two moments,

are given by

1 k/2-1 —x/2
plxsn)= = N R e , x>0,
27 T(k/2)
EX) =k,
Var(X) = 2k.

n must be a positive integer. This is a child of pdfclass, and all of its methods apply
to this distribution, in particular pdfclass.estimate and the plot functions.

The additivity property of the chi2 distribution is implemented symbolically.

Example Some sample distributions:
for k=1:5; X{k}=chi2dist(k); end

plot(X{:})
set(gca, 'Ylim',[0 0.5])

Probability Density Function

— chiz(1)

chi2(2)
— chi2(3)
—— chiz(4)
04 chi2(5)

035
03
£025

0.2

See Also pdfclass
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covf

Purpose

Syntax

Description

The constructor for the covariance function object.

The following table shows the available syntax for the covf object constructor:

R=covf Empty object (for estimation)

R=covf (R, tau) Definition with a 3D matrix with elements R(tau,i,j)
R=covf (R, tau,RMC) As above, with MC simulations in RMC(k,tau,i,j)
R=covf(s) Conversions from SIG and LTI (ARMAX, SS) objects

The covariance function is defined as
Rl‘j(T) = E[yi(t)yj(t—'c)]

Its content is stored in a 3D matrix R(t,i,/). Monte Carlo simulations are stored in
a similar matrix R(%,7,i,7), where the first dimension is the Monte Carlo sample
number &. The lags are contained in the vector t. For a scalar signal, R is a column
vector, and RMC is a matrix.

Optional public fields:

FIELD NAME DESCRIPTION

fs Sampling frequency

MC Number of Monte Carlo simulations taken when
converting from other uncertain objects

name Name of the signal that will appear in plot titles
tlabel Optional label for time
ylabel Optional label for signal amplitude

desc Optional description

Change these with R. fs=fs, and so on.

METHOD DESCRIPTION

ESTIMATE Estimates the covariance function from a signal in a SIG object
SIZE Returns the sizes of R, [ny,ntau]=size(R)

PLOT Plots the covariance function

The covariance function describes how a stochastic signal correlates with itself , and

the definition for stationary stochastic processes is:

R(1) = E[s(t)s(t-1)]



covf
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The covariance function is closely related to spectral analysis, because the spectrum

is defined as the Fourier transform of the covariance function.
@(f) = FT[R(1)]

The Signals and Systems Lab represents the covariance function in the COVF object

for discrete time signals. The direct construction uses the syntax
R=covf (R, tau,RMC)

where each column of R contains one covariance function, tau is the vector of time
lags and RMC contains Monte Carlo realizations of the covariance function. Here, R
is (ntau,ny*ny), tauis (ntau,1), and RMC is (MC,ntau,ny*ny).

Normally, the covariance function is estimated from a signal using the unbiased

estimate
N-|1|
N |
RU(T) _N— |T| Z y;(t)yj(t_r)
t=1

For coherence in syntax, there are three different ways to do the same thing, as the

following table summarizes:

c=estimate(covf,y,Propertyi,valuel,...) Explicit call
c=covf(y,Propertyi,valuel,...) Implicit call
c=sig2covf(y,Propertyi,valuel,...) Direct low-level call

Alternatively, it is possible to compute the covariance function from a stochastic
signal model, which can be certain or uncertain. In the latter case, MC data are
generated in RMC. For ARX models and stochastic state-space models, the algorithm
neglects the deterministic input-output part. That is, only the AR part that is used
for ARX models is kept here. The theoretical covariance function is in both cases

computed using a state-space realization using the following algorithm:

I R(0) = C * Pibar * C' + R

2 R(tau) = C * A“tau * Pibar * C' + C * A~(tau-1) * S,
tau=1,2,...,taumax, where Pibar is the controllability Gramian (see gram)

When the covariance function is computed from a stochastic process represented by
a SIG object with Monte Carlo data, these random realizations are propagated to
random realizations of the COV object contained in the field RMC. A similar

situation occurs when an uncertain model is converted to a covariance function.

CHAPTER 2: COMMAND REFERENCE



covf

Each sample of the uncertain model is converted to covariance function. In both
cases, the covariance function can be regarded as a stochastic variable for each time
lag. Using the plot function, you can add confidence bounds or scatter plot of the

realizations. Further, the following operations are possible:

mean/E  Returns the mean of the Monte Carlo data c=E(C)
std Returns the standard deviation of the Monte Carlo data sigma=std(C)
var Returns the variance of the Monte Carlo data sigma2=var(C)
rand Return one random COV object or a cell array of random  c=rand(C,10)
COV objects
fix Remove the Monte Carlo simulations from the object c=fix(C)
Example Compare the following direct and indirect ways to create a COVF object:
N=1000;
y=filter(1,[1 1.6 0.64],randn(N,1));
for tau=0:10;

R(1+tau)=sum(y(1:N-tau)'*y(1+tau:N))/(N-tau);
end
c1=covf(R,0:10);
cl1.name='AR(2) example';
c1.tlabel='Time [samples]';
cl1.ylabel="'Volt';
ysig=sig(y);
c2=covf(ysig)
subplot (2,1

5
,1), plot(ct)
subplot(2,1,2)

, plot(c2)

AR(2) example

Volt

Time [samples]

R(tau)

tau

See Also covf.estimate, covf.plot, sig.sig2covf, ss.ss2covf
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Purpose

Syntax

Description

Example
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Estimate the covariance function from a SIG object.

The are three different functions call for computing the covariance function c:

c=estimate(covf,y,Propertyl,valuel,...) Explicit call
c=covf(y,Propertyi,vValuel,...) Implicit call
c=sig2covf(y,Propertyi,valuel,...) Direct low-level call

The function implements the unbiased estimate

N-|1|
> 1
Rij(T) =N—— |’C| z yi(t)yj(t—’l?)
t=1

The following table shows the available property/value options:

taumax {30} Maximum lag for which the covariance function is
computed
fs {y.fs} Sampling frequency (overrides fs specified in y)
MC {100} Number of Monte Carlo simulations to compute
confidence bound
method {'direct'} Direct summation in the time domain
‘conv' Summation in the time domain using conv
'freq' Convolution computed in the frequency domain

Simulate a signal from a random AR model, and estimate the corresponding
covariance function. Plot the result together with the true function.

mO=rand(arx(4));

y=simulate(m0,100);

csighat=estimate(covf,y); % Equivalent to csighat=covf(y);
cO=covf (mo);

plot(c0,csighat)

set(gca,’Xlim’,[0 8])
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See Also

gos /\
0 _/

covf, covf.plot, sig.sig2covf, ss.ss2covf



covf.plot

Purpose

Syntax

Description

Example

Plot the covariance function from COV objects.
plot(ci1,c2,...,Propertyl,vValuel,...)

Use covf.plot to illustrate one or more covariance functions at the same time. For
covariance functions computed from estimated models, you can add a confidence
bound based on Monte Carlo simulations of the covariance function. The Monte
Carlo data can also be shown in a scatter plot, where all simulated random
covariance functions appear with half the line width along with the nominal one.
The input objects ¢ can be LTI, SIG, or COV objects, except for the first one, which
must be a COV object in order to get the correct plot method.

For SIG objects, covf.sig2covf is invoked, and similarly covf.ss2covf for LTI

objects.

TABLE 2-1: COVPLOT PROPERTIES

PROPERTY  VALUE DESCRIPTION

conf [{0},100] Confidence level (0 mean no levels plotted) from MC
data

scatter ‘on' | {'off'} Scatter plot of MC data

taumax {30} Maximum lag for which the covariance function is
computed

interval {'pos'} | Positive tau=0:taumax or

'sym’ symmetric tau=-taumax:taumax lag interval

axis {gca} Axis handle where plot is added

col {'bgrmyk'} Colors in order of appearance

fontsize 14 Font size

linewidth 2 Line width

Xlim {3 Limits on x axis

Ylim {3 Limits on y axis

legend { Legend text

Generate an AR(4) system, simulate data, and compare true covariance function to

the estimated one:

mO=rand(arx(4));
y=simulate(m0,100);
mhat=estimate(arx(4),y);
csighat=covf(y);
cmhat=covf (mhat);
cO=covf (m0);
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covf.plot

plot(c0,csighat,cmhat)
set(gca,’Xlim’,[0 8])

See Also covf, covf.estimate, covf.plot, sig.sig2covf, ss.ss2covf
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dbsignal

Purpose Signals & Systems Lab signal database.
Syntax y=dbsignal(name,help)
Description If you provide any second input argument help, the function displays a help text

and shows some introductory plots. The following sets of data are available:

TABLE 2-2: SIGNALS DATABASE

NAME DESCRIPTION

bach A piece of music performed by a cellular phone

carpath Car position obtained by dead-reckoning of wheel velocities

current Current in an overloaded transformer

eeg_human The EEG signal y shows the brain activity of a human test
subject

eeg_rat The EEG signal y shows the brain activity of a rat.

ekg An EKG signal showing human heartbeats.

equake Earthquake data where each of the 14 columns shows one time
series.

ess Human speech signal of 's' sound

fricest Data z for a linear regression model used for friction
estimation.

fuel Data y=z from measurements of instantaneous fuel

consumption.

genera The number of genera on earth during 560 million years

highway Measurements of car positions from a helicopter hovering over
a highway

pcg An PCG signal showing human heartbeats.

photons Number of detected photons in X-ray and gamma-ray
observatories.

planepath Measurements y=p of aircraft position.

See Also getsignal, sig
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empdist

Purpose

Syntax

Description

Example

Representations of nonparametric distributions.

X=empdist(x)

The data vector x contains samples from a univariate or multivariate distribution.
The methods are inherited from PDFCLASS, but there are several methods that
require numerical implementations.

METHOD DESCRIPTION

E The expectation estimator

MEAN The expectation estimator

VAR The variance estimator

STD The standard deviation estimator

VAR The variance estimator

SKEW The skewness estimator

KURT The kurtosis estimator

ESTIMATE  Estimate a parametric density function dist=estimate(X,pd
from a list of PDF objects flist)

RAND Generate random numbers in a vector if X x=rand(X,N)
is scalar or (nx,N) matrix if X is a
stochastic vector

ERF Evaluate the error function I(x)=P(X<x) I=erf(X,x)
numerically, where X is scalar

ERFINV Evaluate the inverse error function x=erfinv(X,I)
I(x)=P(X<x) numerically, where X is scalar

CDF The cumulative density function (X scalar) P=cdf (X, x)

PDF The probability density function, obtained ~ p=pdf (X, x)

by histogram smoothing

Example of a univariate and a multivariate statistical variable represented as an

empirical distribution.

u=2*pi*rand(1000,1);
U=empdist(u);

X=sin(U)

Empirical data vector of size 1 with 1000 samples
subplot(1,2,1), plot(X)

Y=cos (U)

Empirical data vector of size 1 with 1000 samples

Z=[X;Y]

Empirical data vector of size 2 with 1000 samples
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subplot(1,2,2), plot2(2)

Probability Density Function 1
1 .
— Data [+ pata]
0.8
0.9
06[ ¢
0.8 0.4 / \
0.2
0.7
= X0
k-4
0.6 0.2
0.4
0.5
-0.6
0.4 08
NN -1
03 -1 -0.6-0202 06 1

-1 -06-0202 06 1

x1
X

See Also pdfclass
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exlti

Purpose Generate standard LTT objects.
Syntax m=exlti(ex);
Description Standard examples of LTT objects of different structures are returned depending on

the string argument ex.The following table lists some of the available options:

TABLE 2-3: SOME OPTIONS FOR CREATING LTI OBJECTS WITH EXLTI

EX TYPE TIME DESCRIPTION
tfic tf cont DC motor
tfid tf disc DC motor
tfac tf cont Slightly undamped second-order system
tfad tf disc Slightly undamped second-order system
Example Load a continuous-time second-order transfer function and display its step
response:

m=exlti('tf2c')
0.62*s+0.41

Y(S) = =----cccennnon- U(s)
$72+0.3*s+0. 41

Slightly undamped second order system

See Also ss, tf, getfilter, exnl
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exnl

Purpose Generate standard NL objects.
Syntax m=exnl(ex,opttl)
Description All demos in the manual are included as predefined examples here. There are also

many standard motion models as used in target tracking and navigation applications.

See help exnl for a list of options.

See Also exlti
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expdist

Purpose

Syntax

Description

Example

See Also

The exponential distribution.
X=expdist(mu)

The probability density function of the exponential distribution, and its first two

moments, are given by

plasu) = =ie””“, £>0
EX) =,
Var(X) = uz.

mu must be positive. This is a child of pdfclass, and all of its methods apply to this
distribution, in particular pdfclass.estimate and the plot functions.

The multiplicative scale property of the exponential distribution is implemented

symbolically.

Tllustration of the scaling property:

X=expdist(2);
Y=2*X

exp(4)
plot(X,Y)

05 Probability Density Function
: — exp(2)
exp(4
045 p(4)

0.4

035
03
5025

0.2

pdfclass
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exrarx

Purpose Generate RARX object examples of length N.
Syntax m=exrarx(ex,N);
Description The function returns various examples of LTV objects of RARX form of different

model structures and orders. The size of the LTV object is rescaled with N, which
denotes the number of samples of the time-varying model (default 500). Some

examples of string options for ex:

TABLE 2-4: RARX OBJECT EXAMPLES

EX DESCRIPTION

meani Three changes in the mean (1,2,4) of length 200
mean2 As meanl, with softer transitions

mean3 As mean|, with random means N(0,10)

ari An abrupt switch between two AR(2) models
ar2 A soft switch between two AR(2) models
Example Show the time-varying AR(2) model, and compare with one estimated from

simulated data.

m=exrarx('rar2',1000);
y=simulate(m);
mhat=estimate(rarx(2),y, 'adg',0.95);
plot(m,mhat, 'Ylim',[-2 2])

— RAR(2)
—— RAR(2) from RLS(0.95)

oshl
A

-2
0 100 200 300 400 500 00 700 80O 900 1000
Time [samples]

Parameters
=

e
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See Also

Generate a change in the mean model as a time-varying FIR(1) system fed by a unit

input signal:

mt=exrarx('meant’',500);
u=getsignal('ones',length(mt));
y=simulate(mt,u);

plot(y)

0 50 100 150 200 250 300 350 400 450 500

rarx
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Purpose

Syntax

Description

Example

See Also

CHAPTER 2: COMMAND REFERENCE

The F distribution.
X=fdist (d1,d2)

The probability density function of the F distribution, and its first two moments, are

given by
_ o 1 dix /2 dix \&/2]
p(xidy.dy) = _B(d1/2,d2/2)(d1x+d ( “dx+dy o *70
B = -2 dy>2
( )—-3;j§, 9>
2
2d5(d+d, -2
Var(X) = 2(d1 +dp-2) , dy>4.

dy(dy—2)"(dy—4)

Both d1 and d2 must be positive integers. This is a child of pdfclass, and all of its
methods apply to this distribution, in particular pdfclass.estimate and the plot
functions.

Some sample distributions:

d1=[5 1]; d2=[5 10];

for i=1:2; X{i}=fdist(d1(i),d2(i)); end
plot(X{:})

set(gca, 'Ylim',[0 1])

Probability Density Function
—F(55)
F(1,10)
00 (1,10)

0.8

0.7

0.6

p(x)
o
&

0.4

03

0.2

0.1

pdfclass



filtfilt

Purpose

Syntax

Description

Example

Noncausal implementation of a filter using forward and backward filtering.

y=filtfilt(b,a,u,M); Zero-phase noncausal filtering
y=filtfilt(bf,af,bb,ab,u,M); General noncausal filtering

For transfer functions with poles both inside and outside the unit circle, a stable
implementation of a filter must be noncausal. The typical use is for zero-phase filters
defined as |H (z)|2 for some stable transfer function H(z). The implementation is
based on forward-backward filtering. The following lines show the core of the
function.

x=filter(b,a,u);

xr=x(end:-1:1);

yr=filter(b,a,xr);

y=yr(end:-1:1);
If you provide an input argument M, filtfilt attempts to minimize the transients
and remove the influence of the order of application of the forward and backward
filter. An approximation of the optimal initial conditions is used, where M denotes
the number of samples in both ends that are used. With M=0, filtfilt computes

a default value for M from the impulse response.
If you want different causal and noncausal filters, use
y=filtfilt(bf,af,bb,ab,u,M);

Here, bf/af is the forward filter, and bb/ab is the backward filter. Default is bb=bf
and ab=af.

You can judge the effect of transients by comparing the forward-backward and

backward-forward filtered sequences
[yfb,ybf1=filtfilt(b,a,u,M);
Filter a sequence of data with nonzero initial conditions.

u=[5:0.5:10, 10:-0.5:2]";
G=getfilter(4,0.5,'fs',2);
y=filtfilt(G.b,G.a,u);
yM=filtfilt(G.b,G.a,u,10);
plot([u y yM])
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See Also
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Note that the straightforward implementation gives noticeable transients because of
unknown initial conditions that are taken as zero by default. The effect is in
particular clear when there are initial nonzero signal values. The initial filter state is
estimated in the red curve, where the transient is almost invisible.

tf.filtfilt



fir

Purpose

Syntax

Description

Example

See Also

The Finite Impulse Response (FIR) model object.

m=fir([nb nk]) FIR model structure
m=fir(b) FIR model with parameter vector

The FIR model is defined by
y(t) = bou(t—-ng)+... + bnbu(t —-ny—ny)+e(t)
y(t) = q by +byg +byg 4 by, g () +e(t)
The FIR model is a special case of the ARX structure that is linear in the parameters.
The FIR object inherits all methods of the ARX object, which in turn inherits some

methods from the ARMAX object. The FIR object has a somewhat simplified
constructor compared to the ARX object.

For the second usage of the constructor, add initial zeros in the b polynomial as
b=[0,0,...,0,b0,...,bnb].

Note the ambiguity for FIR models of the type b=[b0 b1], where b has the same
size as [nb nk]. Use the ARX constructor in such cases.

FIR shares all methods and its representation with the ARX object.

Create an empty structure, a certain model, and an uncertain model:

fir(4)
Unspecified FIR(4,0)

fir([1 2 3 4])
Discrete time FIR(4,0) model (fs=1):
1 y(t) = (q"3+2*q"2+3*q+4) u(t) + e(t)

fir([1 2 3 4],eye(4))

Discrete time FIR(4,0) model (fs=1):

1 y(t) = (q"3+2*q"2+3*q+4) u(t) + e(t)

Parameter vector and uncertainties [std=sqrt(P(i,1i)]
1 2 3 4
1 1 1 1

arx, ar
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34

Purpose

Syntax

Description

Example

Construct a frequency object from LTI models.

Hf=freq(H,f,fs,HMC) Direct definition
Hf=freq(m) Conversion from LTT objects

The input arguments to the constructor are defined as follows:

TABLE 2-5: INPUT ARGUMENTS TO FREQ

ARG DESCRIPTION

H frequency response of a transfer function H(f,yind,uind)

f frequency values

fs sampling frequency

HMC Monte Carlo samples of H organized as HMC(mc,f,uind,yind)

The FREQ object contains the following fields that you can set:

TABLE 2-6: FIELDS IN THE FREQ OBJECT

FIELD DESCRIPTION

MC Number of Monte Carlo samples for uncertain models
fs Sampling frequency

name Name of system

ulabel Array of label for the inputs

ylabel Array of label for the outputs

tlabel Label for time

desc Description of the system

These labels are inherited from systems on TF or SS form when transformed to
FREQ objects. The FREQ object inherits the plot functions from the LTT object:

PLOT DESCRIPTION

bode Bode diagram

bodeamp Bode amplitude
plot

bodephase Bode phase plot
nyquist Nyquist plot

Create an approximation of an ideal low-pass filter:

Hf=freq([1 1 0.1 0.1]',[0 0.4 0.6 1],2)
FREQ object: Untitled
SISO transfer function frequency response
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freq

See Also

Number of frequency points: 4
Number of Monte Carlo samples: O
bodeamp (Hf, 'Ylim',[0.01 2]);

Magnitude

ott

0% o1 02 03 04 05 06 07 08 09
Frequency [Hz]

ss.ss2freq, tf.tf2freq, 1ti.bode
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ft

Purpose

Syntax

Description

The Fourier Transform (FT') object

Y=Fft(y) Conversion from SIG object
Y=Fft(Y,f,YMC) Direct definition

The Fourier Transform is represented by a transform vector and a frequency vector
with field names Y and f, respectively. Monte Carlo samples are stored in a matrix
with field name YMC. The sampling frequency is used by the plot method for correct
axis scalings. Here, Y is of size (nf,ny), f is nf, and YMC is of size (MC,nf,ny).

The usual plot variants are overloaded (see ft.plot on page 39 for further
information and options).

PLOT FUNCTION DESCRIPTION

plot Plot with linear axes

loglog Plot with logarithmic axes

semilogy Plot with linear frequency axis and logarithmic amplitude axis
semilogx Plot with logarithmic frequency axis and linear amplitude axis

You can use the overloaded operators in the following table to further control what
is plotted using, for instance, plot(angle(Y)).

OPERATORS DESCRIPTION
abs Absolute value
angle Angle, or phase
real Real part

imag Imaginary part

Furthermore, indexing a FT object by Y(freqind, yind) selects the frequency
indices in freqind and the subsignals in yind for multivariate signals.

When the FT is computed from a stochastic process represented by a SIG object
with Monte Carlo data, these random realizations are propagated to random
realizations of the FT object contained in the field YMC. That is, the Fourier
Transform can be regarded as a stochastic variable at each frequency. The plot
function allows confidence bounds or scatter plot of the realizations to be added.
Further, the following operations are possible:

mean/E Returns the mean of the Monte Carlo data  E(Y)

std Returns the standard deviation of the std(Y)
Monte Carlo data
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var Returns the variance of the Monte Carlo  var(Y)
data
rand Return one random FT object or a cell rand(Y, 10)
array of random FT objects
fix Remove the Monte Carlo simulations from  fix(Y)
the object
Example Generate a sampled sinusoid whose frequency is not a DFT bin, and construct a FT

object in the two available ways. The conversion uses zero padding that reveals the
leakage effects of the finite rectangular window that is implicitly applied to an
infinitely long sinusoid.

t=(0:31)7;
f1=0.22;
y=sin(2*pi*fi1*t);
Y=fft(y);
Y1=ft(Y(1:16),(0:15)/32); %
Y2=ft(sig(y,t)); %
plot(Y1,Y2)

Direct definition
Conversion

See Also ft.plot, freq
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ft.plot

Purpose

Syntax

Description

Example

Plot Fourier transforms
plot(Y1,Y2,...,Propertyi,valuet,...)
Yi are Fourier Transform (FT) objects.

The following property and value pairs are available:

TABLE 2-7: FT.PLOT PROPERTIES

PROPERTY VALUE DESCRIPTION
type 1,2,{3} Interval for f, 1:[0,fs], 2:[0,fs/2], 3:[-fs/
2,fs/2]

plottype 'plot'|{'semilogy'}| This is the plot function used in feval
'semilogx'|'loglog’

X1im {} Limits on x axis

Y1lim {} Limits on y axis

axis {gca} Axis handle where plot is added
col {'bgrmyk"'} Colors in order of appearance
fontsize {14} Font size

linewidth {2} Line width

Load a real data example, detrend the data, and plot the DTFT. By zooming in on
the low-frequency part, two resonance peaks are visible.

load genera
yd=detrend(y1,3);
Y=Fft(yd);

plot(Y) % Default view

# genera

x10

1

0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

plot(Y,'Xlim',[-0.02 0.02])
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ft.plot

# genera

x10

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

See Also ft

40 | CHAPTER 2: COMMAND REFERENCE



gammadist

Purpose

Syntax

Description

Example

See Also

The gamma distribution.
X=gammadist(a,b)

The probability density function of the gamma distribution, and its first two

moments, are given by

—x/b
p(x;a,b) = =L , x>0,a,b>0

5T (a)
EX) = ab,

Cov(X) = ab’.

a and b must be positive. This is a child of pdfclass, and all of its methods apply
to this distribution, in particular pdfclass.estimate and the plot functions.

The scale property t*gammdist(a,b)=gammadist(a,t*b) is implemented
symbolically.
Some sample distributions

a=[10 10 5 5 1]; b=[1 5 5 10 10];
for i=1:length(a); X{i}=gammadist(a(i),b(i)); end
plot(X{:})

Probability Density Function

—— Gamma(10,1)
Gamma(10,5)

—— Gamma(5,5)

—— Gamma(5,10)
Gamma(1,10)

X

0 20 40 60 80 100 120 140 160 180 200
X

pdfclass
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getfilter

Purpose Compute an approximation of ideal transfer functions of type LP, HP, BS, BP

Syntax m=getfilter(n,fc,Propertyl,valuel,...) TF object
[b,al=getfilter(n,fc,Propertyi,VvValuel,...)Polynomial form

Description The function computes both continuous-time and discrete-time filters. If the

sampling frequency fs = NaN, then the continuous-time filter is returned. If you
provide an fs, the cutoff frequencies must satisty fc<fs /2. The default is fs=2, so

fc is a normalized cutoft frequency in the interval [0, 1].

Input parameters:

TABLE 2-8: INPUT PARAMETERS

fc Cutoff frequency or vector of frequencies, to be normalized by
sampling frequency

n Filter order

Optional parameters:

TABLE 2-9: OPTIONAL PARAMETERS

PROPERTY VALUE DESCRIPTION
type {'LP'} | '"HP' | Type of filter
'BP"
alg {'butter'} | Algorithm
"cheby1’
fs {2} Sampling frequency, fs=0 corresponds to
a continuous filter.
ripple {0.5} Ripple in decibels for Chebyshev
Example Compute a filter bank consisting of one LP, one BP, and one HP filter:

Hi=getfilter(4,0.3, 'alg', 'butter');
H2=getfilter(4,[0.3 0.7],'alg', 'cheby1', 'type','bp');
H3=getfilter(4,0.7,'type', 'hp');

bodeamp (H1,H2,H3)

grid
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Magnitude

01 02 03 04 05 06 07 08 09
Frequency [Hz]

See Also 1ti.bode
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getsignal

Purpose

Syntax

Description

Generate standard signals as SIG objects.

y=getsignal(ex,N,opt1,opt2);

Standard examples of SIG objects of different properties are returned depending on

the value of the string ex. The optional N defines the number of samples for

discrete-time signals and time interval for continuous-time signals.

Discrete-time signal examples:

EXAMPLE DESCRIPTION

ones A unit signal [1 ... ] with nu=opt| dimensions

zeros A zero signal [0 ... 0] with nu=opt| dimensions

pulse A single unit pulse [0 | 0...0]

step Aunitstep [0 | ... I]

ramp A unit ramp with an initial zero and N/10 trailing ones

square Square wave of length optl

sawtooth Sawtooth wave of length optl

pulsetrain Pulse train of length optl

sinc sin(pi*t)/(pi*t) with t=k*T where T=opt|

diric The periodic sinc function sin(N*pi*t)/(N*sin(pi*t)) with t=k*T where
T=opt| and N=opt2

prbs Pseudo-random binary sequence with basic period length optl (default
N/100) and transition probability opt2 (default 0.5)

gausspulse sin(pi*t)*p(t;sigma) with t=k*T where p is the Gaussian pdf, T=optl|
and sigma=opt2

chirp1 sin(pi*(t+a*t"2) with t=k*T where T=opt| and a=opt2

sint One sinusoid in noise

sin2 Two sinusoids in noise

sin2n Two sinusoids in LP noise

Continuous-time signal examples:

EXAMPLE DESCRIPTION

cones A unit signal [I 1] with t=[0 N] and ny=opt|
czeros A zero signal [0 0] with t=[0 N] and ny=optl|
impulse A single unit impulse [0 | 0 0] with t=[0 0 0 N]
cstep A unit step [0 |1] with t=[0 0 N]
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EXAMPLE DESCRIPTION
csquare Square wave of length N and period length optl

impulsetrain  Pulse train of length N and period length optl

cprbs Pseudo-random binary sequence with basic period length optl
(default N/100) and transition probability opt2 (default 0.5)

Example Generate a chirp signal, plot it, and look at its time-frequency description. The
momentary frequency of a chirp is linearly increasing in time, but due to aliasing it
will after a certain time be folded back to below the Nyquist frequency.

s=getsignal('chirpi1');

subplot(2,1,1), plot(s)
subplot(2,1,2), surf(tfd(s))

Chirp signal

(H{L7)

See Also dbsignal
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getwindow

Purpose Compute data window.
Syntax w=getwindow (N, type,n)
Description N is the length of the desired window, and type is one of 'box', 'hanning',

‘hamming', 'kaiser', 'blackman', 'bartlett',or 'spline’, generatinga box,
Hanning, Hamming, Kaiser, Blackman, Bartlett, or spline window, respectively.

Here, the spline window type uses a uniform window convolved with itself n times.

This function is used internally in the SIG method window (which applies the
window to a signal and further supports MIMO and MC simulations).

Example Compare five different windows in the time and frequency domains, respectively:
wi=getwindow (40, 'hanning');
w2=getwindow (40, 'hamming');
w3=getwindow (40, 'kaiser"');
w4=getwindow (40, 'blackman');
w5=getwindow (40, 'bartlett');

subplot(2,1
W1= ft(31g(w1
W2=ft (sig(w2
W3=ft(sig (w3
4
5

plot([wl w2 w3 w4 w5], ' 'linewidth',1)

W4=Fft (sig(w
W5=ft (sig(w
subplot (2,1,
semilogy (W1,W2,W3,W4,W5, 'type',3, 'Ylim',[1e-3 40])

)
)
)
)
)
)

(
(
(
(
(
1
)
)
)
)
)
2

)
);
);
);
);
);
)
2

IOEDW\/ NWM/ \M\ Wmn\ |

See Also sig
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histeq

Purpose
Syntax

Description

Example

Rescale the values in the matrix H uniformly to the interval [0, 1].
H=histeq(H);

In histogram equalization, a monotonous mapping is applied such that the original
values in H are mapped to values in [0, 1] so that all values are evenly spread as in a
uniform distribution. The TFD plot functions all use histeq for improved visibility.

Map a random vector to uniformly distributed values in [0, 1]:

u=rand(1,6)
u:
0.8729 0.0887 0.1474 0.8319 0.7369 0.8680
histeq(u)
ans =
1 0.1667 0.3333 0.6667 0.5000 0.8333

The vector is normalized to values in the set {£/6}, £ = 1-6.

The next example shows how the normalization of the z value in a 3D plot provides
better visibility:

mt=exrarx('rar2',1000);

Mt=tfd(mt);

subplot(1,2,1), surf(Mt,'histeq','on')
subplot(1,2,2), surf(Mt,'histeq','off')
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Because the height values in the left surf plot are rescaled, details between the

minimum value and the maximum value are more visible.

See Also rarx.surf, tfdplot
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Iti

Purpose
Syntax

Description

See Also

Parent Linear Time-Invariant (LTT) model object.

The constructor is not available.

This object has no

constructor. It contains plot methods that are in common for its

children (SS, TE, ARX, FREQ):

FUNCTION DESCRIPTION

BODE Plots the Bode diagram of amplitude and phase
BODEAMP Plots the Bode diagram of amplitude only
BODEPHASE Plots the Bode diagram of phase only
NYQUIST Plots the Nyquist curve

ZPPLOT Plots the zeros and poles

RLPLOT Plots the root locus

ss, tf, freq, 1ti.

bode, 1ti.nyquist, 1ti.zpplot, 1ti.rlplot
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Purpose

Syntax

Description

Plot the Bode diagram of a system.

bode(G1,G2,...,Property1,Valuet,...)

The system is first converted to a FREQ object by F=freq(G). Then bode provides

separate plots of the amplitude and phase in two subplots.

PROPERTY VALUE DESCRIPTION
fmax {'auto'} Maximum frequency
plottype {'plot'} | Decides if the x and y axes are plotted in linear
‘semilogx’ | or logarithmic scale.
'semilogy’' |
‘loglog'
MC {30} Number of Monte Carlo simulations
conf [0,100] {0} Confidence level (default 0, no levels plotted)
from MC data
conftype {1} | 2 | =shaded confidence region, 2=dashed bounds
and median
scatter ‘on' | {'off'} Scatter plot of MC data
col {'bgrmyk'} Colors in order of appearance
X1lim Limits on x axis
Y1lim Limits on y axis
linewidth {2} Line width on plots
fontsize {14} Font size
title {'on'}|'off"' Display the title of the (first) model

Example

CHAPTER 2:

COMMAND REFERENCE

Bode diagram of random model:

G=rand(tf(4))

bode (G)

S(s"3+4.7*s"2+5.9*s+0.67)

................. U(s)

$"4+1.9*s"3+1.7*s"72+0.24*s+0.098
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Magnitude

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Frequency [Hz)

Phase [deg]

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Frequency [Hz)

The same for a MIMO system:

G=rand(tf([4 4 2 2]));

bode (G)
ultoyl u2toyl
10° 10°
o 4 10°
g 10 8
2 =
5‘ 5‘104,
2 3 2
10°F
10
2 2
% 001 002 003 004 005 % 001 002 003 004 005
Frequency [Hz] Frequency [Hz]
ultoyl u2toyl
200 200
150 150
_ 100 _ 100
é,"" 50 é")‘ 50
g 0 g 0
2 50 2 50
& &
-100 -100
-150 -150
-200 -200
0 001 002 003 004 005 0 001 002 003 004 005
Frequency [Hz] Frequency [Hz]

See Also 1ti, 1ti.nyquist, 1ti.zpplot, 1ti.rlplot, ss, tf
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Purpose

Syntax

Description

Plot the Nyquist curve of a system.

nyquist(G1,G2,...,Property1,Valuet,...)

The system is first converted to a FREQ object by freq(G) . Then the function plots

the complex numbers in G(f) in the complex plane.

PROPERTY VALUE DESCRIPTION
fmax {'auto'} Maximum frequency
plottype {'plot'} | Decides if the x and y axes are plotted in linear
‘semilogx’ | or logarithmic scale.
'semilogy’' |
‘loglog'
MC {30} Number of Monte Carlo simulations
conf [0,100] {0} Confidence level (default 0, no levels plotted)
from MC data
conftype {1} | 2 | =shaded confidence region, 2=dashed bounds
and median
scatter ‘on' | {'off'} Scatter plot of MC data
axis {gca} Axis handle where plot is added (does not
apply for MIMO that creates subplots)
col {'bgrmyk'} Colors in order of appearance
X1lim Limits on x axis
Ylim Limits on y axis
linewidth {2} Line width on plots
fontsize {14} Font size
title {'on'}|'off"’ Display the title of the (first) model
Example Nyquist curve of random model:
G=rand(tf(4))
S(8"3+4.7*s"2+5.9*s+0.67)
Y(S) = =---mcccommmm e u(s)
$°4+1.5*s73+0.29*s"2-0.004*s+2.5e-005
nyquist(G)
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See Also

80
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o k=0.00
2 =0.07
E
20
-40
-60
-80
-100
180 -160 -140 -120 -100 -80 60 40 -0 0 20
Real
MIMO system:
G=rand(tf([4 4 1 2 2]));
nyquist(G)
ultoyl u2toyl
5 008 6
4
5 ;
o-15 o 0
£ E 2
E 5| =005 =
=005
35 6
-8
-45 -10
70 10 0 10 20 30 40 50 20 2 4 6 8 10 12 14
Real Real
ultoy2 u2toy2
50 50 F=0.05 0
o =000 0 -
-50
ol f=0.05 -100
g g -150
E 100 E 200
-150 250
-300
-200 0
250 -400
-150 -50 50 150 -250 -150 -50 50 150 250
Real Real

1ti, 1ti.bode, 1ti.zpplot, 1ti.rlplot, ss, tf
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Purpose

Syntax

Description

Example

CHAPTER 2:

Plot the root locus of a system.

rlplot(G1,G2,...,Propertyl1,Valuel,...)

This function plots the poles of the system with K times unit feedback,

corresponding to something like Gc = feedback (G,K*eye(ny)), in the complex

plane as a function of the feedback gain K.

PROPERTY VALUE DESCRIPTION

Kmax {'auto'} Maximum K

Kgrid {'auto'} Grid for K

MC {30} Number of Monte Carlo simulations

scatter ‘on' | {'off'} Scatter plot of MC data

axis {gca} Axis handle where plot is added (does not
apply for subplots in Bode diagrams of type
'both’' or for MIMO)

col {'bgrmyk'} Colors in order of appearance

X1lim Limits on x axis

Ylim Limits on y axis

linewidth {2} Line width on plots

fontsize {14} Font size

title {'on'}|'off' Display the title of the (first) model

Root locus of random model:

G=rand(tf(4))

rlplot(G)

COMMAND REFERENCE

S(s"3+4.7*s"2+5.9*s+0.67)

................. u(s)

$"4+1.9*s"3+1.7*s"72+0.24*s+0.098
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1
(=0.00
€10.00

=0.00

(=10.00

=0.00

1000
\/Enm

-2.5 -2 -1.5 -1 -0.5 0 0.5
Real

Root locus of square MIMO model:

G22=rand (tf([4 4 1 2 2]));
rlplot(G22,’X1lim’,[-0.2 0.6])

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Real

See Also 1ti, 1ti.bode, 1ti.nyquist, 1ti.zpplot, 1ti.rlplot, ss, tf
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Purpose Plot the zeros and poles of a system.
Syntax zpplot(G1,G2,...,Property1,vValuet,...)
Description The system is first converted to zeros and poles using zpk (G). These are then

illustrated as circles and stars, respectively, in the complex plane.

PROPERTY VALUE DESCRIPTION

MC {30} Number of Monte Carlo simulations

scatter ‘on'|{'off'} Scatter plot of MC data

axis {gca} Axis handle where plot is added (does not

apply for MIMO)

col {'bgrmyk'} Colors in order of appearance

X1lim Limits on x axis

Ylim Limits on y axis

linewidth {2} Line width on plots

fontsize {14} Font size

title {'on'}|'off' Display the title of the (first) model
Example Zero-pole plot of random model:

G=rand(tf(4))
S(s"3+1.9*s"2+1.2*s+0.29)
Y(S) = =--mmmmmmm - U(s)
$"4+1.8%*s"3+1.4*s"2+0.52*s+0.081

zpplot(G)
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See Also

0.5

03r

-1z <11 -1 0% 08 07 06 05 04 03 02

Real

Zero-pole plot of MIMO model:

G=rand(tf([4 4 1 2 2]));

zpplot(G)
ultoyl
2.5F P
1.5F
o 0.5F [
=051 5
-15F
25k wd
-4 3 2 -1 0 1 2
Real
ultoy2
2.5F i
1.5F
o 05F
£
S O5F
-L5F
25t o
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Real
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> 05

=05
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Real

u2 toy2

0.5 15 25

1ti, 1ti.bode, 1ti.nyquist, 1ti.rlplot, ss, tf
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Purpose Stable implementation of arbitrary transfer function on polynomial form.
Syntax y=ncfilter(b,a,u)
Description The zeros of the a polynomial can be arbitrary (both inside and outside the unit

circle). A stable but noncausal implementation is applied to the input vector u, using
the following algorithm:

I Split the roots of a and b into two groups; the ones inside the unit circle and the

ones outside the unit circle. This gives the polynomials af, ab, bf, and bb, and
the gain k.

2 Call the function filtfilt with y=k*filtfilt(bf,af,bb,ab,u,M).

Example a=poly([0.5 2]);
u=[zeros(10,1);1;zeros(10,1)1;
y=ncfilter(1,a,u);
plot([y ul,’-0")

See Also tf.ncfilter, filtfilt
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Purpose

Syntax

Description

Example

See Also

The Gaussian (normal) distribution
X=ndist(m,P)

The probability density function of the Gaussian (normal) distribution, and its first

two moments, are given by

P, P) = = — L 0B wiwom
(2rdet((P))""?)
EX) = u,
Cov(X) = P.

P must be a positive definite matrix. This is a child of pdfclass, and all of its
methods apply to this distribution, in particular pdfclass.estimate and the plot

functions.

The linearity property of the normal distribution is implemented symbolically.

Tllustration of the linearity property:

X=ndist([1;2],[2 0;0 1]);
Y=[1 1;0 1]*X
N([3;21,[8,1;1,1])
plot2(X,Y)

— N([1;2],[2,0;0,1])
N((3;21,03,1;1,1])

w

N

7

pdfclass
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Purpose

Syntax

Description

Example

See Also

Monte Carlo approximation of a nonlinear mapping.
Y=mceval(X,f,NMC,varargin)

The mean and covariance of the nonlinear mapping defined by

Y=f (X,varargin{:}) are approximated using Monte Carlo sampling.

Compute an approximation to a quadratic form of a Gaussian variable.

X=ndist(0,1)

N(0,1)
h=inline('(x+1).%2"');
Ymc = mceval(X,h,1000)
N(1.93,5.52)

The correct mean and variance are 2 and 6, respectively. The accuracy increases with

increased number of samples.
Convert Gaussian distributed range and bearing to Cartesian coordinates

R=90+ndist(0,5);

Phi=pi/4+ndist(0,0.1);
Nut=mceval([R;Phi],inline('[x(1,:).*cos(x(2,:));
X(1,:).*sin(x(2,:))1"))
N([60.9;60.6],[355,-314;-314,362])

plot2(Nut, [R*cos(Phi);R*sin(Phi)], 'legend', 'off"')

120

100

ndist.uteval, ndist.tt1eval, nl.nltf
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Purpose First-order Taylor approximation of a nonlinear mapping.
Syntax X=ttleval(X1,X2)
Description The mean and covariance of the nonlinear mapping defined by

Y=f (X,varargin{:}) are approximated using a first-order Taylor expansion.

Example Compute an approximation to a quadratic form of a Gaussian variable.

X=ndist(0,1)

N(0,1)
h=inline('(x+1).72");
Ymc = ttieval(X,h)
N(1,4)

The correct mean and variance are 2 and 6, respectively. The accuracy increases with
increased number of samples.

Convert Gaussian distributed range and bearing to Cartesian coordinates

R=90+ndist (0,5);

Phi=pi/4+ndist(0,0.1);
Nut=ttieval([R;Phi],inline('[x(1,:).*cos(x(2,:));
X(1,:).*sin(x(2,:))1"))
N([63.6;63.6],[408,-403;-403,408])

plot2(Nut, [R*cos(Phi);R*sin(Phi)], 'legend', 'off")

140

120

100 ¢

x2

See Also ndist.mceval, ndist.uteval, nl.nltf
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Purpose

Syntax

Description

Example

See Also

Unscented transform approximation of a nonlinear mapping.
X=uteval(X1,X2)

The mean and covariance of the nonlinear mapping defined by
Y=f (X,varargin{:}) are approximated using the unscented transform.

Compute an approximation to a quadratic form of a Gaussian variable.

X=ndist(0,1)

N(0,1)
h=inline('(x+1).%2");
Ymc = uteval(X,h)
N(2,6)

The correct mean and variance are 2 and 6, respectively.
Convert Gaussian distributed range and bearing to Cartesian coordinates:

R=90+ndist(0,5);

Phi=pi/4+ndist(0,0.1);
Nut=mceval([R;Phi],inline('[x(1,:).*cos(x(2,:));
X(1,:).*sin(x(2,:))1"))
N([60.1;61.1]1,[393,-342;-342,344])

plot2(Nut, [R*cos(Phi);R*sin(Phi)], 'legend', 'off')

120

100

ndist.mceval, ndist.tt1eval, nl.nltf
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Purpose

Syntax

Description

NL is the model object for nonlinear time-invariant systems.
m=nl(f,h,nn,fs)

The general definition of the NL model is in continuous time

x(t) = f(t, x(8), u(t);0) +v(t),
y(ty) = hity, x(t,), u(ty);0) +e(ty),
x(0) = x,.

and in discrete time

Xpi1 = f(kvxkv u;0) +v,,

¥, = h(k,xy,u;,e,:0).

The involved signals and functions are:

¢ x denotes the state vector.

* ¢ is time, and £;, denotes the sampling times that are monotonously increasing.

For discrete time models, & refers to time 2T, where T is the sampling interval.
* uisa known (control) input signal.

* v is an unknown stochastic input signal specified with its probability density
function p,(v).

* e isa stochastic measurement noise specified with its probability density function
DPe(e).
* xqis the known or unknown initial state. In the latter case, it may be considered

as a stochastic variable specified with its probability density function pg(xg).
* 0 contains the unknown parameters in the model. There might be prior

information available, characterized with its mean and covariance.

For deterministic systems, when v and e are not present above, these model
definitions are quite general. The only restriction from a general stochastic nonlinear

model is that both process noise v and measurement noise e have to be additive.
The constructor m=n1(f,h,nn) has three mandatory arguments:

* The argument f defines the dynamics and is entered in one of the following ways:
- Astring. Example: f="-th*x(1,:).%2";.

- An inline function. Example:
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f=inline(’-x(1,:).72’,’t’,’x’,’u’,’th’);
- An M-file. Example:

function f=fun(t,x,u,th)

f=-th*x(1,:)."2;
It is important to use the standard model parameter names t, x, u, and th. For
inline functions and M-files, the number of arguments must be all these four even
if some of them are not used, and the order of the arguments must follow this
convention. The complete indexing above (also avoiding end) is reccommended,

though a simplified notation as f="'-th*x"2"; also works in most cases.
* his defined analogously to f above.

* nn=[nx,nu,ny,nth] denotes the orders of the input parameters. These must be
consistent with the entered f and h. This apparently trivial information must be
provided by the user, since it is hard to unambiguously interpret all combinations
of input dimensions that are possible otherwise. All other tests are done by the
constructor, which calls both functions f and h with zero inputs of appropriate
dimensions according to nn, and validates the dimensions of the returned

outputs.
All other parameters are set separately:

* pv, pe, px0 are distributions for the process noise, measurement noise and initial
state, respectively. All of these are entered as objects in the pdfclass, or as

covariance matrices when a Gaussian distribution is assumed.

* th, P are the fields for the parameter vector and optional covariance matrix. The
latter option is used to represent uncertain systems. Only the second order
property of model uncertainty is currently supported for NL objects, in contrast
to the LTT objects SS and TF.

e fsis similarly to the LTT objects the sampling frequency, where the convention
is that fs=NaN means continuous time systems (which is used by default). All NL
objects are set to continuous time models in the constructor, and the user has to

specify a numeric value of fs after construction if a discrete model is wanted.

e xlabel, thlabel,ulabel,ylabel, and name are used to name the variables and
the model, respectively. These names are inherited after simulation in the SIG

object, for instance.
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The methods of the NL object are listed below.

TABLE 2-10: METHODS FOR THE NL OBJECT

METHOD DESCRIPTION

ARRAYREAD Used to pick out sub-systems by indexing. Ex: m(2,:) picks out the
dynamics from all inputs to output number 2. Only the output
dimension can be decreased for NL objects, as opposed to LTI objects.

DISPLAY Returns an ascii formatted version of the NL model

ESTIMATE Estimates/calibrates the parameters in an NL system using data
SIMULATE Simulates the NL system using daspk

NL2SS Returns a linearized state space model

EKF Implements the extended Kalman filter for state estimation

NLTF Implements a class of Riccati-free filters, where the unscented Kalman

filter and extended Kalman filter are special cases

PF Implements the particle filter for state estimation
CRLB Computes the Cramer-Rao Lower Bound for state estimation
Example A simple nonlinear system with one parameter:

m=nl('-th(1)*x(1,:).%2-th(2)*x(1,:)"','x"',[1 0 1 2])

NL object
dx/dt = -th(1)*x(1,:).%2-th(2)*x(1,:)
y =X
x0' = [0]
th' = [0 0]

The van der Pol system with measurement noise:

X(2,1)5(1-x(1,:).72) . *x(2,:)-x(1,:)1";

I

' X

nl(f,h,[2 0 2 0]);
.name='Van der Pol system';
.x0=[2;01];
.pe=ndist([0;0],0.1*eye(2));

23333 3 —h

NL object: Van der Pol system
dx/dt = [x(2,:);(1-x(1,:).72).*x(2,:)-x(1,:)]
y x + N([0;0],[0.1,0;0,0.1])
x0' = [2 0]

See Also Ss
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Purpose

Syntax

Description

Compute the parametric Cramer Rao lower bound for state estimation.

x=crlb(m,z,,Propertyl,valuet,...)

The Cramer Rao lower bound (CRLB) is defined as the minimum covariance any
unbiased estimator can achieve. The parametric CRLB for the NL model can be

computed as
= AP, AT+ Q
P = ArPrpAr + @k,
P P P, ..Crc, ., ,.Cr+Rr)C
Eelk+1 = Pronp=Pro1Cr(CripCr +BE) "Cpiqpo
T d
Ak =EfT(xk)>

Ci

Jd ;T

The state and measurement noise covariances € and R are here replaced by the
overlined matrices. For Gaussian noise, these coincide. Otherwise, @ and R are
scaled with the intrinsic accuracy of the noise distribution, which is strictly smaller

than one for non-Gaussian noise.

Here, the gradients are defined at the true states. That is, the parametric CRLB can
only be computed for certain known trajectories. The code is essentially the same as
for the EKF, with the difference that the true state taken from the input SIG object.

The arguments are as follows:

* misa NL object defining the model.

* zisa SIG object defining the true state x. The outputs y and inputs u are not
used for CRLB computation, but passed to the output SIG object.

* xis a SIG object with covariance lower bound Pxcrlb=x.Px for the states, and

Pxcrlb=x.Px for the outputs, respectively.

The optional parameters are summarized in the table below.

TABLE 2-11: OPTIONAL PARAMETERS IN THE CRLB FUNCTION

PROPERTY VALUE DESCRIPTION

k k>0 {0} Prediction horizon: 0 for filter (default), | for one-step
ahead predictor.

PO {1} Initial covariance matrix. Scalar value scales identity matrix.
Empty matrix gives a large identity matrix.

x0 {1} Initial state matrix. Empty matrix gives a zero vector.
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TABLE 2-11: OPTIONAL PARAMETERS IN THE CRLB FUNCTION

PROPERTY VALUE DESCRIPTION

Q {3 Process noise covariance (overrides the value in m.Q).
Scalar value scales m.Q.

R {1} Measurement noise covariance (overrides the value in m).
Scalar value scales m.R.

Example The CRLB for a nonlinear tracking model is computed for one realization of a
simulated trajectory.

m=exnl('ctpva2d');
z=simulate(m,10);
zcrlb=crlb(m,z);
xplot2(zcrlb, 'conf',90)

coordinated turn model
ten seconds trajectory

[)
i
[)

i

According to the theory, no nonlinear filter can compute better estimates than these
confidence ellipsoids indicate.

See Also nl.ekf,nl.nltf, nl.pf
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Purpose

Syntax

Description

Implementation of the extended Kalman filter (EKF) for state estimation.
[x,V]=ekf(m,z,Propertyl,Valuel,...)
The EKF implements the following recursion (where some of the arguments to f
and A are dropped for simplicity):
X+ 1)k = f(Xk|k)
- - T - ~
Pyovip = PGk Py (F ki) + 1, (X0 2) @y (F (xR |2)
e s T 40> e T
S = R hik-DPgp (B (ki -1))" + B (k- DR (R (xR |k -1))

Ky = Py (R 1)'Sy)

)T

g, = yk—h(;k\k—l)

Xplk = Xp|k-1+Kg,
vl To-1ly, .0
Ppip = Pripo1=Prip1 (W &rie-1))" S W (ke - 1) Ppp 1

The EKF can be expected to perform well when the linearization error is small. Here
small relates both to the state estimation error and the degree of nonlinearity in the
model. As a rule of thumb, EKF works well in the following cases:

e The model is almost linear.

* The SNR s high and the filter does converge. In such cases, the estimation error

will be small, and the neglected rest term in a linearization becomes small.

» Ifeither process or measurement noise are multimodel (many peaks), then EKF
may work fine, but nevertheless perform worse than nonlinear filter

approximations as the particle filter.
Design guidelines include the following useful tricks to mitigate linearization errors:

* Increase the state noise covariance Q to compensate for higher-order

nonlinearities in the state dynamic equation.

* Increase the measurement noise covariance R to compensate for higher-order

nonlinearities in the measurement equation.
The arguments are as follows:

* misa NL object defining the model.
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Example

* zisa SIG object with measurements y, and inputs u if applicable. The state field
is not used by the EKF.

* xis a SIG object with state estimates. xhat=x.x and signal estimate yhat=x.y.

The optional parameters are summarized in the table below.

TABLE 2-12: OPTIONAL PARAMETERS IN THE EKF FUNCTION

PROPERTY  VALUE DESCRIPTION

k k>0 {0} Prediction horizon: 0 for filter (default), | for one-step
ahead predictor.

PO {1} Initial covariance matrix. Scalar value scales identity matrix.
Empty matrix gives a large identity matrix.

x0 {1} Initial state matrix. Empty matrix gives a zero vector.

Q {1} Process noise covariance (overrides the value in m.Q).
Scalar value scales m.Q.

R {1} Measurement noise covariance (overrides the value in m).

Scalar value scales m.R.

The main difference to the KF is that EKF does not predict further in the future than

one sample, and that smoothing is not implemented. Further, there is no square

root filter implemented, and there is no such thing as a stationary EKF.

Simulate a trajectory for a nonlinear target tracking model, apply the EKF to

estimate the state, and plot the position estimates together with the true trajectory.

m=exnl('ctpva2d');
z=simulate(m,10);
zhat=ekf(m,z);

% coordinated turn model
% ten seconds trajectory
% EKF state estimation

xplot2(z,zhat, 'conf',90);
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sk
0t
10 I ) n o
See Also nl, nl.nltf, nl.pf,nl.crlb
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Purpose

Syntax

Description

Estimate, or calibrate, the parameters in an NL system using measured data.
[mhat,res]=estimate(m,z,propertyi,valuet,...)

This function estimates the parameters and initial state in an NL object in either

discrete

%y, .1 = flk,xp, up30) + vy,

Yy = h(k,xp, 1y, e,30).
or continuous time

x(t) = flt. x(t), u(t);0) +v(t),
y(tk) = h(tk, x(t), u(t,);0) +e(ty),
x(0) = x,.
In contrast to other model estimation methods, quite good an initial estimate is

required here, which motives the term model calibration rather than model

estimation.

The optimization methods using the NLS algorithm as implemented in nls leads to

the following calibration algorithm:
I Initialize the parameter vector n = (6,x) using the values of x0 and th in the NL
object.

2 Iterate in i:

i+

1 o Cop -l . .
N = - dmHI () JmHem)
3 In each iteration, check if the cost function has decreased. Otherwise, half the

step size W until either the cost function decreases or maxhalf iterations in the

line search is reached.

4 Continue untilj = maxiter or the relative change in cost function is smaller than

ctol, or the maximum element in the gradient oJ is smaller than gtol.

A numeric gradient J is computed according to

9 A(t )~y(tk,n+hei)—y(tk,n—hei)
a_n,'y M) = h s

which is evaluated for each unit vector.
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The internal parameters in the algorithm are controlled by property-value pairs for
both usages mhat=estimate(m,z,Property1,valuel,...) and
mhat=nls(m,z,Property1,Valuel,...). The property-value pairs are listed in
the table below.

TABLE 2-13: PROPERTY-VALUE PAIRS FOR THE NLS FUNCTION

PROPERTY VALUE {DEFAULT}  DESCRIPTION

thmask {ones(l,nth)} Binary search mask for parameter vector
x0Omask {ones(I,nx)} Binary search mask for initial state vector

x0 Cell array In case z is a cell with multiple data sets, different

known initial conditions can be set. x0{i} is the
initial state for z{i}

alg Optimization algorithm
{'gn'} Gauss-Newton
'rgn’ Robust Gauss-Newton, where the Hessian H=JJ’

is robustified by adding a small identity matrix.

'Im Levenberg-Marquardt, where the line search is
replaced by a region search.
'sd' steepest-descent, where the Hessian is replaced
with the identity matrix.
disp {o}1 Display status of the iterations
maxiter {50} Maximum number of iterations in search direction
maxhalf {50} Maximum number of iterations in the line search.
gtol {le-4} Tolerance for the gradient.
ctol {le-4} Minimum relative decrease in the cost function
before the search is terminated.
svtol {le-4} Lower bound for the singular values of the
Jacobian in robust Gauss-Newton
numgrad o1 Force a numerical computation of the gradient

even if a gradient m, is specified

The direct call to NLS enables a second output structure [mhat,res]=nls(m,z),

which gives access to internal variables, as summarized in the following table.

TABLE 2-14: INTERNAL FIELDS IN THE NLS STRUCTURE

FIELD NAME DESCRIPTION
res.TH Parameter values at each iteration
res.V Value of the cost function at each iteration
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TABLE 2-14: INTERNAL FIELDS IN THE NLS STRUCTURE

FIELD NAME DESCRIPTION
res.dV The gradient at each iteration
res.m The obtained model at each iteration as a cell array
res.sl The step sizes at each iteration
res.sol The obtained solution (thhat)
res.term Text string with cause of termination
res.P Covariance (estimated) for the parameters
res.Rhat Covariance (estimated) for the measurements
Example Define a first order parametric NL object, simulate data and use these to calibrate a

model with the same structure but with uncertain initial state and parameters.

mo=nl('-th(1)*x*2-th(2)*x','x',[1 0 1 2]);
NL constructor warning: try to vectorize f for increased speed

mo.th=[1;1];

mo.x0=1;

mo.fs=1;

z=simulate(m0,0:10);

m=m0; % No model error
m.x0=0.8; % Prior on initial state

m.th=[0.9;1.1]; % Prior on parameters
mhat=estimate(m,z)
NL object: (calibrated from data)
x(t+1) = -th(1)*x*2-th(2)*x

y = X + N(0,1.47)

x0' = [0.67] + N(0,1.1e-008)

th' = [1.5 1.7]

std = [0.0014 0.57]
See Also nl,nls.m
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Purpose

Syntax

Description

Example

Compute a linearized model using first-order Taylor expansion around a nominal

state value.

[mout,zout]=nl2ss(m,z)
The linear state-space model is defined by the following Taylor expansion

x+ = f(z.t,z.x,z.u) + df(z.t,z.x,z.u)/dx *(x(t)-z.x)

+ df(z.t,z.x,z.u)/du *(u(t)-z.u) +v(t)

y(t) = h(z.t,z.x,z.u) + dh(z.t,z.x,z.u)/dx *(x(t)-z.x)
+ dh(z.t,z.x,z.u)/du *(u(t)-z.u) + e(t)

Here x+ denotes either dx/dt or x(t+1) for continuous and discrete time models,
respectively. The numeric gradients A =df/dx, B =df/du, C =dh/dx, and

D =dh/dx are computed around the linearization point specified in the SIG object
z.x (one sample). The model is then

x+ = ux(t) + A*x(t) + B*u(t) + v(t)
y(t) = uy(t) + C*x(t) + D*u(t) + e(t)

where the extra inputs are defined as

ux(t) = f(z.t,z.x,z.u) - A * z.x - B * z.u
uy(t) = h(z.t,z.x,z.u) - C* z.x - D * z.u

Using an augmented input vector ua(t)=[u' ux' uy']"', the returned model is

mout <-> [A, [B I O], C, [D O I]]
zout.y = z.y

zout.x Z.X

zout.u [z.u; ux; uyl;

A simple first-order nonlinear system is linearized around the state x =2:

mnl=nl('-x(1,:)."2-x(1,:)"','x",[1 0 1 0])

NL object
dx/dt = -x(1,:).%2-x(1,:)
y = X
x0' = [0]

zin=sig(0,mnl.fs,[],2);
[mss,zout]=nl2ss(mnl,zin);

mss

d/dt x(t) = -5 x(t) + (1 0) u(t)

y(t) =1 x(t) + (0 1) u(t)

zout.u
ans =
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See Also

4 0

In the state dynamics, the augmented input signal in zout consists of the constant

term that occurs in the Taylor expansion; the output dynamics is unaffected because

it is linear already.

nl, ss.ss2nl
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Purpose Implementation of the unscented (UKF) and extended (EKF) Kalman filters using

nonlinear transformations completely avoiding Riccati equations.
Syntax [x,V]=nltf(m,z,Propertyl,Valuel,...)
Description The main arguments are:

* mis the NL object specifying the model.

* zisan input SIG object with measurements.

* xis an output SIG object with state estimates xhat=x.x and signal estimate
yhat=x.y.

The algorithm with script notation basically works as follows:

I Time update:

a Let xbar = [x;v] = N([xhat;0];[P,0;0,Q])

b Transform approximation of x (k+1) = f(x,u)+v gives xhat, P
2 Measurement update:

a Let xbar = [x;e] = N([xhat;0];[P,0;0,R])

b Transform approximation of z(k) = [x; y] = [x; h(x,u)+e] provides
zhat=[xhat; yhat] and Pz=[Pxx Pxy; Pyx Pyy]

¢ The Kalman gain is K=Pxy*inv (Pyy)
d xhat = xhat+K*(y-yhat) and P = P-K*Pyy*K'

The transform in 1b and 2b can be chosen arbitrarily using the uteval, tt1eval,
tt2eval, and mceval in the ndist object.

Note: the NL object must be a function of indexed states, so always write for
instance x(1,:) or x(1:nx, :) (avoid using end), even for scalar systems. The

reason is that the state vector is augmented, so any nonindexed X will cause errors.

TABLE 2-15: PROPERTY-VALUE PAIRS FOR THE NLTF FUNCTION

PROPERTY  VALUE DESCRIPTION
k k>0 {0} Prediction horizon:

0 for filter (default)

| for one-step ahead predictor,

PO {1} Initial covariance matrix. Scalar value scales identity matrix.
Empty matrix gives a large identity matrix

x0 {1} Initial state matrix (overrides the value in m.x0). Empty
matrix gives a zero vector

76 | CHAPTER 2: COMMAND REFERENCE



nl.nltf

TABLE 2-15: PROPERTY-VALUE PAIRS FOR THE NLTF FUNCTION

PROPERTY  VALUE DESCRIPTION
Q { Process noise covariance (overrides m.Q). Scalar value
scales m.Q
R {0 Measurement noise covariance (overrides m.R). Scalar
value scales m.R
tup Non-linear transformation in the time update
{'ut'} The unscented Kalman filter (UKF) based on the uteval

method of the ndist object

"tel’ Variant of the EKF, based on a first order Taylor expansion
in the ttleval method of the ndist object

'tt2' Second order corrected EKF, based on a second order
Taylor expansion in the ttleval method of the ndist object

mc Monte Carlo version of the EKF, based on Monte Carlo
sampling in the mceval method of the ndist object

mup Non-linear transformation in the measurement update

{'ut'} The unscented Kalman filter (UKF) based on the uteval
method of the ndist object

"tel’ Variant of the EKF, based on a first order Taylor expansion
in the ttleval method of the ndist object

'tt2' Second order corrected EKF, based on a second order
Taylor expansion in the ttleval method of the ndist object

mc Monte Carlo version of the EKF, based on Monte Carlo
sampling in the mceval method of the ndist object

ukftype {'std’} | Standard or WAN unscented transform
'wan'
ukfpar { Parameters in UKF

For std, par=w0 {w0=1-n/3}
For wan, par=[beta,alpha,kappa] {[2 le-3 0]}
NMC {100} Number of Monte Carlo samples for mceval

One important difference to running the standard EKF in common for all these
filters is that the initial covariance must be chosen carefully. It cannot be taken as a
huge identity matrix, which works well when a Riccati equation is used. The
problem is most easily explained for the Monte Carlo method. If PO is large, random
number all over the state space are generated and propagated by the measurement
relation. Most certainly, none of these come close the observed measurement, and

the problem is obvious. Otherwise, the same caution as for the EKF should be
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taken, where Q and R can be increased to mitigate the effect of (first and second

order, respectively) linearization errors.

As another guideline, always use tt1 when the dynamic model or measurement

relation is linear.

Example The most natural combination of nonlinear transformation combinations are
evaluated on a target tracking example:

m=exnl('ctpv2d'); % coordinated turn model
z=simulate(m,10); % ten seconds trajectory
zukf=genfilt(m,z); % UKF state estimation
zekf=genfilt(m,z, "tup', 'tt1', 'mup','tt1'); % EKF variant
zmc=genfilt(m,z, 'tup','mc', 'mup', 'mc'); % EKF variant
xplot2(z,zukf,zekf,zmc, 'conf',90);

See Also nl, nl.ekf,nl.nltf, nl.crlb
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Purpose

Syntax

Description

Implementation of a particle filter for state estimation in nonlinear systems.
zhat=pf(m,z,Propertyt,Valuet,...)

The pf method of the NL object implements the standard SIR filter. The principal
code is given below:

y=z.y.';
u=z.u.';
xp=ones(Np,1)*m.x0."' + rand(m.px0,Np);
for k=1:N;
% Time update
v=rand(m.pv,Np);
xp=m.f(k,xp,u(:,k),m.th)." "+v;
% Measurement update
yp=m.h(k,xp,u(k,:)."',m.th)."; % Measurement prediction

o°

Initialization

Random process noise
State prediction

g0 o°

w=pdf (m.pe,repmat(y(:,k)."',Np,1)-yp); % Likelihood
xhat (k, :)=mean(repmat(w(:),1,Np).*xp); % Estimation
[Xp,w]=resample(xp,w); % Resampling

XMC(:,k,:)=xp;
end
zhat=sig(yp.',z.t,u."',xhat."',[],xMC);

% MC uncertainty repr.

The arguments are as follows:

* misa NL object defining the model.

* zis a SIG object with measurements y, and inputs u if applicable. The state field
is not used by the EKF.

* xis a SIG object with state estimates. xhat=x.x and signal estimate yhat=x.y.

The optional parameters are summarized in the table below.

TABLE 2-16: OPTIONAL PARAMETERS FOR THE PF FUNCTION

PROPERTY  VALUE DESCRIPTION
Np Np>0 {0} Number of particles
k k=0,1 Prediction horizon:
0 for filter (default)
| for one-step ahead predictor,
sampling
{'simple'} Standard algorithm
'systematic’
'residual’
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TABLE 2-16: OPTIONAL PARAMETERS FOR THE PF FUNCTION

PROPERTY  VALUE DESCRIPTION
'stratified'
animate  {[]}ind Animate states x(ind)

The particle filter suffers from some divergence problems caused by sample

impoverishment. In short, this implies that one or a few particles are contributing

to the estimate, while all the others have almost zero weight. Some mitigation tricks

are useful to know:

Medium SNR. The SIR PF usually works alright for medium signal to noise ratios
(SNR). That is, the state noise and measurement noise are comparable in some

diffuse measure.

Low SNR. When the state noise is very small, the total state space is not explored
satisfactorily by the particles, and some extra excitation needs to be injected to
spread out the particles. Dithering (or jittering or roughening) is one way to
robustify the PF in this case, and the trick is to increase the state noise in the PF

model.

High SNR. Using the dynamic state model as proposal density is a good idea
generally, but it should be remembered that it is theoretically unsound when the
signal to noise ratio is very high. What happens when the measurement noise is
very small is that most or even all particles obtained after the time prediction step
get zero weight from the likelihood function. In such cases, try to increase the

measurement noise in the PF model.

As another user guideline, try out the PF on a subset of the complete measurement

record. Start with a small number of particles (100 is default). Increase an order of

magnitude and compare the results. One of the examples below illustrate how the

result eventually will be consistent. Then, run the PF on the whole data set, after

having extrapolated the computation time from the smaller subset. Generally, the

PF is linear in both the number of particles and number of samples, which facilitates

estimation of computation time.

Example Apply the PF to a simulated target tracking scenario, and plot the estimated target

position:
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m=exnl('ctpva2d');

% Coordinated turn model
z=simulate(m,10); % T
%

en seconds trajectory

mpf=m; Estimation model
mpf.pv=5*m.pv; % Dithering

zpf=pf(mpf,z, 'Np',1000); % PF state estimation
xplot2(z,zpf,'conf',90); % Position estimate
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See Also

nl.ekf, nl.nltf
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Purpose

Syntax

Description

Example

Simulate a NL system using DASPK.

z=simulate(m,z,Propertyi,Valuet,...)
z=simulate(m,T,Property1,valuel,...)

For a discrete-time systems, the system recursions are evaluated in a for-loop for
t=t0:tfinal

For continuous-time systems, the input SIG object u defines the simulation time. If
the NL system contains no input, use T=[t0 tfinal] instead of u. z is the
simulated SIG object, where z.x is the solution to

x" =m.f(t, x, u.y; m.th)

y = m.h(t, x, u.y; m.th)

X(0) = m.x0
The initial values x0 and nominal parameters th are the ones defined in the NL
object. The time instants in z. t are the ones generated by the ODE solver when
T=[t0 tfinall], otherwise the function computes the output z.y at the time

instants specified in T or u. t.

PROPERTY VALUE DESCRIPTION

MC {30} Number of MC simulations when th uncertain

Simulate the van der Pol system, and plot the state trajectory:

m=exnl('vdp"')
NL object: Van der Pol system
dx/dt = [x(2,:);(1-x(1,:).72).*x(2,:)-x(1,:)]
y = X
x0' = [2 0]

z=simulate(m,10)
SIG object with continuous time stochastic state space data (no
input)
Sizes: N =164, ny =2, nx = 2
MC is set to: 30
#MC samples: O
xplot2(z)
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X2
=

See Also nl, ss

.simulate
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Purpose

Syntax

Description

Numerical solver for the nonlinear least-squares (NLS) problem.
[mhat,res] = nls(m,z,Propertyl,Valuel,...)

The nonlinear least-squares (NLS) algorithm implements various versions of the
Gauss-Newton method for parameter estimation. A general problem formulation is

to estimate the initial state and parameter vector in the model
y = H(xy,0,u,e,v)
based on observations of y and u. Special cases include pure optimization
0 = H(®6,e)
and data fitting
y = H(B,e)

The least-squares framework is appropriate whenever H is a vector. These problems

can all be recast to the general nonlinear model object NL in either discrete time

%1 = [k, %y, u,50) + vy,

¥ = h(k,xp,uy, e,30).
or continuous time

x(t) = f(t,x(t), u(t);0) +v(t),
y(tk) = h(tk,x(tk),u(tk);9)+e(tk),
x(0) = x,.

There are basically three uses of nls:

I [m,res]=nls(h) for pure optimization, where h is an inline function with th as

a parameter.

2 [m,res]=nls(h,y) for data fitting, where h is either an inline function or a
structure where one field is called h and contains an inline function with th as a
parameter. The advantage with the latter usage is that more information about

the problem can be provided in other fields. In all cases, y is a SIG object.

3 [m,res]=nls(m,y) for model calibration. Here m is an NL object, and all of its
specified parameters and initial states are estimated by default using the data in
the SIG object y. This is also known as gray-box identification, as opposed to

black-box identification where standard model structures as ARX have to be used.
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In gray-box identification, the model might be partially known, and the physical
parameters are identified directly. The term model calibration is used here to
stress that quite a good initial value of the parameters is generally needed for the

algorithms to converge.

In general, the NLS parameter estimation problem can always be specified as an NL
object m=n1(f,h,nn), and the parameters are estimated with the NL method
mhat=estimate(m,z), or equivalently, nhat=nls(m,z).

The following NLS algorithm as implemented in nls:
I Initialize the parameter vector n = (8, x() using the values of x0 and th in the NL
object.

2 Iterate in i:
:i1 o . p -l . .
N = -l @MY (M) J(mHem)
3 In each iteration, check if the cost function has decreased. Otherwise, half the
step size W until either the cost function decreases or maxhalf iterations in the

line search is reached.

4 Continue untilj = maxiter or the relative change in cost function is smaller than

ctol, or the maximum element in the gradient o is smaller than gtol.

There is some support for entering a symbolic gradient J to the NL object for pure
estimation problems, where J =dh/d6. Otherwise, a numeric gradient is computed

according to

J ~3A’(tk,n+hei) —;(tk,n—hei)
a_nly(tks n)~ 2h ,

which is evaluated for each unit vector.

The internal parameters in the algorithm are controlled by property-value pairs for
both usages mhat=estimate(m,z,Propertyi,valuel,...) and
mhat=nls(m,z,Property1,Valuel,...). The property-value pairs are listed in
the table below.

TABLE 2-17: PROPERTY/VALUE PAIRS FOR THE NLS STRUCTURE

PROPERTY VALUE {DEFAULT} DESCRIPTION
thmask {ones(1,nth)} Binary search mask for parameter vector
x0mask {ones(1,nx)} Binary search mask for initial state vector
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TABLE 2-17: PROPERTY/VALUE PAIRS FOR THE NLS STRUCTURE

PROPERTY VALUE {DEFAULT} DESCRIPTION

x0 Cell array In case z is a cell with multiple data sets, different
known initial conditions can be set. x0{i} is the
initial state for z{i}

alg Optimization algorithm
{'gn"} Gauss-Newton
‘rgn' Robust Gauss-Newton, where the Hessian H=J’ is

robustified by adding a small identity matrix.

“lm! Levenberg-Marquardt, where the line search is
replaced by a region search.

'sd' steepest-descent, where the Hessian is replaced
with the identity matrix.

disp {0} |1 Display status of the iterations

maxiter {50} Maximum number of iterations in search direction
maxhalf {50} Maximum number of iterations in the line search.
gtol {1e-4} Tolerance for the gradient.

ctol {1e-4} Minimum relative decrease in the cost function

before the search is terminated.

svtol {1e-4} Lower bound for the singular values of the
Jacobian in robust Gauss-Newton

numgrad {0} |1 Force a numerical computation of the gradient
even if a gradient m is specified

The direct call to NLS enables a second output structure [mhat,res]=nls(m,z),

which gives access to internal variables, as summarized in the following table.

TABLE 2-18: INTERNAL FIELDS IN THE NLS STRUCTURE

FIELD NAME DESCRIPTION
res.TH Parameter values at each iteration

res.V Value of the cost function at each iteration

res.dV The gradient at each iteration

res.m The obtained model at each iteration as a cell array
res.sl The step sizes at each iteration

res.sol The obtained solution (thhat)

res.term Text string with cause of termination

res.P Covariance (estimated) for the parameters
res.Rhat Covariance (estimated) for the measurements
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Example Pure optimization of vector-valued function:

m.h=inline('[th(1)-1; 2*th(2)+2*th(2)-4]"','th");
m.J=inline('[1 0;0 2]','th');

tic, res=nls(m); toc % Gradient J specified, symbolic
derivative

Elapsed time: 0.171 s

thstar=res.th
thstar =
1
1
tic, res=nls(m.h); toc % No gradient J specified, numeric
derivative

Elapsed time: 0.000 s
thstar=res.th
thstar =

1
1

Providing the symbolic gradient speeds up computation time.

Curve fitting:

m.h=inline('th(1)*(1-exp(-th(2)*t))"','t','th"); % Curve model
m.th=[2;0.5]; % True parameters

z.t=(0:0.2:3)"'; % Time vector

y=m.h(z.t,m.th); % True curve

Measurements of curve
Perturbed initial values
Inital curve

Calibrated curve

z.y=y+0.1*randn(size(z.t));
m.th=m.th+0.3*randn(2,1);
yinit=m.h(z.t,m.th);
[mhat,res]=nls(m,z);

o® o° o°

o°

mhat.th

ans =
2.1455
0.4607

yhat=mhat.h(z.t,mhat.th); % Estimated curve
plot(z.t,y,'b',z.t,z.y,'g.-"',z.t,yinit, 'r',z.t,yhat, 'k")
legend({'True curve', 'Measurements','Initial curve','Estimated
curve'})

See Also nl,nl.estimate
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Purpose Generic probability density function (PDF) class.
Syntax p=pdfclass
Description PDFCLASS is the parent of all other PDFs. The constructor for this object is only

used for listing its children using 1ist (pdfclass). The generic methods are listed
in the following table:

METHOD DESCRIPTION

ARRAYREAD  Pick out parts of a stochastic vector Xi=X(1)

LIST Lists of classes that inherits PDFCLASS 1=1list(pdfclass)
VERTCAT Create a multivariate stochastic vector X=[X1;X2]

from stochastic variables/vectors

RAND Generate random numbers in a vector of  x=rand (X,N)
length N, or a (nX,N) matrix when Xis a
stochastic vector

ERF Evaluates the error function 1(x)=P(X<x) I=erf(X,x)
numerically

ERFINV Evaluate the inverse error function x=erfinv(X,I)
I(x)=P(X<x) numerically

CDF The cumulative density function P=cdf (X, x)

PDF The probability density function p=pdf (X,X)

FUN All conceivable functions and operators ex: Z=sin(X)

can be applied to a stochastic variable

EVALFUN Implements functions of one variable,
which can be used for user-defined
functions and M-files

EVALFUN2 Implements functions of two variables,
which can be used for user-defined
functions and M-files

PLOT Illustrate the PDF of X

CDFPLOT lllustrate the cumulative density function
(CDF) of X

ERFPLOT Illustrate the error function ERF of X

PLOT2 lllustrate the PDF of X in a two plot2(X1,[i,j])
dimensional plot

SURF lllustrate the PDF of X in a two surf(X1,[1,j1)

dimensional plot
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Children of PDFCLASS include the following specific distributions:

FUNCTION PURPOSE

empdist(x) The empirical distribution defined by a set of samples
ndist(mu,P) The normal, or Gaussian, distribution

udist(a,b) The uniform distribution

expdist(mu) The exponential distribution

tdist(n) Student’s t distribution

gammadist(a,b) The Gamma distribution
betadist(a,b) The Beta distribution
fdist(d1,d2) The F-distribution

Type list (pdfclass) to list all children of PDFCLASS in the search path, which

also includes user-defined distributions (see “Defining Your Own Distributions” on

page 249).

Each distribution is characterized by the following methods:

LENGTH
DESC

E

MEAN
STD
VAR
SKEW
KURT

The length of the stochastic vector X

Return a description of the distribution defined by the class
The expectation operator

The expectation operator

The standard deviation operator

The variance operator

The skewness operator

The kurtosis operator

Furthermore, each PDF can have methods for specific symbolic operations, such as

addition of Gaussian variables and multiplication of a matrix and a Gaussian vector.

ERF
ERFINV
ESTIMATE

ESTIMATE

Compute the error function x=erf(X,alpha)
Compute the inverse error function alpha=erf(X,x)
Estimate a parametric density function Xhat=estimate (X,
from an empirical distribution Xemp)

Estimate a parametric density function dist=estimate (Xe
from a list of PDF objects mp,Xlist)

The error function is defined as I(x) = P(X<x). The erf and erfinv methods

generalize the built-in functions with the same names to non-Gaussian distributions.
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Example Define distributions, estimate distributions and visualize them:

X0=udist(1,3);
x=rand(X0,1000);
Xemp=empdist(Xx);
Xhat1=estimate(udist,Xemp);
Xhat2=estimate (ndist,Xemp);
plot(Xemp,Xhat1,Xhat2)

Probability Density Function

0.7
— Data

U(0.97,3)
— N(1.99,0.346)

0.6

0s VM .M
W

p(x)

Compute moments and error functions:

[E(X0), E(Xemp), E(Xhat1), E(Xhat2)]

ans =
2 1.9887 1.9887 1.9887

[std(X0), std(Xemp), std(Xhat1), std(Xhat2)]
ans =

0.5774 0.5885 0.5885 0.5885
[erf(X0,2.9), erf(Xemp,2.9), erf(Xhatt1,2.9), erf(Xhat1,2.9)]
ans =

0.9510 0.9544 0.9479 0.9479

[erfinv(X0,0.9), erfinv(Xemp,0.9), erfinv(Xhat1,0.9),
erfinv(Xhat1,0.9)]
ans =

2.7982 2.8061 2.8023 2.8023

See Also empdist, pdfclass.estimate
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Purpose

Syntax

Description

Example

See Also

Estimate free parameters in a probability density function from a set of samples.

X=estimate (Xdist,Xemp) Adapt the distribution Xdist to Xemp
X=estimate (Xemp,pdflist)  Find the best distribution fit in pdflist

The estimate method of a specific distribution computes the free parameters that
give an exact fit of the first moments. This is referred to as a moment-based

estimator.

For example, the uniform distribution contains two free parameters (the interval
bounds). These are computed to give the same mean and variance as the sample
average and variance. This uniform distribution is completely different than what
the maximum likelihood estimate provides, which is a larger interval that contains

all samples.

In the second case of usage, a structure of PDF objects is provided as the second
argument, and the estimate method of empdist is used. The free parameters in
each distribution are estimated, and the one that gives the best least-squares fit of

the cumulative distribution function is chosen as output.

N
F(x;0) = argmin 3" [F(x;30 ~ Femp(x;)|”
i=1
N
= argmin Z |F(xi;é _Z%) |2
i=1

See the example in pdfclass.

pdfclass, empdist
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Purpose Optimal fusion of two independent unbiased estimates of the same variable.
Syntax X=fusion(X1,X2)
Description Assume there are two estimates (or measurements) of a stochastic variable x:

E(x1) = E(x2) = x,
cov(;cl) =Py,

cov(;cz) = P,.
If these are independent, the fused estimate is given by
P= 4Py,
x = P(P]'x1 + Py'x).
The output X is packed as a Gaussian ndist object.

Example Generate two different Gaussian distributions with the same mean, and compute the

optimal combination of this information:

X1=ndist([0;0],[2 1;1 1]);
X2=ndist([0;0],[1 1;1 2]);
X=fusion(X1,X2)
N([0;0],[0.6,0.4;0.4,0.6])
plot2(X1,X2,X)

92 | CHAPTER 2: COMMAND REFERENCE



pdfclass.fusion

See Also

x2
o

pdfclass.safefusion, nl.estimate

— N([0;00,12,2;1,1];
N([0;00,[1,1;1,2];
—— N([0;0],00.6,0.4;0.4,0.6]
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Purpose

Syntax

Description

Example

Conservative fusion of two possibly dependent unbiased estimates of the same

variable using covariance intersection.

X=safefusion(X1,X2)

Assume there are two estimates (or measurements) of a stochastic variable x:

E(x) = E(xy) = x,

cov(xy) = Py,

cov(;cz) =P,.
If these are dependent, the fused estimate is given by

K = P,P,',
P =P -KP,K',
;3 = ;cl +K(3A(52—9A61).

safefusion computes the fused estimate under a worst case assumption using

covariance intersection techniques.

The output X is packed as a Gaussian ndist object.

Generate two different Gaussian distributions with the same mean, and compute the

optimal combination of this information

X1=ndist([0;0],[2 1;1 1]);
X2=ndist([0;0],[1 1;1 2]1);
X=safefusion(X1,X2)
N([0;0],[0.553,-0.829;-0.829,1.93])
plot2(X1,X2,X)
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See Also

— K([0;0],(2,1;1,1];
N([0;01,(1,1;1,2];
—— N([0:0],[0,553,-0.829;-0.829,1,93]

x2
o

-5
-5 4 -3 -2 -1 0 1 2 3 4 5
x1

pdfclass.fusion, nl.estimate
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Purpose

Syntax

Description

Example

Analysis and training tool for amplitude distribution.

pdftool(y) Analysis mode
pdftool Training mode

In analysis mode, the pdftool calls the functions sig2pdf and pdfplot
interactively. The data histogram (as a plot rather than bar graph) is always shown.
You choose the distribution, and the tool estimates its parameters to get the best fit
of the first moments (this is the definition of the moment-based estimator).

In training mode, the function pdf2sig is used to simulate a number of samples
from a distribution of your choice. Otherwise, it works as in the analysis mode. One
difference is that there is a truth here, so the true distribution and moments are

displayed.

Given a data vector vy, fit a Gaussian distribution to its amplitude histogram:

pdftool(y)

T pditool
Probabity Density Functicn FL aetiuetin oz

0.35 p—m I
N(2.9,2.2) FOF

0.3

Moment comparison
Moment  Data Modsl
Mean 28855 2.9
Varance 2.2% |22
Sewness -0.0608 0
Eutoss  2.9534 |3

0.25

0.2

Pl

0.15

0.1

0.05

10 12

The fit of the histogram and parametric distribution, and the different moments, can
be used to validate the chosen distribution.

To start in training mode, omit any arguments.

pdftool
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T pdftool
0.05
0.045
0.04
0.035
0.03
§0.025
0.02
0.015
0.01

0.005

Probabiity Density Function

20 40 &0 80

100

—data
Gamma(3.3,5.8)
—— Gamma(3,7)

)=

POF estimation (sig2pdf)

e

PoF |

Moment comparison

Moment Data  Model  Sim
Mean 19.2544) 19.14 | 21

Varance [112.082] [110.012] 147 |
Skewness 0.77854] (1,101 | [1.1547 |
Kurtosis  3.0936 | 4.8182 | 5
Snuation (pdf2siq)
- =
PParamaters [37)
Mumber of data = [100

Generate random signal
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Purpose Construct a RARX model object.

Syntax The RARX model object constructor supports the following calling syntaxes:
m=rarx(nn) Empty structure, for estimate and rand
m=rarx(nn,th) Parameter vector (certain model)
m=rarx(nn,th,P) Parameter vector and covariance

Parameter vector, covariance and measurement
m=rarx(nn,th,P,lambda) noise

m=rarx(nn,th,thMC) MC samples instead of covariance

Description RARX is a time-varying ARX model, where the first dimension of th and P is time.
One main difference to the ARX object is that b and a polynomials are not

explicitely saved, and that the noise variance lambda is a time-varying parameter.
Protected fields: th, P, nn, and lambda

Public fields: MC, pe, s, name, desc, marker, method, xlabel, ulabel, ylabel,
tlabel, and markerlabel

The arguments are defined below:

ARGUMENT  DIMENSION DESCRIPTION

nn Row vector See the following table

th (N, na+nb) Time-varying parameter vector

P (N,na+nb,na+nb) Time-varying covariance matrix for parameter

uncertainty

thMC (MC,N, na+nb) Monte Carlo representation of parameter
uncertainty as alternative to P

lambda (N,1) Time-varying scaling of noise variance

The model order is defined in the following table:

nn=[na nb nk] The structure of the RARX model

nn=na The order of a RAR model

nn=[1 Implies a volatility model y(t)=e(t),
var(e(t))=lambda(t)

nn=[na nb nk nu ny] Implies a MIMO RARX model

nn=[na nb nk nu ny np] Also models a polynomial trend or order np. np=0
corresponds to constant, np=1 to a linear trend and
so on.
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Example

See Also

Overloaded methods:

METHOD DESCRIPTION

ARRAYREAD  Pick out time intervals or subsystems from MIMO systems
sys=arrayread(t,i,j)
t is the time index/indices
i is the row index/indices, corresponding to the outputs

j is the column index/indices, corresponding to the inputs

DISPLAY Script window display

SYMBOLIC Return a symbolic string expression for the ARX structure
LENGTH Return the number of time points N

SIZE Return the sizes nn=[na,nb,nk,nu,ny]

[na,nb,nk,nu,ny]=size(s) Complete structure nn
[ny,nu]=size(s) MIMO size

Define a RAR(1) model with constant uncertainty:

MC=30;

nn=1; % RAR(1) model
th=[0.5*0nes(100,1); (0.5:-0.01:-0.5)"'
P=0.01*ones(length(th),1);
mt=rarx(nn,th,P);

plot(mt)

; -0.5*0nes(100,1)1];

05 [=rarn)]
04
03
02

01

Parameters
o

0.1

0.2

0.3

0.4

o 50 100 150 200 250 300 350
Time [samples]

rarx, rarx.surf, exrarx, rarx.estimate, rarx.expand, rarx.rarx2tfd,
rarx.simulate, rarx.surf, rarx.contour
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Purpose

Syntax

Description

Example

Tllustrate a RARX object graphically in the frequency domain using contour.

contour(mti,mt2,...,Property1,valuet,...)

Tllustrates the transfer function part in one RARX. Note that you cannot view

multiple models and confidence intervals for this function.

PROPERTY VALUE/ {DEFAULT}  DESCRIPTION

histeq {'on"} | Histogram equalization of tfd value (see histeq)
‘off!’

decfactor {N/200} Decimation factor (to reduce computations)

t0 {1} First time value to remove transients

axis {gca} Axis handle where plot is added

col {'bgrmyk"'} Colors in order of appearance

f {128} Frequency vector for tfd plot. f=Nf gives Nf

linearly spaced values.

Load an example RARX model with a time-varying AR(2) structure, simulate it, and

estimate an uncertain RARX object of the same AR(2) structure with an adaptive

filter (RLS with forgetting factor 0.95). Then compare the true and the estimated

model in various ways.

mt=exrarx('rar2',200);
z=simulate(mt);
mthat=estimate(rarx(2),z,'adg',0.95);
subplot(1,2,1), contour(mt)
subplot(1,2,2), contour(mthat)

Frequency
°
S
&

Frequency
°
S
&

20 60
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See Also rarx, rarx.surf, exrarx, rarx.estimate, rarx.expand, rarx.rarx2tfd,
rarx.simulate, rarx.surf
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Purpose

Syntax

Description

Example

Estimate a time-varying ARX model by adaptive filtering.
m=estimate(ms,z,Propertyl,Valuet,...)

The RARX method estimate implements a number of standard recursive
algorithms for adaptive filtering such as LMS, RLS, and Kalman filters.

Required input parameters:

ARGUMENT  DESCRIPTION

z Output (and input) data

ms Model structure, for instance, rarx([2 2 1]) for recursive ARX(2,2,1)

Optional parameters:

PROPERTY VALUE/ DESCRIPTION
{DEFAULT}
adg {0.95} Adaption gain, forgetting factor, step size or Q. For
state space models adg is Q.
adm {} Adaptation method: LS, RLS, WLS, LMS, NLMS or KF.

An intelligent default value between RLS, WLS and LMS
is made based on the value of adg.

fflam {1} Forgetting factor for estimating noise variance lambda
decfactor {1} Decimation factor to save time

PO {1e6} Initial covariance (or scaling of ) for RLS and KF

tho {0} Initial value for theta

Using an example RARX model:

m=exrarx('rar2',500);

z=simulate(m);
mhat1=estimate(rarx(2),z,'adg',0.95,"'adm','rls');
mhat2=estimate(rarx(2),z, 'adg',0.99,'adm', 'rls');
plot(m,mhat1,mhat2,'Ylim',[-2 2])
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— RAR(2)
—— RAR(2) from RLS(0.95)
RAR(2) from RLS(0.99)

Parameters

0 50 100 150 200 250 300 350 400 450 500
Time [samples]

See Also rarx, rarx.surf, exrarx, rarx.expand, rarx.rarx2tfd, rarx.simulate,
rarx.surf, rarx.contour
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Purpose
Syntax

Description

Example

Create RARX objects from a set of ARX models.

m=expand(ms, jumps,th,P,lambda,Property1,Valuel,...)

A time-varying model defined by one parameter vector for each segment is
expanded to one parameter vector for each time instant.

Required input arguments:

ARGUMENT DESCRIPTION

ms Model structure, typically rarx([na nb nk])

jumps Vector of length njumps with end points for each segment.
Convention: jumps(end)=N, that is, implicit definition of total time
span

th

Each row in the (njumps,nth) matrix contains the parameter vector
for each segment j.

P P(j,:,:) contains the covariance matrix for th(j,:) in segment j

lambda lambda(j) contains the measurement noise in segment j

Both P and lambda can be empty matrices.

Optional parameters for smoothing the transitions:

PROPERTY VALUE

ip Interpolation method for the changes in TH and Lambda

'off No interpolation (default)

ic'" Integrated change from jumptime to jumptime+L

ipL Interpolation window size (default 10% of average segment length)

ipn Interpolation order. n=I gives linear interpolation. (Default I).

A convenient way to create a RARX model for simulation is to concatenate the
parameters from ARX models over different segments:

TH=[1.2 1 0.8 0.6; 1.4 1 0.8 0.4];
m=expand(rarx([2 2 1]),[100 200],TH)
Certain RARX(2,2,1)

plot(m, 'Ylim',[0 2])
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— RARX(2,2,1)
18 _
16
14 j
12
3
2
T, a2
13
5
&
08 =
06 —\—
0.4 b2
02
0

0 20 40 60 80 100 120 140 160 180 200
Time [samples]

You obtain softer transitions by interpolation:

TH=[1.2 1 0.8 0.6; 1.4 1 0.8 0.4];
m=expand(rarx([2 2 1]),[100
200],TH,[],1,"'ip','on"', "ipn',2, "ipL",20)
Certain RARX(2,2,1)

plot(m,'Ylim',[0 2])

— RARX(2.2,1)

18 J—

Parameters

0 20 40 60 80 100 120 140 160 180 200
Time [samples]

See Also rarx, rarx.surf, exrarx, rarx.estimate, rarx.rarx2tfd, rarx.simulate,
rarx.surf, rarx.contour
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Purpose llustrate the parameters in a RARX object in a plot.
Syntax plot(mti,mt2,...,Propertyl,valuet,...)
Description Tllustrates parameters in one or more RARX objects at the same time. You can add

confidence intervals of the estimated parameters.

PROPERTY VALUE{DEFAULT}  DESCRIPTION

decfactor {N/200} Decimation factor (to reduce computations)

t0 {1} First time value to remove transients

conf [0,100] {0} Confidence level for par view (0 means no levels)

conftype 11{2} | for upper and lower bound lines, 2 for
confidence area

axis {gca} Axis handle where plot is added

col {'bgrmyk'} Colors in order of appearance

f {128} Frequency vector for tfd plot. f=Nf gives Nf

linearly spaced values.

Example Load an example RARX model with a time-varying AR(2) structure, simulate it, and
estimate an uncertain RARX object of the same AR(2) structure with an adaptive
filter (RLS with forgetting factor 0.95). Then compare the true and the estimated

model in a parameter plot without and with confidence intervals, respectively.

mt=exrarx('rar2',200);

z=simulate(mt);

mthat=estimate(rarx(2),z,'adg',0.95);

subplot(2,1,1), plot(mt,mthat,'view','par','conf',0,'Ylim',[-2
2])

subplot(2,1,2), plot(mt,mthat, 'view', 'par','conf',90,'Ylim',[-2
2])
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See Also

rarx

— RAR(2)
—— RAR(2) from RLS(0.95)

20 40 80 80 100 120 140 160 180 200
Time [samples]

— RAR(2)
— RAR(2) from RLS(0.95)

20 40 60 80 100 120 140 160 180 200
Time [samples]
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Purpose Convert a time-varying ARX model to a Time-Frequency Description (TED).
Syntax Yt=rarx2tfd(mt) Explicit call

Yt=tfd(mt) Implicit call
Description Converts an LTV object to its corresponding time-varying frequency description

(TFED). This is an extension of arx2freq for time-invariant ARX models. RARX

contains one model for each time instant, which is converted into the frequency
domain.

Without output argument, this function calls 1tv.plot.

Optional input parameters:

PROPERTY VALUE/{DEFAULT}  DESCRIPTION

decfactor  {N/200} Decimation factor (to reduce computations)
t0 {1} First time value to remove transients

f {128} Frequency vector for tfdplot. f=Nf gives Nf

linearly spaced values.

Example Load a time-varying ARX object of AR(2) structure and compute its theoretical
time-frequency description (TFD):
m=exrarx('rar2',1000);

Yt=tfd(m);
surf(Yt)
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See Also rarx, rarx.surf, exrarx, rarx.estimate, rarx.expand, rarx.rarx2tfd,
rarx.simulate, rarx.surf, rarx.contour
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Purpose Simulate a RARX model.

Syntax z=simulate(mt,Property1,VvValuel,...) RAR model without input
z=simulate(mt,u,Property1,Vvaluel,...)RARX model with input

Description mt is the RARX object to simulate. It contains a time-varying parameter vector,

model structure, and model order information. You can obtain the RARX object

from, for instance, exrarx or estimate(rarx(nn),z).

The output is a SIG object.

Example Load two examples, one without and one with input signal, simulate them, and plot
the result:

mti=exrarx('rar2',1000);
z1=simulate(mt1);
mt2=exrarx('meani',1000);
u=getsignal('ones',1000);
z2=simulate(mt2,u);
subplot(2,1,1)

plot(z1)

subplot(2,1,2)

plot(z2)

dhbbonvsaw

o

100 200 300 400 500 600 700 800 900 1000

bbonvsows

0 100 200 300 400 500 600 700 800 900 1000

See Also rarx, rarx.surf, exrarx, rarx.estimate, rarx.rarx2tfd, rarx.surf,
rarx.contour
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Purpose

Syntax

Description

Example

Illustrate a RARX object graphically in the frequency domain using surf.

surf(mti,mt2,...,Propertyi,valuet,...

Tllustrates the transfer function part in one RARX. Note that you cannot view

multiple models and confidence intervals for this function.

PROPERTY VALUE{DEFAULT}  DESCRIPTION

histeq {'on'} | Histogram equalization of tfd value (see histeq)
‘off'

decfactor {N/200} Decimation factor (to reduce computations)

t0 {1} First time value to remove transients

axis {gca} Axis handle where plot is added

col {'bgrmyk"'} Colors in order of appearance

f {128} Frequency vector for tfd plot. f=Nf gives Nf

linearly spaced values.

Load an example RARX model with a time-varying AR(2) structure, simulate it, and
estimate an uncertain RARX object of the same AR(2) structure with an adaptive
filter (RLS with forgetting factor 0.95). Then compare the true and the estimated

model in various ways:

mt=exrarx('rar2',200);
z=simulate(mt);
mthat=estimate(rarx(2),z,'adg',0.95);
subplot(1,2,1), surf(mt)
subplot(1,2,2), surf(mthat)



rarx.surf

See Also rarx, rarx.surf, exrarx, rarx.estimate, rarx.expand, rarx.rarx2tfd,
rarx.simulate, rarx.contour
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Purpose

Syntax

Description

The signal object SIG.

The signal object supports the following input data:

sig(y,fs) Uniformly sampled time series y[k]=y(k/fs)
sig(y,1t) Nonuniformly sampled time series y(t)
sig(y,t,u) Uniformly sampled I/O system
sig(y,t,u,x) Uniformly sampled state-space system

sig(y,fs,u,x,yMC,xMC) MC data arranged in an array

The constructor of the SIG object basically converts a vector signal to an object,

where certain other information can be provided. The main advantages of using a

signal object rather than just vectors are:

Defining stochastic signals from PDFCLASS objects is highly simplified, using
calls as yn=y+ndist (0,1) ;. Monte Carlo simulations are here generated as a

background process.

Standard operations as +, -, . *, ./ can be applied to the SIG object just as you
would have done to a vector signal, where these operations are also applied to the
Monte Carlo simulations.

All plot functions accepts multiple signals that do not need to have the same time
vector. The plot functions can visualize the Monte Carlo data as confidence

bounds or scatter plots.

The additional information that you put into the SIG object is used subsequently
to get correct time axis in plots and frequency axis in Fourier transform plots.

Further, you can obtain appropriate plot titles and legends automatically.

The basic use of the constructor is y=sig(yvec, fs) for discrete-time signals and

y=sig(yvec,tvec) for continuous-time signals, respectively. Continuous-time

signals are represented by nonuniform time points and the corresponding signal

value, with the following two conventions:

Steps and other discontinuities are represented by two (2) identical time stamps
with different signal values. For instance, t=[0 1 1 2]'; y=[0 0 1 1]"',
z=sig(y,t); defines a unit step.

Impulses are represented by three (3) identical time stamps where the middle
signal value represents the area of the impulse. For instance, t=[0 1 1 1 2]';

y=[0 0 10 0]', z=sig(y,t); defines a unit impulse.
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CHAPTER 2:

These conventions influence how the Signals & Systems Lab visualize

continuous-time signals in plots, but also how it performs simulations.

The obtained SIG object can be seen as a structure with the following field names:

sig.y is the signal itself.

sig.fs is the sampling frequency in Hertz. Continuous-time signals have
fs=NaN by convention.

sig.t contains the sampling times (uniformly or nonuniformly sampled). If this

is provided, it overrides the sampling frequency.

sig.u is the input signal, if applicable.

sig.x is the state vector for simulated data.

sig.name is a one-line identifier that can be used for plot legends.
sig.desc can contain a more detailed description of the signal.

sig.marker contains optional user-specified markers indicating points of interest
in the signal. For instance, the markers can indicate points where the signal

dynamics changes or known faults in systems.
sig.yMC and sig.xMC contain Monte Carlo simulations arranged as an array.

sig.ylabel, sig.xlabel, sig.ulabel, sig.tlabel, and sig.markerlabel
contain labels for plots.

The data fields y, t, u, x, yMC, and xMC are protected, and you cannot overwrite or

change them. All other fields are open for both reading and writing.

METHOD SYNTAX DESCRIPTION

arrayread z=z(t,i,j) Pick out subsignals from SIG systems,

where t is time, i output, and j input
indices. z(tl:t2) picks out a time interval
and is equivalent to z(tl:t2,:,:).

horzcat z=horzcat(z1,z2) Concatenate two SIG objects to larger
or z=[z1 z2] output dimension. The time vectors must
be equal.
vertcat z=vertcat(z1,z2) Concatenate two SIG objects in time. The
or z=[z1;2z2] number of inputs and outputs must be the
same.
append z=append(z1,z2) Concatenate two SIG objects to MIMO
signals
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Example

The following operators are overloaded:

OPERATOR DESCRIPTION

plus Adds a constant, a vector, another signal,
or noise from a PDFCLASS object

minus Subtracts a constant, a vector, another
signal, or noise from a PDFCLASS object

times Multiply a constant, a vector, another
signal, or noise from a PDFCLASS object

rdivide Divide a signal with a constant, a vector,
another signal, or noise from a PDFCLASS
object. divide and mrdivide are also
mapped to rdivide for convenience.

mean/E Returns the mean of the Monte Carlo data

std Returns the standard deviation of the
Monte Carlo data

var Returns the variance of the Monte Carlo
data
rand Return one random SIG object or a cell

array of random SIG objects

fix Remove the Monte Carlo simulations from
the object

EXAMPLE
y=sin(t)+ | +expdist(l)

y=sin(t)- | -expdist(l)

y=udist(0.9,1.1)*sin(t)

y=sin(t)/2

y=E(Y)
sigma=std(Y)

sigma2=var(Y)
y=rand(Y,10)

y=fix(Y)

The following example shows signal construction of a sinusoid with three types of

data:

* Uniformly sampled data
* Nonuniformly sampled data

¢ Monte Carlo data:

fs=1;
t1=(0:1:30) '*fs;
y1=sin(0.3*t1);
z1=sig(y1,fs)

SIG object with discrete time (fs = 1) time series

Sizes: N =231, ny =1
MC is set to: 30
#MC samples: O
t2=sort(30*rand(31,1));
y2=s5in(0.3*t2);
z2=sig(y2,t2)
SIG object with continuous time time series
Sizes: N =231, ny =1
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MC is set to: 30

#MC samples: O
plot(z1), hold on
stem(z2), hold off

0.5

-0.5

Time

To add Monte Carlo simulations, simply either create the yMC matrix yourself,

MC=100;
yMC=repmat(y1',MC,1)+0.1*randn(MC,length(y1));
z3=sig(y1,fs,[1,[1,yNC);

plot(z3, 'conf',90)

15

0.5

-1

or add any distribution belonging to the PDFCLASS family,
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z4=2z2+0.1*ndist (0,1)
SIG object with continuous time time series
Sizes: N =231, ny =1
MC is set to: 30
#MC samples: 30
The results should be identical.

To create a continuous-time signal with steps and impulses, use the convention that
you repeat the time twice for steps and three times for impulses as the following
example illustrates:

t= [011333563810]"';
yvec=s[0 01 121022 0]';
y=sig(yvec,t);
plot(y)
2
15
1
0.5
P S|
0.5
-1
1 4] F | 2 3 4 5 [ 7 8 9 10
See Also sig.detrend, sig.interp, sig.resample, sig.sig2covf
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sig.detrend

Purpose Remove trends in nonstationary data series.
Syntax [yd,trend,lsfit]=detrend(y,order)
Description A polynomial model of a certain order is estimated by the least-squares method and

subtracted from the data.

TABLE 2-19: INPUT ARGUMENTS FOR THE DETREND FUNCTION

ARGUMENT DESCRIPTION
\ Input data as SIG object
order Order of polynomial, 0 (default) for subtracting mean; order |
for subtracting linear trend, and so on
yd Detrended data as SIG object
trend The estimated trend as SIG object
1sfit Least-squares loss function
Example Load a real-data example and remove a quadratic and cubic trend, respectively. The

least-squares fit reveals what the eye can see; the cubic trend fits data better.

load genera
[yd2,trend2,1sfit2]=detrend(y1,2);
[yd3,trend3,1sfit3]=detrend(y1,3);
[1sfit2,1sfit3]
ans =

3.4e+005 6.0e+004
plot(y1,yd3,trend2,trend3, 'Ylim',[-1000 4000])

GENERA

4000

3500

3000

2500

2000

1500

1000
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Time

See Also sig ,sig.interp, sig.resample, sig.sig2covf
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sig.interp

Purpose

Syntax

Description

Example

See Also

Interpolate y1(¢1) to yo(ts).
y2=interp(y1,t2,Property1,valuel,...)

Interpolation is based on either a band-limited assumption, where perfect
reconstruction and resampling can be done, a spline interpolation, or using an
assumption of intersample behavior. This can be a zero-order hold for piecewise

constant signals or a first-order hold for piecewise linear signals.

TABLE 2-20: INTERP PROPERTIES

PROPERTY VALUE DESCRIPTION
method '‘BL' | {'hold'} | 'spline' Type of interpolation

degree {0} | 1 Degree in hold function

Note that the output y2 is by default a continuous-time signal. If t2 is uniformly
sampled, set the field fs after interpolation, or used the method
y2=sample(y1,fs).

Compute random sampling times in [0, 1], and get the sinusoidal values at these

points. Resample the signal and compare the methods:

t1=sort(rand(20,1)); % Non-uniformly sampled data
yi=sig(sin(2*pi*t1),t1);

t2=0.1:0.01:0.9;
y2FOH=interp(y1,t2, 'method', 'hold', 'degree',1);
y2spline=interp(y1,t2, 'method', 'spline');
plot(y1,y2FOH,y2spline)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

sig, sig.detrend, sig.resample, sig.sig2covf
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sig.plot

Purpose Plot a signal.
Syntax plot(z1,z2,...,Propertyi,Valuet,...)
Description This function extends the usual plot functions with staircase and stem plot

options. Further, if the input signal is a signal structure, supporting information

such as sampling frequency, title, and variable names are displayed in the plot.

TABLE 2-21: SIGNAL PLOT FUNCTION PROPERTIES

PROPERTY  VALUE DESCRIPTION
interval {1:N} Time interval for focus
axis {gca} Axis handle where plot is added
conf [{0},100] Confidence level from MC, 0 means no
levels plotted
scatter ‘on'[{'off'} Scatter plot of MC data
col {'bgrmyk'} Colors in order of appearance in
sigl ,sig2,...
type 'staircase’' | Type of plot for sampled signals
{'interp'} | 'stem'
legend {} Legend text
Example Load a sinusoid signal example, and make a stem and staircase plot, respectively:

s1=getsignal('sin1',100);
subplot(2,1,1), stem(s1)
s2=getsignal('sin2',100);
subplot(2,1,2), staircase(s2)

Sinusoid signal with noise

TOL &ljffm Tﬂlﬁfvjﬂ %T*T?m%ﬁ“qﬂ%%l“ fJoTu eI

40 45 50

d:rb»l‘o»—mws

o

Sinusoid signal with noise

hoob A e w

See Also sig
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sig.resample

Purpose Resample uniformly sampled signal using a band-limitation assumption.
Syntax y=resample(y,n,m)
Description Resampling definition: y[k] =y(RT) to y[l1=y(l-n/m-T)

resample(y,n,1) decimates a factor n
resample(y,1,m) upsamples a factor m
Anti-alias filtering applied if n/m>1. For decimation, when m = 1, the method
y=decimate(y,n) applies.
Example Simulate a sinusoid and resample it at 7/3 times lower sampling frequency:
t1=(0:1:30)"
y1=sig(sin(0.3*t1));

y2=resample(y1,7,3);
plot(y1,y2)

T

Time

See Also sig, sig.detrend, sig.interp, sig.sig2covf
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sig.sig2covf

Purpose Estimate a covariance function from a SIG object.

Description See covf.estimate on page 18.
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sig.sig2ft

Purpose Compute the Fourier transform from a SIG object.

Description See ft on page 37.
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sig.sig2spec

Purpose Estimate the spectrum from a SIG object.

Syntax Use the following calls to estimate the spectrum from a SIG object:
Phi=estimate(spec,y,Propertyl,vValuel,...) Explicit call
Phi=spec(y,Propertyi,vValuet,...) Implicit call
Phi=sig2spec(y,Propertyl,Vvaluet,...) Direct low-level call

Description See spec.estimate on page 135.
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sig.sig2tfd

Purpose Estimate a Time-Frequency Description (TED) from a SIG object.

Syntax Use the following calls to estimate a TFD from a SIG object:
Yt=estimate(tfd,y,Property1,valuel,...) Explicit call
Yt=tfd(y,Propertyt,valuet,...) Implicit call
Yt=sig2tfd(y,Propertyt,valuel,...) Direct low-level call

Description See tfd.estimate on page 226.

See Also tfd.estimate

125



sig.u2y

126 |

Purpose

Syntax

Description

Example

See Also

Pick out the input from a SIG object to be the output in a new SIG object.

y=u2y (u)

The SIG object u is supposed to consist of (y,X,u), where x might be empty. The
new SIG object y is then (y,[]1,[1). This might be useful in making simulation of
systems represented by a signal triplet, where only the input signal should be used
in the simulation. Another purpose is for plotting the input only. All descriptive
information is inherited automatically.

Recover the input from a simulation of a state space model.

G=rand(ss([3 1 0 2],1));

u=getsignal('prbs');

z=simulate(G,10)

SIG object with discrete time (fs = 1) input-output state space
data

Sizes: N=10, ny =2, nu=1, nx =3
u=u2y(z)
SIG object with discrete time (fs = 1) time series
Sizes: N =10, ny =1

MC is set to: 30
#MC samples: O

sig.x2y
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sig.uplot

Purpose

Syntax

Description

Example

See Also

Plot the input signal in a SIG object.

uplot(z)

In a SIG object z=(y, x,u), the normal plot function shows y (i) for each input
u(j) in a subplot, when an input signal is included in the SIG object. The uplot
function converts the input to a new signal object (similar to u2y (z) ), and then calls
the plot function. That is, the behavior is similar to plot (u2y(z) ). Labels and other

descriptive information are inherited.

Simulate the spring response of a PRBS signal, then compare the two plot

alternatives.

G=exlti('tf2d');

u=getsignal('prbs');

z=simulate(G,u)

SIG object with discrete time (fs = 1) input-output data
Name: Simulation of Slightly undamped second order system
Sizes: N =1024, ny =1, nu =1

subplot(2,1,1), plot(z)

subplot(2,1,2), uplot(z)

Simulation of Skghtly undamped second order system

0 00 200 300 400 500 600 700 8O0 900 1000 1100

Simulation of Skghtly undamped second order system

0 100 200 300 400 500 600 00 8O0 900 1000 1100

sig, sig.u2y, sig.plot
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sig.window

Purpose Apply a data window to a SIG object.

Syntax yw=window(y,type)

Description The function applies a data window to a signal and basically performs the following
operations:

I w=getwindow(length(y),type);
2 yw=y. *w;

and repeats this for all signal dimensions and Monte Carlo realizations.

See Also getwindow

128 | CHAPTER 2: COMMAND REFERENCE



sig.x2y

Purpose

Syntax

Description

Example

See Also

Pick out the state from a SIG object to be the output in a new SIG object.

y=x2y (x)

The SIG object u is supposed to consist of (y,x,u), where u can be empty. The new

SIG object y is then (x,x,u). All descriptive information is inherited automatically.

Recover the state from a simulation of a state-space model.

G=rand(ss([3 1 0 2],1));
u=getsignal('prbs');
z=simulate(G,10)
SIG object with discrete time (fs = 1) input-output state space
data
Sizes: N=10, ny =2, nu =1, nx =3
X=x2y(z)
SIG object with discrete time (fs = 1) input-output state space
data
Sizes: N=10, ny =3, nu =1, nx =3

sig.u2y
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sig.xplot

Purpose Plot the states in a SIG object as subplots.
Syntax xplot(z,Propertyt,vValuet,...)
Description This is essentially equivalent to plot (x2y (z) ). That means that the property-value

pairs are the same as for sig.plot.

Example Plot the states of a simulation of the van der Pol system.

m=exnl('vdp');
z=simulate(m,10);

xplot(z)
3 L,
2
1
0
-1
2
3o 1 2 3 4 5 3 7 8 9 10
y2
3
2
1
0
-1
2
3
0 1 2 3 4 5 3 7 8 9 10
See Also sig.xplot2, sig.plot, sig.x2y
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sig.xplot2

Purpose

Syntax

Description

Example

See Also

Plot two states in a SIG object as a state trajectory.
xplot2(z,Propertyi,valuel,...,ind)

This is essentially the same as plot(z.x(ind(1)),z.x(ind(2))), but with some
additional features:

* An uncertain state represented by a covariance in the first place, or Monte Carlo

samples in the second place, is illustrated with covariance ellipsoids.

* Time instants along the trajectory are automatically added.

The property/value pairs are the same as for sig.plot, with one additional item.

PROPERTY VALUE/{DEFAULT} DESCRIPTION

tlabel {10} Text label for tlabel time instants

Plot the states of a simulation of the van der Pol system.

m=exnl('vdp');
z=simulate(m,10);
xplot2(z)

X2
=

sig.xplot, sig.plot, sig.x2y
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spec

Purpose Create a spectrum object.
Syntax The following calls create a spectrum object (SPEC object):
S=spec Empty object
S=spec(Phi, f) Phi(f, 1:ny, I:ny)
S=spec(Phi,f,PhiMC) PhiMC(1:MC/{,I:ny,|:ny)
S=spec(s) Conversions from SIG and LTI (ARMAX, ARX, SS)
objects
Description The SPEC object has the following fields:
TYPE FIELDS
protected Phi, PhiMC, f
public fs, MC, name, xlabel, ulabel, ylabel, desc, method

The spectrum is defined as the Fourier transform of the covariance function:
@(f) = FT[R(1)]
The covariance function, in turn, is defined for stationary stochastic processes:
R(t) = E[s(¢)s(t-1)]

The periodogram is the basic input to spectral estimation methods, and it can
equivalently be defined in two different ways:

®(f) = FTIR(D)),  R(v) = Y slklslk 1]
k

@(f) = Z%|TDFT[s[k]]|2

The three methods to smooth the periodogram implemented in sig2spec are:

* Direct smoothing using a low-pass filter approximation and filtfilt performs
noncausal zero-phase low-pass filtering to avoid frequency shifts in the spectral
estimate. The low-pass filter is a running average of M samples, which after

filtfilt becomes a triangular averaging window.
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* Windowing the covariance function estimate using a standard window of size M
and type that you choose from the options in getwindow. This is called
Blackman-Tukey’s method.

¢ Segmenting the data into M segments, computing the periodogram on each
g g g > puting p oS

segment, and then averaging. This is referred to as the Welch method.

The basic design parameter that you tune to trade off resolution to noise reduction
is basically the same for all three methods: the number of elements in averaging, the
size of the window and the number of segments are all related. The design
parameter M is therefore in the same order for all methods, but the result is not
exactly the same.

Alternatively, if the stationary process is generated by a known model as filtered
white noise, then the spectrum is given by
2 i2nf 2
slk] = H(g)elk]1= ®(f) = o-|H(e"*™|?.
This opens up for model-based approaches, where you estimate a model from the

signal and then convert it to a spectrum.

When the spectrum is computed from a stochastic process represented by a SIG
object with Monte Carlo data, these random realizations are propagated to random
realizations of the SPEC object contained in the field PhiMC. A similar situation
occurs when an uncertain model is converted to a spectrum. Each sample of the
uncertain model is converted to spectrum. In both cases, the spectrum can be
regarded as a stochastic variable at each frequency. Using the plot function, you can
add confidence bounds and scatter plots of the realizations.

The following operations are available:

OPERATOR DESCRIPTION EXAMPLE

mean/E Return the mean of the Monte Carlo data  Phi=E (PHI)

std Return the standard deviation of the Phi=std(PHI)
Monte Carlo data

var Return the variance of the Monte Carlo Phi=var (PHI)
data

rand Return one random SPEC object or a cell ~ Phi=rand(PHI,10)
array of random SPEC objects

fix Remove the Monte Carlo simulations from Phi=fix (PHI)
the object
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Example Straightforward definition of a SPEC object.

MC=30;

H=tf(1,[1 1.2 0.8],1);

Hf=freq(H);

f=Hf.f;

Phi=abs (Hf.H)."2;
PhiMC=4*(-0.5+rand(MC,size(Phi,1)))+repmat(Phi',MC,1);
Phi=spec(Phi,f,PhiMC);

plot(Phi);

1} 00s 01 015 02 025 03 035 04 045 05
Frequency

See Also spec.plot, spectool, ss.ss2spec
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spec.estimate

Purpose

Syntax

Description

Spectral estimation of a SIG object

Use the following calls to perform a spectral estimation of a SIG object:

Phi=estimate(spec,y,Propertyi,Valuet,...) Explicit call

Phi=spec(y,Propertyi,valuet,...)
Phi=sig2spec(y,Propertyi,valuel,...)

Implicit call

Direct low-level call

The starting point for spectral analysis is the periodogram. This can be smoothed by

the Welch method or Blackman-Tukey’s methods, or by a direct low-pass filter using

filtfilt.

PROPERTY VALUE/{DEFAULT}

DESCRIPTION

MC {100}

M {min([N/5 max([N/10
301)1)}

method 1 | 'periodogram'

2 | 'Blackman-Tukey'

3 | 'Welch'

4 | 'smoothing'

overlap {0}

fs {2}

win "hamming'

Number of Monte Carlo simulations
used in Iti2cov

Smoothing parameter, M=1 recovers
the periodogram, larger M gives less
detail but better averaging. Default is
length(y)/30

Squared magnitude of Fourier
transform

Smoothed version of periodogram
with window win (default: 'hamming’)
with width M

Averaged periodogram over different
signal segments of length M,
windowed by win (default: 'hamming')

Applies a smoothing window directly
on the periodogram

Overlap used in Welch method
(default: 0)

Sampling frequency, scales the
frequency axle f (default: fs=2).
Overrides the fs specified in struct y.

Window used in method 2 and 3. See
help window for options (default:
'hamming')

The estimation algorithm computes uncertainty in the Welch method by

interpreting the periodogram from the different segments as Monte Carlo data. For
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spec.estimate

smoothed periodogram, the variance over each position of the sliding window is
used as uncertainty.

If Monte Carlo realizations of the signal are available, the uncertainty is computed

from these instead. This applies to all methods of spectral estimation.

Example Generate a random ARMA(5,5) model and 1000 samples from it. Then, compare
the Welch method and Blackman-Tukey’s method with the periodogram. Note the
confidence region automatically added for the Welch method:

rand('state',2)

Gstruc=tf(5);

Gstruc.fs=1;

G=rand(Gstruc);

y=filter(G,sig(randn(2000,1)));
Phil=estimate(spec,y, 'M',20, 'method', 'periodogram');
Phi2=estimate(spec,y, 'M',30, 'method', 'blackman');
Phi3=estimate(spec,y, 'M',30, 'method’', 'welch');
plot(Phi1,Phi2,Phi3);

— periodogram
Blackman-Tukey
— Welsh

o I
0 005 01 015 02 025 03 035 04 045 05
Frequency

See Also spec
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spec.plot

Purpose

Syntax

Description

Example

Plot spectra estimated from signals or computed from LTI models

plot(Phi1,Phi2,...,Property1,valuet,...)

Illustrates one or more spectra at the same time.

PROPERTY VALUE/{DEFAULT} DESCRIPTION
plottype 'plot' | Type of plot
'semilogx’
'semilogy’' |
‘loglog"
mC {30} Number of Monte Carlo simulations
conf [{0},100] Confidence level (0 means no levels plotted)
from MC data
scatter ‘on' | {'off'}  Scatter plot of MC data
x1lim [fmin fmax] Focus on frequency axis
axis {gca} Axis handle where plot is added
linewidth {2} Line width
fontsize {14} Font size
conftype 1 | {2} Confidence area (1) or lines (2)
legend {'on'} | 'off' Display spectrum data as legend
col {'bgrmyck'} Colors in order of appearance

The plottype options are also implemented as methods, so the call

semilogy (Phi) is possible.

Generate an AR(8) model and estimate its spectrum from simulated data. Then

compare the spectra.

mO=rand(ar(8));
y=simulate(m0,256);

M=30;

Phiw=spec(y,’M’,M, method’,’welch’);
mhat=estimate(ar(8),y);
PhiO=spec(mO0);
Phiar8hat=spec(mhat);

plot(PhiO,Phiw,Phiar8hat);
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—— AR(B) model
Welsh
18 —— AR(B) estimate

Power
=

[1] R =
0 005 01 015 02 025 03 035 04 045 05
Frequency

See Also spec
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spectool

Purpose Tool for analysis and training of spectral estimation.
Syntax spectool(y)
spectool
Description Use spectool without input arguments to start the user interface in training mode.

Use spectool(y) for spectral estimation of the signal y.

Example Suppose that you have a signal y that you want to perform a spectral estimation of.
THen start the tool with

spectool(y)

and after selecting the Confidence bounds and ARMA estimation check boxes, you get

the following figure.

spacpict

Pl bype semdogy
] Eonfidence bond [0

| Training made using randarma

! Call spectoal without ingut arguments:

o 0.2 04 06 08 1
Frequency

In training mode, you simulate a chosen ARMA model yourself. Call spectool
without input arguments,

spectool

and the following GUI appears:
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T spectoal

10 — Weksh(30)
ARMA(B,0,4,0) welsh
— True ARMA(B B) Wirsdow sz M 30

Here you can randomize models and generate new realizations of data from the
model with varying number of samples. You can then try to fit a model-based
spectral estimate as well as possible to simulated data. If you want to cheat, you can

at any time display the model currently used.
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SS

Purpose The state-space (SS) model object.

Syntax There are different ways to construct an SS object:
SS([nx,nu,nv,ny]) Empty structure (fs=0 by convention)
SS([nx,nu,nv,ny],fs) Empty structure with sampling frequency
SS(A,B,C,D,fs) Deterministic input-output model
SS(A,B,C,D,Q,R,S,fs) Stochastic input-output model
SS(A,B,C,D,Q,R,fs) As above, without matrix S

8S(A,[1,C,[1,Q,R,S,fs)  Stochastic time series model (no input)
SS([1,[1,[1,D,fs) Static noise-free model

SS(marx,MC) Conversion from ARX model where MC is the
number of MC samples from uncertain ARX model

There are also special constructors:

SS('unit') Defines the unit system y=u

SS('delay') Defines the unit delay system y(t)=u(t-1)

SS('sum') Defines the summator (integrator approx.) y(t)=y(t-1)+u(t)
8§S('int") Defines the integrator G(s)=1/s
Description Overloaded functions (methods) include:

* A display function (display) used whenever you request a workspace printout.

* A plot function (1tiplot) invoked when you type plot (G), bode (G), and other

plot commands.
* A simulation function (simulate) to produce a SIG object.
* An estimation function (estimate) to produce a model from a SIG object.

* A filter function (kalman) invoked when you type filter (G,y) for estimating

and predicting system state.

* Operators for basic model operations such as +, -, *, /, and feedback.
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The following picture illustrates the structure of the different linear time-invariant
(LTI) models. The SS model is the most general one, which implies that it is possible

to uniquely transform all other models inside the LTT ellipse to an SS object.

The following section provides a more detailed and comprehensive description of
the different methods.

Overloaded operators include:

plus +G Unitary plus

uminus -G Unitary minus

plus GI+G2 Parallel connection with summation at output
minus GI1-G2 Parallel connection with difference at output
power G.An Repeated multiplication

mpower G™n Repeated multiplication

inv inv(G) Inverse of square systems

eq Gl==G2 Test for equality

mrdivide /G Right inverse of a system

mldivide G\ Left inverse of a system

mtimes GI*G2 Series connection of two models

times G1.*G2 Elementwise multiplication of two models
feedback feedback(G1,G2) Feedback connection of two systems

diag diag(G1,G2,...) Append independent models
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append

ctranspose

transpose

horzcat

vertcat

arrayread

append(G1,G2)  Append independent models

G Reverse the inputs with outputs
G' Reverse the inputs with outputs
[GI G2] Horizontal concatenation
[GI1;G2] Vertical concatenation

G(i)j) Pick out subsystems by indexing

These operators do not have a separate reference page.

Certain methods require an input signal to be feasible (such as plus, mtimes, and

feedback). For stochastic models, inversion as done in inv, for instance, is

impossible to define. The rule of thumb is that a method is applicable to stochastic

systems in the Signals and Systems Lab whenever it is conceivable.

System analysis tools:

SS

SS

SS

SS

SS

.ctrb
.0bsv
.gram
.1qe

.dlge

Computes the controllability matrix

Computes the observability matrix

Computes the controllability (observability) Gramian
Solves the continuous time stationary Riccati equation

Solves the discrete time stationary Riccati equation

Overloaded model conversions (SS to SS):

SS

SS.

SS

SS.

SS.

.cad

d2c
.minreal
modred
balreal

Convert a continuous-time SS to a discrete-time SS

Convert a discrete-time SS to a continuous-time SS
Compute a minimal realization

Comepute a reduced-order model using a balanced realization

Compute the balanced realization

Methods to transform to other object types:

SS.

SS.

SS.

SS

SS.

SS.

ss2freq
zpk
ss2covf
.S8s2spec
ss2tf

impulse

Compute frequency domain response G(f)

Compute the zeros, poles, and gain

Compute the covariance function of stochastic SS models
Compute the spectrum function of stochastic SS models
Compute the transfer function

Compute the analytic impulse response
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ss.step Compute the analytic step response

ss.simulate Simulate a signal y=G(u) from an LTI state-space model

You can view an LTI object in different ways using the following plots:

* Bode diagram of amplitude and phase as a function of frequency f of G(f). There

are options that you can use to plot only the amplitude, only the phase, or both.

* Nyquist curve, where the plot shows G(f) as a complex function.

¢ DPole-zero plots, which show the poles and zeros of G(s) in the complex plane.

* Root locus for G(s), which is a plot of the poles of the closed-loop system, using
a constant feedback K, as a function of K. For SISO TF objects, the poles are the
roots of the equation A(s) + KB(s) = 0. For MIMO state-space models, the

closed loop poles are determined by the eigenvalues to the matrix

A-BEI+D)IC.

1ti.bode(G1,G2,...) Bode plot of amplitude and phase curves
1ti.bodeamp(G1,G2,...) Bode diagram of phase curve
lti.bodephase(G1,G2,...) Bode diagram of phase curve
1ti.nyquist(G1,G2,...) Nyquist curve
1ti.zpplot(G1,G2,...) Zero-pole plot
1ti.rlplot(G1,G2,...) Root locus plot

You can use the same notation for continuous-time and discrete-time systems—just
replace s with q above. For MIMO systems, the plots appear in a subplot array with
ny rows and nu columns. It is possible to set the most common properties of
standard plots such as X1im, Y1im, fontsize, linewidth, and axis. Also, you can
specify the color (or color order for multiple LTT object inputs) using the property
col, which is a vector with one letter color abbreviations such as b for blue, k for
black, and r for red.

Example Create some continuous and discrete state-space models:

mc=ss([1 1;0 1],[0;1],[1 O0],0)
/1 1\

0
d/dt x(t) =\ 0 1/ x(t) + \ 1

/ \
\ 1/ u(t)

y(t) = (1 0) x(t) + (0) u(t)
md=ss([1 1;0 1],[0;1],[1 0],0,2)

/1 1\ / 0\
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x[k+1] =\ 0 1 / x[k] + \ 1 / u[k]

ylkl = (1 0) x[k] + (0) u[k]

ms=ss([1 1 1,10;11,[1 0],0,[0 050 1],1,2)

;0 1
/1 1\ / 0\
\ 0

x[k+1] = 1/ x[k] + \ 1 / u[k] + v[K]

y[kl = (1 0) x[k] + (0) u[k] + e[k]
/0 0\
Q = Cov(v) = \O 1/
R = Cov(e) = 1

msum=ss('sum')
x[k+1] =1 x[k] + 1 u[k]

yl[kl =1 x[k] + 1 u[k]

See Also tf
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Purpose Compute the balanced realization for an SS object.
Syntax sys2=balreal(sys1)
Description A balanced realization is defined as a state-space realization having the same

diagonal controllability and observability Gramians
gram(sysi1,'o')=gram(sysi,'c') = diagonal

The transfer function is unchanged. You can use balanced realizations to avoid
numerical problems and for model approximation purposes as done in modred.

Balanced realizations are also useful for model reduction.
The balreal function uses the following algorithm:

I Solve the Lyaponov function AP+PAT+BBT = 0 for P using P=gram(s, 'c"').
2 Solve the following Lyaponov function ATQ+QA+CTC = 0 for @ using
Q=gram(s,'o"').

Compute the factorization @ = RTR.

Compute the SVD RPRT = Us2U™.

Compute the transformation matrix T' = > 12yTR,

o U1 A W

The balanced realization is given by

(A_b,B_b,C_b,D_b)=(TAT ', TB,CT1.D).

To avoid numerical problems using the overloaded operators, you should compute
the balanced realization s=balreal(s) after each operation. The Signals and
Systems Lab does not do this automatically, because it destroys the structure of the

states, which is sometimes something you do not want.

Example Generate a random third-order transfer function, convert it to (observer-canonical )

state-space form, and compute its balanced realization. Finally, check the Gramians:

m=rand(ss([2 1 0 1]))
/ -0.47 1\ / -0.48 \
d/dt x(t) =\ -0.065 0 / x(t) + \ -0.065 / u(t)
y(t) = (1 0) x(t) + (1) u(t)
mbal=balreal(m)
/ -0.4 0.19 \ / 0.71 \
d/dt x(t) =\ -0.19 -0.071 / x(t) + \ 0.14 / u(t)

y(t) = (-0.71 0.14) x(t) + (1) u(t)
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gram(mbal,'o"')

ans =
0.6286 6.1e-017
6.1e-017 0.1292
gram(mbal,'c')
ans =
0.6286 3.4e-018
3.4e-018 0.1292
See Also SS, ss.gram, ss.minreal, ss.modred
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ss.c2d

Purpose

Syntax

Description

Example

See Also

Convert a continuous-time state-space model to discrete time.
md=c2d(mc,fs,method)

Sampling continuous-time models involves an assumption on what happens in
between the sampling instants. You can assume that the signal is piecewise constant
or piecewise linear and get slightly different results. A further alternative is the
bilinear transformation, which guarantees that poles and zeros in the left half plane
are mapped to the interior of the unit circle.

The method is a string describing the assumption on intersample behavior:

{'ZOH"} Zero-order hold, assuming piecewise constant input
"FOH' First-order hold, assuming piecewise linear input
'bilinear’ s=2/T (z-1)/(z+]1)

Compute a second-order Butterworth filter in continuous time. Then sample it
using a zero-order hold (piecewise constant signal in each sampling interval) and

bilinear transformation. Compare the frequency response of all three filters:

mc=ss(tf(1,[1 1 1]1))

/-1 -1\ / 1\
d/dt x(t) =\ 1 0/ x(t) +\ 0/ u(t)
y(t) = (0 1) x(t) + (0) u(t)
md=c2d(mc,0.1)
/ -0.0076 -0.0054 \ / 0.0054 \
x[k+1] =\ 0.0054 -0.0022 / x[k] + \ 1 / u[k]

y[kl = (0 1) x[k] + (0) u[k]

ss, ss.d2c, tf.cad
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ss.ctrb

Purpose

Syntax

Description

Example

See Also

Compute the controllability matrix of a system on SS form.
C=ctrb(m)

You can use the controllability matrix to find out whether a system is controllable

or not. If C has full column rank, then the system is controllable.

Display the controllability matrix for a random second-order model on

controllability and observability form, respectively:

G=rand(tf([2 11))

§°2+0.63*s+0.17
m=ss(G,'0")
d/dt x(t) =

y(t) = (1 0) x(t) + (1) u(t)

ctrb(m)
ans =
-0.6349 0.2311
-0.1720 0.1092
m=ss(G,'c"')
/ -0.63 -0.17 \ / 1\
d/dt x(t) =\ 1 0/ x(t) +\ 0 / u(t)

y(t) = (-0.63 -0.17) x(t) + (1) u(t)

ctrb(m)
ans =
1 -0.6349
0 1
SS, §s.obsv
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Purpose Convert a discrete-time state-space model to continuous time.
Syntax mc=d2c(m,fs,method)
Description This is the inverse function of c2d. See ss.c2d for more information.

method is a string describing the assumption on intersample behavior.

{'ZOH'} Zero-order hold, piecewise constant input assumed
"FOH' First-order hold, piecewise linear input assumed
'bilinear' s=2/T (z-1)/(z+])

Example Compute a second-order Butterworth filter with a sampling frequency of 2. Then,

compute the continuous-time filter and compare their transfer functions.

Gctf=getfilter(2,0.5,'fs',NaN);
Gc=ss(Gctf)

/ -4.4 -9.9 \ /

d/dt x(t) =\ 1 0/ \

1\
x(t) + 0 / u(t)

y(t) = (0 9.9) x(t) + (0) u(t)
Gd=c2d(Gc,1, 'zoh')
/ -0.15 -0.38 \ / 0.039 \
x[k+1] =\ 0.039 0.021 / x[k] + \ 0.099 / u[k]
y[k] = (0 9.9) x[k] + (0) u[k]
Gc=d2c¢c(Gd, 'zoh');

subplot(2,1,1), plot(Gc,Gd);
subplot(2,1,2), plot(step(Gc,5),step(Gd,5))
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See Also ss, ss.cad
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ss.dlqe

Purpose Solve the discrete-time stationary Riccati equation
Syntax P=dlqge(A,B,C,Q,R)
Description The discrete-time stationary Riccati equation is defined as

T T T -1 ,
P, = APpA —APpC (CPPC +R) CPpA +Q,
T T -1
P, = Pp—PPC (CPPC +R) CPP,
K = AP,c"(cp,c"+R)"
Here, A, B, and C are the state-space matrices of the model, and Q and R are the
covariance matrices of the noise sources (see ss).

K is the stationary Kalman gain, P, is the stationary covariance matrix for the
prediction errors and Prthe corresponding covariance matrix for filtering errors.

This Riccati equation solver uses a simple iterative algorithm.

Example Get the example of a motion model in 1D, and compute its stationary solution to
the Riccati solution for predicted and filtered covariance as well as the stationary

Kalman gain:
m=ex1lti('motioniD")
/1 1\
x[k+1] =\ 0 1 / x[k] + v[k]
y[kl = (1 0) xX[K] + e[k]
/0.25 0.5\
Q = Cov(v) = \ 0.5 1/
R = Cov(e) = 1

[K,Pf,Pp]=dlge(m)

K =
0.7500
0.5000
Pf =
3.0000 2.0000
2.0000 2.0000
Pp =
0.7500 0.5000
0.5000 1.0000
See Also ss, ss.1lqe
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ss.estimate

Purpose

Syntax

Description

Example

Estimate a linear state space model from data

mhat=estimate(m,z)

A state-space model with structure as specified in m is estimated from the data in z.
The input and output dimensions of m and z must be the same. The implementation

is based on the tf.estimate function, so essentially the code is
sys=ss(estimate(tf(s),sig,varargin{:}))

Generate a random state-space model, simulate data, and estimate a model with the

same structure:

G=rand(ss([2 1 0 1],1
/ 0.79
\ -0.7

1))
1\ / 0.85 \
X[k+1] = 0 / x[k] + \ -0.7 / u[K]

ylkl = (1 0) x[k] + (1) u[k]

y=simulate(G,getsignal('prbs',100))+0.2*randn(100,1);
Ghat=estimate(G,y)

/ 0.77 -0.68 \ / 1\

X[k+1] =\ 1 0 / X[k] + \ 0 / u[k]
y[k] = (0.89 -0.71) x[k] + (0.99) u[k]
/ 0.77 -0.68 \ / 1\

X[k+1] =\ 1 0 / X[k] + \ 0 / u[k]
y[k] = (0.89 -0.71) x[k] + (0.99) u[k]

plot(G,Ghat, 'conf',90)
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See Also ss, tf.estimate
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ss.gram

Purpose

Syntax

Description

Example

See Also

Compute the controllability (observability) Gramian.
P=gram(m)
The controllability Gramian P is defined as the solution to P =APA'+BB'

The observability Gramian is defined analogously as the solution to @ =A'PA+C'C,
and you obtain it by Q=gram(m, '0"');
Take an arbitrary second-order transfer function on state-space form and check its
Gramians. Then compute a balance realization and verify that they are equal.
m=rand(ss([2 1 0 1]))
/[ -0.47 1\ / -0.48 \
d/dt x(t) = \ -0.065 0 / x(t) + \ -0.065 / u(t)

y(t) = (1 0) x(t) + (1) u(t)

gram(m,'o")

ans =
1.0620 0
0 16.2184
gram(m,'c')
ans =
0.3182 0.0327
0.0327 0.0046

mb=balreal(m)
/ -0.4 0.19 \ / 0.71 \
d/dt x(t) =\ -0.19 -0.071 / x(t) + \ 0.14 / u(t)

y(t) = (-0.71 0.14) x(t) + (1) u(t)

gram(mb,'o")
ans =
0.6286 6.1e-017
6.1e-017 0.1292
gram(mb,'c')
ans =
0.6286 3.4e-018
3.4e-018 0.1292

The input Gramian is well balanced for state-space models on controller canonical
form as in this example. To balance both the controllability and observability
Gramians, transform the model to a balanced realization.

Ss, ss.balreal, ss.minreal, ss.modred, ss.obsv, ss.ctrb
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ss.impulse

Purpose

Syntax

Description

Example

See Also

Simulate an impulse response.
y=impulse(G,T)

Available input arguments:

ARGUMENT DESCRIPTION

G SS object
T Simulation time. By default, it is estimated from the dominating pole
y SIG object

The impulse response is computed by formulas from system theory rather than
simulated using numerical integration routines. To achieve the latter simulation, use

a call like y=simulate(G,getsignal('impulse')).

Simulate an impulse response of a second-order lightly damped system:

G=ss(exlti('tf2c'))
/ -0.3 -0.41\ /1
d/dt x(t) =\ 1 0/ x(t) +\ 0 u(t)

y(t) = (0.62 0.41) x(t) + (0) u(t)

y=impulse(G);
plot(y)

Slightly undamped second order system

0.5

-0.5

ss, ss.step, ss.simulate
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ss.kalman

Purpose

Syntax

Description

Estimate the state of a state-space model using the Kalman filter (KF).
[x,V]=kalman(m,z,Propertyi,Valuel,...)
For a linear state-space model defined by
o1 = Ap¥p + By gy + By pUps
¥, = Cpxp+Dyuy +ey,
Cov(x,) = P()v E(x()) =X1/0,

Cov(vy,) = @, Cov(e,) = Ry, Cov(v,,e,) = 0.
the optimal linear filter is given by the Kalman filter (KF) recursions

Xk+1|k = ApXp|k + B, pup,
P - AP, ,AT+B ,Q,BT
k+1k = Al p iy + 5y 9By ko
hip = X +P,, CT(C CT+R) 7y, - Cox D
Xkl = Xklk-1+Ppp_1Ch (Cpp 1 Cp + Ry) (v, = Cpije-1- Dy puy),

T T 1
Py = P 1 = Prjp 1 Cr(Crpp 1 Cr +By)  Chppy-

The inputs to the KF are the SS object and a SIG object containing the observations
¥ and possible an input g, and the outputs are the state estimate xy,;, and its
covariance matrix Py . There is also a possibility to predict future states g ,p, |z,
Pp o With the m-step ahead predictor, or to compute the smoothed estimate using
the complete observation record x|, Pr |- The corresponding output estimate
and covariance are also computed. All these quantities are packed into a SIG object,

where also the signal labels inherited from the model are assigned.
The arguments are as follows:

* misaSS object defining the model matrices A, B, C, D, @, R.

* zis a SIG object with measurements y and inputs u if applicable. The state field
is not used by the KF.

* xis a SIG object with state estimates. xhat=x.x and signal estimate yhat=x.y.

* Vis the normalized sum of squared innovations, which should be a sequence of
chi2dist (nx) variables when the model is correct.
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158 |

The optional parameters are summarized in the table below.

TABLE 2-22: OPTIONAL PARAMETERS FOR THE KALMAN FUNCTION

PROPERTY  VALUE DESCRIPTION

alg {1},2,3,4  Type of implementation:
| stationary KF.

2, time-varying KF.

3, square root filter.

4, fixed interval KF smoother Rauch-Tung-Striebel.

5, sliding window KF, delivering xhat(t]y(t-k+1:t)), where k is
the length of the sliding window.

k k>0 {0} Prediction horizon: 0 for filter (default), | for one-step ahead
predictor, generally k>0 gives xhat(t+k|t) and y(t+k]|t) for
alg=1,2. In case alg=5, k=L is the size of the sliding window.

PO {1} Initial covariance matrix. Scalar value scales identity matrix.
Empty matrix gives a large identity matrix.

x0 {1} Initial state matrix. Empty matrix gives a zero vector.

Q {1} Process noise covariance (overrides the value in m.Q). Scalar
value scales m.Q.

R {1} Measurement noise covariance (overrides the value in m).

Scalar value scales m.R.

Simulate a random state space model, and use the KF to estimate the state from

Example
noisy outputs.
m=rand(ss([2 1 1 1],1));
m.R=0.1*m.R;
m.Q=0.1*m.Q;
u=getsignal('prbs',10,2);
z=simulate(m,u);
x1=kalman(m,z,'alg',1);
x2=kalman(m,z,'alg',2);
plot(z,x1,x2, 'conf',90)
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Simulate a random time series, and estimate the state.

m=rand(ss([2 0 1 1],1));
m.R=0.1*m.R;
z=simulate(m,20);
x=kalman(m,z);
xplot(z,x, 'conf',90)

x1
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Simulate a constant acceleration motion model with noisy position estimates, then

estimate the state vector and plot the position estimate with uncertainty ellipsoids.

m=exlti('ca2D');

m.R=10*m.R;

z=simulate(m,10);
xhat=kalman(m,z);
xplot2(z,xhat, 'conf',90,[1 2]);

4

See Also nl.ekf, sig.xplot, sig.xplot2
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ss.lqe

Purpose Solve the continuous-time stationary Riccati equation.
Syntax [K,P]=1qge(m)
Description The continuous-time stationary Riccati equation is defined as

Ap+PAT_pPcTR'cP+@ = 0
K = PCTR™

P corresponds to the solution, and K is the stationary Kalman gain.

See Also ss.dlge
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ss.minreal

Purpose Compute a minimal realization of a system on SS form.
Syntax [mmin,T,uind,yind]=minreal(m)
Description Model reduction basically cancels common zeros and poles and removes states that

are either not observable or not controllable. The following figure illustrates a
simple case where the last two states are not needed to model the input-output
dynamics (though these states still may contain important information on internal
stability).

u(® ! vt

For MIMO system, a minimal realization also removes inputs that are not related to

the outputs, and vice versa. The following figure illustrates one such example:

u ft) 7 vt
=

uz(t) 7 yA)

B — S—+2

u,ft) - y{
52 :

T is the transformation matrix such that xnew=T*x.
uind and yind are the removed inputs and outputs, respectively.
The algorithm works as follows:

I Call ss.modred with an automatic choice of model order, so the truncation is
done where all eigenvalues of the balanced A matrix are zero up to a numerical
uncertainty.

2 Screen the columns of the B and D matrices for all-zero vectors, corresponding
to unused inputs, and remove such cases.

3 Screen the C and D matrices for zero columns, and remove them.
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Define the SISO system in the first of the previous examples, and compute its

-2 -381),[1;1;01,[1 0 1],0)
/ -1 0 0\ / 1\

0o -2 0 | x(t) + ] 1 | u(t)
\' 0 0 -3/ \ 0/

1) x(t) + (0) u(t)

-1 x(t) + 1 u(t)

+ 0 u(t)

Note that the transfer function contains both poles and zeros, at =2 and -3,

The illustrative MIMO example above is defined and reduced below.

Example
minimal realization:
G=ss(diag([-1
d/dt x(t) =
y(t) = (1 0
minreal(G)
d/dt x(t) =
y(t) =1 x(t)
respectively.
G=ss(diag([-1
d/dt x(t) =
/1
y(t) = | 0
\0
minreal(G)
d/dt x(t) =
y(t) =1 x(t)
See Also Ss, ss.modred, ss

-2 -8]),diag([1;1;0]),diag([1
/ -1 0 0\ /1 0

| 0 -2 0] x(t) +] 0 1
\' 0 0 -3/ \0 O
0 0\ /0 0 0\

0 0] x(t) +] 0 0 O | u(t)
o 1/ \0 0 0/

-1 x(t) + 1 u(t)

+ 0 u(t)

.balreal, ss.gram
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ss.modred

Purpose

Syntax

Description

Example

Compute a reduced-order model using a balanced realization.
[mred,T]=modred(m,n);

The function first calls balreal to get a balanced realization, where the eigenvalues
of the A matrix are sorted in order. This model is then truncated at order n. T is the

transformation matrix such that xnew=T*x.

n is the order of the filter after model reduction. If n is empty or zero, the model
order is chosen automatically to cancel common poles and zeros. For SISO systems,
modred and minreal are then equivalent.

The algorithm works as follows:

I First call balreal to geta balanced state-space realization, where the eigenvalues
of the A matrix are sorted in order.

2 Then truncate this model at model order n. If n is empty or zero, the model order

is chosen automatically, based on the eigenvalues in A.

Compute a random state-space model of order 12. Then, approximate this with a

second-order system and a system with an automatically chosen model order.

m=rand(ss([12 1 0 1]));
mred2=modred(m,2);
mredauto=modred(m)
/ 0.00034 -0.0057 0.0012 -0.0019 -0.00044

| 0.01 0.012 -0.0029 0.022 0.005
| -0.023 0.017 -0.013 0.095 0.0037
d/dt x(t) = | 0.00091 0.022 -0.15 -0.056 -0.068
| -0.0038 0.026 0.054 0.061 -0.051
\ 0.0027 -0.044 -0.19 -0.32 2.3
0.0016 \ / 0.37 \
-0.017 | | 0.7 |
-0.05 | | 0.8 |
0.35 | x(t) + | 0.64 | u(t)
1.7 | | -0.38 |
-1.4 / \ 1.7 /

y(t) = (-0.16 0.58 0.33 -0.65 -0.33 1.7) x(t) + (1)

u(t)

plot(m,mred2,mredauto);
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See Also ss, ss.balreal, ss.gram, ss.minreal
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ss.obsv

Purpose
Syntax O=o0bsv (m)

Description

Compute the observability matrix of a system on SS form.

You can use the observability matrix to find out whether a system is observable or

not. If 0 has full column rank, then the system is observable.

Example Display the observability matrix for a random second-order model on controllability
and observability form, respectively:
G=rand(tf([2 1]))
s°2
Y(8) = ---cmceennenna- u(s)
§°2+0.63*s+0.17
m=ss(G,'0")
-0.63 1\ / -0.63 \
d/dt x(t) -0.17 0 / x(t) + \ -0.17 / u(t)
y(t) = (1 0) x(t) + (1) u(t)
obsv(m)
ans =
1 0
-0.6349 1
m=ss(G,'c"')
-0.63 -0.17 \ / 1\
d/dt x(t) 1 0/ x(t) +\ 0/ u(t)
y(t) = (-0.63 -0.17) x(t) + (1) u(t)
obsv(m)
ans =
-0.6349 -0.1720
0.2311 0.1092
See Also ss, ss.ctrb
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ss.simulate

Purpose Simulate a signal from an SS object.
Syntax z=simulate(G,N,Property1,valuet,...)
Description This function is the overloaded plot function for SS objects.

The second input argument is one of the following;:

INPUT ARGUMENT DESCRIPTION
u Input to input-output models
N Number of data to simulate.

u is white noise for input-output models

Optional parameters:

PROPERTY  VALUE/{DEFAULT} DESCRIPTION

MC {10} Number of Monte Carlo simulations

T {0} Simulation time. The default (for T=0)
is computed from the dominating pole.

Example Simulate a PRBS signal through a lightly damped system on state-space form, and
plot the result:

G=ss(exlti('tf2c'))
/ -0.3 -0.41\ / 1\
d/dt x(t) =\ 1 0/ x(t) +\ 0 / u(t)

y(t) = (0.62 0.41) x(t) + (0) u(t)

u=getsignal('cprbs',50);
y=simulate(G,u);
plot(y)
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ss.simu

Simulation of Slightly undamped second order system
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tf.simulate, ss.step, ss.impulse

See Also
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ss.ss2covf

Purpose

Syntax

Description

Example

Convert SS models to covariance functions.

c=ss2covf(m,Propertyi,valuel,...)  Explicit call
c=covf(m,Property1,valuet,...) Implicit call

The theoretical covariance function for a state-space model is computed. The
covariance function is defined for stochastic processes, so this function is not
applicable to transfer function part of the state-space model. That is, the

deterministic input dynamics is not considered for the covariance function.

PROPERTY  VALUE DESCRIPTION

taumax {30} Maximum lag for which the covariance function is
computed

MC {100} Number of Monte Carlo simulations to compute the

confidence bound (0 means no bound)

The following steps describe the algorithm:

I R(0) = C * Pibar * C' + R

2 R(tau) = C * A*tau * Pibar * C' + C * A"(tau-1) * S,
tau=1,2,...,taumax, where Pibar is the controllability Gramian (see gram).

Create a random stochastic SS model and compute its covariance function:

m=rand(ss([4 0 1 1]))

/ -1.9 1 0 0\
| -1.7 0 1 0|
d/dt x(t) = | -0.24 0 0 1 | x(t) + v(t)
\ -0.098 0 0 0 /
y(t) = (1 0 0 0) x(t) + e(t)
/7.7 12 1.2 -0.27\
| 12 18 1.8 -0.41 |
Q=Cov(v) = | 1.2 1.8 0.19 -0.042 |
\-0.27 -0.41 -0.042 0.0095/

R = Cov(e) = 1

c=covf(m);
plot(c)

169



ss.ss2covf

170 |

See Also
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ss.ss2freq

Purpose

Syntax

Description

Example

Compute frequency-domain response of an LTT object.

Hf=ss2freq(lti,Propertyl,Vvaluet,...)Explicit call
Hf=freq(lti,Propertyi,valuet,...) Implicit call

The frequency function H(f) is the Fourier transform of the input-output transfer
function if the SS object contains an input u (TF part of the SS object). Otherwise,
it is the frequency function for the noise model (ARMA part of the SS object).

This conversion supports MIMO systems, and evaluates
H@iw)=C (l(DI —-A)” B +D for continuous-time systems and
H (em) = C(e' °r- A) B + D for discrete-time systems, respectively, for each

input-output channel.

The available properties are:

PROPERTY VALUE DESCRIPTION

MC {30} Number of Monte Carlo simulations used in Iti2cov
N {1024} Number of frequency grid points

f {} Frequency grid (overrides N)

fmax Maximum frequency. Default is fs/2 for discrete-time

systems, and 8 times the dominating poles bandwidth
for continuous-time systems

Create a random stochastic SS model and compute its frequency function:

m=rand(ss([3 1 0 1]))

/ -1.5 1 0\ / -0.6\
d/dt x(t) = | -0.3 0 1 | x(t) + | -0.13 | u(t)
\ 0.0028 0 O / \ 0.012 /

y(t) = (1 0 0) x(t) + (1) u(t)

Hf=freq(m); % Implicit call
Hf=ss2freq(m); % Explicit call
bode (Hf);
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See Also
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ss.ss2nl

Purpose

Syntax

Description

Example

See Also

Convert a linear state-space model into an NL model object.

mnl=ss.ss2nl(mss)

A linear state-space model represented by a set of matrices is converted to symbolic
inline functions for dynamics and observations, respectively. All other fields (labels,

sampling frequency, description, name, and so on) are kept.

Generate a random state-space model and convert it to an NL object:

mss=rand(ss([2 2 2 2]))

/ -0.63 1\ / 0.92 0.75 \
d/dt x(t) =\ -0.17 0 / x(t) + \ 0.81 0.84 / u(t) + v(t)
/ 1 0\ / 1 1\

y(t) = \0.75 0.81/ x(t) + \0.31 0.26/ u(t) + e(t)

3.6 -0.39\
Q = Cov(v) = \-0.39 0.059/
/1 0\
R = Cov(e) =\ 0 1/
ss2nl(mss)
NL object
dx/dt = [-0.6348615080768729 1 ; -0.1719648566020535

01*x(1:2,:)+[0.9175267265890872 0.748133741866277 ;
0.812135496471976 0.8437165228041728]*u(1:2,:) +
N([0;0],[3.62,-0.387;-0.387,0.0591])

y = [10; 0.7546923726749087 0.8096911178933771]*x(1:2,:)+[1
1 ; 0.30656439000410485 0.26369928274838383]*u(1:2,:) +
N([0;0],[1,0;0,1])

x0' = [0 0]

nl.nl2ss,nl
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Purpose Compute the spectrum from a stochastic state-space model as an SS object.

Syntax Phi=ss2spec(m,Propertyi,VvValuel,...) Explicit call
Phi=spec(m,Propertyi,VvValuel,...) Implicit call

Description The spectrum is computed from the stochastic part of the SS object. That is, any

possible input part is neglected.

PROPERTY VALUE DESCRIPTION
MC {30} Number of Monte Carlo simulations used in Iti2cov
N {1024}  Number of frequency grid points

f {} Frequency grid (overrides N)

fmax Maximum frequency. Default is fs/2 for discrete-time

systems, and 8 times the dominating poles bandwidth
for continuous-time systems

The spectrum is computed in two steps:

I The transfer function from process noise to output is computed as
H(io) = Ciol + A)1QV2
2 The spectrum is then P(Ew) = H(iu))H(i(D)T +R.

Examples Generate a random SS model, and compute its corresponding spectrum:

m=rand(ss([4 0 1 1]))

/ -1.9 1 0 0\
| -1.7 0 1 0 |
d/dt x(t) = | -0.24 0 0 1 | x(t) + v(t)
\ -0.098 0 0 0/
y(t) = (1 0 0 0) x(t) + e(t)
/7.7 12 1.2 -0.27\
| 12 18 1.8 -0.41 |
Q=Cov(v) = | 1.2 1.8 0.19 -0.042 |
\-0.27 -0.41 -0.042 0.0095/

R = Cov(e) = 1

Phi=spec(m); % Implicit call
Phi=ss2spec(m); % Explicit call

plot(Phi);
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See Also spec, spec.plot
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ss.ss2tf

Purpose Convert a SS object state-space model to a transfer function TF.
Synopsis sys=ss2tf(s0) Explicit call
sys=tf(s0) Implicit call
Description This SS method calls the function ss2tf. In contrast to that function, this method

works for MIMO systems and uncertain systems. Each input-output channel is
treated separately. Any stochastic part of the SS object is neglected.
Example Convert a SISO state-space model to a transfer function:
mi=rand(ss([3 1 0 1]))

/-1

6 1 0\
d/dt x(t) = | -0.96 0 1 | x(t) + |
\ -0.19 0 0 /

y(t) = (1 0 0) x(t) + (1) u(t)

G1=ss2tf(m1) % Explicit call
$°3+2.1*s72+2*s+0.73
Y(8) = =--cmmcmmmi e u(s)
$"3+1.6*s"2+0.96*s+0.19
G1=tf(m1) % Implicit call
$°3+2.1*s72+2*s+0.73
Y(S) = =---mcccecmme e eeaeaes u(s)
$"3+1.6*s"2+0.96*s+0.19

Conversion of stochastic MIMO model:

m2=rand(ss([2 2 2 2]))
/-2 1\ / -1.8 0.11 \
d/dt x(t) =\ -1 0/ x(t) +\ -0.97 oO. [u(t) + v(t)
/1 0\ / 1 1\

y(t) = \0.83 0.93/ x(t) + \0.091 0.85/ u(t) + e(t)

/5.4 3.4\

Q = Cov(v) = \3.4 2.2/
/1 0\
R = Cov(e) =\ 0 1/

G2=ss2tf(m2) % Explicit call
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See Also

Y1(s)

Y1(s)

Y2(s)

Y2(s)

ss, tf, tf2ss

§"2+0.22*s+0.072
---------------- Ui(s)
§72+2*s+1

s"2+2.1*s+1.3
------------- u2(s)
S"2+2*s+1

0.091*s72-2.2*s-0.79
-------------------- Ut (s)
§72+2*s+1

0.85*s"2+2.1*s+1.5
------------------ u2(s)
S*2+2*s+1
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ss.step

Purpose Convert a SS object state-space model to a transfer function TF.
Syntax sys=ss2tf(s0) Explicit call
sys=tf(s0) Implicit call
Description This SS method calls the function ss2tf. In contrast to that function, this method

works for MIMO systems and uncertain systems. Each input-output channel is
treated separately. Any stochastic part of the SS object is neglected.
Example Convert a SISO state-space model to a transfer function:
mi=rand(ss([3 1 0 1]))

/-1

6 1 0\
d/dt x(t) = | -0.96 0 1 | x(t) + |
\ -0.19 0 0 /

y(t) = (1 0 0) x(t) + (1) u(t)

G1=ss2tf(m1) % Explicit call
$°3+2.1*s72+2*s+0.73
Y(8) = =--cmmcmmmi e u(s)
$"3+1.6*s"2+0.96*s+0.19
G1=tf(m1) % Implicit call
$°3+2.1*s72+2*s+0.73
Y(S) = =---mcccecmme e eeaeaes u(s)
$"3+1.6*s"2+0.96*s+0.19

Conversion of stochastic MIMO model:

m2=rand(ss([2 2 2 2]))
/-2 1\ / -1.8 0.11 \
d/dt x(t) =\ -1 0/ x(t) +\ -0.97 oO. [u(t) + v(t)
/1 0\ / 1 1\

y(t) = \0.83 0.93/ x(t) + \0.091 0.85/ u(t) + e(t)

/5.4 3.4\

Q = Cov(v) = \3.4 2.2/
/1 0\
R = Cov(e) =\ 0 1/

G2=ss2tf(m2) % Explicit call
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See Also

Y1(s)

Y1(s)

Y2(s)

Y2(s)

ss, tf, tf2ss

§"2+0.22*s+0.072
---------------- Ui(s)
§72+2*s+1

s"2+2.1*s+1.3
------------- u2(s)
S"2+2*s+1

0.091*s72-2.2*s-0.79
-------------------- Ut (s)
§72+2*s+1

0.85*s"2+2.1*s+1.5
------------------ u2(s)
S*2+2*s+1
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Purpose

Syntax

Description

Example

CHAPTER 2:

Create LaTeX code from a state-space SS object.

texcode=tex(s,Property1,valuet,...)

The output is TeX code that you can paste into any LaTeX document. Alternatively,

the code is put into a file, which is input by reference into the document.

Filters (freeware or shareware) for other word processors are available:

TexPoint: freeware for Microsoft Powerpoint
LaImport: FrameMaker

TeX2Word: Microsoft Word

LaTeX2rtf: RTF documents

TeX4ht: HTML or XML hypertext documents

The properties are:

PROPERTY VALUE/{DEFAULT} DESCRIPTION

filename {''} Name of the .tex file (none for ' ')

decimals {1} Number of decimals

env {'egnarray*'} TeX environment, ' ' means no env

COMMAND REFERENCE

Generate a random model and its LaTeX code:

m=rand(ss([2 1 0 1]))
/ -0.63 1\ [ 1.1\
d/dt x(t) =\ -0.17 0 / x(t) + \ 0.54 / u(t)

y(t) = (1 0) x(t) + (1) u(t)

tex(m, 'decimals',3)
ans =
\begin{egnarray*}
\dot{x}(t) &=&
\left[
\begin{array}{rr}
-0.635 & 1.000 \\
-0.172 & 0.000
\end{array}
\right]
X(t)
+
\left[
\begin{array}{r}
1.080 \\



ss.tex

See Also

0.545
\end{array}
\right]

u(t)

\\

y(t) &=&
\left]
\begin{array}{rr}
1.000 & 0.000
\end{array}
\right]

x(t)

+
\begin{array}{r}
1.000
\end{array}

u(t)
\end{egnarray*}

x(t)

y()

tf.tex, textable, texmatrix

Importing the LaTeX code to FrameMaker produces the following printout:

—-0.635 1.000 x(t) + 1.080 u(t)
-0.172 0.000 0.545

[1.000 0.000]%(®) + 1.000 ()
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ss.zpk

Purpose

Syntax

Description

Example

Computes the zeros, poles and gains of an SS object.
[z,p,k,zMC,pMC,KkMC]=2zpk(s)

The following list describes the output arguments:

OUTPUT ARGUMENT DESCRIPTION

p A row vector with poles

z A (ny x nb x nu) matrix with zeros

k A (ny x nu) matrix with gains

ZMC, pMC , kMC The corresponding Monte Carlo arrays, where the

first index corresponds to the MC samples

The zeros and poles of a SISO system:

mi=rand(ss([3 1 0 1]))
/ -1.6 1 0\ / 0.66 \
d/dt x(t) = | -0.96 0 1 | x(t) + | 0.69 | u(t)
\ -0.19 0 0/ \ 0.19 /
y(t) = (1 0 0) x(t) + (1) u(t)
[z,p,k]=zpk(m1)
Z =
-1.0078 -0.7226 -0.5340
p =
-0.5972 + 0.33411i -0.5972 - 0.33411 -0.4147 +
0i
k =

m2=rand(ss([2 2 0 2]))
/ -2 1\ / -1.8 0.11 \
d/dt x(t) =\ -1 0/ x(t) +\ -0.97 0.28 / u(t)
/ 1 0\ / 1 1\

y(t) = \0.67 0.66/ x(t) + \0.83 0.93/ u(t)

[z,p,k]=zpk(m2)
z(:,:,1) =

-0.1109 + 0.24431i -0.1109 - 0.24431

0.1079 + 0.41931 0.1079 - 0.41931
z(:,:,2) =

-1.0712 + 0.41891i -1.0712 - 0.41891
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-1.1563 + 0.48361 -1.1563 - 0.48361
p =
-1.0161 + 0.10421 -1.0161 - 0.10421
k =
1 1
0.8258 0.9252
See Also ss, tf, tf.zpk
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Purpose
Syntax

Description

Example

See Also

Convert state-space model to a transfer function.
[b,a]=ss2tf(A,B,C,D)
The state-space model characterized by the A, B, C, and D matrices is transformed
into a transfer function represented on polynomial b, a form.
This function is limited to SISO systems. Use the SS method ss.ss2tf for MIMO
systems.
Compute the transfer function of a discrete-time double summator:
A=[1 1;0 1]; B=[0;1]; C=[1 0]; D=0;

[b,a]=ss2tf(A,B,C,D)
b

n o
o
—_

a

tf.tf2ss, ss.ss2tf, tf2ss
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step

Purpose

Syntax

Description

Example

Simulate a step response.
y=step(G,T)

Available input arguments:

ARGUMENT DESCRIPTION

G SS object
T Simulation time. By default, it is estimated from the dominating pole
y SIG object

The step response is computed by formulas from system theory rather than
simulated using numerical integration routines. You achieve the latter simulation
with a call like y=simulate (G,getsignal('cstep')).

Simulate a step response of a second-order lightly damped system:

Ge=ss(exlti('tf2c'))
/ -0.3 -0.41 \
d/dt x(t) =\ 1 0/ x(t) +

y(t) = (0.62 0.41) x(t) + (0) u(t)

yc=step(Gc);

ycsim=simulate(Gc,getsignal('cstep',yc.t(end)))

SIG object with continuous time input-output state space data
Name: Simulation of Slightly undamped second order system
Sizes: N=201, ny=1, nu=1, nx =2

subplot(2,1,1)

plot(yc,ycsim)

Gd=ss(exlti('tfad'))

/ 1.4 -0.74 \ / 1\
X[k+1] =\ 1 0 / x[k] +\ 0 / u[k]

y[k] = (0.68 -0.34) x[k] + (0) u[k]

yd=step(Gd);

ydsim=simulate(Gd,getsignal('step',length(yd.y)))

SIG object with discrete time (fs = 1) input-output state space

data
Name: Simulation of Slightly undamped second order system
Sizes: N=33, ny=1, nu=1, nx =2

subplot(2,1,2)

staircase(yd,ydsim)
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See Also
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Simulation of Slightly undamped second order system

0 5 10 15 20 25 30 35 40 45 50
Time

Simulation of Slightly undamped second order system

Time



tdist

Purpose The Student t distribution.
Syntax X=tdist(n)
Description The probability density function of the t distribution, and its first two moments, are
given by
— 1)/2
p(x;n) = W(l +x2/n) n+d) ,
Jnrl(n/2)
EX) =0,
n
Var(X) = o >2.

n must be a positive integer. This is a child of pdfclass, and all of its methods apply
to this distribution, in particular pdfclass.estimate and the plot functions.

Example Tllustration of some sample distributions:
n=[1 2 5 10];
for i=1:4; X{i}=tdist(n(i)); end
plot(X{:})

axis([-10 10 0 0.5])

Probability Density Function

See Also pdfclass
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texmatrix

Purpose Create LaTeX code for a matrix.
Syntax texcode=texmatrix (A,Property1,Valuel,....)
Description The output is TeX code that you can paste into any LaTeX document. Alternatively,

the code is put into a file, which you then can input by reference into a document.

Filters (freeware or shareware) for other word processors are available:

TexPoint: freeware for Microsoft Powerpoint
LaImport: FrameMaker

TeX2Word: Microsoft Word

LaTeX2rtf: RTF documents

TeX4ht: HTML or XML hypertext documents

The properties are:

PROPERTY VALUE/{DEFAULT} DESCRIPTION
filename {"'} Name of the .tex file (none for ' ')
decimals {1} Number of decimals
env {'egnarray*'} TeX environment, ' ' means no env
Example Generate TeX code for a random matrix with three decimals:
A=randn(4);
texmatrix (A, 'decimals',2)
ans =
\begin{egnarray*}
\left[
\begin{array}{rrrr}

-0.43 & -0.67 & 0.97 & -1.37 \\
-0.67 & 0.47 & 0.18 & 1.84 \\
-0.35 & -0.63 & 1.28 & 0.52 \\
-0.51 & 0.48 & 0.73 & -0.29
\end{array}

\right]

\end{eqgnarray*}

The output when you imported this code into a FrameMaker document is:
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-0.43 -0.67 0.97 -1.37
-0.67 0.47 0.18 1.84
-0.35 -0.63 1.28 0.52
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texmatrix

See Also textable
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textable

Purpose Create LaTeX code for a matrix in tabular form.
Syntax texcode=textable(A,Propertyi,Valuel,....)
Description The output is TeX code that you can paste into any LaTeX document. Alternatively,

the code is put into a file, which you can input by reference into a document.
Filters (freeware or shareware) for other word processors are available:

e TexPoint: freeware for Microsoft Powerpoint

* Lalmport: FrameMaker

* TeX2Word: Microsoft Word

e LaTeX2rtf: RTF documents

e TeX4ht: HTML or XML hypertext documents

The properties are:

PROPERTY VALUE/{DEFAULT} DESCRIPTION

filename {''} Name of the .tex file (none for ' ')
decimals {1} Number of decimals
xlabel {''} Array with strings of column labels
ylabel {'"'} Array with strings of row labels
title {''} String with table title
Example Generate a table for the chi-square distribution:

d=1:6;

p=0:0.1:1;

for m=1:1ength(d)

xlabel{m}=['d=",num2str(d(m))];

for n=1:1ength(p)
ylabel{n}=["'p=",num2str(p(n))l;
A(n,m)=erfinv(chi2dist(d(m)),p(n));
end
end
textable (A, 'ylabel',ylabel, 'xlabel',xlabel,'title','h for
P(chi2(d)<h)=p','filename',chi2table")

It looks as follows in FrameMaker:
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h for P(chi2(d)<h)=p

d=1 d=2 d=3 d=4 d=5 d=6
p=0.1 0.0 0.2 0.6 1.1 1.6 22
p=0.2 0.1 0.4 1.0 1.6 2.3 3.1
p=0.3 0.2 0.7 1.4 22 3.0 3.8
p=04 03 1.0 1.9 2.7 3.6 4.6
p=0.5 0.5 1.4 2.3 33 43 53
p=0.6 0.7 1.8 2.9 4.0 5.1 6.2
p=0.7 1.1 24 3.6 4.9 6.0 7.2
p=0.8 1.7 3.2 4.6 59 7.3 8.5
p=09 2.7 4.5 6.2 7.7 9.2 10.6

p=1 7.0 10.5 13.4 16.0 184  20.7

See Also texmatrix

191



tf

192 |

Purpose The transfer function (TF) model object.

Syntax Different ways to construct a TF object:
TF([na nb nk]) Empty SISO structure (fs=0 by convention)
TF([na nb nk nu ny]) Empty MIMO structure (fs=0 by convention)
TF([na nb nk],fs) Empty structure with sampling frequency
TF(b,a) Polynomial definition
TF(b,a,fs) Stochastic input-output model

The following special constructors are also available:

TF('unit') Defines the unit system y=u

TF('delay') Defines the unit delay system y(t)=u(t-1)

TF('sum') Defines the summator (integrator approx.) y(t)=y(t-1)+u(t)
TF('int') Defines the integrator G(s)=1/s
TE('s") Laplace operator

TF('q"',fs) Time shift operator

TF('z',fs) z transform operator (same as q)

Description The entered numerator b and denominator a polynomials can be arbitrary vectors

CHAPTER 2:

of arbitrary lengths. However, it is good practice to fill up with zeros to equal
length. TF otherwise fills up with zeros from the left. This corresponds to

polynomials in descending powers of s and z, respectively.

The following conventions apply:

e The sampling frequency is given in Hertz for discrete-time systems, and is by
convention NaN for continuous-time systems (default if fs is omitted).

¢ Coecfficient a(1) preceding y(¢) is always one.

¢ b(1) is nonzero.

e Ifband a are specified of different length, the shorter one is extended with zeros

from the right. Use b, a of equal size to avoid problems!

* nk is the relative degree, so nk>=0 for causal systems, and nk<0 for noncausal

systems.

That s, the stored difference equation (or differential equation for continuous time)

is
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y@)+aly(t-1)+...+a(na)y(t—na) =
b(NHu(t-nk)+b2Qu(t-nk-1)+...+b(nb)u(t-nk-nb+1)

For MIMO systems, the SISO transfer function from u; to ¥jis given byb(j,:,1i)

and a. Note that a and nk are the same for all inputs and outputs, in order to be

consistent with (unstructured) state-space models.

Overloaded functions (methods) include in short:

» A display function (display) used whenever you request a workspace printout.

* Aplot function (1tiplot) invoked when you type plot (G), bode (G), and other

plot functions.

* Simulation functions (simulate, impulse, step) to produce a SIG object.

* An estimation function (estimate) to produce a model from a SIG object.

* A filter function (kalman) invoked when you type filter (G,y) for estimating

and predicting system state.

* Operators for basic model operations such as +, -, *, /, and feedback.

The following section provides a more detailed presentation of the methods.

Overloaded operators:

plus
uminus
plus
minus
power
mpower
inv

€q
mrdivide
mldivide
mtimes
feedback
diag
append

ctranspose

+G

-G

GI+G2

GI-G2

G.An

G*n

inv(G)
Gl==G2

/G

G\|

GI*G2
feedback(G1,G2)
diag(G1,G2,...)
append(G1,G2)
G

Unitary plus

Unitary minus

Parallel connection with summation at output
Parallel connection with difference at output
Repeated multiplication

Repeated multiplication

Inverse of square systems

Test for equality

Right inverse of a system

Left inverse of a system

Series connection of two models

Feedback connection of two systems
Append independent models

Append independent models

Reverse the inputs with outputs
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transpose

horzcat

vertcat

arrayread

G' Reverse the inputs with outputs
[GI G2] Horizontal concatenation
[GI;G2] Vertical concatenation

G(i)j) Pick out subsystems by indexing

These operators do not have a separate reference page.Certain methods require an
input to be feasible (such as plus, mtimes, and feedback). For stochastic models,
inversion as done in inv, for instance, is impossible to define.

Overloaded model conversions (SS to SS):

tf.cad

tf
tf

.d2c

.minreal

Convert a continuous-time TF to a discrete-time TF
Convert a discrete-time TF to a continuous-time TF

Compute a minimal realization by removing common zeros and
poles

Methods to transform to other object types:

tf
tf
tf

tf
tf

.tf2freq
.zZpk
.tf2ss
tf.

impulse

.step

.simulate

Compute frequency-domain response G(f)
Compute the zeros, poles, and gain
Compute the state-space model

Compute the analytic impulse response
Compute the analytic step response

Simulate a signal y=G(u) from an LTI state-space model

Filter functions are also overloaded as methods to the TF object:

tf.

filter

tf.filtfilt

tf.

ncfilter

Standard causal filtering
Noncausal and zero-phase forward-backward filtering

Noncausal stable filtering of arbitrary transfer function

In contrast to the corresponding methods, these apply to MIMO transfer functions.

You can view an LTI object of all kinds in different ways using the following plot
methods of the LTI object and all inherited model objects:

* Bode diagram of amplitude and phase as a function of frequency f of G(f). There

are options that you can use to plot only the amplitude, only the phase, or both.

* Nyquist curve, where the plot shows G(f) as a complex function.
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Example

* Pole-zero plots, which show the poles and zeros of G(s) in the complex plane.

* Root locus for G(s), which is a plot of the poles of the closed-loop system, using
a constant feedback K, as a function of K. For SISO TF objects, the poles are the
roots of the equation A(s) + KB(s) = 0. For MIMO state-space models, the
closed loop poles are determined by the eigenvalues to the matrix A — B(1/

kI+DylC.

1ti.bode(G1,G2,...) Bode plot of amplitude and phase curves
1ti.bodeamp(G1,G2,...) Bode diagram of phase curve
1ti.bodephase(G1,G2,...) Bode diagram of phase curve
1ti.nyquist(G1,G2,...) Nyquist curve
1ti.zpplot(G1,G2,...) Zero-pole plot
1ti.rlplot(G1,G2,...) Root locus plot

You can use the same notation for continuous and discrete-time systems—just
replace s with q above. For MIMO systems, the plots appear in a subplot array with
ny rows and nu columns. It is possible to set the most common properties of
standard plots such as X1im, Y1im, fontsize, linewidth, and axis. Also, you can
specify the color (or color order for multiple LTT object inputs) using the property
col, which is a vector with one letter color abbreviations such as b for blue, k for
black, and r for red.

Create some continuous and discrete transfer functions:

Ge=tf([1 0 O],[1 1 1])

s"2
Y(s) = ------- U(s)
S"2+s+1
Ge=tf(1,[1 1 1]) % Note convention!
1
Y(s) = ------- U(s)
S"2+s+1

Gd=tf(1,[1 1 1],2)

1
Y(z) = ------- U(z)
z"2+z+1
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tf.c2d

Purpose
Syntax

Description

Example

See Also

Convert continuous-time TF to discrete-time TF.

Gd=c2d(Gc, fs,method)

Sampling is characterized by the sampling frequency and assumption on intersample
behavior.

INPUT VALUE/ DESCRIPTION

PARAMETER  DEFAULT

fs {1} Sampling frequency

method ‘bilinear'  String describing the assumption on intersample
behavior

The function only supports bilinear interpolation is supported. For more options,
use the SS method ss.c2d.
Discretize a fourth-order Butterworth filter:

Gc=getfilter(4,0.2,'fs',NaN);
Gd=c2d(Gc,1)

0.052*%z73+0.28*z"2+0.15*2z+0.0073
Y(Z) = ---cmmmmm e oo U(z)
2%4-1*27340.75*272-0.26*z+0.037

zpplot(Gc,Gd)

Imag
°

Real

ss.c2d, tf.d2c
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Purpose

Syntax

Description

Example

See Also

Convert discrete-time TF to continuous-time TF.

Gc=d2c (Gd,method)

Sampling is characterized by the sampling frequency and assumption on intersample
behavior. The function only supports bilinear interpolation. For more options, use
the SS method ss.d2c.

INPUT PARAMETER  VALUE/ DESCRIPTION
DEFAULT

fs {1} Sampling frequency

method ‘bilinear' String describing the assumption on

intersample behavior

Convert a discretized fourth-order Butterworth filter to an equivalent

continuous-time form:
Gd=getfilter(4,0.2)
0.0048*2~4+0.019*2"3+0.029*z"2+0.019*2z+0.0048
Y(Z) = mmmmmmmmmm e U(z)
274-2.4*72"3+2.3*2"2-1.1*z2+0.19
Gc=d2c (Gd)
0.0048*s"4+0.036*s"3+0.25*s"2+0.51*s+2.9
Y(S) = =-mmmmmmmmm e U(s)
$74+3.3*s"3+5.6*s"2+5.5*s+2.9

zpplot(Gc,Gd)

ss.d2c, tf.c2d
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Purpose

Syntax

Description

Example

Estimate a transfer-function model from data in a SIG object.

Gout=estimate(Gin,z,Propertyi,Valuel,...)

A TF model with structure as specified in Gin is estimated from the signal z using a

two-step least squares (LS) algorithm:

I Estimate a high-order FIR model using LS and a user-provided set of
input-output data as a SIG object. This step calls arx.estimate.

2 In the second step, simulate the high-order FIR model without noise using the
same input as available in the data.

3 Then estimate the low-order ARX model using LS, using arx.estimate again,
this time with the sought number of poles and zeros.

4 Finally, convert the ARX model into the corresponding TF model with the same

b and a polynomials.

5 For uncertainty representation, one of the following schemes are applied:

e If Monte Carlo realizations of the output signal are provided in the SIG object,
repeat the preceding four steps for each of them, and create the cell array
sysMC.

f Otherwise, the algorithm assumes that

- The true system is contained in the high-order FIR model

- The estimate can be considered Gaussian distributed
The latter is true for Gaussian noise and asymptotically otherwise. Monte
Carlo simulations are used to convert the Gaussian high-order estimate to a
sample-based representation of the non-Gaussian distribution of the low-order
ARX estimate. More precisely, the uncertainty is then represented by taking
random parameter vectors from the high-order FIR model and repeating steps

2 to 4 above to obtain the cell array sysMC.

PROPERTY  VALUE/DEFAULT DESCRIPTION
MC {30} Number of Monte Carlo simulations
nfir min([10*na,50]) FIR order in the first step

Generate a random TF model, simulate a PRBS signal, add noise, and identify the
TF model of the same structure from the noisy data:
N=100;

Gstruc=tf([2 2 1 1 1]);
Gstruc.fs=1;
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GO=rand(Gstruc)

z-0.95
Y(z) = -------------- U(z)
z272-0.79*z+0.7

u=getsignal('prbs',N);
y=simulate(GO,u);
yn=y+1*randn(N,1);
Ghat=estimate(Gstruc,yn)

1*z-0.82
Y(z) = --------------- U(z)
z*2-0.65*z+0.62

subplot(2,1,1), plot(yn)
subplot(2,1,2), bodeamp(GO,Ghat)

Magnitude

] 0.05 0.1 0.15 0.2 0.25 0.3 0,35 0.4 0.45 0.5
Frequency [Hz]

Same thing, this time with Monte Carlo realizations of the signal.
y.MC=30;
yn=y+1*ndist(0,1);
Ghat=estimate(Gstruc,yn)
1.2*%z2-0.75
Y(z) = --------------- U(z)
z"2-0.52*%z+0.49

subplot(2,1,1), plot(yn,’conf’,90)
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subplot(2,1,2), bodeamp(GO,Ghat)

0 10 20 30 40 50 60 0 B0 90 100

Magnitude

0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency [Hz]

See Also arx, arx.estimate, tf
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Purpose

Syntax

Description

Example

Filtering operation as a TF method.
y=filter(G,u)
The low-level filter function is used internally.

Basically, this filtering operation does the following steps:

ytmp=filter(G.b,G.a,u.y);
y=sig(ytmp,u.fs);

Note that the sampling frequency of the input SIG object has precedence to the one

specified in G. G. fs is used only if u. fs=NaN.

The filter method, unlike the filter function, works for MIMO TF and SIG

objects.

Monte-Carlo filtering is performed according to the following precedence rules:

I If the signal contains MC data (u.MC>0), then y gets the same number of Monte
Carlo samples, each one corresponding to a filtering to one input realization.

2 Otherwise, if the TF object is uncertain, then the input u is filtered through G.MC

Monte Carlo realizations of G.

The following examples show how to use filter for different types of systems:

e SISO filtering

e SISO filtering with MC data

* MIMO filtering

* MIMO filtering with MC data

First, low-pass filter a square wave:
G=getfilter(4,0.05);
u=getsignal( ‘square’);

y=filter(G,u);
staircase(y)
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Square wave signal

0 100 200 300 400 500 600 700 800 900 1000 1100

Now, add 20 different noise realizations to the square wave and repeat the filtering.

Monte Carlo data then becomes available in the output SIG object, and you can
illustrate them with confidence band (as the following example shows) or scatter
plots.

MC=20;

u=getsignal('square',256,128);

fs=u.fs;

u=u.y;
uMC=repmat(u',MC,1)+0.1*randn(MC,length(u));
u=sig(u,fs,[],[],uMC);

y=filter(G,u);

staircase(y, 'conf',90)
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Generate a random MIMO system and a 2D input signal by extending a square wave
with a zero signal:
Gstruc=tf([2 2 0 2 2]);

Gstruc.fs=1;
G2=rand (Gstruc)

z(z-0.36)
Y1(z) = --------mmmmmm - Ui (z)
z"2-0.018*z+0.27
z(z-0.36)
Y1(z) = --------mmmmmm - u2(z)
z*2-0.018*z+0.27
z(z-0.48)
Y2(z2) = -----mmmmee oo - Ut (z)
z"2-0.018*z+0.27
z(z-0.58)
Y2(z) = --------mmmmm - u2(z)

z"2-0.018*z+0.27

u=getsignal('square',64);
u2=[u sig(zeros(size(u),1))]
SIG object with discrete time (fs = 1) time series

Name: Square wave signal
Description: Example getsignal('square',64,13)
Sizes: N =64, ny =2

MC is set to: 30

#MC samples: O
y2=filter(G2,u2);
staircase(y2)

ultoyl u2toyl

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

ultoy2 u2toy2

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
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Again, you can add noise realizations to the signal, and filter then generates
Monte Carlo data.

u=getsignal('square',64,32);

u=u.y;

u2=[u zeros(size(u))];

utmp(1,:,:)=u2;

u2MC=repmat (utmp,MC,1,1)+0.1*randn(MC,64,2);
u2n=sig(u2,1,[],[],u2MC);

y2=filter(G2,u2n);

staircase(y2, 'conf',90)

ultoyl u2 oyl

1 = —

0 10 20 30 4 50 &0 N 0 10 20 30 40 50 60 70

ultoy2 u2 toy2

0.5
0 = ikt A
05
1 1
0 10 20 30 40 S0 60 0 10 2 30 4 5 60 7
See Also filtfilt, tf.filtfilt, tf.ncfilter
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206

Purpose

Syntax

Description

Example

Noncausal implementation of a filter as a TF method.
y=Filtfilt(G,u)

The low-level filtfilt function is used internally. The filfilt method, unlike
the filtfilt function, works for MIMO TF and SIG objects.

Basically, the following is performed:

x=filter(b,a,u);
xr=x(end:-1:1);
yr=filter(b,a,xr);
y=yr(end:-1:1);

Note that the sampling frequency of the input SIG object has precedence to the one
specified in G.

Monte-Carlo filtering is performed according to the following precedence rules:

I If the signal contains MC data (u.MC>0), then y gets the same number of Monte

Carlo samples, each one corresponding to a filtering to one input realization.

2 Otherwise, if the TF object is uncertain, then the input u is filtered through G.MC
Monte Carlo realizations of G.

Low-pass filtering of a square wave:

G=getfilter(4,0.05);

MC=20;

u=getsignal('square',256,128);

fs=u.fs;

u=u.y;

uMC=repmat (u',MC,1)+0.1*randn(MC,length(u));
u=sig(u,fs,[],[],uMC);

y=filtfilt(G,u);

staircase(y, 'conf',90)
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See tf.filter for more examples.

See Also filtfilt, tf.filter, tf.ncfilter
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Purpose

Syntax

Description

Example

Generate the impulse /pulse response of a TF object.
y=impulse(G,T)

The arguments are as follows:

ARGUMENT DESCRIPTION

G TF object
T Simulation length (number of samples N or time).
Default it is estimated from dominating pole using T=timeconstant(G)

\ Output SIG object

For SISO transfer functions, the function basically performs the following:

u=getsignal('impulse’',T);
y=simulate(G,u);
For the MIMO case, the input is repeated nu times. If the impulse response for a

particular input-output channel is desired, do impulse (G(yind,uind),T);
For discrete-time TF objects, the pulse function is used instead.

The function adds the phrase “Impulse response of” to the name field of G, if

nonempty.

Compute the impulse response of a discrete-time and continuous-time Butterworth
filter, respectively:

Gd=getfilter(4,0.3,'fs',2);
yd=impulse (Gd) ;
Gc=getfilter(4,0.3,'fs',NaN);
yc=impulse(Gc);
subplot(2,1,1), staircase(yd)
subplot(2,1,2), plot(yc)
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See Also

butter filter of type Ip

tf, tf.step, tf.simulate, getsignal
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Purpose

Syntax

Description

Example

See Also

Cancel common zeros and poles in a TF object

G=minreal(G)

The function systematically searches for common roots in all numerator polynomials
b(j,:,1i) and denominator polynomial a and cancel these. Many operations on TF
objects lead to transfer functions with many zeros and poles in common, which

should be cancelled out. This is not done automatically, however.

The function works for MIMO, but in contrast to ss.minreal it does not cancel

input and output dimensions that do not contribute to the input-output dynamics.

Feedback is a typical operation which leads to an overparameterized transfer
function.

s=tf('s');

G=1/(s"2+s+2);

Gc=feedback (G, 1)

S*2+s+2
Y(8) = ---cmcmmmmee e U(s)
$"4+2*373+6*s"2+5*s+6

minreal(Gc)
1

Y(s) = --------- U(s)
§"2+1*s+3

ss.minreal,tf.zpk
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Purpose

Syntax

Description

Example

Stable noncausal filtering operation as a TF method
y=ncfilter(G,u)

Discrete-time transfer function and signal are presumed. The low-level filter
function I1lustrate a RARX object graphically in the frequency domain
using surf. is used internally. The filter method, unlike fIllustrate a RARX
object graphically in the frequency domain using surf., works for
MIMO TF and SIG objects.

Basically, the following is performed:

ytmp=ncfilter(G.b,G.a,u.y);

y=sig(ytmp,u.fs);
Note that the sampling frequency of the input SIG object has precedence to the one
specified in G. G. fs is used only if u.fs=NaN.

Monte-Carlo filtering is performed according to the following precedence rules:

I If the signal contains MC data (u.MC>0), then y gets the same number of Monte

Carlo samples, each one corresponding to a filtering to one input realization.

2 Otherwise, if the TF object is uncertain, then the input u is filtered through G.MC

Monte Carlo realizations of G.

Create a filter object with poles and zeros both inside and outside the unit circle,

and filter a square wave:

G=tf (poly([0.2 0.5 1.2 2]),poly([0.4 0.8 1.4 1.8]),1);
MC=20;

u=getsignal('square',128,64);

fs=u.fs;

u=u.y;

uMC=repmat(u',MC,1)+0.1*randn(MC,length(u));
u=sig(u,fs,[],[],uMC);

y=ncfilter(G,u);

staircase(y, 'conf',90)
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See Also filtfilt, tf.filter, tf.filtfilt
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Purpose

Syntax

Description

Example

Simulate a TF object using a SIG object as input.
[z,xf]=simulate(G,u,Property1,Valuel,...)

G is the TF object, z the returned simulated SIG object, and u is the input-signal
object with presumingly the same sampling interval as the model (for instance, use
u=sig(uvec,fs)). If there are inconsistent sampling intervals, the one in the SIG
object has precedence.

xf is the final state, and you can forward it as an argument 'xi' for simulation over
segments.

The simulation algorithm basically works as follows:

I For discrete-time systems, the low-level filter functions is applied to each
input-output MIMO channel.

2 For continuous-time systems, the simulation is based on fast sampling. The
algorithm computes the time constant Tc of the system using the timeconstant
function, which is based on the dominating stable pole. The continuous-time
system is then resampled 200 times faster using ¢2d (G, 200/ Tc). For signals with
discontinuities, these are first located. These can be either steps or impulses (see
the SIG object constructor for information about how these work). The input is
then segmented between the boundaries defined by the discontinuities, and a
separate sampling and simulation is done in each segment, where the filter state

is saved and used in the next segment.

For nonuniformly sampled inputs, only continuous models apply.

PROPERTY VALUE/{DEFAULT} DESCRIPTION

MC Default value inherited from Number of Monte Carlo simulations
model or signal

xi zeros(nx,1) Initial state as a
nx=max([na nb-1]) vector

Simulate a spring model in continuous time and discrete time, respectively.

Ge=ex1lti('tf3c');

fs=5;

Gd=c2d(Gc,fs);
ud=[getsignal('zeros',fs);getsignal('ones',9*fs)];
ud.fs=fs;

yd=simulate(Gd,ud);

umat=[0 0 2 2]"';

t=[0 1 1 10];
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See Also

CHAPTER 2:

COMMAND REFERENCE

u=sig(umat,t);
y=simulate(Gc,u);
subplot(2,1,1), staircase(yd)
subplot(2,1,2), plot(y)

ion of Spring model

ion of Spring model

tf.filter, ss.simulate



tf.step

Purpose
Syntax

Description

Example

Generates the step response of a TF object.

y=step(G,T)

The arguments are as follows:

ARGUMENT DESCRIPTION

G
T

y

TF object

Simulation length (number of samples N or time).

Default it is estimated from dominating pole using T=timeconstant(G)

Output SIG object

For SISO transfer functions, the function basically performs the following:

For the MIMO case, the input is repeated nu times. If you want the step response
for a particular input-output channel, do step(G(yind,uind),T);

The function adds the phrase “Step response of” to the name field of G, if nonempty.

Compute the step response of a discrete-time and continuous-time Butterworth

u=getsignal('step',T);
y=simulate(G,u);

filter, respectively.

Gd=getfilter(4,0.3,'fs',2);
yd=step(Gd);
Gc=getfilter(4,0.3,'fs',NaN);
yc=step(Gc);

subplot(2,1,1), staircase(yd)
subplot(2,1,2), plot(yc)

butter filter of type Ip

butter filter of type Ip
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See Also tf, tf.impulse, tf.simulate, getsignal
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tf.tex

Purpose Create LaTeX code from transfer function TF object.
Syntax texcode=tex(s,Propertyi,vValuet,...)
Description The output is TeX code that you can paste into any LaTeX document. Alternatively,

the code is put into a file, which you can input by reference into a document.
Filters (freeware or shareware) for other word processors are available:

* TexPoint: freeware for Microsoft Powerpoint

* Lalmport: FrameMaker

» TeX2Word: Microsoft Word

o LaTeX2rtf: RTF documents

e TeX4ht: HTML or XML hypertext documents

The properties are:

PROPERTY VALUE{DEFAULT} DESCRIPTION

filename {''} Name of the .tex file (none for ")

format {'%11.2g9"'} Numeric format, see sprintf

env {'egnarray*'} Tex environment, " means no env
Example Generate a random model and its LaTeX code:

m=rand(tf([2 1 1]))

S
Y(S) = =----cccemnnnn- u(s)
$°2+0.63*s+0.17
tex(m)
ans =
\begin{eqgnarray*}
Y(z) &=& \frac{z"1 (1)}{z"2+0.63\cdot z+0.17} U(z)
\end{eqnarray*}

Importing the LaTeX code to a FrameMaker file produces the following printout:

_ FReY)
2240.63.2+0.17

Y(z) U(z)

See Also ss.tex, texmatrix, textable
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Purpose Compute frequency-domain response of a TF object.

Syntax Hf=tf2freq(G,Property1,valuel,...) Explicit call
Hf=freq(G,Property1,valuet,...) Implicit call

Description The frequency function H(f) is the Fourier transform of the input-output transfer

function TF object. This conversion supports MIMO systems, and evaluates
H(iw) = b(i2nf)/a(i2nf) for continuous-time systems and H(e'®) = b(eiznf)/

a(elznf ) for discrete-time systems, respectively, for each input-output channel.

Properties:
PROPERTY VALUE DESCRIPTION
MC {30} Number of Monte Carlo simulations used in Iti2cov
N {1024}  Number of frequency grid points
f {} Frequency grid (overrides N)
fmax Maximum frequency. Default is fs/2 for discrete-time
systems, and 8 times the dominating poles bandwidth
for continuous-time systems
Example Create a random stochastic TF model and compute its frequency function:
G=rand(tf([6 6 0 2 2]));
Gf=tf2freq(G); % Explicit call
Gf=freq(G); % Implicit call

bodeamp (Gf)

ultoyl u2toyl

Magnitude
8,

Magnitude
S,

10° 103
0 002 004 0.06 0.08 01 0.12 0 002 004 0.06 0.08 01 0.12
Frequency [Hz] Frequency [Hz]
) ultoy2 X Wtoy2
10 10
oL
10
10t E 4
K] gtk
2 2
< 102 € 102F
2 £ 3
e 10
1
10*
10* 10°
0 002 004 0.06 0.08 01 0.12 0 002 004 0.06 0.08 01 0.12
Frequency [Hz] Frequency [Hz]
See Also freq, ss.ss2freq
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Purpose

Syntax

Description

Example

Convert a transfer-function (TF) object to a state-space (SS) object.

sys=tf2ss(G,form) Explicit call
sys=ss(G,form) Implicit call

G is the TF object, sys is the returned SS object, and form is described below:

FORM DESCRIPTION

'observer' or 'o' For observability form

‘controller' or 'c' For controllability form

Unlike the tf2ss function, this method works for MIMO systems. The
observability form works straightforwardly for SIMO systems, and the
controllability form works for MISO systems. For MIMO systems, there is no
simple standard form. Here, a simple append is used, which leads to a nonminimal
realization. For instance, for the observability form, one SIMO realization is found
for each output, and these are then appended. ss.minreal can be used to decrease

the model order, but then the structure is lost.

Transform a SISO system, a MISO system, and a MIMO system, respectively:

Gl=rand(tf([2 2 0 1 1]))

s(s+0.99)
Y(S) = --------------- U(s)
$°2+0.63*s+0.17

mi=tf2ss(G1,'0o")
d/dt x(t) =

y(t) = (1 0) x(t) + (1) u(t)

G2=rand(tf([2 2 0 2 1]));
m2=tf2ss(G2,'0")
/

- / -0.73 -0.25 \
d/dt x(t) =\ -0.5

x(t) +\ -0.52 -0.52 / u(t)

y(t) = (1 0) x(t) + (1 1) u(t)

G3=rand(tf([2 2 0 2 2]));
m3=tf2ss(G3,'0")
/ -2.8 1

\ /| -2.6 -1.5 1\
| -0.67 0 |

| -0.67 -0.67 |
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d/dt x(t) = | 0 0 -2.8 1| x(t)+] -1.6 -2.4 |
\ 0O 0 -0.67 0/ \ -0.67 -0.67 /
u(t)
/1 0 0 0\ /1 1\

y(t) = \0 0 1 0/ x(t) + \1 1/ u(t)

See Also tf2ss, ss.minreal, ss.ss2tf
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Purpose Set parameters in a TF object to stochastic distributions.
Syntax Gu=uncertain(G,c,X,MC)
Description The method uncertain is available for setting parameters in a transfer function to

a probability density function. Any of the ones available in the Signals and Systems

Lab can be used, or you can construct it yourself.

Example The following example illustrates how the parameter a(2), affecting the pole angle
of a resonant system, is changed from 1.2 from construction to a uniform
distribution. The nominal system in the result gets a(2)=E (udist(1.1,1.3)=1.2,
that is, it is unchanged. The Monte Carlo samples of the system in the field
Gu.sysMC get random values of a(2) taken from this distribution. This uncertainty
is propagated to the default plot method (Bode amplitude) as well as to all other
subsequent model operations and visualization tools.

G=tf(1,[1 1.2 1],1);
Gu=uncertain(G, 'a(2)',udist(1.1,1.3),100)

Y(z) = ----------- U(z)
z272+1.2*z+1

Magnitude

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency [Hz]

See Also tf, tf.estimate, 1ti.bode, 1ti.nyquist, 1ti.zpplot, 1ti.rlplot
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Purpose

Syntax

Description

Example

See Also

Compute the zeros, poles, and gain.

[z,p,k,zMC,pMC,kMC]=zpk(s)

The following list describes the output arguments:

ARGUMENT DESCRIPTION

p A row vector with poles

z A (ny x nb x nu) matrix with zeros

k A (ny x nu) matrix with gains
ZMC,pMC,kMC  The corresponding Monte Carlo arrays

Zeros, poles, and gains for second-order MIMO system:

G=rand(tf([2 2 0 2 2]))

s(s+0.99)
Y1(S) = -----ccceonnnn- Ui(s)
$72+0.63*s+0.17
s(s+1)
Y1(S) = -----cccennnnn- u2(s)
$°2+0.63*s+0.17
s(s+0.72)
Y2(S) = --------mmmmm - Ui(s)
$72+0.63*s+0.17
s(s+0.53)
Y2(S) = -----cccomnnon- u2(s)
$°2+0.63*s+0.17
[z,p,k]=zpk(G)
z(:,:,1) =
0 -0.9920
0 -0.7226
z(:,:,2) =
0 -1.0078
0 -0.5340
p:
-0.3174 + 0.26681 -0.3174 - 0.26681
k =
1 1
11
ss.zpk
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Purpose

Syntax

Description

Example

See Also

Convert transfer function to state-space model.
[A,B,C,D]=tf2ss(b,a)

The transfer function represented on polynomial b, a form is transformed into an
state-space model characterized by the A, B, C,D matrices, where form denotes the

state-space representation:

FORM DESCRIPTION
‘controller' Controller canonical form
'observer' Observer canonical form

This function is limited to SISO systems. Use the TF method tf2ss for MIMO

systems.

The following example creates the a and b polynomials for a transfer function and

then converts it to a state-space model:

a=poly([1 -0.5 -0.3+0.2i -0.3-0.2i])
a:

1 0.1000 -0.6700 -0.3650 -0.0650
b=poly([1 -0.7 1)
b =

1 -0.3000 -0.7000
[A,B,C,D]=tf2ss(b,a)
A =

-0.1000 0.6700 0.3650 0.0650

1 0 0 0

0 1 0 0

0 0 1 0
B =
1
0
0
0
C =

-0.4000 -0.0300 0.3650 0.0650
D =

1

tf.tf2ss, ss2tf
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Purpose The Time-Frequency Description (TFD) object.

Syntax The following ways to create a TFD object are available:
Yt=tfd Empty object
Yt=tfd(Y,t,f) Direct construction
Yt=tfd(mt) Conversion from RARX model
Yt=tfd(z) Estimation from signal object, equivalent to

Yt=estimate(tfd,z) and
Yt=sig2tfd(z)

Description The TED object contains the following fields:
TFD TIME FREQUENCY DESCRIPTION
tfd.E Energy in each time frequency bin
tfd.f Frequency
tfd.t Time
Example Directly define a time-frequency description of a chirp-like signal:
Nf=100;
Nt=200;
E=zeros (Nf,Nt);
t=1:Nt;
=(1:NFf) /Nf;

E(1:100,1:100)=eye(100);
E(2:100,1:99)=0.5*eye(99);
E(1:100,2:101)=0.5*eye(100);
Yt=tfd(E,t,f);

Yt.fs=4;

surf(Yt, 'histeq','off"')
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See Also

Frequency

P-Bbs(H(Lf)

tfdplot, rarx.rarx2tfd
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tfd.estimate

Purpose Estimate a Time-Frequency Description (TED) of a signal.

Syntax Use the following calls to estimate a TED of a signal:
Yt=estimate(tfd,y,Property1,valuel,...) Explicit call
Yt=tfd(y,Property1,valuet,...) Implicit call
Yt=sig2tfd(y,Property1,valuel,...) Direct low-level call

Description The function computes the periodogram over segments of the signal. A window is

applied on each segment, and the segments can overlap each other. The outputis a
TED object with fields E (energy), t (time), and f (frequency). The computations
are similar to the Welch spectral estimate (in fact, taking the average over time of a
TFED mean(Yt.E') yields the Welch spectral estimate). In the same way, the
smoothed signal energy is computed by mean(Yt.E).

Optional parameters:

PROPERTY  VALUE{DEFAULT} DESCRIPTION
S {max (N/ Segment length in samples. The larger S, the
25,128)} better frequency resolution but the worse time
resolution
overlap {90[%]} Overlap of each segment in percent,
0<=overlap<100
fs {2} Sampling frequency, scales the frequency axis f
win {'hamming'} Data window on each segment, see getwindow for
options
Example Load a piece of music performed by a cellular phone and display its TFD. The

individual notes in the chords are visible as red regions.

load bach
sig2tfd(y,'S',2000)
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Bach performed by cell phone

8OO

400

200

See Also tfd, tfdplot, getwindow
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tfdplot

Purpose Tllustrate a time-frequency description (TFD).

Syntax tfdplot(tfd,Propertyl,valuet,...)

Description Different 3D views of the TFD object are possible. Note that you can only plot one
TED object at the time. The function is called from 1tv2tfd, sig2tfd, and
ltvplot.

TABLE 2-23: TFDPLOT PROPERTIES

PROPERTY  VALUE/{DEFAULT} DESCRIPTION
axis {gca} Axis handle where plot is added
view {'contour'} TFD as contour plot
"surf' TFD as surf plot
'mesh’ TFD as mesh plot
'image’ TFD as an image
histeq {'on'} | 'off' Histogram equalization for energy (z) values
fontsize {14} Font size
Example Compute the TED of an example AR(2) LTV object, and illustrate with contour

and surf plots:

m=exltv('ar2'
tfd=1tv2tfd(m
subplot(1,2,1
subplot(1,2,2

tfdplot(tfd, 'view', 'contour')
tfdplot(tfd, 'view', 'surf')

~—~ — — —

)
)
)
)
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See Also 1tv2tfd, sig2tfd, 1tvplot, histeq
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tftool

230 |

Purpose

Syntax

Description

Example

Visualization of transfer function properties.

tftool

The tftool graphical user interface provides interactive tools for designing a
transfer function or filter by positioning the poles and zeros. You can also visualize
the properties of a system described by a transfer function using the following plots:
* Bode amplitude plot

* Bode phase plot

¢ Impulse response

e Step response

The following plot shows tftool with the Bode amplitude plot and the

step-response plot active:
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udist

Purpose

Syntax

Description

Example

See Also

The uniform distribution.

X=udist(a,b)

The probability density function of the uniform distribution, and its first two

moments, are given by

1
p(x;a,b) = A a<x<b,

a+b

EX) = 432,
2
Var(X) = (b-a)

12
n must be a positive integer. This is a child of pdfclass, and all of its methods apply

to this distribution, in particular pdfclass.estimate and the plot functions.

The linearity property of the uniform distribution is implemented symbolically.

Tllustration of the linearity property:

U=udist(1,2)
u(1,2)
U1=U+2
u(3,4)
u2=1+2*U
U(3,5)

pdfclass
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Gramian 146 resampling 121

Gramians 155 Ricatti equation 161

Riccati equations 152

H H i indow 46
amming window root locus plots 54, 144, 195
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S sampling frequency
unit for 192
simulations
of signals from SS objects 167
spectral analysis 135
spectral estimation tool 139
spectrum object 132
spectrums
of stochastic state-space models 174
spline window 46
staircase plots 120
standard signals
generating 44
stationary Kalman gain 152, 161
stationary Riccati equation 161
stationary stochastic processes
covariance functions for 15
stem plots 120
step responses |85
stochastic state-space models

spectrums of 174
U unscented Kalman filter 76

W  Welch method 133, 135

windowing 46

Z zero-pole plots 56, 78
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