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 1
I n t r o d u c t i o n
Welcome to COMSOL Script™! This User’s Guide details features and 
techniques that help you use this powerful scripting language for all sorts of 
technical computing. Through examples and code samples you will get an 
understanding of the programming language; its data types; its mathematical, 
logical, and other functions; and its powerful graphics capabilities. This book also 
provides an introduction to the possibilities to build customized graphical user 
interfaces using COMSOL Script and to interface with the Java programming 
language.

This introductory chapter provides an overview of COMSOL Script.
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Th e  Do cumen t a t i o n  S e t

The documentation set for COMSOL Script consists of the following volumes:

• COMSOL Quick Installation Guide—basic information for installing the 
COMSOL software and getting started. Included in the DVD/CD package.

• COMSOL New Release Highlights—information about new features and models 
in the 3.4 release. Included in the DVD/CD package.

• COMSOL License Agreement—the license agreement. Included in the DVD/CD 
package.

• COMSOL Installation and Operations Guide—besides covering various 
installation options for COMSOL Script, it describes the system requirements and 
options for running various COMSOL software products.

• COMSOL Script User’s Guide—the book you are reading, it explains how to use 
the vast range of functions in the COMSOL Script language. This guide also 
describes the programming-language features in COMSOL Script as well as the 
powerful graphics capabilities and tools it provides for creating custom graphical 
user interfaces.

• COMSOL Script Command Reference—provided only as online documentation as 
a PDF and in HTML format, it reviews each function in the COMSOL Script 
environment with syntax descriptions and examples.

If you have received COMSOL Script together with COMSOL Multiphysics® 3.4, the 
full documentation set that ships with COMSOL Multiphysics additionally includes 
the following titles:

• COMSOL Multiphysics Quick Start and Quick Reference—provides a quick 
overview of COMSOL Multiphysics’ capabilities and how to access them. A 
reference section contains comprehensive lists of predefined variable names, 
mathematical functions, COMSOL Multiphysics operators, equation forms, and 
application modes.

• COMSOL Multiphysics User’s Guide—covers the functionality of COMSOL 
Multiphysics across its entire range of capabilities from geometry modeling to 
postprocessing. It serves as a tutorial and a reference guide to using COMSOL 
Multiphysics at every stage in the modeling process.
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• COMSOL Multiphysics Modeling Guide—provides an in-depth examination of the 
software’s application modes and how to use them to model different types of 
physics and to perform equation-based modeling using PDEs. 

• COMSOL Multiphysics Model Library—consists of a collection of ready-to-run 
models that cover many classic problems and equations from science and 
engineering. These models have two goals: to show the versatility of COMSOL 
Multiphysics and the wide range of applications it covers; and to form an educational 
basis from which you can learn about COMSOL Multiphysics and also gain an 
understanding of the underlying physics.

• COMSOL Multiphysics Scripting Guide—shows how to access all of COMSOL 
Multiphysics’s capabilities within the COMSOL Script environment or MATLAB. 

• COMSOL Multiphysics Reference Guide—provided only as online documentation 
as a PDF file and in HTML format, it reviews each command that lets you access 
the functions in COMSOL Multiphysics from within the COMSOL Script 
environment or MATLAB. Additionally, it describes some advanced features and 
settings in COMSOL Multiphysics, and provides background material and 
references.

In addition, each of the optional discipline-specific modules

• AC/DC Module

• Acoustics Module

• Chemical Engineering Module

• Earth Science Module

• Heat Transfer Module

• MEMS Module

• RF Module

• Structural Mechanics Module

comes with its own User’s Guide and Model Library.

The optional CAD Import Module and Material Library also come with their own 
User’s Guide.

Note: The full documentation set is available in electronic versions—as PDF files and 
HTML format—after installation.
T H E  D O C U M E N T A T I O N  S E T  |  3
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Typographical Conventions

All COMSOL manuals use a set of consistent typographical conventions that should 
make it easy for you to follow the discussion, realize what you can expect to see on the 
screen, and know which data you must enter into various data-entry fields. In 
particular, you should be aware of these conventions:

• A boldface font of the shown size and style indicates that the given word(s) appear 
exactly that way on the COMSOL graphical user interface (for toolbar buttons in 
the corresponding tooltip). For instance, we often refer to the Model Navigator, 
which is the window that appears when you start a new modeling session in 
COMSOL; the corresponding window on the screen has the title Model Navigator. 
As another example, the instructions might say to click the Multiphysics button, and 
the boldface font indicates that you can expect to see a button with that exact label 
on the COMSOL user interface.

• The names of other items on the graphical user interface that do not have direct 
labels contain a leading uppercase letter. For instance, we often refer to the Draw 
toolbar; this vertical bar containing many icons appears on the left side of the user 
interface during geometry modeling. However, nowhere on the screen will you see 
the term “Draw” referring to this toolbar (if it were on the screen, we would print 
it in this manual as the Draw menu).

• The symbol > indicates a menu item or an item in a folder in the Model Navigator. 
For example, Physics>Equation System>Subdomain Settings is equivalent to: On the 
Physics menu, point to Equation System and then click Subdomain Settings. 
COMSOL Multiphysics>Heat Transfer>Conduction means: Open the COMSOL 

Multiphysics folder, open the Heat Transfer folder, and select Conduction.

• A Code (monospace) font indicates keyboard entries in the user interface. You might 
see an instruction such as “Type 1.25 in the Current density edit field.” The 
monospace font also indicates COMSOL Script codes.

• An italic font indicates the introduction of important terminology. Expect to find 
an explanation in the same paragraph or in the Glossary. The names of books in the 
COMSOL documentation set also appear using an italic font.
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Abou t  COMSOL S c r i p t

We are delighted you have chosen COMSOL Script for your technical computing 
needs. We believe that we have created a software tool that both complements and 
expands on the capabilities in the COMSOL Multiphysics multiphysics-modeling 
environment.

At its heart, COMSOL Script is a fully-featured technical analysis and visualization 
package. A command-line interface enables easy access to data, functions, and results. 
Its roughly 500 commands cover linear algebra, numeric and trigonometric 
calculations, support for objects and classes, as well as data visualization in both 2D 
and 3D. The COMSOL Script Desktop provides an interactive development 
environment for creating, editing, running, and debugging your scripts and functions. 
Because COMSOL Script is an interpreted language, you can quickly experiment with 
various commands. You can easily save a command sequence to create an optimized 
routine in a text editor.

Further, COMSOL Script’s graphing and visualization capabilities set new standards 
for packages in this category. A set of Java-based tools enable you to quickly construct 
professional-looking graphical user interfaces. You can build a sophisticated model and 
then create a user interface that makes the model’s functionality accessible to other 
users who do not need or have a mastery of the specific equations or physics upon 
which the model is based.

While COMSOL Script offers enormous power as a standalone technical computing 
environment, its competitive edge sits in a seamless integration with COMSOL 
Multiphysics, our flagship scientific-modeling software. Easy-to-use scripting 
combined with powerful modeling capabilities—in one and the same environment—
fill a gap in the scientific-software market. Any model you create can be saved as a 
text-file representation that you can run in COMSOL Script to perform tasks such as 
design-optimization and parametric studies. You can, for instance, write a script that 
solves a model for a range of values to optimize that model around one or more 
variables. You can similarly automate many routine tasks such as creating a series of 
different geometries or solving using a series of different meshes to check the 
convergence of the solution.

This release also brings two add-on labs, the Optimization Lab and the 
Signals & Systems Lab, which bring additional functionality to COMSOL Scripts in 
the areas of optimization, signal processing, and systems analysis.
A B O U T  C O M S O L  S C R I P T  |  5
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We hope that this documentation set introduces you to all of this power. We’re also 
certain that your imaginations will come up with some very creative uses of COMSOL 
Script. We’re anxious to hear about your innovative uses and invite you to get in touch 
with us with any feedback whatsoever. We plan on developing it even further, so let us 
know what kinds of functionality would serve you best.
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C O M S O L  S c r i p t  B a s i c s
COMSOL Script provides a powerful scripting environment for many 
technical-computing applications. The following chapter provides an overview of 
the user interface and reviews the fundamentals for creating variables, statements, 
script files, and graphics.
 7
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U s i n g  COMSOL S c r i p t

Starting COMSOL Script

If you want to run COMSOL Script as a standalone program, start it by 
double-clicking the COMSOL Script icon (on the Windows desktop) or, on other 
platforms, by starting the program through a type of Start menu or from a command 
prompt.

To run COMSOL Script as a part of COMSOL Multiphysics, start it by choosing 
File>COMSOL Script in the latter environment.

The COMSOL Script Environment

T H E  D E S K T O P  E N V I R O N M E N T

COMSOL Script provides a desktop environment with several different views. The 
most important is the Command Prompt in which you interactively enter commands 
and also run scripts and functions, which hold sets of commands that you store as 
2 :  C O M S O L  S C R I P T  B A S I C S



M-files (text files with the extension .m). The desktop also contains an editor with 
which you can edit M-files. 

Figure 2-1: The COMSOL Script desktop environment.

T H E  D E S K T O P  V I E W S

COMSOL Script provides a number views into your code that are useful at various 
stages of code development and execution. These windows are not static; you can 
rearrange the views by dragging and dropping them inside the desktop window.

The Workspace view shows the variables in the active workspace.

The Command History view shows a history of the commands that you have entered at 
the command prompt. Double click on a command if you want to execute it again.
U S I N G  C O M S O L  S C R I P T  |  9
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The Path view shows the path used to look for M-files. See “The M-file Path” on page 
121 for information on how to add and remove directories to the path.

The Breakpoints view list the break points that have been set in different M-files. 
Double-click on a line to open the M-file in the editor with the line of the break point 
selected. See “Debug Commands” on page 99 for information on how to add and 
remove break points.

The Debug view shows the debug call stack when COMSOL Script has stopped at a 
break point. You can double click on different lines in the debug call stack to move to 
that point in the call hierarchy. During a debug session, the Workspace view can display 
the variables for the function being debugged. 

In the Progress view you can see progress and convergence information such at times 
when you call command-line functions for things such as meshing and solving for a 
COMSOL Multiphysics model.

T H E  M A I N  M E N U

At the top of the desktop window you see a menu with four selections. The File menu 
and the Edit menu contain commands for the editor that is built into the desktop. The 
View menu contains commands for reopening any of the desktop views if you have 
closed them, and the Help menu leads you to documentation and help resources.

The File menu contains these commands:

• New Editor: This command opens a new session of the editor with an empty file.

• Open File: Select this command to browse for a file to open in the editor. You can 
also type edit filename at the command prompt to open a certain file.

• COMSOL Multiphysics: Select this command if you wish to run COMSOL Script 
together with COMSOL Multiphysics. This command brings up the Model 

Navigator window, which is the starting point for all COMSOL Multiphysics work. 
Note that this command exists only if you have COMSOL Multiphysics installed on 
your system.

• Reaction Engineering Lab: Select this command if you wish to run COMSOL Script 
together with the COMSOL Reaction Engineering Lab. Note that this command 
exists only if you have the COMSOL Reaction Engineering Lab installed on your 
system.
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• Exit. Choose this command to exit the COMSOL Script environment, which also 
means that you lose the contents of the current workspace.

• The File menu also contains menu items for closing the active editor or all editors as 
well as for printing the contents of the active editor.

The Edit menu contains commands that are associated with the editor. They can be 
used to undo and redo things you have typed in. It also contains commands for cut, 
copy/paste, and for finding text in an editor window.

C O M M A N D - L I N E  E D I T I N G  A N D  N A V I G A T I O N

Within the COMSOL Script editing window there is a command prompt. You can 
move the cursor within the current command as well as up and down the command 
history using the shortcut keys and navigation keys listed in Table 2-1.

With these shortcut keys it is easy to correct a typing mistake or to make small changes 
to a command. In addition, COMSOL Script saves previous commands in a buffer (the 
scrolling buffer, for which you can control the size in the Preferences dialog box).

S T O R I N G  C O M M A N D  W I N D O W  I N P U T  A N D  O U T P U T  I N  A  F I L E

COMSOL Script can create a text file that stores all commands that you type and all 
output from the software. Use the diary function to start the logging of command 
window inputs and outputs to a file. Typing

diary mylog.txt

TABLE 2-1:  COMSOL SCRIPT SHORTCUT KEYS

KEY COMMAND

Up arrow Recall previous line

Down arrow Recall next line

Left arrow or Ctrl+B Move left one character

Right arrow or Ctrl+F Move right one character

Ctrl+left arrow Move left one word

Ctrl+right arrow Move right one word

Home or Ctrl+A Move to beginning of line

End or Ctrl+E Move to end of line

Esc Delete current line

Delete Delete character at cursor

Backspace Delete character left of cursor

Ctrl+K Delete from cursor to end of line
U S I N G  C O M S O L  S C R I P T  |  11
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stores all subsequent inputs and outputs that appear in the command window to the 
file mylog.txt. You can temporarily turn the logging off and flush the file by typing

diary off

To turn logging back on type

diary on

C L E A R I N G  T H E  C O M M A N D  W I N D O W

To clear the command window enter the command clc.

Using Commands and Creating Variables

C R E A T I N G  V A R I A B L E S  A N D  E N T E R I N G  C O M M A N D S

COMSOL Script supports several data types and objects (see “The COMSOL Script 
Data Types” on page 22). As an example, suppose you want to create an array of 
double floating-point numbers using an explicit list of data. To do so, enclose the list 
using brackets ([ and ]) and type the data separated by blanks or commas. Use a 
semicolon to indicate the end of a row. 

Enter the following to create a 3 x 3 identity matrix:

I = [1 0 0; 0 1 0; 0 0 1]

This results in the output

I = 

 1 0 0
 0 1 0
 0 0 1

Use a semicolon at the end of the statement to prevent COMSOL Script from 
displaying the result:

I = [1 0 0; 0 1 0; 0 0 1];

In either case, the result is stored in the variable I, which remains in the main 
workspace until you clear the variable or exit from COMSOL Script.

If you want to continue with more commands or data entry on the next line, type ... 
(an ellipsis), which acts as a line continuation symbol. COMSOL Script then interprets 
the entries on the next line as a continuation of the current line:

K = [1 2 3 4 5 6 7 8 9 10; ...
11 12 13 14 15 16 17 18 19 20];
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These two lines create a 2 x 10 matrix with the numbers 1 to 10 in the first row and 
the numbers 11 to 20 in the second row (the semicolon indicates the start of a new 
row).

S T A T E M E N T S ,  V A R I A B L E S ,  A N D  T H E  WO R K S P A C E

COMSOL Script interprets and evaluates all statements that you enter from the 
keyboard (or statements contained in a script or function you call). Statements typically 
take the form

 variable = expression

or

 expression

The expression can contain mathematical functions and operators, data, and other 
variables. COMSOL Script evaluates the expression and assigns the result to the 
variable that appears to the left of the assignment operator =. If you enter the 
expression directly without assigning it to a variable, COMSOL Script automatically 
creates the variable ans. For instance:

2*pi

produces

ans =

6.283185

Getting Information about the Workspace and Variables
To list all the variable in the workspace, enter the command who:

who

I
ans

This output shows that there are two variables in the workspace, I and ans. To get 
more detailed information, type whos:

whos
  Name     Size     Memory     Type

  I        3x3      72         double array
  ans      1x1      8          double

Each element of a real double floating-point number requires eight bytes of memory.
U S I N G  C O M S O L  S C R I P T  |  13



14 |  C H A P T E R
Clearing the Workspace
To clear the workspace, use the clear command in one of its two forms:

clear all

clears all variables from the workspace, whereas

clear I

clears only the variable I. Enter clear variable1 variable2 … to clear more than 
one variable.

Upper and Lower Case for Variables and Functions
COMSOL Script is case sensitive, so a and A, for example, represent different variables. 
For functions and operators, you must use only lower case: asin(I) gives a matrix 
with π/2 on the diagonal, whereas ASIN(I) produces an error because the software 
does not recognize the unknown function ASIN.

I N P U T  A N D  O U T P U T  A R G U M E N T S

Functions can have multiple input and output arguments:

[a,i] = sort(rand(5),2);

This example with the function sort uses two input arguments and two output 
arguments. Notice that the first input argument contains a function, rand. 

Even if a function can have one or more output arguments, you can often call it with 
fewer or no output arguments. Compare the two function calls:

a = sort(rand(5),2);
sort(rand(5),2)

Using just one output argument (as in the first function call) you do not get the index 
array that sort provides as a second output argument. Using no output argument (as 
in the second function call), COMSOL Script returns the output in the variable ans.

Note: COMSOL Script never modifies any input arguments. Also, if the function 
does not modify the input arguments, the copy of the variables that you provide as 
inputs is by reference and not by value.
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Numbers and Arithmetics

E N T E R I N G  F L O A T I N G - PO I N T  N U M B E R S

To enter floating-point numbers use conventional decimal notation with an optional 
decimal point and a leading minus sign. Use either E or e to indicate an exponent in a 
power-of-ten scale factor: Both -1.527E-10 and -1.527e-10 equal −1.527·10−10.

COMSOL Script uses IEEE double-precision floating-point arithmetic, which gives a 
relative accuracy of 2−52 or approximately 16 significant digits. You can access this level 
of relative accuracy in the function eps, which provides the difference between a 
number and the next larger number. The range for a floating-point number is 
approximately 10−308 to 10308.

U S I N G  O T H E R  N U M E R I C A L  F O R M A T S

It is possible to create unsigned integer arrays using the uint8 function. For example,

u = uint8(4);

creates the variable u that contains 4 as an unsigned integer, using 1 byte of storage 
instead of 8 bytes for the corresponding double-precision floating point number.

The functions int8, int16, int32, int64, uint16, uint32, and uint64 also exist but 
return double-precision floating point data.

B A S I C  A R I T H M E T I C S  A N D  M A T H E M A T I C A L  F U N C T I O N S

Table 2-2 lists the arithmetic operators built into the COMSOL Script language:

(For the difference between the right- and left-division operators see “Division” on 
page 44). The language also supplies element-by-element versions of the 
multiplication, right division, and power operators as well as a full range of 
trigonometric, logical, and other mathematical functions. See “Working with Matrices 
and Arrays” on page 35 for more information.

TABLE 2-2:  ARITHMETIC OPERATORS

OPERATOR ARITHMETIC OPERATION

 + Addition, unary plus

 - Subtraction, unary minus

 * Multiplication

 / Right division

 \ Left division

 ̂ Power
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Operator Precedence and Associativity
COMSOL Script evaluates its operators using the following order of precedence:

1 Power (^)

2 Unary minus (-)

3 Multiplication and division (*, /, \)

4 Addition and subtraction (+, -)

You can force a different precedence using parentheses. The software evaluates the 
expressions from left to right using left associativity, which means that, for example, 
12/4/3 evaluates to 1, just as does (12/4)/3, whereas 12/(4/3) evaluates to 9.

Mathematical Functions and Constants
COMSOL Script includes, as built-in functions, most elementary mathematical 
functions such as abs, sqrt, sin, log, and many more. Full lists of all mathematical 
and logical functions and operators appear in the sections “Elementary and Special 
Math Functions” on page 42 and “Relational and Logical Operators and Functions” 
on page 50.

Further, several other built-in functions return mathematical constants:

•  pi returns π.

•  i and j each return i, the imaginary unit (the square root of −1).

•  Inf stands for infinity. For example, the result of dividing a nonzero number by zero 
is Inf.

•  NaN stands for “Not a Number” in the IEEE standard. NaN is the result of a 
mathematically undefined operations such as 0/0.

Note: You can override the values of pi, eps, i, and j by defining variables using any 
of those names. This can lead to unexpected results. If you want to use i and j as 
named variables, then use sqrt(-1) for the imaginary unit.

Using Complex Numbers
You can use complex numbers in all COMSOL Script functions and operations. For 
example, to enter a matrix with complex-valued elements type either:

C = [1 0 1; 1 2 3; 0 1 0] + i*[1 1 1; 4 5 6; 1 0 1]

or the following line, which produces the same result:
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C = [1+i i 1+i; 1+4i 2+5i 3+6i; i 1 i]

To get the real and imaginary parts of complex-valued data, use the real and imag 
functions, respectively. The abs function computes the absolute value:

x = 1+i;
imag(x)
ans = 
  1
abs(x)
ans = 
  1.414214

O U T P U T  F O R M A T S

In its command window, COMSOL Script displays the results of any statements you 
enter unless the statements end with a semicolon. You control the way the output 
appears using the format command; internally, however, COMSOL Script performs 
all computation using full double-precision floating point numbers. 

The default display format, short, shows roughly six significant decimal digits, except 
for integers:

A = [3 pi 1/3]
A =
  3  3.141593  0.333333

To show the data using full precision, use format long or format hex:

format long
A
A =
  3  3.1415926535898  0.3333333333333

format hex
A
A =
  4008000000000000 400921fb54442d18  3fd5555555555555

Type format with no argument to return to the default format.

Checking the Computer and Operating System

To see the characteristics of the computer on which you run COMSOL Script, use the 
computer function:

computer

ans = 
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  PCWIN

The computer function can also returns the maximum number of bytes that a matrix 
can occupy.

In addition, use the function ispc and isunix to check if COMSOL Script is running 
on a PC or under UNIX.

Running General Operating System Commands

The functions unix, dos, and system all provide access to operating system 
commands. These functions run the command in the input string and provide an exit 
code as the output. If the function could run the command successfully, the exit code 
is 0. An optional second output argument contains the output of the command. For 
example, the following three statements all store the contents of the working directory 
as a string in the variable out:

[status, out] = dos('dir');
[status, out] = system(['cmd.exe /C ' 'dir']);
[statis, out] = unix('ls');

Use the two first statements, which are equivalent, when you run COMSOL Script in 
Windows; use the last statement in a UNIX or Linux environment.

Displaying and Changing Directory

COMSOL Scripts contains functions for displaying the name and contents of the 
current directory and to change directory.

To print the current (working directory) type:

pwd

To list the contents of the current directory use the dir function:

dir

You can also use an output argument:

f = dir;

This statement returns a structure array where each element contains four fields that 
contain the name, creation date, the file size (in bytes), and a Boolean flag, isdir, 
which is True for a directory and False for a file.
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You can also list other directories using dir by passing the path as an input argument. 
The statement

dir('C:\')

lists the files and directories that reside directly under C:\.

The function ls is the same as dir.

To change the current directory use the function cd:

cd ..

moves one level up in the directory structure.

Running Commands at Startup

It is convenient to run some commands, such as adding paths to directories where you 
store M-files or predefined variables, directly at startup. Put those commands in a script 
file and save it as startup.m in the COMSOL Script startup directory. COMSOL 
Script then runs this script file each time you start the software.

For more information about scripts in general, see “Scripts” on page 124.

Getting Help

From the COMSOL Script Help Desk you have access to this book and the COMSOL 
Script Command Reference in HTML and PDF formats. To access the Help Desk, go 
to the Help menu at the top of the COMSOL Script command window and choose 
Help Desk, or simply press F1.

There is also online help available at the command prompt. Type help to get a list of 
help topics. To get help on a specific topic, function, or operator, type help topic. 
For example,

help plot

provides information about the use of the plot command for creating plots.

Saving the Workspace and Exiting the Program

To save variables in the workspace to a file, use the save command. For instance, 

save temp A C
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saves the variables A and C to the file temp.flws. Use the command load to restore 
variables into the COMSOL Script workspace:

load temp

To exit COMSOL Script, type quit or exit. Doing so clears all variables and data 
from the workspace, so be sure to save any workspace information if you plan to use it 
again.
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V e c t o r s ,  M a t r i c e s ,  a n d  A r r a y s
The COMSOL Script environment offers a variety of data types that make for 
flexible programming. This and the following chapter review the available data 
types, their properties, and how to use them. This chapter focuses on matrices, 
sparse matrices, arrays, logical arrays, and the operations available to operate on 
them including indexing and subscripting, matrix inversion and transposition, and 
mathematical operators. 

The next chapter, “Data Types for Non-Numeric Values: Strings, Cell Arrays, 
Structures” on page 61 focuses on data types that also work with non-numeric data 
such as character arrays, cell arrays, structures, as well as the special operators and 
functions available to work on them.
 21
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T h e  COMSOL S c r i p t  Da t a  T ype s

Overview of Data Types

COMSOL Script provides a number of data types (classes):

• Double arrays: 1D arrays (vectors), 2D arrays (matrices), and multidimensional 
arrays of double floating-point complex numbers. 

- Class name and constructor function: double

• Sparse double arrays, which are similar to double arrays but store only the nonzero 
elements (and their locations). 

- Class name and constructor function: sparse

• Logical arrays of any dimension containing elements that are True or False. 

- Class name and constructor function: logical

The above data types are the subject of this chapter; the following data types are the 
subject of the following chapter:

• Character arrays (strings): an array of strings. For multiple strings of different 
length, it is convenient to use a cell array of strings. 

- Class name and constructor function: char (cell for cell array of strings)

• Cell arrays, which are arrays of any dimension where each element is a cell that can 
contain any other data type, for example, a string, a matrix, or another cell array.

- Class name and constructor function: cell

• Structures: Structure arrays are flexible data types that can include multiple fields 
and values. The contents of each field can be any data type, for example, a string, a 
matrix, or another structures. 

- Class name and constructor function: struct

• Inline function object: An object that defines an inline function. 

- Class name and constructor function: inline

• Java object: It is possible to create Java objects and arrays of Java objects in the 
COMSOL Script workspace. See “Java Interface” on page 301 for more 
information about using Java objects.
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Identifying Data Types

To list all the variables in the workspace and their data types, enter the whos command.

Alternately, to get the class (data type) of an object (variable), use the class function:

l=true;
class(l)

ans = 

logical

To check if a variable is of a certain data type, use the isa function:

isa(l,'logical')

ans = 

true

isa(l,'double')

ans = 

false
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C r e a t i n g  V e c t o r s ,  Ma t r i c e s ,  a nd 
Doub l e  A r r a y s

Vectors, matrices, and arrays are the workhorse data types in COMSOL Script, and this 
package makes it very easy to create them. Vectors and matrices are common instances 
of double arrays, those that use double floating-point numbers to store values in each 
element. The following section describes the various commands that allow you to 
create these data types.

Creating Double Arrays

COMSOL Script offers several ways to create a double array:

• Enter values directly with by using brackets ([]) to enclose all the data and 
semicolons (;) to indicate the end of rows (see the examples in this section as well 
as in Chapter 2, “COMSOL Script Basics,”)

• Use the colon (:) operator to create a vector

• Use special functions to create vectors (linspace, logspace)

• Use special function to create arrays (ones, zeros, rand, randn, eye)

• Use special functions to create sparse matrices (sparse, speye)

• Read data from a binary data file (a file that contains workspace data and that you 
save using the save function) or text file using the load function.

U S I N G  T H E  C O L O N  ( : )  O P E R A T O R  T O  C R E A T E  VE C T O R S

The colon operator (:) can create a row vector with a unit increment from the starting 
value to the ending value. For example:

x = 1:10
x =
  1  2  3  4  5  6  7  8  9  10

To create vectors with increments other than one, use the syntax 
start:increment:end as in:

x = 0:.2:1
x =
  0  0.200000  0.400000  0.600000  0.800000  1
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If the ending values is smaller than the starting value, you can use a negative increment 
to create a vector of decreasing numbers:

x = 10:-2:0
x =
  10  8  6  4  2  0

U S I N G  L I N S P A C E  A N D  L O G S P A C E  T O  C R E A T E  VE C T O R S

Another way to create a vector of equally spaced numbers is to use the linspace 
function:

x = linspace(0,1,4)
x =
  0  0.333333  0.666667  1

linspace(start,end,N) creates a vector of N equally spaced numbers from start 
to end. If you do not provide a third argument, linspace creates a vector of 100 
equally spaced numbers. When you ask for fewer than two values in the vector (that is, 
where N <  2), linspace returns the value end (the value in the second input 
argument). 

Similarly, logspace(start,end,N) creates a vector of N numbers placed equally 
along the logarithmic scale from 10start to 10end.

x = logspace(0,1,4)
x =
  1  2.154435  4.641589  10

Note that if you set end equal to π, the command creates points between 10start and 
π, not . If you do not provide a third argument, logspace creates a vector of 50 
logarithmically equally spaced numbers. For N < 2, logspace returns 10end.

U S I N G  S P E C I A L  F U N C T I O N S  T O  C R E A T E  A R R A Y S

Creating Arrays of Zeros and Ones
Use the commands zeros and ones to create arrays filled completely with zeros or 
ones:

ones(2,1,2)
ans(:,:,1) = 
  1
  1

ans(:,:,2) = 
  1
  1

10π
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Each input argument provides the number of elements for that dimension of the array. 
The output for a three-dimensional array provides the first two dimensions as matrix 
“pages,” one for each of the elements in the third dimension. Providing just one input 
argument creates a square matrix (a 2D array):

zeros(3)
ans = 
  0  0  0
  0  0  0
  0  0  0

In other words, zeros(3) is equal to zeros(3,3). Using zeros or ones with no 
input arguments creates a scalar of value 0 or 1, respectively.

Creating Identity Matrices
The command eye(N) creates an N-by-N identity matrix, that is, a matrix with ones 
on the diagonal and with all off-diagonal elements set to zero. It is also possible to use 
eye for an N-by-M rectangular matrix: eye(N,M).

Creating Random Numbers
To create an array of random numbers distributed uniformly across the interval 0 to 1, 
use rand, where the first argument is the seed and the second is the number of values 
to generate:

rand(1,5)
ans = 
  0.317308  0.913270  0.375324  0.225387  0.528039

To create an array of random numbers between from a normal distribution with a 
mean value of 0 and a variance (and standard deviation) of 1, use randn:

randn(1,5)
ans = 
  0.749796  0.626937  -2.132375  -0.467405  0.308421

Both rand and randn produce pseudorandom numbers. See the COMSOL Script 
Command Reference entries on rand and randn for information about determining 
and changing the state of the random-number generator.

Array Sizes and Empty Matrices

Some 2D matrices are special cases and represent scalars, vectors, and even empty 
matrices.
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VE C T O R S

Vectors are 1-by-n arrays (row vectors) or n-by-1 arrays (column vectors). The 
command rv = rand(1,5) creates a random row vector of length 5, whereas v = 
ones(100,1) creates a column vector of 100 ones. To check the length of a vector, 
use the length function:

length(v)

ans =

100

For arrays that are not vectors, length returns the maximum length of any dimension. 
To test if an array is a vector, use the isvector function.

S C A L A R S

Scalar numbers are 1-by-1 arrays. p = pi is an example of a statement that creates a 
scalar variable p. To test if an array is a scalar, use the isscalar function.

T H E  E M P T Y  M A T R I X

An empty matrix is an array that in any dimension has the size 0. To create an empty 
0-by-0 matrix, use []:

e = [];

To check if an array is empty, use the isempty function.

Empty matrices of size n-by-0 or 0-by-m are useful in many applications of linear 
algebra. You can create such empty matrices directly using one of the special functions 
for creating arrays, for example, zeros:

ze = zeros(0,5);

creates a 0-by-5 empty array. 

One way to use of the 0-by-0 empty matrix [] is to remove parts of an array:

A = rand(5);
A(1:3,:) = [];

removes the first three rows in A.

C O M P L E X  A R R A Y S  V S .  D O U B L E  A R R A Y S

COMSOL Script stores the real and imaginary parts of complex-valued data and 
identifies these variables as complex arrays. A complex array requires twice the memory 
as a double array. The output from a computation becomes a double array or a complex 
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array depending on if the result is complex or not. You can use complex arrays and 
double arrays without having to differentiate between them. For example, a = 
sqrt(-1) results in a complex array, whereas b = imag(a) results in a double array. 

To check if a variable is a complex array or a double array, use the isreal function, 
which is True for double arrays but not for complex arrays. To explicitly create a 
complex or double array, use the complex and double commands:

a = complex(1,0)

a = 

1

isreal(a)

ans = 

false

b = double(a)

b= 

1

isreal(a)

ans = 

false

Sparse Matrices

Sparse matrices provide an efficient way to store data in a matrix that contains only a 
few nonzero elements. Instead of storing the entire array, you can store just those 
elements and their locations. Sparse matrices often appear in computational physics 
when solving large systems of linear equations, an example being system matrices such 
as the stiffness matrix from a finite-element analysis. When working with COMSOL 
Multiphysics, the assemble function provides such sparse matrices as output data.

Sparse matrices make it possible to store and process matrices that would be too large 
to handle if the software had to deal with them as full matrices. Special versions of the 
matrix-computational tools work with sparse matrices and produce sparse matrices as 
their output. The computations that take advantage of sparsity can also execute faster. 
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One issue with efficient algorithms for sparse matrices concerns fill-in, a reduction of 
the sparsity during the execution of an algorithm when zero elements change to 
nonzero elements. Sparse algorithms try to minimize fill-in by, for example, switching 
rows and columns. In many applications, the sparse matrix is a band matrix, and the 
bandwidth is an indication of the matrix sparsity.

Even if a set of data is sparse, COMSOL Script does not take advantage of that fact 
unless you store the data as a sparse matrix. To see the difference in performance and 
storage requirements, consider two 1000-by-1000 identity matrices:

s1 = speye(1000);
s2 = eye(1000);
whos
     Name     Size         Memory      Type

     s1       1000x1000    16000       sparse double array
     s2       1000x1000    8000000     double array

tic, s1*s1; toc

Elapsed time:  0.0 s

tic, s2*s2; toc

Elapsed time:  1.062 s

In this case, storing the sparse matrix requires only 0.2% of the memory needed to 
store the full matrix. Also, multiplying the sparse matrix with itself is much faster than 
doing the same thing with the full matrix. 

The density of a sparse matrix is the ratio of the number of nonzero elements to the 
total number of elements, which in this case is 0.001. Low density for a matrix is a 
good indication that you should treat it as a sparse matrix.

S P A R S E  M A T R I X  F U N C T I O N S

The following functions are available for working with sparse matrices:

TABLE 3-1:  SPARSE-ALGORITHM FUNCTIONS

FUNCTION 
NAME

DESCRIPTION

eigs Compute a few eigenvalues of a sparse matrix

full Convert a matrix from sparse to full

issparse True for a sparse matrix

nnz Number of nonzero elements
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Note: The sparse data type is available only as sparse matrices, that is, 2D matrices 
or vectors of real or complex data.

C R E A T I N G  S P A R S E  M A T R I C E S

To create sparse matrices use the sparse, spdiags, speye, spones, sprand, sprandn, 
and sprandsym commands.

The sparse command works in several ways:

• It converts a standard double matrix into a sparse matrix:

s1 = eye(10);
s2 = sparse(s1);

• It creates an mxn all-zero sparse matrix:

s = sparse(m,n);

• You can provide the sparse function with the matrix size, row and column index 
vectors for the location of the nonzero data, plus the data itself. 

As an example of creating a sparse matrix in this fashion, consider solving the following 
equation system:

nzmax Number of nonzero elements for which space is allocated

sparse Create a sparse matrix

spdiags Sparse diagonal or band matrix manipulation

speye Create a sparse identity matrix

spones Sparse matrix of ones

sprand Sparse random matrix with uniformly distributed numbers

sprandn Sparse random matrix with normally distributed numbers

sprandsym Symmetric sparse random matrix with normally distributed numbers

TABLE 3-1:  SPARSE-ALGORITHM FUNCTIONS

FUNCTION 
NAME

DESCRIPTION
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 (3-1)

This is a relatively sparse symmetric band matrix, which could represent the numeric 
solution to some kind of differential equation. To create the 7-by-7 matrix as a sparse 
matrix, first make sparse matrices from the diagonal and each subdiagonal, then add 
them together:

D = sparse(1:7,1:7,10*ones(1,7),7,7);
S1 = sparse(2:7,1:6,ones(1,6),7,7);
S2 = sparse(6:7,1:2,-ones(1,2),7,7);
S = S2+S1+D+S1'+S2';

You can use the spdiags command to extract diagonals from a sparse matrix or to 
create a sparse matrix from diagonals. When you specify the indices of the diagonals, 
0 indicates the diagonal, −1 indicates the first subdiagonal, 1 indicates the first 
superdiagonal, and so on. For example,

S = spdiags(C,D,A);

returns a sparse copy of a matrix A with diagonals D replaced by the columns in C. If

A = [1 2 3; 4 5 6; 7 8 9]
D = [-1 0];
C = [10 0; -5 12; 0 0];
S = spdiags(C,D,A);

full(S)

ans = 

   0   2   3
  10  12   6
   7  -5   0

S is a sparse matrix, but this example displays it as a full matrix to show how spdiags 
modifies the original matrix A. The call to spdiags replaces the first subdiagonal with 
[10, -5] and the main diagonal with [0, 12, 0]. The column in C is longer than 
the subdiagonal, and in this case spdiags uses the upper part of the column in C; for 

10 1 0 0 0 1– 0
1 10 1 0 0 0 1–

0 1 10 1 0 0 0
0 0 1 10 1 0 0
0 0 0 1 10 1 0
1– 0 0 0 1 10 1
0 1– 0 0 0 1 10

x

1
2
3
4
5
6
7

=
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superdiagonals, elements in the resulting sparse matrix contains the lower part of the 
column.

See the command-line help and COMSOL Script Command Reference for a full 
description of available syntaxes for the spdiags command.

D I S P L A Y I N G  T H E  S P A R S I T Y  P A T T E R N

To plot the sparsity pattern, use the spy function:

spy(S)

produces the following plot for the matrix S from the previous example:

Figure 3-1: Sparsity patterns for a 7-by-7 sparse matrix.

WO R K I N G  W I T H  S P A R S E  M A T R I C E S

For sparse matrices, COMSOL Script supports all of its matrix arithmetic, logical, and 
indexing functions as described in the following section. For example, to solve 
Equation 3-1, use the “backslash” or \ operator (see “Division” on page 44):

R = (1:7)';
x = S\R
x = 

   0.127368
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   0.230168
   0.243581
   0.334021
   0.416213
   0.503852
   0.672632

(The single string quote, ', is a transpose operator that converts R from a row vector 
to a column vector; see “Matrix Transposition” on page 40 for more information.)

Using the FIND Command
The find command, which finds nonzero entries, is very useful in connection with 
sparse matrices. As an example, revisit the matrix S from the previous example:

[i,j,v] = find(S);
[n,m] = size(S);
S = sparse(i,j,v,n,m);

The output from find, regardless whether it operates on a sparse or a full matrix, is in 
the same format that you use to create a sparse matrix.

Output From Operations With Sparse Matrices
As you saw from the previous example, solving a system of linear equations where the 
system matrix is a sparse matrix results in a full solution vector. On the other hand, 
multiplying a sparse matrix with itself results in another sparse matrix. The following 
rules apply for the output from operations with sparse matrices:

• If the function’s output is a scalar or a vector, the output is always a full scalar or 
vector (for example, size).

• Indexing into a sparse matrix always produces a sparse matrix, except when you 
index into a single element to output a scalar. In that case, the output is a full scalar.

• Operations with mixed operands produce results that are full matrices, except for 
elementwise multiplication of a sparse array with a full array (A.*B, where A is sparse 
and B is full), which provides a sparse array.

To explicitly convert from a sparse matrix to a full matrix or vice versa, use the sparse 
and full functions.

Logical Arrays

The results from logical and relational operators are all logical arrays. To test if an array 
is logical, use the islogical function:

A = [0 0.6; 0.1 0.3];
B = (A>.5)
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B = 

  false  true
  false  false

islogical(A)

ans = 

false

islogical(B)

ans = 

true

To make an array logical, use the logical command. All nonzero values then become 
True, while zeros become False. 

To convert a logical array to a double array, use the double command. If you use a 
logical array with arithmetic operators or functions, however, COMSOL Script 
interprets it as a double array with ones (where the elements are True) and zeros 
(where the elements are False):

logical(A)

ans =

  false  true
  true   true

double(B)

ans =

  0  1
  0  0

A+B

ans = 

  0         1.600000
  0.100000  0.300000

To set individual elements in a logical array, use the true and false commands:

B(1,1) = true;
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Work i n g  w i t h  Ma t r i c e s  and A r r a y s

COMSOL Script provides many vector and matrix operations but also supports a 
powerful, efficient form of coding that performs element-by-element operations on 
each element in a double array. When working with a matrix, it is not necessary to write 
a loop that operates on each element individually. For instance, you simply write A+1 
to add the scalar 1 to every element of the matrix A. 

Consider another example that performs some trigonometric operations on every 
element in a matrix:

A = 1:10
B = round(sin(pi*A/2))

B =

  1  0  -1  0  1  0  -1  0  1  0

These functions make for much more compact and efficient code than writing the 
equivalent loop:

A = 1:10
B = zeros(1,10);
for i=1:10
  B(i) = round(sin(pi*A(i)/2));
end

This section starts by describing basic matrix operations such as indexing, inversions 
and transpositions; it then moves on to show how to perform elementary math and 
trig functions; it then looks at special functions such as relational operators and set 
functions.

Although COMSOL Script comes with a wide range of functions and operators, it is 
not unusual to have special requirements where a new type of function would prove 
helpful in streamlining your code. For such cases, it is easy to extend the library of 
mathematical or other functions by writing your own COMSOL Script functions. See 
“Functions” on page 127 for more information about creating your own functions.

Indexing and Subscripting

To access individual elements in a matrix (or an array of any size), enclose the subscript 
in parentheses:
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A = [1 2 3 4; 5 6 7 8; 9 10 11 12];
A(2,3)

ans = 

7

As you can see, A(2,3) refers to the element in the second row and the third column. 
You can also use linear indexing with a single subscript. In the case of a 2D matrix with 
ni rows and nj columns, the element with subscripts i and j gets the linear index

,

so you can access the same element using A(8). 

To switch between a multidimensional index and a linear-index vector, use the 
functions ind2sub and sub2ind:

linind = sub2ind([3 4],2,3)

linind = 

  8

[subi, subj] = ind2sub([3 4],linind);

The last call results in subi = 2 and subj = 3. The first input argument to both 
functions provides the size of the array into which you want to index.

You can also use subscripts that are vectors or matrices. For example, A(1:2,3:4) is a 
2 × 2 submatrix consisting of the first two rows and the third and fourth columns in A. 
Using the colon alone refers to all the corresponding elements in that dimension (a 
row or column for a matrix). Thus

A(1:2,:)

contains the first two rows, and

A(:,2)

gives all the values in the second column.

Use end to refer to the last element in an array. For instance,

A(end,:)

is the last row in A.

You can also use a vector with negative increments to change the order of columns and 
rows:

j 1–( )ni i+
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A(:,end:-1:1)

reverses the column order in A:

Using the colon (:) alone in a subscript reshapes an array into a long column vector, 
as in the following example:

A(:)

ans = 

   1
   5
   9
   2
   6
  10
   3
   7
  11
   4
   8
  12

L O G I C A L  I N D E X I N G

Logical indexing means that you work with a logical array to index into another array. 
This acts as a sort of masking operation where the position of the elements that are 
True in the logical array determine which elements to access. This is a powerful feature, 
for example, to remove elements with a certain property.

As an example, set to zero all the elements in a matrix that are smaller than a certain 
threshold value:

A = rand(4);
threshold = 0.25;
A(A<threshold) = 0
A = 

            0     0.432789            0     0.707649
            0     0.605391     0.804140     0.555403
     0.984947     0.611451     0.798391     0.803094
     0.461474     0.937855     0.264659     0.786913

I N D E X I N G  I N T O  A  S U B S E T  O F  A N  A R R A Y

It is possible to reference element in a subset of an array using multiple subscripting:

A = [1 2 3 4; 5 6 7 8; 9 10 11 12];
A(1:2,1:2)(2,:)(1)
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ans = 

5

The multiple subscripting A(1:2,1:2)(2,:)(1) first references a 2x2 submatrix from 
A (with the elements [1 2; 5 6]), then references the second row in that submatrix 
([5 6], and finally picks the first element in that row, 5. This can sometimes be useful 
to avoid creating variables to store the intermediate results.

Building Arrays From Other Arrays

You can build larger arrays and matrices by concatenating arrays and matrices using 
brackets:

H = [A, A, ones(3,8)];

This concatenates the matrices horizontally, forming a 3x16 matrix. To concatenate 
the same matrices vertically, type:

V = [A; A; ones(6,4)];

This creates a 12x4 matrix. Notice that the array sizes must be consistent: in the 
horizontal concatenation, all matrices must have the same number of rows (3); in the 
vertical concatenation, the same holds true for the number of columns. You can extend 
an array in all directions as long as the array sizes match.

There are also functions that perform the equivalent array concatenations. Use cat to 
concatenate along any dimension (providing the dimension as the first input 
argument). horzcat and vertcat concatenates arrays horizontally and vertically, 
respectively.

H = cat(2,A,A,ones(3,8));
H = horzcat(A,A,ones(3,8));

both create the same matrix H as the previous example using brackets. Likewise:

V = cat(1,A,A,ones(6,4));
V = vertcat(A,A,ones(6,4));

both create the same matrix V as the previous example using brackets.

General Functions for Array Sizes

The function size returns the size of all dimensions of an array:

A = rand(5,9);
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[nrow,ncol] = size(A)

nrow = 

5

ncol = 

9

The function numel returns the number of element in the array:

numel(A)

ans = 

45

numel(A) is the same as prod(size(A)).

The function ndims returns the number of dimension in the array:

ndims(A)

ans = 

2

ndims(A) is the same as length(size(A)).

S U M M A R Y  O F  F U N C T I O N S  F O R  S I Z E S  A N D  TY P E S  O F  A R R A Y S

The following list summarizes functions for getting the dimension of an array or for 
checking which type of array it is:

TABLE 3-2:  ARRAY SIZE AND TYPE FUNCTIONS

FUNCTION 
NAME

DESCRIPTION

isempty Check for empty arrays

isscalar Check if a variable is a scalar

isvector Check if a variable is a vector

length Largest dimension of an array

ndims Number of dimensions of an array

numel Number of elements in an array

size Size of an array
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Matrix Transposition 

To transpose a matrix, use the ' (straight single quote) operator:

A = [1 2; 3 4];
A'
ans =
  1  3
  2  4

You can also transpose a vector:

A = [1 0 2]
A'
ans =
  1
  0
  2

There is no transpose operator for arrays of dimension larger than two.

TR A N S P O S I T I O N  O F  C O M P L E X - V A L U E D  D A T A

The standard transpose operator ' performs a Hermitian transpose (or conjugate 
transpose), where the transpose contains the complex conjugate:

C = [1+i 2-i;3-i 4+3i]
C =
  1+i  2-i
  3-i  4+3i

C'
ans =
  1-i  3+i
  2+i  4-3i

To get a transposition that is not conjugated, use the nonconjugate transpose 
operator, .' (period-straight quote):

C.'
ans =
  1+i  3-1
  2-i  4+3i

To achieve the same result, you can also use the function conj, which takes the 
complex conjugate:

conj(C')
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Matrix Inversion

To compute the inverse of a matrix, use the inv command:

A = [1 0 0; 0 2 0; 0 0 3];
inv(A)
ans = 
  1        0         0
  0  0.50000         0
  0        0  0.333333

If the matrix is singular, that is, it does not have full rank (all rows or columns are 
linearly independent), the inv command issues a warning for a singular matrix. To 
check for a matrix’ rank (the number of linearly independent rows or columns), use the 
rank command:

rank(A)
ans =
  3
rank(zeros(3))
ans =
  0

The inv command works only for square matrices. For nonsquare matrices, the pinv 
command computes a pseudoinverse of a matrix A, which is a matrix A+ such that 
AA+A = A. A+ has the following properties:

• A+ has the same format as the transpose of A.

• AA+A = A

• A+AA+= A+

• AA+ and A+A are Hermitian matrices.

Consider the following example:

pinv(A)
ans = 
  1        0         0
  0  0.50000         0
  0        0  0.333333
a = [10i 5 0]
b = pinv(a)
ans =
     0.800000  0-0.400000i    0
  0+0.400000i     0.200000    0
            0            0    0

Another command, pinv(x,tol), uses the tolerance in tol to compute the 
pseudoinverse.
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Elementary and Special Math Functions

You can use standard arithmetic operators (addition, subtraction, multiplication, 
division, and power) on large classes of 1D and 2D arrays (vectors and matrices). Only 
addition and subtraction are well-defined operators for arrays of any dimension. For all 
arrays, special element-by-element operators perform multiplication, division, and 
power operations on each element in an array (addition and subtraction do not differ 
between matrix operators and element-by-element operators).

Note: Additional information about logical and relational operators and math 
functions that work with double arrays appears in the COMSOL Script Command 
Reference.

As noted earlier, COMSOL Script provides a large set of math functions, all of which 
work on arrays in an elementwise fashion so you can always work in a “vectorized” way. 
For more information about specific functions, see the COMSOL Script Command 
Reference or type help followed by the function name at the command prompt.

A D D I T I O N  A N D  S U B T R A C T I O N

Use the standard operators + and − to add or subtract arrays of the same dimension:

A = [5 6; 7 8]; B = [1 2; 3 4];
C = A+B
C =
   6   8
  10  12
C = A-B
C =
  4  4
  4  4

As a special case, you can add or subtract a scalar to a matrix or multidimensional array. 
COMSOL Script then adds this value to or subtracts this values from every element in 
the other operand:

A+1
ans =
  6  7
  8  9
B-1
ans =
  0  1
  2  3
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M U L T I P L I C A T I O N

Use the * operator for matrix multiplication. Matrix multiplication requires that the 
“inner dimension” of the matrices or vectors agree. An inner product (dot product or 
scalar product) of two vector produces a scalar number:

x = 1:5;
y = [1 0 2 0 3];
x*y'
ans =
  22

Note that x*y is not a valid matrix multiplication (you cannot multiply two row 
vectors) and results in an error message. There are two outer products, each being the 
transpose of the other:

x'*y
ans =
  1   0   2   0   3
  2   0   4   0   6
  3   0   6   0   9
  4   0   8   0  12
  5   0  10   0  15
y'*x
ans =
  1   2   3   4   5
  0   0   0   0   0
  2   4   6   8  10
  0   0   0   0   0
  3   6   9  12  15

COMSOL Script supplies a special function for inner products (x · y) named dot, and 
a function for vector cross products (x  ×  y) named cross:

dot(x,y)
ans =
  22
a=[1 0 0];b=[0 1 0];
cross(a,b)
ans =
  0  0  1

You can also calculate matrix-vector products of the type y = Ax:

A=[1 2 3; 4 5 6; 7 8 9]; x = [1 0 1]';
y = A*x
y =
   4
  10
  16
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For element-by-element multiplication or pointwise multiplication of two arrays with 
equal dimensions, use the .* operator: 

A*A'
ans =
  14   32   50
  32   77  122
  50  122  194
A.*A'
ans =
   1   8  21
   8  25  48
  21  48  81

Multiplying an array by a scalar is equivalent to element-by-element multiplication 
with an array where each element contains that scalar:

A*2
ans =
   2   4   6
   8  10  12
  14  16  18
A.*[2 2 2; 2 2 2; 2 2 2]
ans =
   2   4   6
   8  10  12
  14  16  18

D I V I S I O N

COMSOL Script provides two matrix-division operators or linear equation system 
solvers: / (right matrix divide, or “slash”) and \ (left matrix divide, or “backslash”).

What is the difference? For a nonsingular matrix C and another matrix B, the 
right-matrix division B/C is equivalent to B*inv(C), but it is computed without 
explicit matrix inversion. In the same way, the left-matrix division C\B is equivalent to 
inv(C)*B. In fact, the right-matrix division relies on the left-matrix division in that B/
C = (C'\B')'. In general, it is also true that X = C\B is a solution to C*X = B, and 
that X = B/C is a solution to X*C = B.

If C is not square, the result from a matrix division is a solution in the least-squares 
sense to an overdetermined or underdetermined system of equations. For a left-matrix 
division (C\B), the number of rows in C and B must be the same. The result, X, is an 
mxn matrix, where m is the number of columns in C, and n is the number of columns 
in B.

For example, solve the equation system
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using the \ operator:

A = [1 2; 3 4];
B = [0; 1];
x = A\B

x = 

   1.000000
  -0.500000

The element-by-element or pointwise division operators, ./ and .\, divide the 
elements in the left matrix or array with the elements in the right matrix or array, and 
vice versa:

x = [1 2 3];
y = [2 2 2];
x./y
ans =
  0.500000  1  1.500000
x.\y
ans =
  2  1  1.666667

Note that x and y must have the same dimension.

PO W E R

A matrix power Xy exists if X is a square matrix and y is a scalar. If y is a positive integer, 
it is possible to compute Xy using repeated matrix multiplication. To compute the 
matrix power for positive integer powers, use the ^ operator:

A = rand(3);
B = A^10;

This is the same as:

B = A*A*A*A*A*A*A*A*A*A;

The element-by-element or pointwise power operator .^ works on elements in arrays 
and matrices:

•  z = x.^y when x and y have the same dimension. The result for element zij is . 

x1 2x2+ 0=

3x1 4x2+ 1=⎝
⎜
⎜
⎛

xij
yij
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•  z = x.^y when the base x is a scalar. The result for element zij is then . 

•  z = x.^y when the exponent y is a scalar. The result for element zij is then xij
y.

S Q U A R E  R O O T S

The function sqrt computes the elementwise square root for each element in an array. 
For the square root of a matrix, use the sqrtm function, which computes the principal 
square root X for the matrix A, that is, X2 = A.

E Q U I V A L E N T  F U N C T I O N A L  F O R M  O F  A R I T H M E T I C  O P E R A T O R S

All arithmetic operators have an equivalent function-based form. Thus, for example, 
you can write

C = plus(A,B);

which is equivalent to

C = A+B;

The following list shows the function-based form of all arithmetic and transpose 
operators:

TABLE 3-3:  FUNCTIONAL FORM OF ARITHMETIC OPERATORS

OPERATOR STANDARD FORM FUNCTION-BASED FORM

Sum C = A+B C = plus(A,B)

Unary plus +A C = uplus(A)

Minus C = A−B C = minus(A,B)

Unary minus −A C = uminus(A)

Multiplication 
(pointwise)

C = A.*B C = times(A,B)

Matrix multiplication C = A*B C = mtimes(A,B)

Left division 
(pointwise)

C = A.\B C = ldivide(A,B)

Left division 
(pointwise)

C = A.\B C = ldivide(A,B)

Right division 
(pointwise)

C = A./B C = rdivide(A,B)

Right division 
(equation system 
solver)

C = A/B C = mrdivide(A,B)

Power (pointwise) C = A.^B C = power(A,B)

Matrix power C = A^B C = mpower(A,B)

x
yij
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E L E M E N T A R Y  M A T H  F U N C T I O N S

Beyond the basic operators, COMSOL Script provides the following elementary math 
functions:

Matrix transpose C = A.' C = transpose(A)

Matrix complex 
conjugate transpose

C = A' C = ctranspose(A)

TABLE 3-4:  ELEMENTARY MATH FUNCTIONS

FUNCTION NAME FUNCTION DESCRIPTION

abs Absolute value/complex magnitude

angle Phase angle

sqrt Square root

realsqrt Square root of nonnegative real array

real Real part

imag Imaginary part

complex Create complex array

conj Complex conjugate

isreal True for double, character, and logical arrays

round Round to the nearest integer

ceil Round to the nearest larger integer

floor Round to the nearest smaller integer

fix Round toward zero

sign Signum function

mod Modulus of arrays

rem Remainder of modulus

exp Exponential base e

exp2 Base-2 power

realpow Power of a real matrix

log Natural logarithm

log10 Logarithm base 10

reallog Natural logarithm of nonnegative real number

unwrap Remove phase jumps

TABLE 3-3:  FUNCTIONAL FORM OF ARITHMETIC OPERATORS

OPERATOR STANDARD FORM FUNCTION-BASED FORM
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TR I G O N O M E T R I C  A N D  H Y P E R B O L I C  F U N C T I O N S

Available trigonometric functions and hyperbolic functions in COMSOL Script 
include:

The atan2 function takes two input arguments; atan2(Y,X) computes the pointwise 
inverse tangent of the two matrices X and Y. For scalars, atan2(y,x) is the angle α 
such that tan(α) = y/x. All trigonometric function assume that the input angles are in 
radians.

TABLE 3-5:  TRIGONOMETRIC FUNCTIONS

FUNCTION NAME TRIGONOMETRIC FUNCTION

sin Sine

cos Cosine

tan Tangent

cot Cotangent

sec Secant

csc Cosecant

asin Inverse sine (arc sine)

acos Inverse cosine (arc cosine)

atan Inverse tangent (arc tangent)

atan2 Binary (four-quadrant) arc tangent

acot Inverse cotangent (arc cotangent)

asec Inverse secant

acsc Inverse cosecant

sinh Hyperbolic sine

cosh Hyperbolic cosine

tanh Hyperbolic tangent

coth Hyperbolic cotangent

sech Hyperbolic secant

csch Hyperbolic cosecant

asinh Inverse hyperbolic sine (hyperbolic arc sine)

acosh Inverse hyperbolic cosine (hyperbolic arc cosine)

atanh Inverse hyperbolic tangent (hyperbolic arc tangent)

acoth Inverse hyperbolic cotangent (hyperbolic arc cotangent)

asech Inverse hyperbolic secant

acsch Inverse hyperbolic cosecant
 3 :  V E C T O R S ,  M A T R I C E S ,  A N D  A R R A Y S



S P E C I A L  M A T H  F U N C T I O N S

COMSOL Script comes with the following special math functions that provide more 
advanced capabilities:

TABLE 3-6:  SPECIAL MATH FUNCTIONS

FUNCTION NAME FUNCTION DESCRIPTION

airy Airy functions

bessel Bessel function of the first kind

besselh Bessel function of the third kind (Hankel function)

besseli Modified Bessel function of the first kind

besselj Bessel function of the first kind

besselk Modified Bessel function of the second kind

bessely Bessel function of the second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

cart2pol Transform from Cartesian to polar coordinates

cart2sph Transform from Cartesian to spherical coordinates

cross Cross product

dot Scalar product (dot product)

erf Error function

erfc Complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

factor Prime factors

factorial Factorial function

gamma Gamma function

gammainc Incomplete gamma function

gammaln Logarithm of gamma function

gcd Greatest common divisor

isprime True for prime numbers

lcm Least common multiple

pol2cart Transform from polar to Cartesian coordinates

primes Generate prime numbers
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Relational and Logical Operators and Functions

R E L A T I O N A L  O P E R A T O R S  A N D  T H E  F I N D  C O M M A N D

The following relational operators are available for comparing the contents of two 
arrays of equal size:

These operators compare each element in the first array with the corresponding 
element in the second array, producing a logical array of the same size, where the 
elements are True if the relation holds and False otherwise:

A=[1 2; 3 4];
B=[1 1; 3 3];
A>B

ans = 

  false   true
  false   true

You can also compare an array to a scalar number:

A==1

ans = 

   true   false
  false   false

psi Psi function (digamma function)

rat Rational fraction approximation

rats String representation of rational fraction approximation

sph2cart Transform from spherical to Cartesian coordinates

RELATIONAL OPERATOR FUNCTION-BASED FORM MEANING

< C = lt(A,B) Less than

<= C = le(A,B) Less than or equal

> C = gt(A,B) Greater than

>= C = ge(A,B) Greater than or equal

== C = eq(A,B) Equal

~= C = ne(A,B) Not equal

TABLE 3-6:  SPECIAL MATH FUNCTIONS

FUNCTION NAME FUNCTION DESCRIPTION
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Notice the difference between the == operator, which tests for equality, and the 
assignment operator =.

Using the FIND Command
It is often interesting to use the find command in combination with relational 
operators to determine the indices of certain elements in an array. To find the element 
in A that equals 3, type:

i = find(A==3)

This returns 2 in the variable i, because A(2) is 3 (the single subscript, or linear index, 
runs top-down from the first column to the last column). To convert the subscript 2 
to row-and-column indices, use the ind2sub function:

[ii,jj] = ind2sub(size(A),i)

which returns ii = 2 for row 2 and jj = 1 for column 1. To go from row-and-column 
subscripts to single subscripts, use the sub2ind function.

If you instead want the row and column indexes directly from the call to find, use

[i,j] = find(A==3)

Finally, you can also get the nonzero values of a matrix (defined by the corresponding 
positions in the row and column indexes) in the third output variable:

[i,j,val] = ind(A)

If you want to replace the elements in A that are greater than 1 with zeros, type:

i = find(A>1);
A(i)=0;

This last statement works because of scalar expansion, that is, COMSOL Script assigns 
a scalar to all indices i in the matrix A.

Relational Operators and NaNs (Not-A-Numbers) and Nonfinite Numbers
All relational operators return false when comparing something to NaNs, for 
example:

A = ones(2);
A(1,1) = NaN;
A < NaN

ans = 

  false  false
  false  false
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So, to locate all elements in an array that are NaNs, you should instead use the special 
command isnan, which returns True in any such case:

isnan(A)

ans = 

  true   false
  false  false

Next suppose you want to replace all occurrences of NaN with zeros. For this task, 
type:

A(isnan(A)) = 0;

(See also “Handling NaNs and Missing Data” on page 145.)

If any elements of the array are infinite (  or ), you can make comparisons such as:

A(1,1) = inf;
A==inf

ans = 

  true   false
  false  false

The command isinf returns true for all elements in an array that are Inf or -Inf. 
The command isfinite returns true for any element that is not NaN, Inf, or -Inf:

A(2,2) = NaN;
isfinite(A)

ans = 

  false  true
  true   false

Comparing Entire Arrays
You can also compare two values or two arrays to check if they are equal using the 
isequal command. For two arrays, it returns True if and only if the sizes are the same 
and all elements are the same; isequal(NaN,NaN), however, returns False. To 
compare two arrays and consider them equal if they have NaNs in the same elements, 
use the isequalwithequalnans command. Continuing with the same matrix A as 
earlier in this section:

B = A;
isequal(A,B)

∞ ∞–
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ans =
  false

isequalwithequalnans(A,B)
ans =
  true

Note: The isequal and isequalwithequalnans functions also work for other data 
types such as cell arrays and structures.

L O G I C A L  O P E R A T O R S

Logical operators in COMSOL Script are available both as element-wise operators for 
arrays and bitwise operators.

Element-wise Logical Operators
The following logical operator operate pointwise on arrays:

The logical complement, not, is a unary operator. ~A returns True where A is False (or 
Zero), and it returns False where A is True (or nonzero).

In addition, consider the scalar AND and OR operators, && and ||. The sequence 
a&&b returns True if a and b are scalars that both have the value True (nonzero); 
otherwise it returns False. Further, a||b returns True if either a or b have the value 
True (nonzero); otherwise it returns False. In both cases, these are “short-circuited” 
operators, which means that COMSOL Script does not evaluate the second input 
argument (b) unless it is necessary, that is, a&&b returns False without evaluating b if a 
is already False, and a||b returns True without evaluating b if a is already True.

TABLE 3-7:  LOGICAL OPERATORS

LOGICAL OPERATOR FUNCTION-BASED FORM MEANING

| C = or(A,B) Logical OR

& C = and(A,B) Logical AND

Not available C = xor(A,B) Logical XOR

~ C = not(A) Not, logical complement
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In addition, you can work with bitwise logical operators that operate on nonnegative 
integer arrays. The following table lists the bitwise logical operators:

The position entries for the bitwise functions must be integers in the range of 1 to 53. 
The least significant bit takes position 1 and the most significant bit takes position 53.

As an example, consider b1 = 5 and b2 = 3. In binary form, b1 = 101 and b2 = 011. 
Then

c1 = bitor(b1,b2)
c1 = 

7
c2 = bitxor(b1,b2)
c2 = 

6
c3 = bitset(b1,3,0)
c1 = 

1

T H E  A N Y  A N D  A L L  F U N C T I O N S

Several additional relational and logical functions prove useful when working with 
logical operators.

TABLE 3-8:  BITWISE LOGICAL OPERATORS

BITWISE LOGICAL OPERATOR MEANING

C = bitand(A,B) Bitwise AND

C = bitor(A,B) Bitwise OR

C = bitxor(A,B) Bitwise XOR

C = bitcmp(A,B) Bitwise complement

C = bitget(A,POS) Extracts values of the bits in position POS in A

C = bitset(A,POS) Returns A with bits in position POS set

C = bitset(A,POS,VAL) Returns A with bits in position POS set to VAL

C = bitshift(A,SHIFT) Shifts the bits in A by SHIFT steps

C = bitshift(A,SHIFT,NDIG) Shifts the bits in A by SHIFT steps and then 
zeroes out all bits with positions larger than 
NDIG

C = bitmax Largest integer for use with bitwise functions 
(2^53-1)
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The any function determines if any element along a specific dimension is nonzero. 
any(X) returns True if any element in X is nonzero. For a matrix X, the result of 
any(X) is a row vector where each element is True or False depending on whether or 
not any elements of the corresponding column of X are nonzero. To get a scalar value, 
write any(any(X)). 

For the case when X is an array of a dimension higher than two, any(X) tests for 
nonzero elements along the first nonsingleton dimension of X. You can also specify a 
dimension along which any looks for nonzero elements; specifically, Y = any(X,dim) 
tests X for nonzero elements along the dimension dim. For example, if a program 
requires that all elements of a vector X be positive, the following code uses any to check 
for this and issue an error message:

if any(X<=0)
  error(‘All elements in X must be positive.’)
end

The all function works in the same way but determines if all the elements along a 
specific dimension are nonzero.

S U M M A R Y  O F  L O G I C A L  A N D  R E L A T I O N A L  F U N C T I O N S

The following table provides an overview of the logical and relational functions that 
this section covers (in addition to the operators). Additional logical functions deal with 
sizes (see “Summary of Functions for Sizes and Types of Arrays” on page 39) and 
check for data types (see the following sections on other data types).

TABLE 3-9:  SUMMARY OF LOGICAL AND RELATIONAL FUNCTIONS

FUNCTION NAME DESCRIPTION

any True if any elements are nonzero

all True if all elements are nonzero

find Find indices of nonzero values

isequal True if values are equal

isequalwithequalnans True if values are equal (including NaNs)

islogical True if array is logical

isfinite True if elements are finite

isinf True if elements are infinite

isnan True if elements are NaNs
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Special Functions for Modifying Arrays

COMSOL Script provides a number of functions for modifying and reshaping arrays 
and for creating special arrays from other arrays. The following table provides an 
overview of these functions:

For example, create a matrix using repmat:

A = repmat(eye(2),2,3));

This creates a 4 × 6 matrix A where half the elements are ones and the other half are 
zeros.

Then reshape it into a 2 × 12 matrix:

B = reshape(A,2,12);

The resulting matrix has the same column-major order contents as the input (that is, 
A(:) and B(:) are identical).

In addition to using repmat, you can duplicate a vector using direct indexing:

v = [1; 2; 3; 4];
v(:,ones(1,4))

ans = 

TABLE 3-10:  FUNCTIONS FOR MODIFYING AND CREATING SPECIAL ARRAYS

FUNCTION NAME DESCRIPTION

blkdiag Create a block-diagonal matrix (or cell array)

circshift Shift the indices of a matrix circularly

diag Extract diagonal from matrix or create diagonal matrix

flipdim Flip dimension of matrix

fliplr Flip matrix horizontally

flipud Flip matrix vertically

freqspace Create frequency range

meshgrid Create 2D or 3D grid

repmat Create matrix by repeating another matrix in a pattern

reshape Reshape array

rot90 Rotate matrix counter-clockwise

shiftdim Shift matrix dimensions

tril Extract elements below the main diagonal of a matrix

triu Extract elements above the main diagonal of a matrix
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  1  1  1  1
  2  2  2  2
  3  3  3  3
  4  4  4  4

This works by providing a row vector of ones, referencing the one column in v multiple 
times.

U S I N G  M E S H G R I D  T O  G E N E R A T E  A  G R I D

The meshgrid function is useful for creating an equally spaced grid that is useful for 
plotting a function that depends on x and y (or x, y, and z). meshgrid creates both 2D 
and 3D grids from input vectors. Type

[x,y] = meshgrid(1:2:10,0:0.1:1);

to create a 2D grid defined by the x-range vector and the y-range vector in the 
input.The resulting matrices are both of size 11x5, that is, the length of the y-range 
vector times the length of the x-range vector.

For other gridding and triangulation functions, see “Data Gridding and Triangulation 
of Point Data” on page 166.

Creating and Using Multidimensional Arrays

Multidimensional arrays are arrays of dimension three or higher. Most elementwise 
functions and basic array functions work the same with multidimensional arrays. Other 
functions that work with matrices, such as matrix multiplication, are not defined for 
multidimensional arrays.

You create multidimensional array in the same way as you create matrices and vectors:

r = rand(2,2,3)

r(:,:,1) = 

     0.677801     0.987402
     0.151510     0.739669

r(:,:,2) = 

     0.585750     0.250217
     0.256429     0.566606

r(:,:,3) = 
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     0.097483     0.585205
     0.620439     0.379947

COMSOL Script displays multidimensional arrays by showing each two-dimensional 
“page.”

Subscripting also extends into multidimensional arrays:

r(2,1,2)

ans = 

0.256429

You can compute the sine of all elements in r independently of its dimension.

s = sin(r);
size(s)

ans = 

  2  2  3

The output from all elementwise functions has the same size as the input, in this case 
a 2x2x3 array.

S P E C I A L  F U N C T I O N S  F O R  WO R K I N G  W I T H  M U L T I D I M E N S I O N A L  A R R A Y S

Some functions are especially useful when working with multidimensional array. The 
following table provides an overview of such functions:

The permute and ipermute functions are equivalents of the transpose operator for 
matrices:

A = ones(2,6,7);
B = permute(A,[3 1 2]);
size(B)

ans = 

TABLE 3-11:  FUNCTIONS FOR WORKING WITH MULTIDIMENSIONAL ARRAYS

FUNCTION 
NAME

DESCRIPTION

ipermute Inverse permute the order of dimensions of a multidimensional 
array

ndgrid Create multidimensional grid

permute Permute the order of dimensions of a multidimensional array

squeeze Remove unit dimensions from a multidimensional array
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  7  2  6

C = ipermute(B,[3 1 2]);

Using ipermute makes C identical to A.

The function squeeze removes any “singleton” dimension in multidimensional array 
(demission with size 1):

A = rand(2,1,3,1,5);
B = squeeze(A);
size(B)

ans = 

  2  3  5

Tensor Products and Contractions

The tprod function provides the possibility to compute various tensor products. The 
symbol  often appears to indicate the product of the tensors A and B. A tensor 
product represents the most general bilinear operation or “generalized multiplication” 
for the tensors. The general syntax for tprod is

C= tprod(A, B, IA, IB);

which computes the tensor product of the arrays (tensors) A and B, optionally followed 
by contractions and setting some indices equal. The vectors IA and IB describe the 
mapping from input indices to output indices as well as how to perform the 
contractions. To show how this works, the following examples uses matrices:

• C = tprod(A, B, [1 2], [3 4]) is the tensor (outer) product of the matrices A 
and B.

• C = tprod(A, B, [1 -1], [-1 2]) is the ordinary matrix product of the matrices 
A and B.

• C = tprod(A, ONES(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all entries in 
the matrix A.

• C = tprod(A, EYE(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all diagonal 
entries in the matrix A (the trace).

S P E C I F Y I N G  T H E  I N D E X  V E C T O R S  I A  A N D  I B

The numbers in IA and IB must be distinct, and if a number occurs both in IA and IB, 
the corresponding dimensions in A and B must have the same size. The summation 
takes place over index variables with negative numbers. If a negative number occurs in 

A B⊗
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A, it must also occur in B, and the other way around. You must use the same set of 
negative numbers in both IA and IB. The tprod function also assumes that the union 
of the numbers in IA and IB, together with 0, form a contiguous sequence of integers.
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D a t a  T y p e s  f o r  N o n - N u m e r i c  V a l u e s :  
S t r i n g s ,  C e l l  A r r a y s ,  S t r u c t u r e s
Although the core computations you likely perform with COMSOL Script are 
based on numerical data types, any sophisticated programming language also 
provides powerful capabilities to handle non-numeric data types such as characters, 
non-numeric arrays, and structures (for a complete list of data types, see “The 
COMSOL Script Data Types” on page 22). They can handle tasks for everything 
from simple purposes such as labeling a plot axis to being as complex as gridded 
panels in a user-interface window. This chapter introduces you to these various data 
types and how to work with them. The data structures in COMSOL Multiphysics 
make extensive use of data types like cell arrays and structures to store data 
structures and user inputs of various types.
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S t r i n g s  and Cha r a c t e r  A r r a y s

Although a string is simply a number of printable characters, symbols, and the control 
codes used with them, they are extremely useful in a programming language, especially 
for I/O operations and labeling a graphical user interface. COMSOL Script stores 
strings in character arrays (the data type char). The character array is typically a 1D 
array, where each element represents one character. It is also possible to use character 
matrices, where each row represents one string. All rows then have equal length, so you 
must add spaces to the end of shorter strings. A better alternative if you are working 
with several strings is to use a cell array of strings. In such a cell array, each cell 
contains a string, and each string can be of different sizes.

Creating and Modifying Strings

To create a string, define it by enclosing it in single straight quotes ('):

s = 'Hello, World!'

s = 

  Hello, World!

On a string you can use the same indexing and matrix operations as with a numeric 
vector, as the following examples show:

• Access part of a string:

s(1:5)

ans = 

  Hello

• Modify a string:

s(end) = '.'

s = 

  Hello, World.

• Concatenate a string from several smaller strings:

s = ['Hello,', ' ', 'World!']

s = 
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  Hello, World!

To display a string, use the disp command:

disp(s)
Hello, World!

Because straight quotes or apostrophes enclose a string, you must use two single 
quotes inside a string if you want that quote to actually appear in the string itself:

s='A programmer''s code'

s = 

  A programmer's code

To create a cell array of strings, use the curly braces to create the cell array and to access 
its contents in the same way as with other cell arrays:

sc = {'This', 'is', 'a', 'cell', 'array','of', 'strings'};
sc{end}

ans = 

  strings

You can also use the function cellstr to convert a character array to a cell array of 
strings:

s = ['Hello ';'World!'];
c = cellstr(s)

c = 

  'Hello '
  'World!'

Conversely, char(c) converts a cell array of strings back to a character array.

Summary of Functions for Converting and Modifying Strings

COMSOL Script provides a number of functions for converting strings to and from 
different formats and for modifying and checking strings:

TABLE 4-1:  STRING FUNCTIONS

FUNCTION NAME DESCRIPTION

blanks Create a string of blanks

cellstr Convert a character matrix to a cell array of strings
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abs Convert a character matrix to ASCII values

base2dec Convert strings in a specific base to decimal integers

bin2dec Convert binary strings to decimal integers

char Convert a value to a character matrix

deblank Remove trailing blanks

dec2base Convert decimal integers to strings in a specific base

dec2bin Convert decimal integers to binary strings

dec2hex Convert decimal integers to hexadecimal strings

findstr Find a shorter string within a longer string

hex2num Convert IEEE-754 hexadecimal strings to decimal numbers

int2str Integer-to-string conversion

iscellstr Test if a variable is a cell array of strings

ischar Test if variable is a character matrix

isletter Test for letters in the alphabet

isspace Test for white spaces (horizontal tab, new line, vertical tab, 
form feed, carriage return, and space)

isstr Test if a variable is a character matrix

lower Convert to lower-case letters

mat2str Create a string from a value

num2hex Convert decimal numbers to IEEE-754 hexadecimal strings

num2str Convert a number to a string

sprintf Convert data to a formatted string

sscanf Read formatted date from a string

str2num Convert a string to a number

strcat Concatenate strings

strcmp Compare strings

strcmpi Compare strings, ignoring case

strfind Find one string within another

strjust Justify a character array

strmatch Find string matches

strncmp Compare a specific number of characters in two strings

TABLE 4-1:  STRING FUNCTIONS

FUNCTION NAME DESCRIPTION
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Using String Functions—Some Examples

C O N V E R T I N G  B E T W E E N  A S C I I  C O D E S  A N D  S T R I N G S

It is possible to convert a string to the corresponding ASCII codes using the 
commands abs or double:

s = 'ABC';
a = abs(s)

a = 

  65  66  67

To go the other way, use char to convert ASCII data to a character array:

char(a)

ans = 

  ABC

WO R K I N G  W I T H  S T R I N G  F U N C T I O N S

Consider some additional useful examples of string functions:

• Combine strtrim and upper to remove blanks and convert to uppercase letters:

upper(strtrim('   comsol  '))

ans = 

  COMSOL

• Use strtok to retrieve information from a comma-separated list:

strncmpi Compare a specific number of characters in two strings, 
ignoring case

strrep Search and replace strings

strtok Retrieve the first token

strtrim Remove leading and trailing white-space characters

strvcat Concatenate strings vertically

symvar Find identifiers in expression string

upper Convert to upper-case letters

TABLE 4-1:  STRING FUNCTIONS

FUNCTION NAME DESCRIPTION
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fruits='apple, pear, banana, pineapple, mango, orange';
[fruit, remainder]=strtok(fruits,',')

fruit = 

  apple

Calling strtok again with the remainder as the input retrieves the next item in the 
list:

[fruit, remainder]=strtok(remainder,',')

fruit = 

  pear

C O N V E R T I N G  D A T A  TO  S T R I N G S

The functions int2str, mat2str, and num2str all convert numerical data to strings:

• int2str converts an integer to a string (rounding any noninteger value):

s = int2str(10.2/5)

s = 

  2

• mat2str creates a string that, when you evaluate it, produces the same values as the 
input:

s = mat2str([linspace(-2,2,5);ones(1,5)])

s = 

  [-2, -1, 0, 1, 2; 1, 1, 1, 1, 1]

eval(s)

ans = 

  -2  -1  0  1  2
   1   1  1  1  1

• num2str converts a number to a string with the ability to format the string:

s = num2str(pi)

s = 

  3.1416

s = num2str(pi,8)
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s = 

  3.1415927

s = num2str(pi,'%.9E')

s = 

  3.141592654E+000

In addition, base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2hex, and 
num2hex all convert between string and integers using different bases:

d = base2dec('101',2)

d = 

  5

d = base2dec('101',10)

d = 

  101

Using the SPRINTF Command
For maximum flexibility and control of formatting, use the sprintf command (the 
command fprintf works in the same way as sprintf but prints to a file). sprintf 
takes a C-style formatting string that can contain conversion specifications for the 
input data. Each specification begins with the % character followed by optional flags, 
width and precision fields, and a required conversion character. For example,

sprintf('%-+8.5f',pi)

prints π using a decimal floating point number with a (minimum) width of 8 characters 
width and 5 digits after the decimal point. In addition, the number includes the sign 
and is left justified.

As noted, the first field has the % character, which is optionally followed by one of the 
flags in this table:

TABLE 4-2:  SPRINTF/FPRINTF FLAG CHARACTERS

FLAG CHARACTER DESCRIPTION

- Result is left justified

+ Always print the sign

0 Pad with Zeros instead of spaces
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Note that it is possible to combine flags and have more than one flag at a time.

The width and precision fields typically are of the format w.f, where w is the width in 
characters for the data, and f is the precision as number of digits after the decimal 
point.

The sprintf and fprintf commands also require one of the following conversion 
characters:

In this list, %g uses exponential notation when the exponent is larger than or equal to 
the precision, or if the exponent is less than −4. The default precision is 6. Precision 
means the number of digits to the right of the decimal point for %f and the total 
number of digits for %g—which always removes insignificant zeros.

Finally, you have access to the following character codes for special formatting in 
strings:

Examine some examples using sprintf:

sprintf('A: %-+10.2f ',[10.045,1.02])

ans = 

  A: +10.04      A: +1.02

sprintf('A: %.1f B: %.3e\n',[1.01 1.00001,1.1],[1e4 1e-4 1])

TABLE 4-3:  SPRINTF/FPRINTF CONVERSION CHARACTERS

CONVERSION CHARACTER DESCRIPTION

d Integer notation

e Exponential notation using lowercase e

E Exponential notation using uppercase E

g Exponential or fixed-point notation.

G Identical to 'g', but uses uppercase E for 
exponential notation

i Integer notation (identical to 'd')

s String

TABLE 4-4:  SPRINTF/FPRINTF SPECIAL CHARACTER

SPECIAL CHARACTER DESCRIPTION

\n New line

\t Tab

'' Apostrophe
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ans = 

  A: 1.0 B: 1.000e+004
  A: 1.0 B: 1.000e-004
  A: 1.1 B: 1.000e+000

Evaluating Strings

COMSOL Script can evaluate commands and statements you store in strings.

E V A L U A T I N G  S T R I N G S

The general command for evaluating strings is the eval command, which evaluates an 
expression or a sequence of statements:

eval('a=pi+2')

a = 

5.141593

If you use one or more output arguments, eval evaluates the expressions in the input 
and returns the results:

a = eval('pi+3');
a

a = 

6.141593

To trap errors, eval provides a second input argument. If you provide two input 
arguments, eval evaluates the expressions in the second input argument if the 
evaluation of the first input argument results in an error:

statement = 'sinu(pi/2);';
errormsg = 'disp(''Invalid function'')''
eval(statement,errormsg)
Invalid function

Note: To handle errors, it is usually better to use the try and catch functions instead 
of eval. See “The TRY and CATCH Statements” on page 91 for more information.
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E X A M P L E S  O F  U S I N G  T H E  E V A L  F U N C T I O N

One use of eval is to create varying names for files or variables. The following two 
examples illustrate this technique:

To create twelve variables, rand1, rand2, …, rand12, and store a random matrix in 
each of them, type:

for k=1:12
  eval(['rand', int2str(k), '=rand(3);']);
end

To save the contents in variables d1, d2, …, d10 as ASCII data in the text file 
data1.txt, data2.txt, …, data10.txt, type:

for k = 1:10
  filename = ['data', int2str(k), '.txt'];
  variablename = ['d', int2str(k)];
  eval(['save ', filename , ' ', variablename, ' -ascii'])
end

In many cases, however, you can replace the use of eval with a direct function call. In 
the previous example (saving text file), it is possible to replace the call to eval with the 
following code that uses the standard function calling syntax when calling the save 
function:

save(filename,variablename,'-ascii')

This improves readability and is easier to write.

R E T R I E V I N G  O U T P U T  D U R I N G  E V A L U A T I O N

To retrieve any output that occurs during the evaluation of statement, use the evalc 
function instead of eval. evalc provides this output in a first output argument:

[out,...] = evalc(...);

Otherwise, evalc is similar to eval.

E V A L U A T I N G  S T A T E M E N T S  I N  D I F F E R E N T  WO R K S P A C E S

The function evalin works just like eval but provides the opportunity to do the 
evaluation of the statements in another workspace than the one where the evalin 
function occurs.

evalin('base',...)

evaluates the statements in the main workspace.

evalin('caller',...)
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evaluates the statements in the parent workspace in the function call stack.

If you call the function that contains evalin from the COMSOL Script command 
window, the caller workspace is the main workspace.

E V A L U A T I N G  F U N C T I O N S

To evaluate functions, use the feval command. See “Evaluating Functions” on page 
135 for more information about feval.

S U M M A R Y  O F  E V A L U A T I O N  F U N C T I O N S

COMSOL Script provides the following functions for evaluating expressions and 
functions:

TABLE 4-5:  EVALUATION FUNCTIONS

FUNCTION NAME DESCRIPTION

eval Evaluate an expression or a sequence of statements

evalc Evaluate an expression or a sequence of statements 
and retrieve all outputs

evalin Evaluate an expression or a sequence of statements in 
a specific workspace

feval Evaluate a function
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C e l l  A r r a y s

A cell array is one that can contain data of different types in its elements or cells 
including numerical values and arrays, strings, structures, and even other cell arrays. 
This ability makes it a flexible structure for data that is nonuniform (and that cannot 
fit into a numeric array) or unstructured (so that a structure array is not suitable).

Creating Cell Arrays

You create cell arrays in several ways:

• Use the { and } symbols (curly braces) in the same way you use [ and ] to create 
numeric arrays:

c1 = {'a string', rand(3), 5; {1, 'another string'}, 1, eye(3)}

c1 = 

  'a string'          [3x3 double]            [5]
  {[1] 'another string'}       [1]   [3x3 double]

• Assign a value to a cell using two different types of indexing:

- With indexing into the cell array’s contents, you specify the contents of a cell by 
indexing using curly braces ({}):

  c2{1,3} = 'the third cell' 

  
 c2 =  
  
   []   []   'the third cell'

- With standard indexing, you specify an individual cell:

 c3(1,3) = {'the third cell'}

You then have to provide a cell in the assignment and not the contents of the cell. 
This example produces the same results as the example for content indexing.

• Use the conversion functions cellstr, mat2cell, num2cell, and struct2cell. 
For example,

c = mat2cell(rand(5, 15), [2 3], [4 5 6])

creates a 2 × 3 cell array where c(1,1) is the 2 × 4 submatrix in the upper left corner 
of the random matrix.
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• Create a cell array with empty cells using the cell command:

c3 = cell(2,3,3);

You can create cell arrays of any dimension. To create an empty cell array, use {}, which 
is similar to [] for numeric arrays (you can also use cell(0,0) to create an empty 0×0 
cell array).

C R E A T I N G  C E L L  A R R A Y S  W I T H I N  C E L L  A R R A Y S  ( N E S T E D  C E L L  A R R A Y S )

It is permissible to create nested cell arrays in several levels by using multiple sets of 
curly braces and the cell command. The line

c = {{{1}, rand(2)},{pi}}

creates a 1x2 cell array where the first cell contains another 1x2 cell array, and the 
second cell contains a 1x1 cell array. To create a 1x2 cell array with two 3x2 cell arrays 
with empty cells, type:

c = {cell(3,2), cell(3,2)}

c = 

  [2x2 cell]  [2x2 cell]

Working With Cell Arrays

If the contents of a cell array consist of another variable, note that the cell contains a 
copy of the variable and not a pointer to it. This means that changing the contents of 
the cell does not change the data in the other variable.

R E F E R E N C I N G  A N D  M O D I F Y I N G  C E L L  A R R A Y S

You reference and work with cell arrays in the same way as other arrays in COMSOL 
Script. As noted earlier, in addition to cell indexing, content indexing using curly 
braces makes it possible to modify cell contents. 

For instance, start with the cell array:

c = {{{1}, rand(2)} 5; eye(3), {pi}}

To add a column with cells containing the number 2 and the string 'string', write 
this line of code:

c(:,end+1) = {2; 'string'};

To remove the middle column, try this line:

c(:,2) = [];
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To create a double array d and store in it the random matrix currently in the cell array 
in the top left cell of c, use this line:

d = c{1,1}{1,2};

To replace the string 'string' with 'character array' using indexing into the cell 
array contents, type:

c{2,2} = 'character array';

or, using standard indexing, type:

c(2,2) = {'character array'};

You can reshape a cell array just as it is possible with other arrays using, for example, 
reshape or the colon (:) and transpose (') operators. For instance, 

c = reshape(c,1,4)

converts c from a 2 ×2 cell array to a 1× 4 cell array. A faster way to do this job is

c(:)'

U S I N G  C E L L  A R R A Y S  A S  L I S T S  O F  V A R I A B L E S

You can work with cell arrays as lists of variables, using indexing into the contents with 
{}, in a similar way as a comma-separated list of variables. The following example 
shows how this works with three input arguments to the function plot. 

With separate variables for the input data you might write

x=linspace(0,2*pi,50);
y=sin(x);
format = 'ro--';
plot(x,y,format);

Using a cell array to store the input arguments, the equivalent call to plot changes to:

args = {x, y, format};
plot(args{:});

The syntax args{:} works in the same way as inputting the three comma-separated 
input arguments.

On the other hand, the function deal is useful for distributing the contents of a cell 
array into individual variables, such as in 

[x,y,format]=deal(args{:});

The varargin and varargout arguments, which are available with COMSOL Script 
functions, are cell arrays that provide the ability to handle varying number of input and 
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output arguments of different types. See “Variable Number of Input and Output 
Arguments” on page 132 for more information about varargin and varargout.

A P P L Y I N G  F U N C T I O N S  TO  T H E  C O N T E N T S  O F  C E L L  A R R A Y S

If you are working with a function that return a scalar numerical value for any input, 
you can then apply that function directly to a cell array with the cellfun function:

c = {rand(3), eye(5), zeros(2), pi}
maxnorms = cellfun('norm',c,inf)

maxnorms = 

  2.269629   1   0   3.141593

The first argument in cellfun is the name of the function to apply to the cell contents, 
in this case norm. The second input argument is the cell array, here c; any additional 
optional input arguments to cellfun in turn serve as input arguments to the function 
that works on the cell array. 

In addition, two special functions work with cellfun—prodofsize and isclass:

sizes = cellfun('prodofsize',c)

sizes = 

  9   25   4   1

The input argument 'prodofsize' generates an output that contains the number of 
elements in each cell, that is, prod(size(c{i}) for each cell c{i}. As for the second 
of those two functions, 

dbls = cellfun('isclass',c,'double')

dbls = 

  1   1   1   1

The input argument 'isclass' checks the type of class (data structure) in each cell. 
You provide the name of the class as the third input argument. The output is of the 
same size; it is 1 if the contents of the cell is of this class and 0 otherwise. Notice that 
this is a numerical array. To convert it to a logical array, use logical(dbls);

If the function you want to apply does not return a scalar numerical value, use a loop 
to apply the function to the contents of the cells. For example,

for i=1:length(c)
  cellmax{i}=max(c{i});
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end

produces a cell array cellmax, where each cell is a row vector containing the maximum 
value of each column in the matrix in the corresponding cell in c.

S U M M A R Y  O F  F U N C T I O N S  F O R  W O R K I N G  W I T H  C E L L  A R R A Y S

The following table summarizes the functions related to cell arrays:

Set Functions

A number of functions are designed to work with sets. Using them, COMSOL Script 
interprets arrays or cell arrays of strings as sets. The following set functions are 
available:

TABLE 4-6:  CELL ARRAY FUNCTIONS

FUNCTION NAME DESCRIPTION

cell Create a cell array

cellstr Convert a character array to a cell array of strings

cell2mat Convert a cell array to a matrix

cell2struct Convert a cell array to a structure

cellfun Apply a function to the elements of a cell array

deal Distribute function inputs to output variables

iscell True if the variable is a cell array

iscellstr True if the variable is a cell array of strings

mat2cell Create a cell array from a matrix

num2cell Create a cell array from a numerical array

struct2cell Convert a structure array to a cell array

TABLE 4-7:  SET FUNCTIONS

FUNCTION 
NAME

DESCRIPTION

intersect Set intersection

ismember Determine set members

setdiff Set difference

setxor Set exclusive OR

union Set union

unique Retrieve unique elements
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U S I N G  S E T  F U N C T I O N S  W I T H  VE C T O R S  A N D  M A T R I C E S

The standard syntax works for vectors:

A = 1:10

A = 

  1  2  3  4  5  6  7  8  9  10

B = 6:15

B = 

  6  7  8  9  10  11  12  13  14  15

C = ones(1,10);

intersect(A,B)

ans = 

  6  7  8  9  10

ismember(10,A)

ans = 

true

unique(C)

ans = 

  1

If you have 2D sets (matrices), the set functions support an extra input argument, 
'rows'. For example, setdiff(A,B,'rows') returns the row set difference (the rows 
in A that are not in B, where A and B must have the same number of columns).

In addition, you can get index vectors into the set vectors by providing additional 
output arguments. For details, see the online help for the individual functions.
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S t r u c t u r e s

A structure, more formally known as a structure array, is an array with fields that act as 
separate containers for different data. It is somewhat similar to the struct data structure 
in C/C++. Structures are convenient when you have data of different types that are 
related; for instance, a structure array is suitable for creating a small database where 
each structure is a “record.” As with other arrays, you can have a single structure (a 
1x1 structure array), 1D or 2D arrays of structures, or even multidimensional structure 
arrays. 

This section works with one example, specifically, a structure array that stores data 
about elements in the periodic table. The structure array holds this information:

• The symbol, such as H for hydrogen (a string)

• The name (a string)

• The atomic number (a numerical scalar)

• The mass numbers for the most common isotopes (a numerical array)

• The atomic weight (a numerical scalar)

Creating Structures

You create structures in two ways:

• Use the struct command. For instance, 

s = struct

creates an empty structure without any fields. To create a single structure, use pairs 
of field names and field values in the call to struct:

elements = struct('symbol','H','name','Hydrogen',...
'atomic_number',1,'mass_numbers',1:3,'atomic_weight',1.00797);
elements = 

          symbol:  'H'
            name:  'Hydrogen'
   atomic_number:  [1]
    mass_numbers:  [1 2 3]
   atomic_weight:  [1.007970]

To create a structure array, pass the values for each structure into a cell array for each 
field (all cell arrays must be of the same size, but COMSOL Script expands scalar 
values):
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elements = 
struct('symbol',{'H','He'},'name',{'Hydrogen','Helium'},...
'atomic_number',{1 2},'mass_numbers',{1:3, 3:4},...
'atomic_weight',{1.00797 4.0026})

elements = 

1x2 struct array:
  symbol
  name
  atomic_number
  mass_numbers
  atomic_weight

• Use direct assignment statements. The syntax for adding fields to a structure is to 
type a dot (.) followed by the field name:

elements.symbol = 'H';
elements.name = 'Hydrogen';
elements.atomic_number = 1;
elements.mass_numbers = 1:3;
elements.atomic_weight = 1.00797;

Use standard array subscripting to add additional structures:

elements(2).symbol = 'He';
elements(2).name = 'Helium';
elements(2).atomic_number = 2;
elements(2).mass_numbers = 3:4;
elements(2).atomic_weight = 4.0026;

You need not enter data in all fields. For fields into which you do not assign a value, 
COMSOL Script sets the default value of an empty double array ([]):

elements(3).symbol = 'Li';
elements(3).name = 'Lithium';
elements(3)

ans = 

          symbol:  'Li'
            name:  'Lithium'
   atomic_number:  []
    mass_numbers:  []
   atomic_weight:  []’

C R E A T I N G  N E S T E D  S T R U C T U R E  A R R A Y S

The contents of a field in a structure can be any COMSOL data structure, including 
another structure, which makes it possible to create nested structure arrays. For 
example, if you want to include more information about the isotopes of an element, 
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you could create another structure array, isotopes, that contains a numeric field for 
the mass number and a logical flag that indicates if the isotope is stable. For hydrogen, 
isotopes becomes a 1×3 structure array:

isotopes.mass_number = 1;
isotopes.stable = true;
isotopes(2).mass_number = 2;
isotopes(2).stable = true;
isotopes(3).mass_number = 3;
isotopes(3).stable = false;

To add this to the elements structure array, use the direct assignment syntax:

elements.isotopes = isotopes;

Working With Structures

Many of the standard ways of working with arrays in COMSOL Script also apply to 
structure arrays. Specific to structures is the “dot” syntax to access the value of an 
individual field.

R E F E R E N C I N G  A N D  M O D I F Y I N G  S T R U C T U R E  A R R A Y S

You can access individual structures in a structure array with standard references using 
subscripts in parenthesis. To get or modify the value of an individual field, append . 
(dot) followed by the name of the field:

elements(13).name

ans = 

  Aluminium

To change the name of that element from spelling in British English to American 
English, type:

elements(13).name = 'Aluminum';

You can also access the field values for all structures in the array using brackets ([]), 
which is most useful for scalar numerical data. The line

atomicweights = [elements.atomic_weights];

produces a double array with the atomic weights for each element.

To access field values in a nested structure array, use the dot syntax to reach underlying 
fields, indexing into each structure array:

elements(1).isotopes(2).stable
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ans = 

true

A D D I N G  A N D  D E L E T I N G  F I E L D S

To add a field to a structure, simply use a direct assignment:

elements(2).group = 'Noble gas';

For structures in a structure array where you have not assigned a value to the new field, 
the value is the empty matrix.

If you want to remove a field from the structure, use the rmfield function. As an 
example, remove the mass_numbers fields, which became redundant after adding the 
isotopes structure:

elements = rmfield(elements,'mass_numbers');

A P P L Y I N G  F U N C T I O N S  TO  T H E  C O N T E N T S  O F  S T R U C T U R E S

You can use functions and operate on data in the various structure fields just as with 
any other COMSOL Script arrays. For example, to get the number of common 
isotopes for hydrogen, type:

nhiso = length(elements(1).mass_numbers)

nhiso = 

3

Using the bracket syntax it is possible to operate on a field in all of the structures in a 
structure array. This is useful for statistical analysis, particularly when the field value is 
a scalar value. For example, to compute the mean atomic weight for the first 13 
elements:

mean([elements(1:13).atomic_weight])

ans = 

14.404209

U S I N G  D Y N A M I C  F I E L D  N A M E S  I N  P R O G R A M S

In functions, where the name of a field name may be an input argument, it is 
convenient to use dynamic field name that COMSOL Script evaluates when the 
function runs. This is useful, for example, if you work with a structure that contains all 
elements as individual fields: elements.hydrogen, elements.helium, 
elements.lithium, and so on. Then you can create a function that takes the element 
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name as an input argument, element_name, and computes the number of isotopes. To 
indicate a dynamics field name, surround it with parentheses:

no_iso = length([elements.(element_name).isotopes.mass_number]);

would access the mass numbers in elements.hydrogen.isotopes.mass_number if 
the variable element_name contains the string hydrogen. (element_name) is the 
dynamic field name, which COMSOL Script replaces with hydrogen when running 
the code.

You can also use the functions getfield and setfield to get the contents of a field 
and assign a value to a field, respectively. To achieve the same functionality using 
getfield instead of the dynamic field name syntax, type:

this_element = getfield(elements,element_name);
no_iso = length([this_element.isotopes.mass_number]);

Summary of Functions Related to Structure Arrays

The following table summarizes the functions related to structures:

TABLE 4-8:  STRUCTURE FUNCTIONS

FUNCTION NAME DESCRIPTION

cell2struct Convert a cell array to a structure

fieldnames Return a cell array with field names

getfield Get the value of a structure field

isfield True for fields

isstruct True for structures

rmfield Remove a field from a structure

setfield Set the value of a structure field

struct Create a structure array

struct2cell Convert a structure array to a cell array
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T h e  P r o g r a m m i n g  L a n g u a g e
COMSOL Script is a scripting environment that includes a full high-level 
programming language. In the following chapter you will learn how to use the 
programming language to control the flow of the code by means of conditional 
statements and loops as well as other language constructs. Further, a section 
describes the debugging tools that help you find and correct problems in scripts 
and functions.
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F l ow Con t r o l

For controlling the flow of a program or script, COMSOL Script provides the 
following statements:

• if—for conditional branching

• while—for looping as long as a certain condition is True

• for—for looping

• break, continue, and return—for breaking out of a loop, continuing in a loop, 
and returning from a function, respectively

• switch—for branching among several cases based on an expression

It is permissible to create nested control flows in COMSOL Script programs.

IF Statements

 if is the simplest way to execute one or more statements when a condition is met:

if rank(A)<3
  warning('Matrix does not have full rank!')
end

The condition, here rank(A)<3, can be any expression that evaluates to a logical or 
double matrix. The block of statements between if and end execute if all the elements 
of the condition are True.

You can combine an if with an else to run either of two statement blocks:

if x<0
  heaviside = 0;
else
  heaviside = 1;
end

COMSOL Script runs the first statement block if the condition is True; otherwise it 
executes the second statement block. Under no circumstances does the program 
execute both blocks.

As just pointed out, use an if-else construct when there are two statement blocks to 
choose from; when there are more than two statement blocks, use if-elseif instead:

if (x<=0) || (x>=3)
  y = 0;
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elseif x<1
  y = x;
elseif x<2
  y = 1;
else
  y = 3-x;
end

You can place any number of elseif blocks between if and end. It is also possible to 
combine elseif with else; in this case, else must come after all the elseif blocks.

WHILE Loops

Insert while loops to execute a block of statements for as long as a condition is 
fulfilled. The following example finds the smallest n such that the harmonic series H(n) 
exceeds 10:

H = 0;
n = 1;
while H<10
  H = H+1/n;
  n = n+1;
end
n
n =
  12368
H
H =
10.000043

COMSOL Script executes the statements between while and end as long as the 
condition evaluates to an all-True logical matrix. If the condition is False from the 
beginning, the statements never execute.

FOR Loops

A for loop runs a block of statements once for each value in a list:

H = 0;
for n=1:12368
  H = H+1/n;
end
H
H =
10.000043
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This example runs the loop body (the statement H = H+1/N) a total of 12,368 times, 
once for each n in the list.

In the previous example the list of values is numerical. This need not be the case—it is 
also possible to loop over the elements of a cell array:

for noble={'He', 'Ne', 'Ar', 'Kr', 'Xe', 'Rn'}
  disp(noble)
end

In this example, the loop body runs six times, once for each element in the cell array.

The for statement runs the loop body once for each column in the loop variable. For 
row vectors, as in the previous examples, this is the same as executing the loop body 
for each element, but not for matrices:

A = rand(5,10);
for col=A
  max(col)
end

This example creates a 5x10 random matrix and, for each column, determines the 
maximum element. The loop body executes ten times.

BREAK, CONTINUE, and RETURN Statements

You can break off the execution of a for loop or a while loop with the break 
command. If the loops are nested, break only stops the execution of the innermost 
loop. Outside of loops, you can stop the execution of a function using the return 
statement. COMSOL Script then returns to the keyboard or to the function that 
invoked the function that contains the return statement. Normally, COMSOL Script 
runs a function to the ending statement and then returns. When you use return for 
an early exit from a function that defines output arguments, make sure that you have 
assigned values to these output variables at the point where the return statement 
occurs.

To continue with the next iteration in a loop without running the remaining 
statements in the loop, use the continue statement. In nested loops, continue passes 
control to the next iteration of the loop that encloses it.
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The SWITCH Statement

The switch statement is a generalization of if where there are several possible 
branches to take. The following example displays the name of an element when given 
its atomic number:

switch number
case 1
  disp('Hydrogen')
case 2
  disp('Helium')
case 3
  disp('Lithium')
end

The program evaluates the condition (number) just once and compares it to the case 
branches in order. It then executes the statements associated with the first case that 
matches the condition. If none of the cases match, then it does not execute any 
statements.

Note: Unlike languages such as Java and C, COMSOL Script executes at most one 
case—there is no implicit fall through that causes execution to proceed with a further 
case.

Many applications require that program flow follow the same branch for a number of 
values. This is possible in a case construct by using a cell array of values:

switch n
case {2 3 5 7}
  disp('Prime')
case {1 4 6 8 9 10}
  disp('Not prime')
otherwise
  disp('Don''t know')
end

The program logic first tests n against the values in the cell array {2 3 5 7}, and if it 
finds a match it executes the statement for the case. If not, it tests the second cell array. 
This example also illustrates the use of the otherwise statement block. If none of the 
cases match and there is an otherwise block at the end of the switch statement, then 
the commands following the otherwise statement execute.
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If the expression following switch is numeric, then the program tests it against the 
cases using the equality operator (==). The expression can also be a string, in which 
case the test for equality uses the strcmp function:

switch element_name
case 'Hydrogen'
  mass = 1.008;
case 'Helium'
  mass = 4.003;
case 'Lithium'
  mass = 4.941'
end

To take the same branch for several different values, use cell arrays of strings in the cases 
as in this example:

switch element_name
case {'Helium', 'Neon', 'Argon', 'Krypton', 'Xenon', 'Radon'}
  disp('Noble gas')
case {'Lithium', 'Sodium', 'Potassium', ...
      'Rubidium', 'Cesium', 'Francium'}
  disp('Alkali metal')
end
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Work i n g  w i t h  V a r i a b l e s

This section contains information about naming of variables in a COMSOL Script 
program, the possibility to assign a value to a variable in another workspace, and 
getting user input.

Naming Variables

The names of variables follow the same conventions as file names:

• Variable names are case sensitive

• A variable name can only contain letters, digits, and underscores

• A variable name must start with a letter

To check if a variable name is valid, use the isvarname function:

isvarname('2_fcn')

ans = 

false

Also, you cannot use variable names that are reserved words in the COMSOL Script 
language such as if, for, and while. Use the function iskeyword to check is a string 
contains a reserved word:

iskeyword('case')

ans = 

true

Assigning a Value to a Variables in Other Workspaces

Normally, when you assign a value to a variable, this takes place in the local workspace 
(which is the main workspace when working directly in the command windows or 
when running scripts). If you need to assign a value to a variable in another workspace, 
use the assignin function:

assingin('base',var,value)

assigns the value val to the variable in the string var in the main workspace.

assingin('caller',...)
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assigns a value to a variable in the parent workspace in the function call stack.

One use of assignin is to store data from the local function in the main workspace.

If you call the function that contains assignin from the COMSOL Script command 
window, the caller workspace is the main workspace.

Getting User Input

You can let the user provide input to a variable when running a function or script. To 
do so, use the input function:

a = input('Question:');

displays Question: at the command prompt and waits for user input.

COMSOL Script evaluates the input in the current workspace and assigns the result to 
the output variable.

If you want to use the input as a string, call input using the string s as a second input 
argument:

a = input('Question:','s');

COMSOL Script then returns the string that the user enters without evaluating it.
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E r r o r  Hand l i n g

When you write programs with COMSOL Script, a number of statements help you 
catch errors and then take appropriate action. You can also throw errors and issue 
warnings.

The TRY and CATCH Statements

The try-catch construct provides a means to handle errors gracefully:

try
  b = A(n);
catch
  disp('n out of range, using b=1.')
  b = 1;
end

If an error occurs during the execution of the statements between try and catch, 
COMSOL Script runs the statements in the catch block. In this example, A is a matrix 
indexed using n. If n is not a valid index, then the statements in the catch block inform 
the user of this fact and continue execution despite the error. Without the try-catch 
construct, an invalid index would halt execution and issue an error message.

It is possible to rewrite the previous example using try without a catch clause:

b = 1;
try
  b = A(n);
end

Here, if an error occurs when executing the statements between try and end, 
COMSOL Script continues and runs the statements following the try-end block. In 
other words, omitting the catch block has the same effect as putting no statements 
between catch and end.

Throwing Errors and Displaying Warnings

In COMSOL Script functions you can throw an error with the error function. For 
instance, the following code causes an error to occur and displays the text in errormsg:

error(erromsg)

COMSOL Script ignores a call to error if the string that you pass is empty.
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You can also display a warning message. For example,

warning(warningmsg)

displays the text in warningmsg. This does not stop the program from running.

S E T T I N G  O R  R E T R I E V I N G  T H E  L A S T  E R R O R  M E S S A G E

You can retrieve or set the last (current) error message with the lasterr and 
lasterror functions. The difference between them is that lasterr works with a 
string as an error message, and lasterror works with an error-message structure that 
has a field for the error message and an identifier. Most often you are only interested 
in the error message itself. In that case, it is easier to use lasterr. The line of code

errormsg = lasterr;

returns the current error message, whereas

lasterr(newerrormsg)

sets the current error message to the string in newerrormsg.
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Pe r f o rman c e  C on s i d e r a t i o n s

In several situations you can improve the performance of a COMSOL Script program 
by using alternatives to flow-control statements. All of these cases are examples of 
“vectorization,” that is, taking advantage of the ability of COMSOL Script functions 
to use arrays instead of scalar as input variables, thereby avoiding the need for a loop.

Using Built-in Functions Instead of FOR

The constructs described in the previous sections are general in scope, but they can 
sometimes lead to poor performance and verbose code. As an example, revisit an 
example from the for section:

H = 0;
for n=1:12368
  H = H+1/n;
end

You can replace this loop with a single line:

H = sum(1./(1:12368));

that is clearer and executes much faster. For many common operations, such as sum as 
shown here, built-in functions do the job better than loops.

Using Logical Operators Instead of IF

It is often possible to replace if statements with logical operators:

L = logical(size(A));
for i=1:numel(A)
  L(i) = A(i)>0;
end

This code computes a logical matrix L that is True in the positions where A is positive. 
A faster and more compact way to accomplish the same thing is with a matrix-wise 
comparison:

L = A>0;

Using Pointwise Operators Instead of Loops

The loop
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C = zeros(size(A));
for i=1:numels(A)
  C(i) = A(i)*sin(A(i));
end

can also be optimized with a single command; write it instead using pointwise 
multiplication:

C = A.*sin(A);

Profiling to Find Bottlenecks

By generating profiling information for a function or script, you get an instant 
overview of which functions that run most frequently and where the COMSOL Script 
code spends most of the CPU time. This makes it possible to find potential bottlenecks 
in a large function or script. To start collecting profiling information, type

profile on

You can stop collecting information using profile off and clear the profiling 
information using profile clear. Type profile report followed by the function name 
to print a report showing the profiling information for that function or script file. The 
following code provides a small example:

profile clear
profile on
corrcoef(rand(1000),'row','complete','alpha',0.04);
profile off
profile report corrcoef

This prints a report to the command line about the total time spent in corrcoef and 
the number of times and relative time spent on each line in the M-file. An excerpt from 
the report is:

1     0.00%   alpha = 0.05;
1     0.00%   row = allstr;
1     0.00%   for rowid = flagind:2:nargin-1
2     0.00%     if isequal(varargin{rowid},'alpha')
1     0.00%       alpha = varargin{rowid+1};
1     0.00%       if ~isscalar(alpha) || alpha < 0 || alpha > 1

This reveals that COMSOL Script ran all the lines above once, except for the fourth 
line from the top of this section, which ran twice. None of this code contributed 
significantly to the total time spent running corrcoef. Further down the report, the 
following line explains where most of the time was spent:

1     82.07%     C = cov(x);
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This is a call to another function, cov. To see the profiling information for that 
functions, type

profile report cov
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G l oba l  and Pe r s i s t e n t  V a r i a b l e s

Global Variables

Sometimes one or more variables appear in a large number of functions, and it would 
be cumbersome to pass these variables around using function calls. The solution is to 
use global variables. 

To declare a variable as global, use global:

global STEPSIZE

Variables declared as such have their values stored in a global workspace accessible from 
any function or workspace. As an example, consider the following lines running at the 
command prompt:

global STEPSIZE
STEPSIZE = 0.001;
...
area = quadrature('sin',0,1)

where the quadrature function performs numerical integration using the trapezoidal 
rule:

function out = quadrature(func,a,b)
global STEPSIZE
out = STEPSIZE*sum(feval(func,(a+STEPSIZE/2):STEPSIZE:b));

When quadrature runs, the global STEPSIZE declaration results in COMSOL 
Script taking the value of STEPSIZE from the main workspace. If STEPSIZE is modified 
within the function, then its value also changes in the main workspace.

When you declare a value as global, doing so removes any existing value it has. If you 
declare a variable as global when using it for the first time, it is initialized to the empty 
matrix:

A = 17;
global A
A
A =
[]

To check if a variable is global, use the isglobal function: isglobal('A').
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Persistent Variables

The fact that you can modify global variables everywhere is a strength as well as a 
weakness. Sometimes a function has some internal state that you want to save between 
consecutive calls. It is possible to implement this idea using a global variable, but there 
is always the risk that some other routine might also modify that global state variable. 
A better solution is to use a persistent variable, whose value as declared in a function 
remains across calls, but it is not possible to read or modify it elsewhere. 

Consider the following function, which generates pseudorandom numbers between 0 
and 1 with a linear congruential generator:

function out = lcg
persistent STATE
if isempty(STATE)
  STATE = 12345;
end
STATE = mod(1103515245*STATE+12345, 2^31);
out = STATE/2^31;

lcg uses the persistent variable STATE to remember the number-generator’s state. Just 
as when working with global variables, the first time you make a persistent 
declaration for a variable, it is initialized with the empty matrix. The if 
isempty(STATE) test in lcg uses this behavior to detect if the code must initialize the 
STATE variable because it is the first time that the function runs.

A  WO R D  O F  C A U T I O N

Global variables are easy to use—and overuse. They introduce global dependencies, 
and as a result the code becomes more difficult to understand and maintain. Avoid the 
excessive use of global variables, especially in projects that consist of more than a few 
functions. Persistent variables do not suffer from this problem, so use them instead of 
global variables when possible.

When declaring global variables in functions that other programmers will use, try to 
select expressive variable names. This decreases the risk of collisions between global 
variables in different functions. Such collisions can be difficult to detect because they 
do not lead to immediate errors; global variables can silently receive bad values that 
lead to problems in completely unrelated code.
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Debugg i n g

Some errors can appear relatively frequently when you program with COMSOL Script. 
This section describes the most common errors and how to use the debugging tools 
to find the cause.

Common Errors

A R R A Y  I N D E X  O U T  O F  B O U N D S

An extremely common programming error is using invalid array indices:

A = 1:10;
...
A(10,1)
Error: Array index 1 is 10, dimension length is 1.

COMSOL Script catches all attempts to use invalid indices during program execution, 
but the sources of the errors can still be difficult to find. This example shows a common 
error: A is a 1 × 10 matrix (a row vector) that a routine later indexes as a 10×1 matrix, 
a column vector. You can remove the error here by replacing A(10,1) with A(1,10) 
or, even better, A(10).

There is no foolproof way to avoid such errors, but they occur less often if you write 
code with consistency in mind. Avoid mixing row and column vectors among variables 
with similar usage.

M A T R I X  D I M E N S I O N S  D I S A G R E E

All operators and most built-in functions require that matrix dimensions be 
compatible:

A = rand(3, 4);
...
B = rand(4, 3);
...
C = sin(A)+cos(B);
Error: Matrix dimensions must agree.
Error in built-in function plus.

The only exception to this rule is that COMSOL Script expands scalars to constant 

matrices in most situations. Code such as
A = rand(3, 4);
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...
B = pi;
...
C = sin(A)+cos(B);

runs without error because the software implicitly expands B into a 3×4 matrix where 
all elements equal π.

M I X I N G  P O I N T W I S E  A N D  M A T R I X  O P E R A T O R S

Pointwise operators such as .* operate on individual matrix elements, but matrix 
operators such as * operate on entire matrices. A common error is to mix the two 
operator types in the same expression, which often leads to errors:

A = 1:5;
B = 6:10;
C = sin(A)+cos(B)+A*B;
Error: Incompatible dimensions in matrix multiplication.
Error in built-in function mtimes.

Replacing A*B with A.*B eliminates this problem.

C O N F U S I N G  /  A N D  \

To solve the linear system of equations Ax = b, use x = A\b (see the section 
“Elementary and Special Math Functions” on page 42 for more information about / 
and \. The similar looking code x = A/b usually results in an error:

A = rand(4, 4);
b = rand(4, 1);
x = A/b;
Error: Incompatible matrix dimensions.
Error in built-in function mrdivide.

For some arguments, confusing A\b with A/b does not result in an error, but the 
answer is not as expected because the answer solves the wrong problem: x=A/b is the 
solution to the system b'x'=A'.

Debug Commands

When writing any nontrivial program, it is inevitable that errors occur. You can often 
correct common errors, such as the ones just described, by reading the error message, 
but as noted earlier many errors can be difficult to locate. This section covers 
debugging commands useful for locating errors, and they include setting breakpoints 
and stepping through code.
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S E T T I N G  B R E A K P O I N T S  A N D  S T E P P I N G  T H R O U G H  C O D E

The command dbstop sets a breakpoint on a function or a line in a function. Consider 
again the lcg function:

function out = lcg
persistent STATE
if isempty(STATE)
  STATE = 12345;
end
STATE = mod(1103515245*STATE+12345, 2^31);
out = STATE/2^31;

 dbstop lcg sets a breakpoint on the lcg function. The next time that function is 
called, the program pauses its execution and enters a special state:

C» dbstop lcg
C» lcg
lcg   2   persistent STATE
D» 

Notice how the prompt changes from C» to D» to highlight the new state. You can 
enter any command or expression at the debug prompt, but note that some debug 
commands can exist only in this state. For instance, to step through the code use the 
dbstep command:

D» dbstep
lcg   3   if isempty(STATE)
D» dbstep
lcg   4     STATE = 12345;
D» dbstep
lcg   6   STATE = mod(1103515245*STATE+12345, 2^31);
D» dbstep
lcg   7   out = STATE/2^31;
D» STATE
STATE = 
1406932606

 dbstep executes the line on which execution has stopped, then it stops on the next 
line in the same function. Repeated applications of dbstop is one way to follow 
program flow. To resume normal execution, use dbcont:

D» dbcont

ans = 

0.655154
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Remove one or more breakpoints with dbclear. Called without any arguments, it 
removes all breakpoints; called with arguments, it behaves as the opposite to dbstop. 
For instance, dbclear lcg removes the breakpoint set on the lcg function.

To set a breakpoint on a line of a function, use dbstop with a line-number argument:

C» dbclear
C» dbstop lcg 6
C» lcg
lcg   6   STATE = mod(1103515245*STATE+12345, 2^31);
D» 

To remove a breakpoint set on a line, use dbclear with a line-number argument. To 
remove the breakpoint in this example, call dbclear lcg 6.

You can also set a manual breakpoint in a script or function using the keyboard 
command.

M OV I N G  U P  A N D  D O W N  I N  T H E  D E B U G  C A L L  S T A C K

Use dbup and dbdown to move up and down in the debug call stack. These commands 
change the debug workspace to the parent (dbup) or child (dbdown) of the current 
debug workspace. Using these functions you can explore all workspaces in the call 
stack. To use dbdown, you must first run dbup at least once. Using an integer input 
argument to dbup and dbdown, for example, dbup(3), is equivalent to making that 
many calls to dbup and dbdown without input arguments.

E R R O R  B R E A K P O I N T S

The breakpoints in the previous section were set on specific lines of a function. A 
common situation when debugging a functions is tracking down why an error occurs. 
To do so, run the function, note the line number where the error occurs, set a 
breakpoint on that line, and then run it again. COMSOL Script then stops running 
the function when it reaches that line, and you can examine the cause of the problem. 
This approach is cumbersome if the line where the error occurs executes many times. 
A better solution is to use dbstop if error, which causes execution to stop only 
when an error occurs.

Summary of DEBUG Functions
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The following table summarizes the debug functions:

TABLE 5-1:  DEBUG FUNCTIONS

FUNCTION NAME DESCRIPTION

dbclear Remove breakpoint

dbcont Continue execution

dbdown Move down in debug call stack

dbquit Stop execution

dbstack Display function-call stack

dbstatus List breakpoint conditions

dbstep Step to the next source code line

dbstop Set breakpoint

dbtype Display source code of function

dbup Move up in debug call stack
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L i n e a r  A l g e b r a  a n d  M a t r i x  F u n c t i o n s
The core of COMSOL Script consists of functions for linear algebra and matrix 
functions such as equation-system solvers, norms, eigenvalues, LU factorization, 
and singular-value decomposition (SVD). This chapter describes how to use these 
functions.
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Ma t r i x  Fun c t i o n s  and Ma t r i x  Ana l y s i s

For details about basic matrix operations such as inversion (including the 
pseudoinverse) and transposition, see “Working with Matrices and Arrays” on page 35.

Elementary Matrix Functions

Most COMSOL Script functions work on matrices in an element-by-element fashion 
so that, for example, sqrt(M) and cos(M) compute matrices of the same size as the 
matrix M containing elements and cos(Mij), respectively.

Matrix Analysis

Important matrix concepts that COMSOL Multiphysics addresses include trace, rank, 
determinant, norms, and condition numbers.

T H E  TR A C E  O F  A  M A T R I X

The trace function computes the trace of a matrix (that is, the sum of the diagonal 
elements):

trace(diag([1 5 10]))

ans = 

16

T H E  R A N K  O F  A  M A T R I X

To compute the rank of a matrix, use the rank function, which returns the maximum 
number of independent rows or columns:

rank(eye(3))

ans = 

3
rank(ones(3))

ans = 

1

Mij
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T H E  D E T E R M I N A N T  O F  A  M A T R I X

The determinant of a matrix A, det(A), is an interesting property. In particular, it is 
nonzero if and only if the matrix is nonsingular. To compute the determinant, use the 
det function:

det([1 2 3; 1 0 1; 1 1 1])

ans = 

2

For a singular matrix, COMSOL Script issues a warning:

det(ones(2))
Warning: Singular matrix.

ans = 

0

One property of determinants is that det(AB) = det(A)  det(B):

A = [1 2; 1 4];
B = [5 0; 1 5];
det(A)

ans = 

2

det(B)

ans =

25

det(A*B)

ans = 

50.000000

VE C T O R  A N D  M A TR I X  N O R M S

With the norm function you can compute a number of vector norms and matrix 
norms. A norm is a scalar quantity that is associated with a matrix or vector and that 
has certain properties (for example, it is nonnegative and zero exactly when the matrix 
or vector contains zeros only).
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Vector Norms
Use norm to compute the following vector norms:

• Euclidean norm: norm(V)

• P-norms: norm(V,p)

• Maximum and minimum norms: norm(V,inf) and norm(V,-inf)

For a vector V, norm(V) is the same as sqrt(V.^2); norm(V,1) is the same as sum(V); 
while norm(V,inf) and norm(V,-inf) are the same as max(V) and min(V), 
respectively:

V = [0 1 2 3 4 5]
norm(V)

ans = 

7.416198

sqrt(V.^2)

ans = 

7.416198

Matrix Norms
Use norm to compute the following matrix norms:

• Largest singular value: norm(A), norm(A,2)

• 1-norm: norm(A,1)

• Frobenius norm: norm(A,'fro')

• Infinity norm: norm(A,inf)

The Frobenius norm is the same as sqrt(sum(sum(abs(A).^2))), and the largest 
singular value norm is the same as max(svd(A)).

A = [10 2; 3 5];
norm(A)

ans = 

11.052182

max(svd(A))

ans = 
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11.052182

norm(A,'fro')

ans = 

11.747340

sqrt(sum(sum(abs(A).^2)))

ans = 

11.747340

C O N D I T I O N  N U M B E R S

The cond function returns the condition number for an inversion, and it is a measure 
of linear-system sensitivity, that is, how much a small perturbation of the input matrix 
affects the resulting inverse. It is the product of a matrix’s norm and that of its inverse. 
The larger the condition number κ(A) of a matrix A, the more sensitive it is. A singular 
matrix has the convention that κ(A) = . 

cond(A) computes the 2-norm condition number. Use cond(A,p) for other P-norms. 
The condition number is equal to the ratio of the largest to smallest singular value:

A = [10 2; 3 5];
cond(A)

ans = 

2.776153

sv = svd(A);
max(sv)/min(sv)

ans = 

2.776153

Use condeig to compute the condition number for the eigenvalues.

∞
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Summary of Matrix Functions

The following list provides a summary of fundamental matrix functions and functions 
for matrix analysis:

TABLE 6-1:  MATRIX FUNCTIONS

FUNCTION NAME DESCRIPTION

cond Condition number for inversion

condeig Condition number for eigenvalue

det Determinant

inv Matrix inverse

norm Matrix or vector norm

pinv Pseudoinverse

rank Rank of a matrix

trace Trace of a matrix
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L i n e a r - A l g e b r a  A l g o r i t hm s

This section covers the functions in COMSOL Script that implement fundamental 
linear-algebra algorithms for general linear systems, orthogonalization, and eigenvalue 
problems. For a theoretical treatment of matrix computations, see Ref. 1.

These algorithms are based on the linear-algebra package LAPACK (Ref. 2).

For complete information about available syntaxes for the functions, see the COMSOL 
Script Command Reference or the online help).

LU Decomposition and Solving Linear Equation Systems

When solving a system of linear equations Ax = b using Gaussian elimination, it is 
useful to divide the system matrix A into a lower triangular matrix L and an upper 
triangular matrix U so that A = LU. To do so, use the lu function:

A = [1 2 3 ; 1 4 9; 1 8 27];
[L,U] = lu(A)
L = 

    1      0          0
    1      0.333333   1
    1      1          0

U = 

    1     2      3
    0     6     24
    0     0     -2

It is easy to verify that A and L*U are equal.

To solve a system of equations with COMSOL Script, use / and \ (the slash and 
backslash operators, or right division and left division operators), which also work for 
over- and underdetermined equation systems. To solve the equation Ax = b for x, with 
b equal to [2; 10; 44], use 

x = A\b
x = 

   3
  -5
   3
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For more information about the / and \ operators see “Elementary and Special Math 
Functions” on page 42.

lu, /, and \ all work with sparse matrices as well as standard full matrices. You can also 
call lu so that its output also includes permutation matrices.

H E S S E N B E R G  F O R M

Another matrix form similar to an upper triangular matrix is the upper Hessenberg 
form of a square matrix, which is zero below the first subdiagonal. To compute the 
Hessenberg form of a matrix, use the hess function:

A = [1 1 0; 1 1 1; 1 0 1];
H = hess(A)

H= 

    1          -0.707107    -0.707107
   -1.414214    1.500000    -0.500000
    0           0.500000     0.500000

The Hessenberg form of a matrix A has the same eigenvalues as A.

With an additional output argument, hess also returns unitary matrix Q such that 
Q*H*Q' is equal to A.

Matrix Factorization—Cholesky and QR

COMSOL Script also supplies functions for Cholesky factorization and orthogonal 
factorization using the QR algorithm.

C H O L E S K Y  F A C T O R I Z A T I O N

For a symmetric (or Hermitian) positive definite matrix A, it is possible to compute a 
Cholesky factor C such that A = C  CT. To do so in COMSOL Script, use the chol 
function:

C = chol(A);

This operator uses the DPOTRF and ZPOTRF functions from LAPACK and supports 
matrices that are not positive definite; it does so through a second output argument P 
such that C'*C = A(1:P-1,1:P-1).
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Q R  F A C T O R I Z A T I O N

QR factorization, or orthogonal factorization, is not restricted to square matrices. The 
QR factorization of a matrix A gives a product of an orthogonal square matrix Q and 
an upper triangular matrix R such that A = QR. To compute the Q and R factors, type:

[Q,R] = qr(A)

You can also get the output from the LAPACK algorithms DGEQRF and ZGEQRF 
by typing

qr(A)

Other options include reduced-size factorizations.

Orthonormal Bases for Null Spaces and Ranges

Two functions in COMSOL Script compute orthonormal bases: null, which 
computes an orthonormal basis of the null space of a matrix, and orth, which 
computes an orthonormal basis of the range of a matrix.

The number of columns in the orthonormal basis of the range of a matrix are the same 
as the matrix rank.

The null space of a matrix A is the space of vectors x such that A x = 0.

The following example illustrates these properties:

A = [1 2 3; 4 5 6; 7 8 9];
N= null(A)

N = 

  -0.408248
   0.816497
  -0.408248

A*N

ans = 

           0
  -4.441e-016
           0

O=orth(A)

O = 
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    -0.214837    0.887231
    -0.520587    0.249644
    -0.826338   -0.387943

rank(A)

ans = 

2

For both null and orth you can supply a tolerance as a second input argument.

Eigenvalues and Eigenvectors of a Matrix

Computing the eigenvalues λ and the eigenvectors x for a matrix A is important in 
many applications where you investigate a system’s dynamics.

The eigenvectors and eigenvalues for A have the property that A x = λ x. Eigenvalues 
can be complex even if the matrix A is real.

To compute the eigenvalues and eigenvectors, use the eig function:

[x,lambda] = eig(A)

where lambda is a diagonal matrix with the eigenvalues on the diagonal.

You can also compute the solution to a generalized eigenvalue problem A x = λ B x by 
typing

[x,lambda] = eig(A,B)

As an example, compute the eigenvalues and eigenvectors of a 3-by-3 matrix A:

A = [0 1 1;-1 0 0; 0 0 1];
[x,lambda]=eig(A);
lambda
lambda = 

  0 + 1i  0 + 0i  0 + 0i
  0 + 0i  0 - 1i  0 + 0i
  0 + 0i  0 + 0i  1 + 0i

In this case, two of the eigenvalues are complex (i and −i), and the third one is 1. From 
the definition of an eigenvector x, it is clear that you can multiply that vector by any 
number and it is still an eigenvector. The eig function scales the eigenvectors so that 
their Euclidean norm is 1.

For sparse eigenvalue problems, use the eigs function, which computes a few 
eigenvalues and eigenvectors for a sparse matrix.
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Singular Value Decomposition and Schur Decomposition

The functions svd and schur implement singular value decomposition and Schur 
decomposition, respectively.

S I N G U L A R  V A L U E  D E C O M P O S I T I O N

For a real matrix A, there exist orthogonal matrices U and V such that UTAV = σ, 
which is a diagonal matrix that contains the singular values of A. To compute the 
singular values σ as well as U and V for a matrix, call the svd function:

[U,sigma,V] = svd(A);

One aspect of the singular values is their relation to matrix norms. For example, the 
largest singular value is a common 2-norm of a matrix.

S C H U R  D E C O M P O S I T I O N

For a square matrix A, there exists a unitary matrix Q such that QH A Q = T = D + N is 
a Schur decomposition of A, where D is a diagonal matrix of eigenvalues, and N is a 
strictly upper triangular matrix. There are two forms of the Schur decomposition: real 
and complex Schur forms. 

To compute the real Schur form enter

T = schur(A)

and to get the complex Schur form of A type

T = schur(A,'complex')

Using the default real form, schur puts the eigenvalues on the diagonal if they are real 
and in a 2 × 2 block on the diagonal if they are complex. In the latter case, the complex 
eigenvalues are the eigenvalues of each block.

The complex Schur form gives the eigenvalues on the diagonal, independent of 
whether they are real or complex.

To get the unitary matrix Q, type 

[U,T] = schur(A,...)

This example shows the structure of the Schur decomposition and its relationship to 
the eigenvalues of a matrix:

A=[1 2 1;2 2 1; 3 2 1];
schur(A)

ans = 
L I N E A R - A L G E B R A  A L G O R I T H M S  |  113



114 |  C H A P T E
    4.828427     2.041241     0.620171
           0    -0.828427     0.669867
           0            0    7.031e-018

eig(A)
eig(A)

ans = 

     4.828427
    -0.828427
  -7.031e-018

To reorder the unitary matrix U and Schur matrix T (the output from a call to schur), 
so that a selected cluster of eigenvalues appears in the leading diagonal blocks, use the 
ordschur function.

[U1,T1] = ordschur(U,T,order)

where the third input argument (order) can be a logical vector, where a true (1) entry 
signifies a selected eigenvalue, or an integer vector, where each element corresponds 
to one eigenvalue.

The Matrix Exponential

The function expm computes the matrix exponential, eA, for a square matrix A:

B = expm(A);

and it equals the series I + A + A2/2! + A3/3! + …

The matrix exponential of a diagonal matrix is a diagonal matrix with the nonzero 
elements equal to . 

Do not confuse this function with the elementwise exponential exp, which computes 
the exponential for each element in the input vector.

The Matrix Logarithm

The function logm computes the matrix logarithm, ln(A), for a square matrix A:

B = logm(A);

The function uses an iterative algorithm to compute the principal logarithm of a matrix 
A. This algorithm does not necessarily converge for all square matrices A, and it is only 
defined for matrices with positive real eigenvalues.

eAii
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Do not confuse this function with the elementwise logarithm log, which computes the 
natural logarithm for each element in the input vector.

Evaluating Other Matrix Functions

In addition to the predefined functions, you can use the funm function to evaluate 
additional functions that are possible to evaluate on a square matrix. The function must 
have a Taylor series with an infinite radius of convergence, such as trigonometric 
functions. In the M-file that you create for a matrix function, you must also define the 
derivative of that function so that the function call can ask for a derivative of any order. 
For example, to implement a matrix version of cosh, coshm, create a short M-file, 
coshm.m:

function c = coshm(a,k)
if mod(k,2);
  c = sinh(a);
else
  c = cosh(a);
end

Depending on if k contains an even or odd number, the function returns the correct 
derivative, sinh(a) for odd derivatives, and cosh(a) itself for even derivatives. To then 
compute the hyperbolic cosine for a square matrix A:

coshypm = funm(A,'coshm');

In addition, you can pass additional properties such as tolerances using a third input 
argument to funm. See the command-line help for funm or the COMSOL Script 
Command Reference for details.

The Kronecker Tensor Product

The Kronecker tensor product of an m1-by-n1 matrix A and an m2-by-n2 matrix B is 
an (m1m2)-by-(n1n2) matrix with elements formed according to the following 
example for a 2-by-2 matrix A and a 4-by-2 matrix B:

so that the result is an 8-by-2 matrix.

To compute the Kronecker tensor product, use the kron function:

A B⊗
a11B a12B

a21B a22B
=
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C = kron(A,B)

The following example shows what the Kronecker tensor product looks like for the 
product of a 2-by-2 and a 2-by-3 matrix:

kron([1 2;0 2],[2,3,4;1,1,1])

ans = 

  2  3  4  4  6  8
  1  1  1  2  2  2
  0  0  0  4  6  8
  0  0  0  2  2  2

Summary of Linear-Algebra Functions

The following list summarizes the linear-algebra functions in COMSOL Script:

TABLE 6-2:  LINEAR ALGEBRA FUNCTIONS

FUNCTION NAME DESCRIPTION

chol Cholesky factorization

eig Compute eigenvalues and eigenvectors

eigs Compute a few eigenvalues and eigenvectors of a sparse matrix

expm Matrix exponential

funm Evaluate matrix function

hess Hessenberg form

kron Kronecker tensor product

logm Matrix logarithm

lu LU decomposition

mldivide, / Solve linear system of equations

mrdivide, \

null

Solve linear system of equations

Orthonormal basis of the null space of a matrix

ordschur Reorder Schur factorization

orth Orthonormal basis of the range of a matrix

qr QR factorization

schur Schur decomposition

svd Singular value decomposition
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S c r i p t s ,  F u n c t i o n s ,  a n d  M - f i l e s
This chapter reviews the difference between script files and functions, and it also 
shows how to work with these M-files in the COMSOL Script environment. For 
more information about Model M-files, which are script files that contain 
COMSOL Multiphysics models, see the COMSOL Multiphysics User’s Guide and 
the COMSOL Multiphysics Scripting Guide.
 119



120 |  C H A P T E
Ove r v i ew o f  M - F i l e s

COMSOL Script lets you write a program that contains a wide range of functions and 
language components. In that way you can automate computations and extend the 
COMSOL Script environment with new functions. To create a COMSOL Script 
program, simply collect the statements that make up the code into an M-file, a text file 
with the extension .m. To run the code in the M-file, save it in a directory that is part 
of the M-file path and call it from the command line. 

There are two types of M-files:

• Script files, which are collections of COMSOL Script commands. You run these files 
exactly as if you were to type them at the command prompt. All commands operate 
in the main workspace and can modify, create, and delete variables in the that 
workspace. Scripts are useful for automating sequences of commands. A script 
allows no input or output arguments.

• Functions, which have a separate workspace and can handle multiple input and 
output arguments. Use functions to extend the COMSOL Script language with 
functionality that suits your applications.

Creating an M-file

Because all M-files are plain-text files, you can create or modify them with any text 
editor. An M-file must have the extension .m, and function names can include only the 
following characters:

• Letters (the name must begin with a letter)

• Numbers

• Underscores

For variable names, the same rules apply (see “Naming Variables” on page 89).

The length of an M-file name must not be longer than the number that the function 
namelengthmax returns (the same limit applies to variable names). The operating 
system can also have restrictions on the length of a file name.

I N S E R T I N G  C O M M E N T S

You can insert comments anywhere in an M-file with the % character. All text on a line 
after the % character becomes a comment that COMSOL Script does not execute.
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D I S P L A Y I N G  C O N T E N T S  O F  A N  M - F I L E

Use the type function to display the contents of an M-file or any other text file. The 
input can be the absolute path to a text file or the name of an M-file. For example, type 
std displays the contents of the COMSOL Script function std.m.

E C H O I N G  T H E  L I N E S  O F  A  M - F I L E

To enable echoing of the lines that COMSOL Script run in a user-defined function or 
script, use the echo function:

echo on

turns on echoing of all user-defined M-files.

echo off

turns off the echoing.

To toggle echoing on and off for the function myfcn, type

echo myfcn

The M-file Path

Any M-files you wish to call must reside in a directory somewhere on the M-file path. 
To check what the current path is, type

path

You can also use the path function to set the path and to prepend or append directories 
to the current path. For instance, 

path('C:\MyCOMSOLFcns', path)

adds the directory C:\MyCOMSOLFcns to the top of the current path. You can also use 
the addpath function to add directories to the M-file path; the rmpath function 
removes paths.

To get the path string for an entire directory tree, including all subdirectories, use the 
function genpath.

To refresh the view of the path, use the function rehash. For each function on the 
path, rehash checks if that function has been modified since it was loaded into 
memory and reloads it if this is the case. Type

rehash path

to refresh the view of all directories on the path and load new and modified functions.
O V E R V I E W  O F  M - F I L E S  |  121



122 |  C H A P T E
If you have created a new function that “shadows” an existing function on the path, 
you must run rehash path.

Precedence Order For M-files, Functions, and Variables

In an M-file path you can place M-file functions, built-in functions, and variables all 
with the same name. If you type that name at the command prompt, the following 
precedence order determines which of the variables and functions COMSOL Script 
calls first:

1 Variables in the current workspace and inline functions (see “Inline Functions” on 
page 135)

2 Built-in functions

3 Local functions (those inside a function; see “Local Functions (Subfunctions)” on 
page 129)

4 Functions in the current directory

5 Functions elsewhere on the path (if there is more than one, the function that appears 
first in the M-file path takes precedence)

This means that variables have the highest precedence, so you must clear any variable 
with the same name as a function. Also, you cannot write a function with the same 
name as a built-in function (most of the functions in the COMSOL Script libraries are 
built-in functions). To make COMSOL Script run a built-in function even if there is a 
variable with same name, use the builtin command. For example,

d = builtin('det',[1 6; 4 8])

computes the determinant of a matrix even if a variable det exists in the current 
workspace.

To check which function COMSOL Script runs, use the which function:

which fft

fft is a built-in function.

The exist function returns one of the following integers when you call it with the 
name of a variable or function:

• 0 if no variable or function with that name exists

• 1 if it is a variable

• 2 if it is a file
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• 5 if it is a built-in function

• 7 if it is a directory

• 8 if it is a Java class

exist fft

ans = 

5

Retrieving the Name of the Running M-File

Use the function mfilename to get the name of the running M-file (script or 
function). It is only useful to call this function in an M-file. From the COMSOL Script 
command window, a call to mfilename returns an empty string.

Encrypting M-files

You can protect the contents of custom M-files using the encrypt command, which 
creates encrypted versions of the files in the input arguments. The input files must exist 
and be valid M-files. For each input file, COMSOL Script creates an MC-file in the 
current directory (extension .mc). When you run an MC-file, it is equivalent to the 
original M-file, but encrypt has scrambled its contents to make it unreadable. Use the 
optional input argument -inplace to make encrypt store each MC-file in the same 
directories as the corresponding M-file.
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S c r i p t s

Creating and Running Scripts

Scripts automate sequences of COMSOL Script commands. A script does not require 
any special syntax: simply add COMSOL Script statements and comments into an 
M-file. For instance, the following script plots a number of sine curves of different 
frequencies:

x=0:0.1:10;
colors = 'krgymcbkr'
plot(x,sin(2*pi*x));
hold on
for k=2:7
  plot(x,k*sin(2*pi*k*x),colors(k-1));
end
hold off

If you save this command sequence in an M-file called sinescript.m in the current 
directory or somewhere on the M-file path, you can then call it from the COMSOL 
Script command prompt at any time by just typing its name:

sinescript
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This command then produces this plot:

In addition, it creates the variables x, colors, and k, which remain in the main 
workspace. This modification of the workspace contents is something that you can take 
advantage of by writing scripts that create workspace data, for example, by reading data 
from files.

You can also execute a script with the run function as in

run sinescript

This command also works when you put the name of the script in a string variable:

script = 'sinescript';
run(script)

Running Scripts in Batch Mode

It is possible to run COMSOL Script files in batch mode without using the command 
window. Instead, you invoke the scripts from the operating system command prompt 
with the comsol command:

comsol batch myscript
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runs the script in myscript.m in batch mode. The script cannot contain any interactive 
commands. Plots work only if you have an active display, but the comsol command 
quits after running the script, so plots do not remain on the screen and you lose any 
data that the script does not save to file. Running scripts in batch mode can be useful, 
for example, for processing of large amounts of data to and from data files.

Note: In Windows, use comsolbatch.exe or comsolbatch64.exe instead of 
comsol batch; for example, comsolbatch myscript to run the script myscript.m.
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Fun c t i o n s

Functions can extend the COMSOL Script language with custom commands that you 
call just like built-in functions (in fact, some of the functions in COMSOL Script are 
M-files just like those you add yourself).

Functions are M-files that typically accept one or more input arguments and provide 
results in one or more output arguments. The code in a function operates in a separate 
function workspace, so the variables in a function do not appear in the main 
workspace.

Syntax for Function M-Files

For an M-file to work as a function, it must contain certain components: a definition, 
help text, and a body.

T H E  F U N C T I O N  D E F I N I T I O N

The function definition is the first line in the M-file and starts with the keyword 
function:

function f = fibonacci(n)

The function arguments include the following:

• The output arguments, which in this case is only one: f. If you have more than one 
output argument, enclose them in brackets and separate them by commas:

function [a,b] = myfcn(c)

If the function has no output arguments, the output can be blank:

function drawthis(data)

• The function’s name, which should be the same as the name of the M-file (if they 
differ, the name of the M-file invokes the function)

Note: Names of functions and variables are case sensitive. We recommend using all 
lowercase letters for function names.

• The input arguments, enclosed in parenthesis. Typically, a function has at least one 
input argument.
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Note: You can create functions that work with a variable number of input and output 
arguments (see “Variable Number of Input and Output Arguments” on page 132).

O N L I N E  H E L P  T E X T

The second line in the M-file, immediately after the function definition, is a comment 
line (starting with %) that serves as a 1-line summary of the function. For example:

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.

This line appears when you search for functions using lookfor.

Immediately after this line you can add comment lines that acts as help text:

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.
%   y = fibonacci(n) computes the n:th Fibonacci number.
%   A Fibonacci number is the sum of the two previous
%   Fibonacci numbers. The first and second Fibonacci numbers
%   are 1.

This text appears when you type help fibonacci at the command prompt.

F U N C T I O N  B O D Y  A N D  A D D I T I O N A L  C O M M E N T S

The Help text ends when the function body starts. It can start with a blank line. Any 
comment lines appearing after a line of code or an empty line is considered an internal 
comment that the program does not display. In the function body, you can mix lines 
of code, comment lines, and empty lines.

A Short Example—Fibonacci Numbers

As a short example of a function, write one that returns the nth Fibonacci number. The 
function has one input argument, n, for the Fibonacci number to compute, and one 
output argument, f, the corresponding Fibonacci number. 

The definition of a Fibonacci number Fn is

for n = 3, 4, … with F1 = F2 = 1.

Saving the following code in fibonacci.m implements a function fibonacci:

Fn Fn 1– Fn 2–+=
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function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.
%   y = fibonacci(n) computes the n:th Fibonacci number.
%   A Fibonacci number is the sum of the two previou
%   Fibonacci numbers. The first and second Fibonacci numbers
%   are 1.
y = [1 1];
for i=3:n
  y(i) = y(i-1)+y(i-2);
end
f = y(n);

This function computes all n Fibonacci numbers in y and returns the nth one in f:

f = fibonacci(8)

f = 

21

A L T E R N A T I V E  S O L U T I O N  U S I N G  R E C U R S I V E  F U N C T I O N  C A L L S

It is possible for a function to call itself in recursive function calls. Because Fibonacci 
numbers are a sum of the two previous Fibonacci numbers, this case provides an 
example of where recursive function calls can be useful:

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.
% y = fibonacci(n) computes the n:th Fibonacci number.
% A Fibonacci number is the sum of the two previou
% Fibonacci numbers. The first and second Fibonacci numbers
% are 1.
if n<3
  f = 1;
else
  f = fibonacci(n-1)+fibonacci(n-2);
end

Note: Make sure that the chain of recursive function calls is limited. Otherwise you 
could reach a recursion limit and the function will not run to completion.

Local Functions (Subfunctions)

A function can contain other functions, which are local functions or subfunctions that 
only the code in the main function can invoke. They are not available outside of the 
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main function. All subfunctions must reside in the same file as the main function, so a 
function with two subfunction has the following structure:

functin y = main_function(a,b)
…
t = sub_function1(a);
…
s = sub_function2(b);
…
y = t+s;
…
function y = sub_function1(a)
…
function y = sub_function2(a)
…

where … indicates additional code in the main function and the subfunctions.

Calling Functions

The calling syntax for functions is:

output = functionname(input1, input2, ...)

with one output argument, and

[output1, output2, …] = functionname(input1, input2, ...)

with multiple output arguments (notice that you must surround the variables for the 
output arguments in brackets). COMSOL Script passes the input variables by value.

It is possible to call a function with fewer input arguments than the ones that it defines 
(a function should support this capability or otherwise issue an error message). If you 
provide more than the maximum number of input arguments, an error occurs (see 
“Variable Number of Input and Output Arguments” on page 132 for information 
about supporting a variable number of input arguments).

A L T E R N A T I V E  F U N C T I O N  C A L L  S Y N T A X

For functions that take strings as inputs, an alternative calling syntax is:

functionname input1 input2 …

Using this syntax, COMSOL Script interprets the input arguments as string literals. No 
output arguments are allowed. This syntax is useful with commands such as help, 
save, load, disp, and clear. 

For example,
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load mydata -ascii

is similar to

load('mydata','-ascii')

and is easier to type. 

There are two situations where you must use the standard function-calling syntax:

• If the input is stored in a string:

i = 2;
datafile = ['mydata', int2str(i)];
load(datafile,'-ascii')

• If you want to store the output in a variable:

s = load('mydata','-ascii');

Working With Function Arguments

A number of functions can help you work with a variable number of input and output 
arguments.

C H E C K I N G  T H E  N U M B E R  O F  I N P U T  A N D  O U T P U T  A R G U M E N T S

Use the nargin and nargout functions to check the number of input and output 
arguments, respectively, in a call to a function.

 nargin makes it possible to branch the code based on the number of input arguments 
or to supply default values if the function call does not provide all the input variables:

function f = inputchk(x,y,z)

switch nargin
case 1
  error('inputchk must have at least 2 input arguments.');
case 2
  z = 0;
end
f = x+y+z;

You can also use nargchk to check the range for the number of input variables. It takes 
the lower bound, upper bound, and actual number of input arguments and returns an 
error message if the actual number is not within these bounds. The following code 
checks that there are either 2 or 3 input arguments and displays an error otherwise:

msg = nargchk(2,3,nargin);
if ~isempty(msg)
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  error(msg)
end

Using nargout makes it possible to supply the output variables that the function call 
asks for. For example, a plot function can return a handle to the graphical object only 
if the user calls it with an output argument h. The following code snippet placed at the 
end of such a function uses nargout to accomplish this task:

if nargout==1
  h = h_object;
end

Here h_object is a local variable that contains the handle.

You can check the range for the number of output variables using nargoutchk in the 
same way as nargchk works for input arguments.

Note: For functions with output arguments, it is important that the function assigns a 
value for each of them in all branches where the function call returns. Otherwise, an 
error occurs because of an unassigned output variable.

V A R I A B L E  N U M B E R  O F  I N P U T  A N D  O U T P U T  A R G U M E N T S

Instead of providing a large number of input and output arguments to cover all 
possible cases, the varargin and varargout functions allow a variable number of 
input and output arguments. You can combine both functions with conventional input 
and output arguments, but they must appear last in the argument list.

Both varargin and varargout are cell arrays, where each cell contains one argument. 
To unpack them, loop over all cells:

function variableargs(varargin)
for k = 1:length(varargin)
  a1 = varargin{1};
  a2 = varargin{2}
...
end

The unpacking requires knowledge about what the contents of the different input 
arguments should be. A common use of varargin is to handle multiple input 
arguments in a call to another function from within the function that you write. For 
example, the following function draws a line plot of a mathematical function in the 
interval between 0 and 1, and it then accepts additional property names and property 
values that control the line’s appearance:
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function h = fcnplot(fcn,varargin)
x=0:0.1:10;
y = feval(fcn,x);
cla
hl=line(x,y,varargin{:});
if nargout==1
  h = hl;
end

(See “Evaluating Functions” on page 135 for more information about feval.)

The call to line includes the x and y data plus additional comma-separated input 
arguments through varargin{:}. The call

fcnplot('sin','color','g','linewidth',3)

produces this plot:

The following code provides an example of how to use varargout:

function [varargout]=variableoutputs(input)
for k = 1:nargout
  varargout{k} = input(k);
end
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This routine works if input contains a numeric vector of the same length as the 
number of output arguments. Each output argument then contains a scalar numeric 
value from the array.

C H E C K I N G  T H E  N A M E S  O F  V A R I A B L E S  I N  I N P U T  A R G U M E N T S

To get the name of an input to a function, use the inputname function:

   name = inputname(2);

returns the name of the variable that is used as the second input argument to the 
function that currently runs. If the input does not map to a variable in the calling 
workspace, inputname returns an empty string.

S U M M A R Y  O F  F U N C T I O N - A R G U M E N T  F U N C T I O N S

The following table summarizes the functions for working with input and output 
arguments

Updating and Locking Functions

To remove all user-defined functions from the workspace to make sure that COMSOL 
Script runs an updated version, type

clear functions

To prevent this command from clearing a certain function, use the mlock function:

mlock fibonacci

TABLE 7-1:  FUNCTION-ARGUMENT FUNCTIONS

FUNCTION NAME DESCRIPTION

inputname Get the name of an input to a function

nargchk Check that the number of arguments supplied to a function is

in a specified range

nargin Number of input arguments

nargout Number of output arguments

nargoutchk Check that the number of outputs expected from a function

is in a specified range

varargin Retrieve arguments to a function with variable number of

input arguments

varargout Set outputs from a function with a variable number of outputs
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It locks the function fibonacci in memory so that the clear functions command 
does not remove it. To remove the function lock, type

munlock fibonacci

Use mislocked to check if a function is locked in memory.

Locking a function can be useful to prevent the clear command from removing it. 
Locking a function prevents any persistent variables defined in the file from getting 
reinitialized.

Evaluating Functions

The feval command evaluates functions using a string with the function name as the 
first input argument. It is useful if the function name comes from a file or as an input 
argument. The following code snippet asks the user for a function name and then calls 
it with one input argument. The code assumes that this is a function of one variable 
that operates pointwise on a vector, as are most math functions in COMSOL Script.

fcn = input('Type a function name:','s');
y = feval(fcn,0:0.1:10);

Inline Functions

Inline functions provide a way to create functions based on an expression that you give 
as a string:

scfun = inline('sin(2*pi*x).*cos(y.^2)');

Then call scfun with two input variables, x and y:

scfun(0.25,0)

ans = 

1

You can place explicit input arguments in the call to inline, but COMSOL Script 
finds the inputs as the identifiers that you can also find with the function symvar:

c=symvar('sin(2*pi*x).*cos(y.^2)')

c = 

  'x'
  'y'
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symvar ignores the following common identifiers: eps, i, inf, Inf, nan, NaN, and pi.

To check the argument names for an inline function, use argnames.

To get the expression for an inline function, call formula, which returns it in a string.

A useful function when working with expressions for inline functions is vectorize, 
which makes sure that all multiplication, division, and power operators are the 
pointwise operators .*, ./, and .^ instead of *, /, and ^, which are matrix operators 
in COMSOL Script. Consider this example:

vectorize('sin(2*pi*x)*cos(y^2)')

ans = 

  sin(2.*pi.*x).*cos(y.^2)
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D a t a  A n a l y s i s ,  S t a t i s t i c s ,  a n d  I / O
This chapter describes the data-analysis capabilities, statistics functions, 
signal-processing tools, and I/O features in COMSOL Script. Using these 
functions, you can read data and perform statistical and other types of analysis. The 
chapter also contains information about date and time functions and functions.
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Da t a - Ana l y s i s  O v e r v i ew

COMSOL Script provides many functions for data analysis and statistics:

• Statistical functions for the computation of minima and maxima, mean values, 
medians, and other statistical measures as well as sorting data and making histogram 
counts

• Signal-processing tools such as the FFT and a general function for 1D digital 
filtering

• Functions for interpolation, triangulation, and polynomials

• Numerical differentiation and integration routines
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S t a t i s t i c a l  Ana l y s i s

COMSOL Script provides many basic functions for statistical analysis and sorting.

Computing Minimum and Maximum Values

Compute minimum and maximum values for any numerical array using the functions 
min and max:

a = rand(1,5)

a = 

   0.132797   0.633481   0.136563   0.519387   0.242814

max(a)

ans = 

0.633481

min(a)
ans = 

0.132797

For complex data, min and max use the magnitude only and ignore the phase:

max(2-2i,2+i)

ans = 

2 - 2i

This example also illustrates the syntax min(A,B) and max(A,B), where the functions 
return the largest or smallest of A and B, both matrices that must be of the same size 
(or scalar, which COMSOL Script expands).

For a matrix, min and max return a row vector containing the min or max of each 
column in the matrix. For multidimensional arrays, they return the min/max along the 
first nonsingleton dimension of the array. You can also use the syntax min(A,[],dim) 
and max(A,[],dim) to take the min and max along the dimension in dim:

A = rand(3,1,2)

A(:,:,1) = 
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     0.873289
     0.750284
     0.841772

A(:,:,2) = 

     0.297192
     0.763758
     0.751643

max(A)

ans(:,:,1) = 

     0.873289

ans(:,:,2) = 

     0.763758

max(A,[],2)

ans(:,:,1) = 

     0.873289
     0.750284
     0.841772

ans(:,:,2) = 

     0.297192
     0.763758
     0.751643

max(A,[],3)

ans = 

     0.873289
     0.763758
     0.841772

In this case, 1 is the first nonsingleton dimension, so max(A,[],1) is the same as 
max(A).

O B T A I N I N G  T H E  I N D E X  T O  T H E  M I N I M U M  O R  M A X I M U M  VA L U E

By adding an output argument in the calls to min and max, you get the indices for the 
smallest or largest elements:
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x = [1 9 2 3 4 5];
[xmax, i] = max(x)

xmax = 

9

i = 

2

Computing Mean and Median Values

Similarly, call mean and median to compute the mean and median values for an array:

A = [1 1:10];
mean(A)

ans = 

5.090909

median(A)
ans = 

5

For a matrix, mean and median work in the same way as max and mean.

Computing Standard Deviations, Variances, and Correlations

S T A N D A R D  D E V I A T I O N  A N D  V A R I A N C E

To compute the standard deviation, use the std function. Specifically, y = std(X) 
and y = std(X,0) compute the standard deviation of X, normalizing Y by N − 1, 
where N is the sample size. Similarly, y = std(X,1) computes the standard deviation 
of X, normalizing y by N.

You can also employ a weight vector w to compute the standard deviation. Here, 
y = std(X,w) computes the standard deviation of X using the weight vector w, which 
std normalizes to sum to one. Note that w must contain only nonnegative elements 
and must be of the same length as X along the dimension for which std computes the 
standard deviation.
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For a matrix, std returns a row vector containing the standard deviation of each 
column in the matrix. For a multidimensional array, std returns the standard deviation 
along the array’s first nonsingleton dimension. Use the syntax std(A,w,dim) to 
compute the standard deviation along the dimension in dim.

The var function computes the variance, and it has the same syntax and input 
arguments as std. For the same input, std(A) is the same as sqrt(var(A)).

C O V A R I A N C E  M A T R I C E S

Use the covar function to compute the covariance matrix for a matrix X:

X = [0 1 2; 2 3 4;1 0 3];
c = cov(X);
v = diag(c)';
v1 = var(X);

As you can se if you run this script, the diagonal of c contains the variance of each 
column of X. The cov function uses normalization by M−1, where M is the number of 
observations, and it also removes the mean from each column before calculation.

C O R R E L A T I O N  C O E F F I C I E N T S

If you want to compute correlation coefficients, use the corrcoef function. The input 
X is a matrix where each row is an observation and each column a variable. The 
resulting correlation coefficients matrix R is a matrix such that each element

where C is the covariance matrix of the input X. Using an optional second output 
argument, corrcoef can also return the p-value, which represents the probability of 
getting a correlation as large as the observed value, given that the null hypothesis is 
true. Optional third and fourth output arguments contain lower and upper bounds, 
respectively, for a confidence interval that you can specify. The default setting provides 
95% confidence intervals.

If the input data contains NaNs, which can represent missing data (see “Handling 
NaNs and Missing Data” on page 145 for more information), you can control how 
corrcoef treats these NaNs using the property rows. The string all (the default) 
means that all data is used, resulting in NaNs in the output. If you provide the string 
complete, the function ignores all rows that contain NaNs. The string rows, finally, 
makes corrcoef use rows with no NaNs in column i or j to compute Rij.

Rij
Cij

CiiCjj

--------------------=
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Computing Sums and Products

COMSOL Script includes functions for both standard sums and products of the 
elements in an array and accumulated sums and products.

The function sum computes the sum of an array, while prod computes its product. For 
a matrix, the output of sum and prod is a row vector containing the sum or product of 
each column in the matrix. For a multidimensional array, the output is the sum or 
product along the first nonsingleton dimension. Using sum(X,dim) or prod(X,dim) 
returns the sum or product of X along the dimension in dim.

The functions cumsum and cumprod compute the accumulated sum and the 
accumulated product, respectively. The output is the same size as the input and 
contains the cumulative sum or cumulative product along the first nonsingleton 
dimension of the input array. Use cumsum(X,dim) and cumprod(X,dim) to compute 
the cumulative sum and cumulative product of the elements along dimension dim of 
the input array X.

Some examples:

• Compute the factorial of 10 (10!):

prod(1:10);

and all factorials from 1! to 10!:

cumprod(1:10)

(You can also use the factorial function to compute factorials.)

• Let the 3 × 12 array A contain sales data from three offices during each month of a 
year:

A=round(1000*rand(3,12))
A = 

  471  415  522  154  171  203  981  998  591  533  602  768
  767  119  107  190  656  726  306  134  447  605  635  338
  968  909  369  600  152  129  455  792  663  238  496  950

Then, to compute the total sales for each month:

sum(A)

ans = 

  2206  1443   998   944   979  1058                             
  1742  1924  1701  1376  1733 2056

To compute the accumulated total sales for each month and each office type:
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cumsum(A)

The accumulated total sales for each month is:

cumsum(sum(A))

The sum total of all sales during the year is:

sum(sum(A))

The total sales during the year for each office is:

sum(A,2)

Sorting Data

Use the sort function to sort array elements in ascending order. If the data is in a 
matrix, the function sorts each column. For a multidimensional array, it sorts along the 
first nonsingleton dimension. Further, y = sort(x,dim) sorts x along the dimension 
in dim.

To get the original index of the elements, add an extra output argument:

[y,ind] = sort(x);

ind is then an array of the same size as x containing the original index of each element 
in y along the dimension in which X is sorted.

If the input data contains complex values, sort sorts them first by magnitude and then 
by angle.

To sort rows, the function y = sortrows(x) sorts the rows of x in ascending order 
(x must be a matrix or a column vector). Using a second input argument, y = 
sortrows(x,col), sorts the rows of x according to the columns specified in col, 
which must be a vector of positive integers, where each entry specifies one column.

sortrows behaves like a dictionary sort:

A=strvcat('Azimuth','Aluminum','Aluminium','Alumina','Alligator')
A = 

  Azimuth
  Aluminum
  Aluminium
  Alumina
  Alligator

char(sortrows(abs(A)))

ans = 
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  Alligator
  Alumina
  Aluminium
  Aluminum
  Azimuth

char(sortrows(abs(A),7))

As = 

  Alumina
  Azimuth
  Aluminium
  Alligator
  Aluminum

The last call to sortrows in this example made it sort along Column 7.

Handling NaNs and Missing Data

When an NaN appears in an array, it can represent missing or non-numeric data. In 
COMSOL Script, an NaN propagates through computations because the output from 
most functions is NaN if the input contains an NaN. So, to do statistical measures on 
data with NaNs, you must first remove them and then make the computations on the 
remaining data. 

Consider finding the mean value of the columns in the matrix A:

A = [1 2 NaN 3 4; 5 NaN 6 NaN NaN; NaN 7 8 9 10]'

A = 

   1     5     NaN
   2     NaN   7
   NaN   6     8
   3     NaN   9
   4     NaN   10

mean(A)

ans = 

   NaN   NaN   NaN

Instead of using mean directly, use a loop that removes the NaNs from each column:

for i=1:size(A,2)
  col = A(:,i);
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  col = col(~isnan(col));
  mn(i) = mean(col);
end

mn

mn = 

   2.500000   5.500000   8.500000

The need for the loop arises because the columns of data vary in size after the removal 
of the NaNs. In the same way you could remove or replace data that, for example, 
represents outliers in a data set.

For information about how the function corrcoef treats NaNs when computing 
correlation coefficients, see “Correlation Coefficients” on page 142.

Summary of Functions for Statistical Analysis

The following table summarizes the functions for statistical analysis:

TABLE 8-1:  FUNCTIONS FOR STATISTICAL ANALYSIS AND SORTING

FUNCTION NAME DESCRIPTION

corrcoef Compute correlation coefficients

cov Compute the covariance matrix

cumprod Compute the accumulated product of array elements

cumsum Compute the accumulated sum of array elements

histc Histogram count

max Compute the maximum value

mean Compute the mean value

median Compute the median value

min Compute the minimum value

prod Compute the product of array elements

sort Sort data in an array

sortrows Sort rows

std Compute the standard deviation

subspace Compute the principal angle between subspaces

sum Compute the sum

var Compute the variance
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Da t a  Ana l y s i s  P l o t s

Bar Graphs

The function bar creates a bar graph based on the input data. For example,

sales = [120; 103; 136; 127; 141; 128; 156; 180; 173; 
          182; 198; 210];
months = 1:12;
bar(months,sales)

creates the following bar graph:

You can also create groups of bars using a matrix as the second input argument:

sales = round(100*rand(10,12));
years = 1:10;
bar(years,sales)
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Each group of 12 bars in the following plot represents the monthly sales during one 
year

Using additional input arguments, you can stack the bars and change their color and 
relative width.

Error Bars

You can add error bars to plots of data using the errorbar function. Either provide 
both a lower and an upper error range or a single error range that applies to both the 
lower and upper error ranges. In addition, you can supply a string that controls the line 
style and color (see “The Plot Command” on page 205 for details) and also additional 
property name and property value pairs for the line object. As an example, show some 
random data with random lower and upper error ranges using red asterisks to indicate 
the data points:

x = 1:10;
y = rand(size(x));
low = 0.25*rand(size(x));
high = 0.25*rand(size(x));
errorbar(x,y,low,high,'r*');
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Histograms

To sort data into bins and plot them as a histogram, use the hist function.

r = randn(1,1000);
n = hist(r,20);

creates 1000 normally distributed random numbers and uses hist to divide them into 
20 bins (the default is 10 bins) of equal size. The output n is a 1× 20 row vector that 
contains the number of elements in r that falls into each bin. To plot this as a 
histogram, call hist without output arguments:

hist(r,20)
title('Histogram of normally distributed random numbers');
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The function histc stores data in bins specified by a second input argument:

n = histc(x,edges)

where edges is a vector containing monotonically nondecreasing values so that x(i) 
falls in bin k if edges(k) <= x(i) < edges(k+1). At the end, the last bin includes the 
values in x that match it exactly, so to include all values (except NaNs) use -inf and 
inf at the ends of edges.

Stairstep Plots

The function stairs creates a stairstep graph based on the input data. For example,

x = linspace(1,10,30);
y = sin(x);
stairs(x,y,'r')

creates the following stairstep graph:
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You can also create groups of stairs using matrices as input arguments:

x = 1:0.1:10;
y1 = sin(x); y2 = cos(x);
stairs([x(:),x(:)],[y1(:),y2(:)]);
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This plots the sine and cosine functions as stairstep graphs next to each other:

Using additional input arguments, you can change the properties of the graph, such as 
line width, color etc.

Stem Plots

The functions stem and stem3 create a stem graphs based on the input data. For 
example,

x = 1:10;
y = sin(x);
stem(x,y,'r--');
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creates the following graph:

You can also create groups of stems using a matrices as input arguments:

x1 = 1:10; x2 = x1+0.3;
y1 = sin(x1); y2 = cos(x2);
h=stem([x1(:),x2(:)],[y1(:),y2(:)], 'marker','cycle');

This plots the sine and cosine functions as stem graphs next to each other, using 
different markers:
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Using additional input arguments, you can change the properties of the graph, such as 
line width, color etc.

Summary of Functions for Data Analysis Plots

The following table summarizes the functions for statistical analysis:

TABLE 8-2:  FUNCTIONS FOR STATISTICAL ANALYSIS AND SORTING

FUNCTION NAME DESCRIPTION

bar Bar graph plot

errorbar Error bar plot

hist Calculate histogram data or plot histogram

stairs Stairstep plot

stem Stem plot in 2D

stem3 Stem plot in 3D
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S i g n a l - P r o c e s s i n g  T oo l s

COMSOL Script contains two signal-processing tools:

• The fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT)

• A general function for 1D digital (discrete) filtering.

Using the FFT Functions

The FFT algorithm computes the discrete fast Fourier transform of a sequence of input 
data. It is an extremely common numerical algorithm in many signal-processing 
applications such as filtering and power-spectrum estimations.

COMSOL Script uses the fft function to compute the FFT of a vector or a matrix. 
For a matrix, it computes the FFT of the columns. Additionally, 2D and n-dimensional 
FFT routines (fft2 and fftn) are also available. To calculate the inverse FFT, select 
one of the functions ifft, ifft2, and ifftn.

E X A M P L E  O F  A N  F F T  F O R  T H E  S I N E  F U N C T I O N

The sine function

has the Fourier transform:

To show this using COMSOL Script, run the following code:

x = -10:0.1:10;
k0 = 0.2;
y = sin(2*pi*k0*x);
subplot(3,1,1); plot(x,y);
title('The sine wave')
yf = fft(y);
X = -5:1/20:5;
subplot(3,1,2); plot(X,fftshift(abs(yf)));
title('The Fourier transform of a sine wave')
subplot(3,1,3); plot(x,ifft(yf));
title('The sine wave computed using ifft')

y 2πk0x( )sin=

1
2
---i δ k k0+( ) δ k k0–( )–[ ]
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Figure 8-1: The original sine wave (top), the FFT of the sine wave (middle), and the 
reconstruction of the original sine wave from the inverse FFT of the FFT of the input data 
(bottom).

The function ifft shifts the frequency spectrum so that the 0 frequency point appears 
in the middle, showing the peaks in the Fourier transform at k0 and −k0.

Type yf to see that the FFT of the sine wave contains complex data (the plot shows 
only the real part).

Using the Digital Filter Function

filter is a general-purpose function for performing 1D digital filtering. y = 
filter(b,a,x) works with a filter that is a direct form II transposed implementation 
of the standard difference equation:

It implements a filter of order n−1. By specifying the a and b coefficients as vectors in 
the inputs a and b, you can realize different filter types, discrete transfer functions, or 

a1yn b1xn b2xn 1– … bnb 1+ xn nb– a2yn 1–– …– ana 1+ yn na––+ + +=
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general difference equations by indentifying the number of a and b coefficients and 
their values. If a1 is not equal to 1, filter normalizes all other coefficients using a1.

E X A M P L E  O F  F I L T E R  F O R  A  F I R S T - O R D E R  S T E P  R E S P O N S E

Consider a standard first-order step response:

Using a simple difference approximation with the step h, the equivalent discrete 
transfer function is

where yn is the output at time t, and yn-1 is the output at t−h. The following code 
implements this equation using the filter function and tests it on an input step:

h = 0.1;
t = 0:h:10;
u = zeros(size(t));
u(11:end) = 1;
plot(t,u)
k = 1;
tau = 2;
a = [h+tau, -tau];
b = h*k;
y = filter(b,a,u);
hold on;
plot(t,y,'k--')

y k
1 τs+
---------------u=

h τ+( )yn khun τyn 1–+=
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Figure 8-2: Input signal (blue, solid) and simulated first-order step response (black, 
dashed).

Simulating Discrete-Time State-Space Models

Use the dlsim function to simulate discrete-time state-space models on the form

The dlsim function computes the output y and the states x with the input signal u and 
the state-space matrices A, B, C, and D as inputs. You can also provide an optional 
initial state x0:

[y,x] = dlsim(A,B,C,D,u,x0);

x k 1+[ ] Ax k[ ] Bu k[ ]+=

y k[ ] Cx k[ ] Du k[ ]+=
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Note: The dlsim function is a low-level function for state-space simulation. The 
Signals and Systems Lab contains a comprehensive suite of tools for discrete-time and 
continuous-time systems modeling and simulation.

Summary of Signal-Processing Functions

The following table summarizes the signal-processing functions in COMSOL Script:

TABLE 8-3:  SIGNAL PROCESSING FUNCTIONS

FUNCTION NAME DESCRIPTION

dlsim Simulate discrete-time state-space model

fft Compute the fast Fourier transform

fft2 Compute the 2D fast Fourier transform

fftn Compute the n-dimensional fast Fourier transform

fftshift Shift a frequency spectrum computed using FFT

filter 1D digital filtering

ifft Compute the inverse fast Four transform

ifft2 Compute the inverse 2D fast Four transform

ifftn Compute the inverse n-dimensional fast Four transform

ifftshift Undo the frequency spectrum shift performed by fftshift 
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I n t e r p o l a t i o n  and Po l y n om i a l s

This section describes the interpolation, triangulation, and polynomial functions in 
COMSOL Script.

Interpolating Data

For interpolating data, COMSOL Script provides routines for 1D, 2D, and 3D data: 
interp1, interp2, and interp3, respectively.

y = interp1(x,y,xi) implements a linear interpolation to determine y = f(xi) for  
y = f(x). The default method is linear interpolation, but you can select another 
interpolation method by providing one of the strings in Table 8-4 as an extra input 
argument: y = interp1(x,y,xi,method):

For 2D and 3D interpolation, only nearest and linear are possible choices. The 2D 
and 3D interpolations can handle vectors of x, y, and z (3D only) data and also a grid 
matrix that you can generate with the meshgrid function.

E X A M P L E  O F  1 D  I N T E R P O L A T I O N

Consider interpolation within the following function:

in the interval between 0 and 1:

x = 0:0.1:1;
y = 3*sin(pi*x).*exp(sin(pi/2*x));

To interpolate to the values of y at 0.25, π/4, and 0.75, type:

xi = [0.25 pi/4 0.75];
yi = interp1(x,y,xi,'cubic')

TABLE 8-4:  1D INTERPOLATION METHODS

STRING DESCRIPTION

cubic Piecewise cubic Hermite interpolation

linear Linear interpolation

nearest Nearest neighbor

spline Cubic spline interpolation

y 3 πx( )e

π
2
---x⎝ ⎠
⎛ ⎞sin

sin=
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yi = 

   3.110360   4.812198   5.343375

The exact values that result from the code

yi = 3*sin(pi*xi).*exp(sin(pi/2*xi))

when rounded to four significant digits, are 3.110, 4.812, and 5.344, and a 
comparison shows that the spline interpolation does a good job at providing the 
interpolated values:

E X T R A P O L A T I N G  O U T S I D E  O F  R A N G E

The interpolation routines also support extrapolation using an extra input argument 
that can take the following values:

• The string 'const' for extrapolating using a constant value

• The string 'extrap' for extrapolation using the selected interpolation method

• A scalar value, which the interpolation function returns for out-of-range values

The default extrapolation method is extrap for spline and cubic. For other 
interpolation methods, the interpolation functions return NaNs for out-of-range values 
if you do not provide an extrapolation method. For example, using the same x and y 
as in the previous example:

xi = 1.5;
yi = interp1(x,y,xi,'cubic')
yi = 

-15.839364

yi = interp1(x,y,xi)
yi = 

NaN

For interpolation using polynomials and splines, see “Interpolation Using Polynomials 
and Splines” on page 164.

Working With Polynomials

To represent a polynomial in COMSOL Script, it is convenient to work with a row 
vector of polynomial coefficients. For example, to represent the polynomial

17x4 10x3 2x2
– 5x 3–+ +
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type

p = [17 10 -2 5 -3]

The functions that work with polynomials interpret the elements in a row vector as the 
coefficients in a polynomial, ordered by descending powers (if there were no x3 term, 
for example, the second element in the vector would be 0).

Use the function roots to find the roots of a polynomial:

r =roots(p)

r =

   -1.084828 +        0i
    0.038923 + 0.622059i
    0.038923 - 0.622059i
    0.418746 +        0i

so r(4) is a positive real root. 

Use the function polyval to evaluate polynomials:

polyval(p,0)

ans = 

-3

polyval(p,r(4))

ans = 

-8.882e-016

The last value is not exactly zero due to limited numerical precision.

You can also integrate and differentiate polynomials using the polyint and polyder 
functions. 

To multiply and divide polynomials, the convolution and deconvolution functions 
conv and deconv are useful:

p1 = [1 1];
p2 = [1 -1];
p3 = conv(p1,p2)

p3 = 

  1  0  -1
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[p4,r] = deconv(p1,p2)
p4 = 

1

r = 

  0  2

The conv and deconv calls compute (x+1)(x-1) and (x+1)/(x-1), respectively, where 
the polynomial division yields a remainder of 2 in the variable r.

For 2D and multidimensional convolution of matrices, use the conv2 and convn 
functions, respectively.

F I T T I N G  A  P O L Y N O M I A L  T O  A  S E T  O F  D A T A

The function polyfit is available for fitting a polynomial to a set of data. polyfit 
uses a least squares polynomial fit, so that for a set of x and y values, it computes a 
polynomial p that minimizes

so that p(x) is an approximation of y.

As an example, use a 10th-degree polynomial to approximate the function y = (1+x)/
(1+(5−x)2) in the interval between 0 and 10 and then plot the resulting polynomial 
(see Figure 8-3):

x=0:0.1:10;
y = (1+x)./(1+(5-x).^2);
p = polyfit(x,y,10);
yp=polyval(p,x);
plot(x,y,'b',x,yp,'r*');

polyfit can also return a second output variable S, which contains a structure with 
the fields R (the Cholesky factor of the Vandermonde matrix), df (the degrees of 
freedom), and normr (the norm of the residuals). You can use it with polyval to 
compute error estimates D as second output argument from polyval.

p xi( ) yi–( )2

i 1=

n

∑
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Figure 8-3: The original functions (blue, solid) and the 10th-degree polynomial 
approximation (red, asterisks)

I N T E R P O L A T I O N  U S I N G  P O L Y N O M I A L S  A N D  S P L I N E S

The spline function performs cubic spline interpolation. The basic syntax is:

yi = spline(x,y,xi);

which provides spline interpolation of y at the points in x and then returns an array yi 
with the values of y at the points in xi. You can also use the spline function to perform 
spline interpolation and return the cubic spline interpolant as a piecewise polynomial 
structure instead of returning interpolated data. To do so, use the following syntax:

pp = spline(x,y);

For a piecewise cubic Hermite interpolation, use the pchip function, which uses the 
same syntax as the spline function.

You can then reuse and evaluate this piecewise polynomial using the ppval function. 
The following example shows how to first interpolate points from a trigonometric 
function using both spline and pchip and then reuse the piecewise polynomial for 
another interpolation:
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x = linspace(0,2*pi,10);
y = sin(x).*cos(x);
xi = linspace(0,2*pi,20);
yis = spline(x,y,xi);
yih = pchip(x,y,xi);
pps = spline(x,y);
pph = pchip(x,y);
xi1 = linspace(0,2*pi,100);
yips1 = ppval(pps,xi1);
yiph1 = ppval(pph,xi1);
plot(x,y,'b',xi,yis,'r--',xi,yih,...
     'm-.',xi1,yips1,'go',xi1,yiph1,'k*');

The following plot shows the results:

Figure 8-4: Interpolation using splines and cubic Hermite interpolation: original data 
(blue, solid), coarse spline interpolation (red, dashed), coarse Hermite interpolation 
(magenta, dash-dotted), fine spline interpolation (green, circles), and fine Hermite 
interpolation (black, asterisks).

To create piecewise polynomials directly, use the mkpp function, which returns a 
structure representing the piecewise polynomial described by its breaks and 
coefficients. The breaks is a vector with increasing elements, representing the start and 
end of each interval, and you provide the coefficients in a matrix where each row 
contains the coefficients (in order from highest to lowest exponent) of the polynomial 
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for one interval. For example, to create a piecewise polynomial with two polynomial 
species, 2x2+3x+5, and x2+x+4, on the intervals [1, 2] and [2, 5], respectively, type:

b = [1 2 5];
c = [2 3 5;1 1 4];
pp = mkpp(b,c);

To extract information from a piecewise polynomial structure, use the unmkpp 
function, which returns the breaks, coefficients, number of pieces, order, and 
dimension of the piecewise polynomial:

[breaks,coefs,pieces,order,dim] = unmkpp(pp);

Data Gridding and Triangulation of Point Data

D E L A U N A Y  TR I A N G U L A T I O N

The functions delaunay and delaunay3 perform Delaunay triangulation of point data 
in 2D and 3D, respectively. A Delaunay triangulation creates a set of triangles (or 
tetrahedrons) such that no points are contained in any triangle’s (or tetrahedron’s) 
circumcircle (circumscribed circle). As an example, perform a Delaunay triangulation 
for some random 2D points and plot it as a mesh plot using trimesh:

x = rand(1,20);
y = rand(1,20);
t = delaunay(x,y);
trimesh(t,x,y);
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You can also use boundary element information to control the triangulation for 
geometries that includes topological information about boundaries and subdomains. 
For more information, see the command-line help and the COMSOL Script 
Command Reference entry for delaunay.

The mesh plot function trimesh can take height and color data to create a 3D plot. 
You can also further control the properties of the line object or patch object that 
trimesh creates. For a corresponding surface plot, use the trisurf function.

D A T A  G R I D D I N G

For data gridding, use the functions griddata, griddata3, and griddatan, which 
work on 2D data, 3D data, and n-D data, respectively.

zi = griddata(x,y,z,xi,yi);

The griddata function performs a Delaunay triangulation on x and y, where z = 
f(x, y), and interpolates xi and yi linearly to determine zi = f(xi, yi). The points do not 
need to be uniformly spaced. If the inputs x and y are not of the same size, COMSOL 
Script interprets them as vectors of different orientation and uses x and y that are the 
same as what you get from a call to meshgrid with x and y as inputs. z must either be 
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the same size as x and y or, when they are vectors of different orientation, a matrix with 
the same number of rows as the length of x and the same number of columns as the 
length of y. The formats as for x and y apply to xi and yi. It is also possible for the 
data gridding functions to return a structure for interpolation purposes:.

s = griddata(x,y,xi,yi);

returns a structure s that contains the triangulation of x and y and information about 
which Delaunay element the points in xi and yi belong to, including local 
coordinates. You can use this together with the tinterp function to interpolate 
different data values using the same points and triangulation (see “Search and 
Interpolation Functions” on page 168). In addition, you can specify the interpolation 
method as an extra input argument to the data gridding functions. The interpolation 
method can be linear interpolation (linear, which is the default method) or nearest 
neighbor interpolation (nearest). In this case, the nearest neighbor signifies the 
closest vertex in the nearest Delaunay triangle.

The other data gridding functions, griddata3 and griddatan, work in a similar way. 
For more information about the data gridding functions, including some additional 
input arguments, see the COMSOL Script Command Reference or the command-line 
help. An example using griddata appears in “Data Gridding and Interpolation 
Example” on page 169.

S E A R C H  A N D  I N T E R P O L A T I O N  F U N C T I O N S

To find Delaunay elements for a set of points, use the tsearch and tsearchn 
functions. For example,

ind = tsearch(x,y,tri,xi,yi);

provides the indices to the Delaunay elements for all points (xi, yi) defined by the 
vectors xi and yi. The vector ind contains indices into tri (or NaNs for points 
outside the mesh), which is the triangulation of x and y, typically from a call to the 
delaunay function. To get the barycentric coordinates for xi and yi, use the 
tsearchn function:

[ind,coord] = tsearchn([x(:),y(:)],tri,[xi(:),yi(:)]);

The tsearchn function finds Delaunay elements in any space dimension and uses 
point data matrices instead of vectors with x and y coordinates (containing N × 2 
elements in 2D and N × 3 elements in 3D)

For interpolation on a Delaunay triangulation, use the tinterp function:

yi = tinterp(s,y);
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This function uses the Delaunay triangulation in the structure s, which can be the 
output from a call to griddata, for example, and interpolates linearly to compute the 
interpolated values based on y, which must have a size that matches the original data 
points. For details on the structure s, see the command-line help for tinterp and the 
COMSOL Script Command Reference. The following example uses the griddata 
and tinterp functions.

Data Gridding and Interpolation Example
The following script first creates 100 random points for the function

and then interpolates onto a 41x41 rectangular grid between −2 and 2 in the 
x direction and the y direction. The plot shows the original data and a wireframe 
surface of the interpolated data.

rand('state',0);
x = 4*rand(1,100)-2;y = 4*rand(1,100)-2;
ti = -2:.1:2;
[xi,yi] = meshgrid(ti,ti);
g = griddata(x,y,xi,yi,'linear',[],'closest');
z=sin(x).*cos(y).*exp(-2*x.^2-y.^2);
zi1 = tinterp(g,z);
plot3(x,y,z,'*');
hold on;
mesh(xi,yi,zi1);

z x( ) y( )e 2x2– y2–( )cossin=
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Figure 8-5: Wireframe plot of interpolated data based on the function value at 100 
random points.

Summary of Interpolation and Polynomial Functions

The following table summarizes functions for interpolation, triangulation, and 
polynomials:

TABLE 8-5:  INTERPOLATION, TRIANGULATION, AND POLYNOMIAL FUNCTIONS

FUNCTION NAME DESCRIPTION

conv Convolution of vectors (polynomial multiplication)

conv2 2D convolution of matrices

convn Multidimensional convolution of matrices

deconv Deconvolution of vectors (polynomial division)

delaunay Delaunay triangulation

delaunay3 3D Delaunay triangulation

griddata 2D data gridding

griddata3 3D data gridding

griddatan n-D data gridding
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interp1 1D interpolation

interp2 2D interpolation

interp3 3D interpolation

mkpp Make piecewise polynomial

pchip Piecewise cubic Hermite interpolation

poly Polynomial with specific roots

polyder Differentiate a polynomial

polyfit Polynomial fit

polyint Integrate a polynomial

polyval Evaluate a polynomial

ppval Evaluate piecewise polynomial

roots Find polynomial roots

spline Cubic spline interpolation

tinterp Interpolation on Delaunay triangulation

trimesh Create a mesh plot with triangles

trisurf Create a surface plot with triangles

tsearch Find Delaunay element

tsearchn Find Delaunay element in nD

unmkpp Extract details from piecewise polynomial

TABLE 8-5:  INTERPOLATION, TRIANGULATION, AND POLYNOMIAL FUNCTIONS

FUNCTION NAME DESCRIPTION
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D i f f e r e n t i a t i o n and I n t e g r a t i o n

COMSOL Script includes several functions for numeric differentiation and 
integration.

Difference, Gradients, and Laplacian Computations

C O M P U T I N G  T H E  D I F F E R E N C E  A N D  A P P R O X I M A T E  D E R I V A T I V E

To approximate the derivative of a function, one approach is to compute the 
differences between adjacent elements in an array with the diff function:

x = [1 2 4 7 11 16 22 29]

x =

  1   2   4   7   11   16   22   29

diff(x)

ans =

  1   2   3   4   5   6   7

The following code now illustrates how diff provides a numerical approximation of 
the function’s derivative:

h = 0.01;
x = 0:h:10;
f = x.^2;
der = diff(f);
plot(x(1:end-1),f(1:end-1))
hold on
plot(x(1:end-1),der/h,'r--')
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Figure 8-6: A plot of x2 (solid) and its approximate derivative (dashed).

The straight line representing der/h is the approximation of the derivative to x2, 
which is 2x.

C O M P U T I N G  A  V E C T O R  G R A D I E N T

The function gradient computes an approximate gradient of a vector or array. The 
function assumes a spacing of 1 unless you provide a second input argument for the 
spacing. For 2D data, [fx,fy] = gradient(F) computes the gradient of a matrix f, 
where fx corresponds to ∂F / ∂x, the differences in the column direction, and fy 
corresponds to ∂F / ∂y, the differences in the row direction. In 3D, an additional output 
variable contains the gradient in the z direction.

C O M P U T I N G  T H E  L A P L A C I A N

The function del2 computes the discrete Laplacian of a matrix or multidimensional 
array. The discrete 5-point Laplacian for a matrix is an approximation of the Laplace 
differential operator, ∆, which takes the average of the surrounding four elements and 
subtracts the original element. You can provide nonunit spacing using additional input 
arguments.
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Numerical Integration

There are functions available for two methods for numerical integration: quadrature 
and trapezoidal numerical integration. Both methods determine numerical values of 
definite integrals.

Q U A D R A T U R E

The functions quad and quadl both provide numerical integration using quadrature 
formulas. quad uses Simpson’s rule, which uses quadratic polynomials to provide exact 
results for integrals of polynomials up to degree 3. quadl uses Lobatto quadrature 
with a Kronrod extension (see Ref. 1). Both algorithms use adaptive quadrature, which 
means that they break the integration interval into subintervals and then apply the 
integration rule over each of the subintervals.

The inputs to quad and quadl are the name of the function (integrand) and the start 
value and end value of the integration interval. To integrate the function y = x3 on the 
interval from 0 to 10, define a function, for example myfcn.m, with the following two 
lines:

function y=myfcn(x)
y = x.^3;

Notice the pointwise multiplication, which makes the function work for vector inputs.

int=quad('myfcn',0,10)

int = 

2500

In this case, the integral is exact. To integrate the function y = (1+x)/(1+(5−x)2) on the 
same interval using quadl, change the second line in myfcn.m to

y = (1+x)./(1+(5-x).^2);

Then call quadl (or quad) with a second output argument, which returns the number 
of function evaluations:

[int,count]=quadl('myfcn',0,10);

This function call provides an integral of 16.480687 from 138 function evaluations 
using the default relative tolerance of 10−6. To use a tolerance of 10−8 instead, type

[int,count]=quadl('myfcn',0,10,1e-8);

This case, the resulting integral is 16.480809 from 318 function calls.
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You can also supply a relative tolerance and additional inputs for outputting a trace and 
providing parameters as extra arguments to the function that describes the integrand 
(see the online help or the COMSOL Script Command Reference for details).

TR A P E Z O I D A L  N U M E R I C A L  I N T E G R A T I O N

The trapz function implements trapezoidal numerical integration. trapz(x,y) 
computes the integral of y as a function of x where x and y are vectors of the same size. 
It is also possible to use trapz to compute the integrals of each column in a matrix and 
for multidimensional arrays.

The following example computes the integral of the function y = x3 on the interval 
from 0 to 10. The exact solution is 2500.

h = 0.1;
x=0:h:10;
y=x.^3;
int = trapz(x,y)

int = 

2.500e+003

For cumulative numerical integration, use the function cumtrapz.

Summary of Differentiation and Integration Functions

The following table summarizes the differentiation and integration functions:

Reference

1. W. Gander and W. Gautschi, “Adaptive Quadrature—Revisited,” BIT, vol. 40, no. 
1, pp. 84–101, 2000.

TABLE 8-6:  DIFFERENTIATION AND INTEGRATION FUNCTIONS

FUNCTION NAME DESCRIPTION

cumtrapz Cumulative trapezoidal numerical integration

del2 Discrete Laplacian

diff Compute the difference between adjacent array elements

gradient Compute approximate gradient

quad Numerical integration using adaptive Simpson quadrature

quadl Numerical integration using adaptive Lobatto quadrature

trapz Trapezoidal numerical integration
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Da t a  I n pu t /Ou t pu t

The basic functions for storing data to a file and loading data from a file are save and 
load. Additional basic file I/O functions are available for formatting and saving data 
to files. There are also functions for reading and writing sound data files and for playing 
sound.

Saving and Loading Data To and From a File

To save the entire workspace to a file with the name data01, type:

save datao1

This command saves all workspace variables as binary data in the file data01.flws. 
This is a binary file format that is the default file type when you save data using the 
save command.

To save to a filename that is a string variable, use the functional form of save:

save(filename)

To save only the variables x, y, and u, type:

save data01 x y u

To save data in ASCII text format, add the -ascii switch:

save data01 -ascii

Another switch, -tabs, saves ASCII data in a tab-separated format.

Note: You can save only numerical 2D matrices in ASCII format.

To load workspace data from a file, use the load function:

load data01

To read the loaded data into a structure variable, type

s = load(filename);

It is also possible to read numerical matrix data from a text file (for example, 
matrix.txt) using

load matrix.txt -ascii
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There is a direct correspondence between the rows of data in the text file and the rows 
of data in the resulting COMSOL Script variable. The variable name becomes the same 
as the file name.

Note: Loading variables from a file overwrites any existing variables with the same 
name.

To read data from a text file where the data is separated with a delimiter (typically a 
whitespace character such as a space, a tab, or a line feed), use the dlmread function:

out = dlmread(filename);

reads the file filename and returns a matrix where each row contains a row of the file. 
The elements of the data must be real or complex numbers. The default delimiter is 
whitespace, but you can specify the delimiter as an additional input argument. Using 
additional range arguments makes dlmread read a subset of the data. This is 
convenient when you have a data file with header information, for example, and you 
want to read the data after the header. Contrary to array indexing in COMSOL Script, 
the numbering of rows and columns starts at 0, not 1. Keep this in mind when you 
specify the rows and columns to read a subset of the data. It is also possible to read a 
subset of the data file using Microsoft Excel’s A1 notation for the rows and columns.

You can also write data separated by a delimiter to a text file using the dlmwrite 
function:

dlmwrite('mydata',data)

writes the data matrix as a comma-separated text file mydata. You can also specify the 
delimiter as a third input argument and use a number of empty starting rows and 
columns, which you specify as the fourth an fifth input argument, respectively. In 
addition, there are additional properties that you can use, for example, to control the 
precision. The property values is an integer number or significant digits or a format 
string of the form used by fprintf and sprintf. An example:

data = reshape(sin(1:9), 3, 3);
dlmwrite('TABLE', data, 'delimiter', ':', 'precision', 2)

creates a file called TABLE with the following contents:

0.84:-0.76:0.66
0.91:-0.96:0.99
0.14:-0.28:0.41
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Reading and Writing Formatted Data To a File

Using other COMSOL Script I/O functions you can write formatted data to a file. 
The corresponding functions include fopen for opening files for reading and writing, 
fprintf for formatted printing to a file, fscanf for reading formatted data, and 
fclose for closing files. The table in the next section contains a complete list of I/O 
functions. Also see the Help item for each function accessible from the command line 
and found in the digital document the COMSOL Script Command Reference.

E X A M P L E  O F  W R I T I N G  F O R M A T T E D  D A T A  T O  F I L E

The following function takes two input vectors of the same size and writes the data to 
a text-file format that the interpolation function in COMSOL Multiphysics supports. 
The file has this syntax:

% Grid
x grid points separated by spaces
% Data
Data values separated by spaces

There are three basic steps to saving formatted data to a file:

1 Open a file in write mode with fopen. In the following example, the mode flag is 
'wt', which opens a file for writing in text mode (on Windows only).

2 Use fprintf or fwrite to write data to the file.

3 Close the file with fclose.

The format in fprintf is '%15.5e', a floating-point number with five significant 
digits.

function writefile(filename,X,Y)
% Creates an interpolation data file.
form = '%15.5e';
fid = fopen(filename,'wt');
fprintf(fid,'%% Grid\n');
fprintf(fid,strtrim(sprintf(form,X)));
fprintf(fid,'\n');
fprintf(fid,'%% Data\n');
for iZ = 1:size(Y,3)
    str = cellstr(num2str(Y(:,:,iZ)',form));
    fprintf(fid,'%s\n',str{:});
end
fclose(fid);
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E X A M P L E  O F  R E A D I N G  T E X T  F R O M  A  F I L E

A routine can read the Help text from a COMSOL Script file (here, kron.m). To do 
so, type the following:

kronlocation = which('kron.m');
fid = fopen(kronlocation,'r');
if fid>0
  kronstr = fread(fid);
  char(kronstr')
  fclose(fid)
end

The default format for fread is to read all characters in the file. The output is a double 
array with the corresponding ASCII values of the string. The check of the file ID from 
fopen make sure that COMSOL Script was able to open the file successfully; a file ID 
of −1 indicates that fopen failed to open the file.

Saving and Loading MAT-Files

To save or load data to MAT-files, use the -mat switch. For example,

load -mat mydata

loads the variables in mydata.mat into the COMSOL Script workspace. If you do not 
specify an extension, the default setting is to save to a .ws-file and to load from either a  
.ws- or a MAT-file (extension .mat). COMSOL Script can read MAT-files created 
using MATLAB version 5.0 or later. The following types of data in MAT-files are not 
fully supported:

• Integers and unsigned integers (data types int*, uint16, uint32, and uint64), 
which become double arrays in COMSOL Script.

• MATLAB objects, which the load function loads into structures, except for inline 
functions and COMSOL Multiphysics objects created by FEMLAB/COMSOL 
Multiphysics versions 3.0 and later. Loading these objects converts them into the 
corresponding COMSOL Script data types.

Interfacing With Microsoft Excel Spreadsheets

You can both read data from Microsoft Excel spreadsheet files (.xls files) and update 
Excel files with data from COMSOL Script.

R E A D I N G  D A T A  F R O M  E X C E L  S P R E A D S H E E T S

To read data from, for example, data.xls, type:
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num = xlsread('data.xls');

With one output argument, xlsread only reads numerical data. You can add 
additional output arguments to include text and mixed data (“raw data”):

[num,txst,raw] = xlsread('data.xls');

You can also supply an integer or string that specifies the sheet to read from and a range 
using Excel’s A1 notation, for example, A1:K16:

[num,string,raw] = xlsread('data.xls',1,A1:K16);

By default, xlsread trims leading and trailing rows and columns that contains NaNs 
(nonnumeric data) for the numeric and raw-data parts, and it also trims leading and 
trailing empty strings for the text part. It is possible to turn off this trimming by setting 
the trim property to off.

The xlsread function supports the Excel 97 format and later versions.

W R I T I N G  D A T A  T O  E X C E L  S P R E A D S H E E T S

To write data from COMSOL Script to an Excel spreadsheet, use xlswrite:

xlswrite('mydata.xls',data)

The data can be a matrix of real-valued numerical data or a cell array. For a cell array, 
xlswrite only writes numerical data and strings. If you want to combine text data 
with numerical data, you must use a cell array. To convert a double matrix into a cell 
array, use the num2cell function.

Use one or two additional input arguments to specify a sheet and range in the 
spreadsheet where you want to store the data, for example:

xlswrite('mydata.xls',data,'Sheet 1',A2:G10)

Reading and Writing Sound Files and Playing Sounds

COMSOL Script includes functions for reading and writing sound data as wave sound 
files (with extension .wav) as well as functions for playing sounds.

R E A D I N G  A N D  W R I T I N G  WAV E  S O U N D  F I L E S

You can read and write wave sound files using the functions wavread and wavwrite, 
respectively. The sound data is pulse-code modulated signal data, where the number 
of bits per sample must be 8 or 16. For a mono sound, the sound data is a column 
vector, and for stereo sound, the sound data is an N × 2 matrix with two columns for 
the to stereo channels.
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The basic syntax for wavread is

data = wavread(filename);

where filename is the name of the .wav file. You can also get the sample rate, the 
number of bits, and a description (if available) as the second, third, and fourth output 
argument, respectively.

To output the number of frames and channels but ignore the signal, type

[nframes, nchannels] = wavread(filename,'size');

In addition, you can use a scalar or vector of length 2 as the second input argument to 
wavread in order to only read the first few samples or a range of samples.

To write wave sound data to a .wav file, use wavwrite:

wavwrite(data,filename)

where data is the wave sound data, and filename is the name of the .wav file. Use 
optional second and third input arguments to specify the sample rate and the number 
of bits per sample (must be 8 or 16; the default is 16 bits per sample).

P L A Y I N G  S O U N D S

To play a sound, use the functions sound or soundsc:

sound(data)

interprets the contents of data in data as a pulse-code modulated signal and plays it 
with a sample rate of 8192 Hz using 16 bits per sample. The sound function clips 
signal values outside the range of [−1, 1]. You can use optional second and third input 
arguments to specify the sample rate and the number of bits per sample (8 or 16), 
respectively.

The soundsc function also plays sound and uses the same syntax but scales and 
translates the signal such that the minimum and maximum amplitudes sent to the 
output device are −1 and 1, respectively.

Note: The sound and soundsc functions are only available if the platform has 
support for sound.
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Summary of Input/Output Functions

The following table summarizes the I/O functions:d

TABLE 8-7:  I/O FUNCTIONS

FUNCTION NAME DESCRIPTION

delete Delete files or graphics objects

dlmread Read a delimited file

dlmwrite Write a delimited file

fclose Close an open file

feof Test if end-of-file has been reached

ferror Return or clear the error message

fgetl Read a line from a file (discarding line feed character)

fileparts Split a filename into path, name, and extension

filesep Get the system file separator

fopen Open a file or get information about opening a file

fprintf Write formatted output to a file

fread Read binary data from a file

frewind Rewind a file

fscanf Read formatted data from a file

fseek Move a file pointer

ftell Get the position of the file pointer

fullfile Create a file name

fwrite Write data to a binary file

load Load the workspace data from a file

pathsep Get the system path separator

save Save the workspace data to a file

sound Play a sound

soundsc Play a scaled sound

strread Read formatted text

tempdir Get the directory where temporary files can be created

tempname Get a temporary file name

textread Read a formatted text

wavread Read a .wav sound file

wavwrite Write a .wav sound file
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xlsread Read a .xls Excel spreadsheet file

xlswrite Write to a .xls Excel spreadsheet file

TABLE 8-7:  I/O FUNCTIONS

FUNCTION NAME DESCRIPTION
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Da t e  and T ime Fun c t i o n s

COMSOL Script includes functions for getting both the time and date and for 
measuring the time it takes to run a function, script, or series of statements.

Getting the Current Date and Time

To get the current date, use the date function:

today = date

today = 

  22-Jul-2005

date returns the current date in a string with the format DD-MMM-YYYY. You can 
use the string function strtok to extract the day, month, and year into separate string 
variables:

[day,remainder] = strtok(today,'-');
[month,remainder] = strtok(remainder,'-');
year = strtok(remainder,'-');

To get the current time, use the clock function:

t = clock

t = 

     2005      7     22     9     26     37.250000

clock returns the current time in a 1 × 6 vector (double array). The elements represent, 
from left to right:

• The current year

• The current month

• The current day

• The current hour

• The current minute

• The current second

All values except the value for seconds are integers.
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Measuring Elapsed Time

Three functions are available to measure elapsed time while running COMSOL Script 
functions and programs:

• Use etime to get the elapsed time, in seconds, as the difference between two times. 
A typical application is to first store the current time in a variable

t1 = clock;

and then run the code that you want to clock and get the elapsed time as

t2 = etime(clock,t1);

With etime you can measure several elapsed times and store them in variables for 
further analysis.

• Use tic and toc for quick measurements of the elapsed time:

tic, a = norm(rand(1000)); toc

Elapsed time:  3.281 s

tic starts a timer, and toc stops it. Use t = toc to store the elapsed time.

Summary of Functions for Date and Time

The following table summarizes the functions for date and time:

TABLE 8-8:  DATE AND TIME FUNCTIONS

FUNCTION NAME DESCRIPTION

clock Current time

date Current date

etime Elapsed time

tic Start the timer

toc Stop the timer
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P l o t t i n g  a n d  V i s u a l i z i n g  D a t a
To plot data from an analysis or from a model, COMSOL Script provides a variety 
of plots and graphs. This chapter introduces you to the various graphics objects 
such as frames and axes objects as well as the different types of plots in 2D and 3D 
and the functions to create them.
 187
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I n t r o du c t i o n  t o  G r aph i c s  Ob j e c t s

To most easily understand the terminology in this chapter, start with a short example. 

Enter the following three lines of code into COMSOL Script and then examine the 
result:

x=linspace(0,2*pi,100);
y=sin(x);
plot(x,y);

The plot command generates a figure window, at the top of which is a toolbar. The 
figure window also contains one axes object in which the software has plotted the 
desired function, sin(x). As you will see, a figure window can contain multiple axes 
objects, in 2D or 3D, each plotting a different function.

Now let us look at each of these elements in detail and how to construct them.
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Th e  F i g u r e  W indow

Figure Window Functions

A figure window is the highest-level plotting object. It contains one or more axes 
objects into which you plot data sets (see “Axes” on page 193 for more information). 

Start by examining some basic functions associated with a figure window: 

Plotting functions create a new figure window automatically as needed. You can also 
explicitly create a new figure window by typing

figure

To retrieve the handle to the current figure window, call gcf; to get the handle to the 
current axes object, call gca. To make the figure with handle h the current figure 
window, enter

figure(h)

Figure Window Toolbar

At the top of any figure window is a toolbar with buttons for quick access to commonly 
performed tasks.

The buttons on the toolbar are, from left to right (some are available only for 3D 
plots):

• Export Image—Export the plot in the figure window as an image.

• Print—Send the plot in the figure window to a printer.

TABLE 9-1:  FUNCTIONS RELATED TO FIGURE WINDOWS

FUNCTION NAME DESCRIPTION

clf Clear the contents in the current figure window

drawnow Flushes graphics rendering and repaints the screen. Usually the 
screen is repainted only when a script has finished, but drawnow 
forces repaints while a script is running

figure Creates a new figure window

gcf Returns a handle to the current figure window
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• Copy—Copy the plot to the system clipboard.

• Export Current Plot—Export data values from the current plot to a text file.

• Edit Plot—Open a dialog box where you can change properties for axes, lines, 
patches, and so on that can normally be changed using set and get in conjunction 
with graphics handles.

• Orbit/Pan/Zoom—Selects the general orbit/pan/zoom mode for the mouse in 3D 
plots.

• Pan—Pan when clicking and moving the mouse.

• Zoom—Zoom when clicking and moving the mouse.

• Dolly In/Out—Dollies the camera in and out when clicking and moving the mouse.

• Move as Box—When this button is pressed, a box appears instead of updating the 
graphics in real time when changing camera settings with the mouse. It is useful for 
very large plots or for computers with poor graphics cards.

• Scene Light—Turns on all lights added to a plot.

• Headlight—Turn on a light mounted on the camera and looking in the direction of 
the camera.

• Back in Camera History—Return to the previous camera position after changing it 
interactively using the mouse.

• Forward in Camera History—Move forward in camera history.

• Orthographic Projection—Use orthographic projection.

• Perspective Projection—Use perspective projection.

• Go to XY View—View the plot in the xy-plane.

• Go to YZ View—View the plot in the yz-plane.

• Go to ZX View—View the plot in the zx-plane.

• Go to Default 3D View—View the plot in the default 3D view.

• Increase Transparency—Increase the transparency of patch and surface objects.

• Decrease Transparency—Decrease the transparency of patch and surface objects.

• Zoom In—Zoom into the plot by a factor of two.

• Zoom Out—Zoom out of the plot by a factor of two.

• Zoom Window—Zooms in on a rectangular area by clicking and dragging the mouse 
cursor.

• Zoom Extents—Zoom to the extents of the graphics objects currently in the figure 
window so they appear at the largest possible scale without truncation.
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The Edit Plot Dialog Box

It is also possible to manually edit many of the properties for any graphic objects in a 
figure window, and you do so in the Edit Plot dialog box. To open it, click the Edit Plot 
button on the figure-window toolbar. To the left it shows a tree with the currently 
defined axes objects in the figure window along with the graphical objects that lie in 
each axes object. When you select a node in the tree, a panel appears to the right in 
which you can change properties for the selected object, specifically, most of the 
properties it is possible to change using set on the command line when given the 
corresponding graphics handle.

Here you can change axes limits, the title, axes labels, and so on by selecting the Axes 
node in the tree.

Axis ticks marks, the title, and axes labels appear using the selected font.
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In the next example, change the Facecolor, Edgecolor, and Colormap properties, 
and so on, for a patch by selecting the Patch node in the tree of graphics objects.
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Ax e s

Overview of Axes Functions

An axes object creates the area in which you plot data, and one figure window can 
support multiple axes objects. You control axes limits and ticks marks manually or let 
COMSOL Script calculate them automatically. Other functions add text, labels, and 
grid lines. The following functions are related to creating and modifying axes objects: 

TABLE 9-2:  FUNCTIONS RELATED TO THE AXES

FUNCTION NAME DESCRIPTION

axis Change or get axes limits

box Display an axis box (3D only)

cla Clear all graphics objects from an axes object

gca Return the handle to the current axes object

grid Display a grid in the axes object

hold Specify that existing plots in the axes remain when you add new 
plots

ishold Return the Hold state

legend Display a legend with the plot

newplot Return a handle to an axes object. If a current axes object already 
exists, all graphics objects are cleared before the handle is returned

subplot Divide a figure window into a grid of several axes objects

title Display a title above the axes object

text Display a text at specified coordinates in the axes object

xlabel Display a label on the x-axis

xlim Set and get x-axis limits

ylabel Display a label on the y-axis

ylim Set and get y-axis limits

zlabel Display a label on the z-axis

zlim Set and get z-axis limits
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Getting an Axes Object for Plotting

Normally you do not need to explicitly create an axes object for plotting; COMSOL 
Script automatically creates a new figure window with an axes object if one does not 
already exist. Plotting commands always pertain to the current axes object, which is the 
one in the figure window that was the latest to have focus. Use the 'parent' property 
with an axes handle to explicitly specify which axes object plots the data.

The function

h = gca

returns a handle to the current axes object. A rough equivalent is the function

h = newplot

which returns a handle to the current axes object but also clears all graphics at the same 
time. It is normally needed only when working with low-level graphics functions such 
as line and patch; higher-level graphics functions such as plot and surf 
automatically clear the axes object they plot into before adding new graphics.

Controlling Axes Limits

COMSOL Script automatically updates axes limits to fit any plots added to an axes 
object. The axis function overrides this feature and allows you to set the limits 
manually. It also sets the properties 'Xlimmode' and 'Ylimmode' for the axes object 
to 'manual', thereby preventing anyone or anything from updating the limits when a 
program adds new graphics to the axes object.

To manually set the axis limits, pass an array with pairs of minimum and maximum 
values to the axis function as in this code snippet:

x=-5:0.1:5;
y=x.^2.*cos(x);
plot(x,y);
axis([-4.5 4.5 -12 4]);
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The same effect is possible with the functions xlim and ylim or by setting the Xlim 
and Ylim properties on the handle to an axes object.

The following three ways of controlling the axes limits are equivalent:

• Using the axis function:

axis([-4.5 4.5 -12 4]);

• Using the xlim and ylim functions:

xlim([-4.5 4.5]);
ylim([-12 4]);

• Using the set function and the Xlim and Ylim properties of the axes object:

set(gca,'Xlim',[-4.5 4.5]);
set(gca,'Ylim',[-12 4]);

Adding Plots to an Existing Plot

High-level visualization commands such as plot and surf normally clear the contents 
of the axes object into which they plot before they add any new graphics objects. You 
can override this behavior with the hold function. It specifies that an axes object 
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should retain plots even when it receives new plots. If the axes limits are in manual 
mode, they remain unchanged when plots are held. The following example illustrates 
how to work with the hold command:

x=-3:0.02:3;
y=cos(x.^2);
plot(x,y);
set(gca,'xlimmode','manual');
set(gca,'ylimmode','manual');
axis([-3.2 3.2 -1.1 1.1]);
hold on;
x1=-5:0.04:5;
y1=((x1+1)/5).^2;
plot(x1,y1);

Using Multiple Axes Objects

The subplot function divides a figure window into a grid that, in turn, contains 
several axes objects. Specifically, the command

subplot(rows,cols,current)
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divides the figure window into a grid of rows × cols axes objects. The axes object with 
the number current becomes the current axes. Axes numbering increases along the 
columns of the first row, then along the second row, and so on.

Look at this code, which divides a figure window into four axes objects and plots a 
different function in each one:

subplot(2,2,1);
x1=linspace(0,20,100);
y1=sqrt(x1);
plot(x1,y1);
subplot(2,2,2);
x2=linspace(0,5,100);
y2=round(x2);
plot(x2,y2);
subplot(2,2,3);
x3=linspace(0,10,100);
y3=x3.*cos(x3);
plot(x3,y3);
subplot(2,2,4);
x4=linspace(0,10,100);
y4=x4.*sinh(x4);
plot(x4,y4);
A X E S  |  197



198 |  C H A P T E
Adding Annotations

The following table lists the commands available for adding text to a plot.

To see these commands at work, examine the following example. It creates a plot of 
sin(x) and cos(2*x) and displays a title, axis labels, legends, and some descriptive 
text:

x=linspace(0,10,100);
y1=sin(x);
y2=cos(2*x);
plot(x,y1,'r-',x,y2,'g--');
legend('sin(x)','cos(2*x)');
title('Plot of sin(x) and cos(2*x)');
xlabel('X');
ylabel('Y');
text(1.2,0.8,'sin(x)');

TABLE 9-3:  FUNCTIONS FOR ADDING TEXT TO A PLOT

FUNCTION DESCRIPTION

legend Displays a legend to the right of the plot

text Displays a text at arbitrary coordinates in the axes object

title Displays a title above the axes object

xlabel Displays a label on the x-axis

ylabel Displays a label on the y-axis

zlabel Displays a label on the z-axis
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text(4.6,0.8,'cos(2*x)');

F O R M A T T I N G  A N D  S Y M B O L S

The text function can take formatted strings that include HTML tags, Greek letters, 
mathematical symbols, and Unicode characters. These formatting options include the 
strings in plot titles as well as x-axis, y-axis, and z-axis labels (the title, xlabel, 
ylabel, and zlabel functions, respectively).

The text function supports the following HTML tags in the text string:

TABLE 9-4:  VALID HTML TAGS

HTML TAG DESCRIPTION

<B> </B> Enclosed text is rendered using a bold font

<BR> Line break

<CENTER> </CENTER> Centered text

<I> </I> Enclosed text is rendered using an italic font

<LI> List item. When the list used is <OL> (an ordered list) the 
LI element is rendered with a number. When the list used 
is <UL> (an unordered list) the LI element is rendered 
with a bullet

<OL> </OL> Ordered list (see also: <LI>)
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The text function supports the following Greek character tags in the text strings:

<P> </P> Paragraph. This tag creates a line break and a space 
between lines

<PRE> </PRE> Enclosed text preserves spaces and line breaks. The text 
is rendered using a monospaced font

<STRIKE> </STRIKE> Enclosed text is rendered with a strike-through 
appearance

<SUB> </SUB> Enclosed text is rendered in subscript with the enclosed 
text slightly lower than the surrounding text

<SUP> </SUP> Enclosed text is rendered in superscript with the enclosed 
text slightly higher than the surrounding text

<TT> </TT> Enclosed text is rendered using a monospaced font

<U> </U> Enclosed text will be underlined

<UL> </UL> Unordered list (see also: <LI>)

TABLE 9-5:  VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

\ALPHA Α \alpha α

\BETA Β \beta β

\GAMMA Γ \gamma γ

\DELTA ∆ \delta δ

\EPSILON Ε \epsilon ε

\ZETA Ζ \zeta ζ

\ETA Η \eta η

\THETA Θ \theta θ

\IOTA Ι \iota ι

\KAPPA Κ \kappa κ

\LAMBDA Λ \lambda λ

\MU Μ \mu µ

\NU Ν \nu ν

\XI Ξ \xi ξ

\OMICRON Ο \omicron ο

\PI Π \pi π

\RHO Ρ \rho ρ

TABLE 9-4:  VALID HTML TAGS

HTML TAG DESCRIPTION
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The text function supports the following math symbol tags in the text string:

In addition to these Greek and math symbols, you can specify additional characters 
using Unicode numbers. Visit www.unicode.org for more information about Unicode 
characters.

Examples of Formatted Texts
To plot the following mathematical text in the position (1, 2) in the current axes

,

type:

text(1,2,'sin(2\pix<SUB>i</SUB>) \approx 0','FontName','Arial',...
'FontSize',16)

This example also specifies the font name and size using the optional FontName and 
FontSize properties.

To add a text that includes the copyright symbol, you can use its Unicode:

text(1,1,'\u00A9 COMSOL 1994-2006')

To add an underlined title to a plot with the text divided into two lines, type:

\SIGMA Σ \sigma σ

\TAU Τ \tau τ

\UPSILON Υ \upsilon υ

\PHI Φ \phi

\CHI Χ \chi χ

\PSI Ψ \psi ψ

\OMEGA Ω \omega ω

TABLE 9-6:  VALID MATH SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

\approx  ≈ \bullet  •

\lequal  \partial  ∂

\gequal  ≥ \nabla

\plusmin  ± \sqrt  √

\infinity \integral  ∫

TABLE 9-5:  VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

ϕ

≤

∇

∞

2πxi( )sin 0≈
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title('<U>For long titles you can use a line break<BR>to continue 
on a second line with the remainder of the title</U>')

axis([0 2 0 3]) sets the axis to show all three text strings, as the following figure 
shows:

Axes Properties

If you have a handle to an axes object, you can read and modify properties for it using 
the get and set functions. The property names and their allowed values are:

TABLE 9-7:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

Box On | Off Display an axes grid box with the plot (3D only)

Clim 2-element vector The data values that map to the minimum and 
maximum colors in the colormap

Climmode auto | manual Determines if Clim is calculated automatically as 
the range of the plotted data, or if it is set 
manually
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Equal On | Off Determines if distances in different directions 
have equal length on the screen (so a circle looks 
like a circle)

Fontangle normal | italic Selects normal or italics font for the title, axis 
labels, and tick marks

Fontcolor colorspec Selects the font color for the title, axis labels, 
and tick marks

Fontname string Selects the font type for the title, axis labels, and 
tick marks

Fontsize positive integer Selects the font size for the title, axis labels, and 
tick marks

Fontweight normal | bold Selects normal or bold font for the title, axis 
labels, and tick marks

Grid On | Off Displays a grid

Parent handle The handle to the figure window that holds the 
axes object

Tag string The tag for retrieving the axes object

Title string The title to display above the axes object

Xlabel

Ylabel

string Label to display along the x- or y-axis

Xlim

Ylim

Zlim

2-element vector Minimum and maximum limits on the x-, y-, and 
z-axis

Xlimmode

Ylimmode

Zlimmode

auto | manual Determines if COMSOL Script automatically 
limits the x-, y-, or z-axis to fit the plotted data, 
or if you specify axis limits manually

Xscale

Yscale

linear | log Specifies a linear or log scale for the x- or y-axis

Xtick

Ytick

Ztick

vector Gives explicit positions for tick marks on the x-, 
y-, or z-axis

TABLE 9-7:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
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Xticklabel

Yticklabel

Zticklabel

cell array of strings Gives explicit strings to display at the tick marks 
on the x-, y-, or z-axis

Xtickmode

Ytickmode

Ztickmode

auto | manual Determines if COMSOL Script calculates 
tick-mark positions automatically on the x-, y-, 
or z-axis, or if you specify them manually

TABLE 9-7:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
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Overview of 2D Graphics Functions

Within an axes object you can plot a graph using vectors or matrices with x- and 
y-coordinates. One command can create several plots, each with a different color, line 
style, and marker. 

Functions related to creating 2D plots are:

The Plot Command

The plot command creates 2D graphs. For example, to plot the function sin(x), 
enter the following lines of code:

x=linspace(0,2*pi,100);
y=sin(x);
plot(x,y);

TABLE 9-8:  FUNCTIONS FOR CREATING 2D PLOTS

FUNCTION NAME DESCRIPTION

line Low-level function for drawing line objects

loglog Creates a plot with log scales on the x- and y-axes

plot General function for plotting graphs with different colors, line 
styles, and markers

semilogx Creates a plot with a log scale on the x-axis

semilogy Creates a plot with a log scale on the y-axis
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The plot command draws a line between the pairs of points in the vectors x and y. To 
plot several functions in one command, add arguments with pairs of vectors at the end:

x=linspace(0,2*pi,100);
y1=x.*sin(x);
y2=(1-x).*cos(x);
plot(x,y1,x,y2);

Each plot then gets a new color to make it easier to distinguish from other plots.

The default behavior of the plot command is to connect pairs of points with a solid 
line and to use a new color for each line. You can override this behavior by specifying 
an optional format string after each pair of vectors. That string controls the line color, 
style, and which marker to place at each point:

x=linspace(0,2*pi,50);
y1=x.*sin(x);
y2=(1-x).*cos(x);
plot(x,y1,'r*',x,y2,'g--');
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The format string can contain one or more characters from the following table:

If you supply a marker string but no line-style string, the plot draws only the markers.

You can also use matrices as arguments to plot. In that case, each column creates a 
separate line. If one of the arguments is a vector that matches either the number of 
rows or the number of columns of the matrix in the other input argument, plot creates 
several lines:

TABLE 9-9:  STRINGS THAT CAN BE PART OF THE FORMAT STRING

COLOR MARKER LINE STYLE

r red + plus - solid

g green o circle : dotted

b blue * star -. dashdot

c cyan v triangle -- dashed

m magenta s square

y yellow p pentagram

k black
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x=1:0.1:5;
Y=[x ; x.^2 ; x.^3];
plot(x,Y);

As an alternative to the format strings, you can give property values at the end of the 
plot command.

To see some of these properties in action, create a dash-dotted plot with a line width 
of 3:

x=linspace(0,10,100);
y=exp(x);
plot(x,y,'linestyle','-.','linewidth',3);

Plotting Complex Data

The plot command usually ignores the imaginary part of the input data and graphs 
only the real part. You can, however, pass it a single complex matrix and plot the 
imaginary part against the real part. In other words, 

plot(data)

where the data is complex, is a shorthand for

plot(real(data),imag(data));

For instance, plot a circle using complex data:

TABLE 9-10:  VALID PROPERTY-VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec k A string or an RGB triplet 
specifying the line color. If a 
string, it is one of the letters r, 
g, b, c, m, y, or k, meaning 
red, green, blue, cyan, 
magenta, yellow, and black, 
respectively

linestyle One of the strings 
-, :, -., --

- A string representing solid, 
dotted, dash-dot, and dashed 
line styles, respectively

linewidth  positive scalar 1 The line width

marker  v, +, o, *, s, p The marker to show along the 
line

parent Axes handle gca The axes object that gets the 
line
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x=linspace(0,2*pi,100);
Y=cos(x)+i*sin(x);
plot(Y);
axis equal;

Plotting Logarithmic Data

The functions loglog, semilogx, and semilogy have the same syntax and 
functionality as the plot function with the addition that a log scale appears on one or 
more of the axes. Specifically, loglog sets the log scale on both axes; semilogx sets a 
log scale on the x-axis; while semilogy sets a log scale on the y-axis.

When the data is logarithmic in y, it is preferable to use semilogy so as to better 
resolve what happens in the y direction:

x=linspace(0,10,100);
y=2.^x;
semilogy(x,y);
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Low-Level Graphics

The plotting functions clear the axes object into which they plot and then add line 
objects corresponding to the plotted data. You can create line objects directly using the 
line function. It adds graphics objects to an axes object without deleting existing 
graphics objects. For example,

line(X,Y)

adds one line for each of the columns in the matrices X and Y. The property values 
available for the plot function are also available for the line function.

The following code snippet draws lines to form a starburst:

n = 12;
alpha = linspace(0,2*pi,n+1);
alpha = [alpha ; alpha+pi/n; alpha+2*pi/n];
r = [2*ones(1,n+1); ones(1,n+1); 2*ones(1,n+1)];
x = r.*cos(alpha);
y = r.*sin(alpha);
line(x,y);

Editing Plots

As part of the output from plot commands you can get handles to the corresponding 
graphics objects. You can then use them with the functions get and set functions to 
read and modify properties for the graphics objects.

The command

get(h) 

returns a structure with the values of the properties for the graphics object to which h 
refers. The structure’s field names correspond to the property names. 

To get the value of a individual property, use

get(h,propname)

To set the value of a property, use

set(h,propname,value)

It is possible to set several property-value pairs at the same time with the set command 
by appending property-value pairs to the end of the argument list.
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If you did not return a handle to a plot when initially creating it, you can later retrieve 
a handle to the graphics object with the findobj function. With it you can find graphic 
objects with a certain tag or of a certain type. You can, for example, type

h=findobj('type','line');

to return handles to all line objects.

To put some of these commands to work, create a plot and then change the color, line 
style, and line width:

x = -5:0.1:5;
y = x.^3+2*x.^2+3*x+4;
h = plot(x,y);
set(h,'color','r','linewidth',3,'linestyle',':');
2 D  G R A P H I C S  |  211



212 |  C H A P T E
For the line objects in 2D plots, you can get and set the properties in the following 
table:

TABLE 9-11:  VALID PROPERTY/VALUE PAIRS FOR LINE OBJECTS

PROPERTY VALUE DESCRIPTION

Color colorspec A string or an RGB triplet specifying the line 
color. If a string, it is one of the letters r, g, b, 
c, m, y, or k, corresponding to red, green, 
blue, cyan, magenta, yellow, and black, 
respectively

Edges n-by-2 matrix A matrix with indices into vertices. Each row 
corresponds to a line segment

Hold On | Off Indicates if this line should be kept when new 
plots are added to the same axes object

Legend On | Off Indicates if a legend is displayed with a plot

Legendstring string or cell array 
of strings.

The string to display as a plot legend. If the 
plot consists of several lines, this value is a cell 
array of strings with one legend string for 
each line in the plot

Linestyle One of the strings 
-,:,-.,--

A string representing solid, dotted, dash-dot, 
and dashed line styles, respectively

Linewidth positive scalar The line width

Marker v,+,o,*,s,p The marker to show along the line

Markerpos An integer or the 
string 'all'

Tells where markers are placed on a line. It is 
either the desired number of markers, or the 
string 'all' specifies that markers should be 
placed at all points in the plotted data

Parent Axes handle A handle to the axes object that holds the line

Tag string A tag that can be used to retrieve the line 
later on

Type string The value 'line' indicates that it is a line 
object

Vertices nv-by-2 matrix The coordinates along the line. Edges 
contains indices into this matrix to form each 
edge segment (nv is the number of vertices)

Visible On | Off Indicates if the line is visible or not

Xdata 1-by-m matrix The line’s x-coordinates

Ydata 1-by-m matrix The line’s y-coordinates
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Contour Plots

COMSOL Script provides a set of functions for creating contour plots (isolines). 
Table 9-12 summarizes the available functions:

To make a contour plot with labels for the function

with both x and y in the range of −1 to 1, type:

[x,y] = meshgrid(-1:0.1:1,-1:0.1:1);
z = x.^2-y.^2;
c = contour(x,y,z);
clabel(c);

TABLE 9-12:  CONTOUR FUNCTIONS

FUNCTION NAME DESCRIPTION

contour 2D contour plot

contour3 3D contour plot

contourc Contour data matrix

contourf Filled 2D contour plot

contours Contour data matrix (identical to contourc)

clabel Contour labels

z x y,( ) x2 y2
–=
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The function contourc (or contours) returns a contour data matrix that contains the 
contour levels and coordinates for each contour line (the contour plot function 
contour can also provide a contour data matrix as its first output argument, which the 
previous example shows). The contour label function clabel uses the contour data 
matrix as its input data. For 3D contour plots, use contour3.
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Overview of 3D Graphics Functions

Whereas 2D plots are limited to lines, 3D plots can create surface plots for functions 
of two variables. A 3D image can also show a patch, which is an image made up of 
individual triangles or quadrilaterals. An example of the use of patches is to visualize 
the computational mesh from a finite element analysis. 

COMSOL Script also makes it easy to generate wireframe plots or add lights to a scene 
to improve its appearance. To eliminate the need to create multiple plots in the same 
figure window to accommodate 2D and 3D images, there exists a 3D plot function, 
plot3, similar to the 2D equivalent for drawing line plots. 

The functions related to creating 3D plots are:

TABLE 9-13:  FUNCTIONS FOR CREATING 3D PLOTS

FUNCTION NAME DESCRIPTION

colormap A colormap for coloring patches and surfaces

hidden Turns hidden-line removal On and Off

light Creates different types of lights

lighting Turns the scene light On or Off

material Controls the material to account for surface reflectance

mesh Creates a colored wireframe surface of quadrilaterals

meshz Creates a colored wireframe surface of quadrilaterals with a 
curtain

patch Creates a patch consisting of triangles or quadrilaterals

plot3 Creates a line plot in 3D

shading Controls how color is interpolated within the element of a patch 
or a surface

surf Creates a colored surface of quadrilaterals

surface Low-level function for creating a colored surface of quadrilaterals

view Controls the viewpoint position
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Surf and Mesh Commands

The surf command creates a plot from a function of two variables, giving it color and 
height. You supply the x, y, and z coordinates as matrices. The plot connects 
neighboring entries in the matrices to form each element in the colored surface. An 
optional fourth argument to surf can supply data values for coloring the surface. If 
you do not define this parameter, COMSOL Script varies the surface color based on 
its height as in the following example:

x1=linspace(-5,5,30);
y1=linspace(-5,5,30);
[x,y]=meshgrid(x1,y1);
r=sqrt(x.^2+y.^2);
z=sqrt(6-r).*sin(r);
surf(x,y,z);

The mesh function is the same as surf except that it colors only the edges between the 
elements and uses a white color for the elements’ interior; meshz also adds a curtain 
around the plot drawn from the data points down to the lowest z value.

The surface function is the low-level function for creating surface objects. It has the 
same syntax as surf but does not clear the axes before adding a surface.
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Colormaps and Color Bars

To color surfaces and patches you often work with a colormap. A colormap with n 
colors is an n-by-3 matrix of RGB values. For each data value, a script creates an index 
into the colormap by mapping linearly between the minimum value to the first color 
and the maximum value to last color. To create a colormap, call one of the functions 
in the following table and give the desired number of colors as an argument:

The Clim property overrides the data values that map to the first and last color in the 
colormap. This feature can, for example, help avoid the effect of extreme values; values 
outside the range map to the first or the last color. A default value of Clim is associated 
with each axes object, but you can also supply a separate value as a property when 
creating a surface or patch. 

Consider the command

colormap(cool(256))

which sets the colormap for the current figure to the cool colormap function with 256 
colors. This command affects all plots that are currently in the figure window and all 
plots that are added to it later on. However, each surface or patch can have a separate 
colormap if you pass the Colormap property when creating it.

The function colorbar displays a color scale (color bar) to the right of the plot that 
indicates which data value corresponds to each color in the colormap.

The following example displays the color bar, and it also uses Clim to specify a smaller 
range. Try it also without specifying the Clim property to see what effect it has.

x1=linspace(-2,2,100);
y1=linspace(-2,2,100);
[x,y]=meshgrid(x1,y1);

TABLE 9-14:  COLORMAP FUNCTIONS

FUNCTION DESCRIPTION

bone Gray scale with a touch of blue

cool Different shades of cyan and magenta

gray A gray-scale colormap

hot Colors from black to white, ranging through red, orange, and 
yellow

jet All colors from dark blue to dark red, ranging through blue, cyan, 
green, yellow, and red

pink Different shades of pink
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z=sin(x).*sin(y).*exp(-x.^2-y.^2);
surf(x,y,z,'colormap','jet(1024)','clim',[-0.1 0.1]);
colorbar

Patches

patch is the low-level function for creating a colored patch consisting of triangular or 
quadrilateral elements. Use

patch(x,y,c)

or

patch(x,y,z,c)

to create a 2D or 3D patch, respectively. The matrices x, y, and z have three or four 
rows. Each column creates an element in the corresponding patch. The matrix c holds 
data values mapped to a colormap. It either has one row or the same number of rows 
as x. If it has one row, each element gets one color with flat shading; otherwise, the 
corners of the elements each get a separate color with interpolated shading.
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Consider the following code snippet, which create a cube using the patch command. 
The faces of the triangles are red, and the edges between them are colored black. 

x=[0 1 1;0 1 0;0 1 1;0 1 0;0 0 0;0 0 0;
   1 1 1;1 1 1;0 0 1;0 1 1;0 0 1;0 1 1]';
y=[0 0 1;0 1 1;0 0 1;0 1 1;0 1 1;0 1 0;
   0 1 1;0 1 0;0 0 0;0 0 0;1 1 1;1 1 1]';
z=[0 0 0;0 0 0;1 1 1;1 1 1;0 0 1;0 1 1;
   0 0 1;0 1 1;0 1 1;0 1 0;0 1 1;0 1 0]';
patch(x,y,z,'r','edgecolor','k');
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In addition to the fixed arguments, you can supply additional property-value pairs at 
the end of the command to further control how the patch is created. (Note that these 
same pairs are also applicable to the mesh, meshz, and surf functions.)

In the previous table, the Facecolor and Edgecolor properties can take on one of 
several values as defined in the next table:

The shading function can serve as a shorthand for setting Facecolor and Edgecolor 
for existing plots in an axes object:

• shading interp sets Facecolor to 'interp' and Edgecolor to 'none'.

TABLE 9-15:  PROPERTY-VALUE PAIRS FOR PATCHES AND SURFACES

PROPERTY VALUE DEFAULT DESCRIPTION

Clim 2-element vector Tells which data values to map 
to the first and last colors in 
the colormap

Colormap String of the type 
'jet(256)' or a 
matrix with 3 
columns

The colormap for the patch. 
Either a string to be evaluated, 
or a matrix with one row for 
each color and one column 
for red, green, and blue values

Edgecolor none | flat | 
interp | 
colorspec

none Indicates how to color the 
edges between each element 
in the patch

Facecolor none | flat | 
interp | 
colorspec

interp Indicates how to color the 
interior of each element in the 
patch

Parent Axes handle gca Determines which axes object 
gets the patch

TABLE 9-16:  DESCRIPTION OF FACECOLOR AND EDGECOLOR VALUES

VALUE DESCRIPTION

none Either the elements are not be filled or their edges are not drawn. 
facecolor and none can, for example, create a wireframe plot

flat or 
interp

How to interpolate the color using the vertex colors. flat 
means the entire element gets the same color; interp means 
color in the interior of the element is created by interpolation 
from the values at the vertices

colorspec A string or an RGB triplet specifying the color of the entire patch. 
If a string, it is one of the letters r, g, b, c, m, y, or k, meaning red, 
green, blue, cyan, magenta, yellow, and black respectively
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• shading flat sets Facecolor to 'flat' and Edgecolor to 'none'.

• shading faceted sets Facecolor to 'flat' and Edgecolor to 'k'.

Patch and Surface Properties

As with line objects, the get and set functions work with handles to patch and surface 
objects to read and modify the following properties:

TABLE 9-17:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

Colorbar On | Off Indicates if a colorbar is displayed with a 
plot

Colormap string 
representing 
colormap

The colormap for the plot

Edgecolor colorspec How to color the edges between elements

Facealpha scalar between 0 
and 1

The tranparency of the patch or surface; 1 
means no transparency, and 0 means full 
transparency

Facecolor colorspec How to color the interior of the elements

Faces n-by-3 matrix or 
n-by-4 matrix

A matrix with indices into vertices. Each 
row corresponds to an element of the patch 
or surface

Facevertexcdata nv-by-3 matrix RGB values for the colors at the vertices of 
the elements (nv is the number of vertices)

Hold On | Off Indicates if the patch / surface should be 
kept when new plots are added to the same 
axes object

Parent Axes handle The handle to the axes object that holds the 
line

Tag string A tag that can help retrieve the line later on

Type string The value 'patch' or 'surface' 
indicating that it is a patch or surface object

Vertices nv-by-2 matrix Coordinates along the line. Faces contains 
indices into this matrix to form each 
element (nv is the number of vertices)

Visible On | Off Indicates if the patch or surface is visible

Xdata 3-by-n matrix or 
4-by-n matrix

The x-coordinates of the patch or surface
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Lights and Materials

It is possible to add lights and materials to create plots with visual highlights and to 
make them more attractive. In the plots, you can turn on a headlight, which is 
positioned at the camera and directed toward the target., and scene light, which 
radiates from a distance. COMSOL Script provides four kinds of scene lights:

• Ambient light—seems to come from all directions.

• Directional light—shines in a certain direction from infinity.

• Point light—shines equally in all directions from a certain position.

• Spotlight—an attenuated source that shines in a certain direction from a certain 
position. A spread angle and a concentration specify how quickly the light attenuates 
for directions close to the specified direction.

To create one of these sources, take the light function and pass the following 
property values:

Ydata 3-by-n matrix or 
4-by-n matrix

The y-coordinates of the patch or surface

Zdata 3-by-n matrix or 
4-by-n matrix

The z-coordinates of the patch or surface

TABLE 9-18:  PROPERTY/VALUE PAIRS TO USE WHEN CREATING A LIGHT

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec w A string or an RGB triplet 
specifying the light’s color. If 
a string, it is one of the 
letters r, g, b, c, m, y, or k, 
meaning red, green, blue, 
cyan, magenta, yellow, and 
black, respectively

concentration Real value between 
0 and 128

0 The concentration for a 
spotlight

direction A 3-element array [0 0 1] The direction for a 
directional light and a spot 
light

parent Axes handle gca Indicates the axes object that 
gets the light

TABLE 9-17:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
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To turn scene light on, either call lighting('phong') or click the Scene Light button 
on the toolbar in the figure window. You can also activate a headlight, which is 
“mounted” on the camera and looking in the same direction as the camera, by clicking 
the Headlight button on the toolbar.

This example creates a surface plot and adds some lights:

x1=linspace(-2,2,100);
y1=linspace(-2,2,100);
[x,y]=meshgrid(x1,y1);
z=sin(x).*sin(y).*exp(-x.^2-y.^2);
surf(x,y,z);
light('style','point','position',[-2 -2 1],'color','g');
light('style','directional','direction',[0 0 -1],'color','r');
lighting phong;

position A 3-element array [0 0 0] The position for a point light 
or a spotlight

style ambient |

directional |

point | spot

point The type of light to create

spread Real number 
between 0 and pi

pi The spread angle for a 
spotlight

TABLE 9-18:  PROPERTY/VALUE PAIRS TO USE WHEN CREATING A LIGHT

PROPERTY VALUE DEFAULT DESCRIPTION
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Another way to influence the appearance of a surface or patch is to select a material and 
thereby control how the graphic objects reflect light. To apply a material to all surfaces 
and patches in an axes object, use the material function, and then pass appropriate 
values to control the material’s properties.

TABLE 9-19:  PROPERTY VALUE PAIRS FOR CREATING A MATERIAL

PROPERTY VALUE DESCRIPTION

Ambient colorspec Specifies the ambient color (the color 
reflected from the surface due to ambient 
light). A string or an RGB triplet specifies 
the color of the light. If a string, it is one of 
the letters r, g, b, c, m, y, or k, meaning 
red, green, blue, cyan, magenta, yellow, and 
black, respectively

Diffusive colorspec Specifies the diffusive color

Emissive colorspec Specifies the emissive color, the color of 
the light that the surface or patch emits
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Compare the same plot with four different types of material applied to it.

x1=linspace(-2,2,100);
y1=linspace(-2,2,100);
[x,y]=meshgrid(x1,y1);
z=exp(cos(x).*sin(y));
subplot(2,2,1);
surf(x,y,z);
lighting phong;
material('shininess',10);
subplot(2,2,2);
surf(x,y,z);
lighting phong;
material('specular',[0 1 0],'shininess',100);
subplot(2,2,3);
surf(x,y,z);
lighting phong;
material('diffusive',[1 0 0],'shininess',100);
subplot(2,2,4);
surf(x,y,z);
lighting phong;

Specular colorspec Specifies the specular color, which is the 
highlight color on the surface or patch

Shininess Real number > 0 
and <128.

Specifies the shininess

TABLE 9-19:  PROPERTY VALUE PAIRS FOR CREATING A MATERIAL

PROPERTY VALUE DESCRIPTION
3 D  G R A P H I C S  |  225



226 |  C H A P T E
material('emissive','g','shininess',100);

Figure 9-1: Surface plots using four different settings for how the material reflects light.

3D Plots and Lines

The plot3 function is similar to the plot function in 2D except for an argument that 
accounts for the z-coordinate. In addition, you can use the line function with a third 
argument for the z-coordinate to create a line in 3D. You can set the color and line 
width for 3D lines, but line styles and markers are not available.

This code snippet plots a spiral in 3D:

t=0:0.05:30;
x=cos(t);
y=sin(t);
z=sqrt(t);
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plot3(x,y,z,'b','linewidth',2);

Specifying the View

To specify the viewpoint for a plot, choose the view function (for 3D plots only). The 
command view(3) positions the camera in a default 3D view, while view(2) produces 
a default 2D view. Other options include view('xy'), view('yz'), and view('zy') 
to examine a plot in a certain plane.

Further, view(azimuth,elev) positions the camera at a certain azimuth and 
elevation for a 3D plot.

Another option for 3D plots is to move the cursor to position the camera. Hold down 
a mouse button and then move the mouse over the axes object. On a 3-button mouse 
button, the buttons have the following effects on the camera:

• left—orbit the camera around the plot

• middle—zoom in and out in the plot

• right—pan the camera in the current view plane
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Camera View Angle, Target, Position, and Up Vector

To specify and retrieve the exact view angle, position, target, and up vector for the 
camera in a 3D plot, use the functions camva, campos, camtarget, and camup, 
respectively.

Use camva to set the camera view angle in degrees for the current axes. Increasing and 
decreasing the camera view angle correspond to zooming out and zooming in, 
respectively. For example, type

camva(camva-2)

to zoom in by decreasing the camera view angle by two degrees.

The camera target is a vector of coordinates for the location in the plot that the camera 
points to, regardless of the camera’s position. Query and set the camera target using 
camtarget. Use campos to do the same with the camera position. For example,

campos(campos+[0 0.1 0]);
camtarget(camtarget+[0 0.1 0]);

moves both the camera position and the target position a distance of 0.1 in the y 
direction.

The camera up vector is a vector or coordinates that defines the direction in the plot 
that is oriented upward. Use the camup function to get or specify the camera up vector. 
For example,

up = camup;

stores the current camera up vector in the variable up.
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Work i n g  W i t h  Imag e s  and Mov i e s

Image and Movie Functions and Formats

This section describes how you can use COMSOL Script to read and display images, 
save images, and create movies.

Table 9-20 provides an overview of the functions for images and movies:

I M A G E  F O R M A T S

The imread, imwrite, and saveimage functions can read and write images on the 
following formats:

• BMP (Windows Bitmap) using extension .bmp

• JPEG (Joint Photographic Experts Group) using extension .jpg or .jpeg

• PNG (Portable Network Graphics) using extension .png

• TIFF (Tagged Image File Format) using extension .tif or .tiff

• EPS (Encapsulated PostScript) using extension .eps (only supported by the 
saveimage function)

The BMP and TIFF formats are only available on 32-bit Windows, Linux, Solaris, and 
Macintosh.

I M A G E  D A T A  S T R U C T U R E

COMSOL Script stores image data as a height-by-width-by-3 matrix with RGB values 
for each pixel in the image. When you read an image from file using imread, a matrix 
of the uint8 data type represents the RGB data as values between 0 and 255. The RGB 

TABLE 9-20:  IMAGE AND MOVIE FUNCTIONS

FUNCTION 
NAME

DESCRIPTION

image Show an image

imagesc Show an image using scaled mapping

imread Read an image from file

imshow Show an image

imwrite Write an image to file

movie Create a movie

saveimage Save a plot as an image
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values can also be a matrix of doubles (the default floating-point data type) between 0 
and 1.

For information about movie formats and movie objects, see “Generating Movies” on 
page 234.

Reading and Displaying Images

Use imread to read images from file. The input to the function is the file name, 
including extension, and the output is a COMSOL Script variable that stores the 
images data. For example,

Img = imread('plasma_discharge.jpg');

reads the image data from the file plasma_discharge.jpg, which contains a JPEG 
image.

To display such an image, use the imshow function:

imshow(Img);

This brings up an Image Preview window:
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For showing smaller images you can also use image and imagesc, where the latter uses 
a scaled mapping when mapping the data values to the colormap.

Saving Images

There are two functions that you can use to save an image to file: imwrite, which 
writes image data to a file, and saveimage, which saves the contents of a plot as an 
image.

To determine the image format, use the extension of the file name that you pass to 
imwrite. For example,

imwrite(Img,'picture1.tif')

writes the image stored in the variable Img to the file picture1.tif using the TIFF 
format.

S A V I N G  P L O T S  A S  I M A G E S

The saveimage function stores the contents of a figure window as an image. The 
following table contains some of the property-value pairs that you can use to control 
how the image is generated.

For instance, to save a 1024x768 TIFF image lineplot.tiff in the current working 
directory of the line plot created with plot below, use this code:

x=linspace(0,10,100);
y=sin(x);
plot(x,y);
saveimage(‘lineplot’,’type’,’tiff’,’width’,1024,’height’,768);

To save a 600x800 JPEG image of the plot in the current figure window, use this code:

saveimage(‘currentplot’);

TABLE 9-21:  PARTIAL LIST OF PROPERTY/VALUE PAIRS FOR THE SAVEIMAGE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

figure handle current 
figure

The handle of the figure 
window that contains the 
image of interest

height Positive integer 600 The image height

type bmp | jpeg | 
png | tiff | 
eps

jpeg The type of image to create

width Positive integer 800 The image width
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E X P O R T I N G  I M A G E S

You can also save an image by clicking the Export Image button on the toolbar at the 
top of the figure window. Doing so brings up a dialog box in which you specify a file 
name and type as well as the desired width and height for the image. Using the Export 

Image dialog box, you can control font sizes, line widths, and what to include in the 
image you export. To speed up the image-generation process, a preview feature and 
image rendering information are available.

Figure 9-2: The Export Image dialog box.

S E T T I N G S  I N  T H E  E X P O R T  I M A G E  D I A L O G  B O X

Output Format
In the Output format area, click the Bitmap graphics button to export an image using a 
bitmap-based formats such as TIFF and JPEG. You select the format after clicking the 
Export button. Click the Vector graphics button to save the image as an EPS file 
(Encapsulated PostScript).

Image Size
In the Image size area, you can specify the size of the image. Select the unit from the 
Units list: inches, centimeters, or pixels (pixels are available for bitmap graphics only).

When using inches or centimeters, you can set the size using the Width, Height, and 
Resolution (dpi) edit fields. When you use pixels as the unit, the Resolution (dpi) edit 
field is not available
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Scaling
The settings in the Font scale and Line scale areas affect the scaling between the plot’s 
size on the screen and the size in the image (size = number of pixels):

• Click Auto to use the global scale (you see its value in the Image rendering information 
area; also see “The Global Scale” on page 234) if you specify the size in pixels (the 
software scales text, lines, and other graphics equally). If you specify the size in 
centimeters or inches, the automatic scale is based on the resolution that you. The 
font size and line width that you specify when creating the plot should be preserved 
if you export an image using a certain resolution in dpi (dots per inch) and import 
it to a document as an image using the same dpi number (a text with a certain size 
in the plot will look like a text with the same size in the document).

• Click Relative scale to use a total font scale that is the automatic scale times the 
relative scale that you specify.

• Click Absolute scale to use a total font scale that is equal to the absolute scale that 
you specify.

R E N D E R I N G  O P T I O N S

The following settings are available in the Rendering options area:

Antialiasing
Select the Antialiasing check box to reduces stairstep-like lines (jaggies) and makes lines 
and edges look smooth

Include Only Plot
Select the Include Only Plot check box to include only the graphics objects in the 
drawing area, excluding colorbars, axes, tick marks, titles, and labels.

Include Colorbars and Legends
Select the Include Colorbars and Legends check box to include colorbars and legends, if 
present.

Automatic Axis Tick Marks
Select the Automatic axis tick marks check box to take advantage of a new feature that 
can hide axis tick marks if they overlap. Clear this check box if you want make sure that 
the image has the same axis tick marks as you see on the screen.

Rendering Thin Grid Lines
Select the Thin grid lines check box to render thin grid lines compared to other lines in 
the image. Use this option if you think that the grid is too dominating in the image.
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Including the 3D Axis
Select the Include 3D axis check box to include the grid and coordinate system in the 
image.

T H E  G L O B A L  S C A L E

The global scale, which you find in the Image rendering information area, is the scale 
between the size of the plot on screen and the size of the image (size = number of 
pixels).

Generating Movies

COMSOL Script generates movies in either AVI or QuickTime format. 

The command m = movie(...) creates a movie-generation object. You can then add 
frames to the movie from plots in figure windows. The properties width and height 
specify a desired width and height for the movie; if left unspecified, the movie size 
becomes the default size of 640x480 pixels.

You can interact with a movie-generation object with these methods:

The following example generates an AVI movie at 800x600 pixels. It employs the axis 
command to set fixed limits and a view for all the frames:

TABLE 9-22:  METHODS FOR MOVIE-GENERATION OBJECTS

METHOD DESCRIPTION

m.addFrame Adds the plot in the current figure window as a 
frame in the movie

m.addFrame(h) Adds the plot in the figure window with handle h 
as a frame in the movie

m.setFrameRate(rate) Sets the frame rate when generating the movie

m.setQuality(qual) Sets the quality when generating the movie; 
qual is a real number between 0 and 1, where 1 
is the best quality

m.setFileType(type) Sets which type of movie to generate; type can 
be 'avi' or 'quicktime'

m.listEncodings Displays a list of available encoding formats

m.setEncoding(encoding) Sets which encoding format to use

m.generate(filename) Generates a movie with the name filename 
from the frames that have been added to the 
movie
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x1=linspace(-5,5,100);
y1=linspace(-5,5,100);
[x,y]=meshgrid(x1,y1);
r=sqrt(x.^2+y.^2);
z=sqrt(6-r).*sin(r);
h=surf(x,y,z);
axis([-5 5 -5 5 -1 2]);
m=movie('width',800,'height',600);
for i=1:20,
  delete(h);
  h=surface(x,y,z*(1-i/10));
  m.addFrame;
end
m.generate('movie.avi');
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S o l v i n g  D i f f e r e n t i a l  E q u a t i o n s  
Ordinary differential equations (ODEs) appear when using the method-of-lines to 
solve time-dependent partial differential equations in COMSOL Multiphysics. 
There are many other cases where ODEs and differential-algebraic equations 
(DAEs) provide good mathematical models of dynamic systems. This chapter 
describes the tools for solving ODEs and DAEs using COMSOL Script. For partial 
differential equations (PDEs), see the COMSOL Multiphysics documentation.
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ODE s  and DAE s

Introduction

ODEs are ordinary differential equations, that is, differential equations that only 
depend on one independent variable. Often ODEs describe dynamic processes, and 
the derivatives are with respect to time. When you also supply an initial condition, this 
forms an initial-value problem. A DAE is an extension of ODEs, where some 
equations are algebraic (no derivatives of the dependent variables appear). DAEs occur, 
for example, when solving the time-dependent Navier-Stokes equations using the 
method of lines.

Using the DASPK Solver

COMSOL Script includes the DAE solver DASPK created by Linda Petzold at 
University of California, Santa Barbara (see Ref. 1 and Ref. 2). The solver is an implicit 
time-stepping scheme, which means that it must solve a possibly nonlinear system of 
equations at each time step. It is well suited for solving stiff and nonstiff initial-value 
problems, including nonlinear problems. Use the daspk function to solve ODEs and 
DAEs for initial-values problems on the following form:

with initial conditions y(t0) = y0. The mass matrix M is the unit matrix by default. For 
DAEs, M is typically singular. y represents the dependent variables and is a vector for 
a system of ODEs. To solve higher-order ODEs, rewrite them into a system of 
first-order ODEs.

The syntax of daspk is:

[t, y] = daspk(f, tlist, y0)

where f is the name of a function that implements the right-hand side f. tlist 
contains a set of times for which you want the solution data (as a row vector). If you 
provide a vector with two entries, they are define the interval on which daspk solves 
the ODE or DAE. In that case, t contains all the internal time steps.

Using an additional input argument, you can provide various solver options in a 
structure variable. See “Setting and Retrieving ODE Solver Options” on page 239 for 
more information about the options structure.

M t y,( )y· f t y,( )=
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The syntax for the function that implements f is the following:

function ydot = myode(t,y)

Notice that the function takes the input arguments t and y, even if the equations may 
not include t explicitly.

The input t is the independent variable and is a scalar.

The input y is a column vector of the same length as the number of dependent 
variables.

You can also have a function f that takes additional input arguments that can be, for 
example, parameters in the ODE or DAE. You then supply those as additional input 
arguments to daspk. See “Solving the van der Pol Equation” on page 243 for an 
example.

Setting and Retrieving ODE Solver Options

The options structure that you can provide as an input to daspk contains the following 
fields:

• AbsTol: The absolute tolerance—a scalar value or a vector with one value for each 
dependent variable in y. The default value is 1e-6.

• Complex: If you set this to True, daspk assumes that the solution is complex even 
if the initial value is real.

• IntialStep: Initial step size (a positive scalar value). By default, daspk computes 
this value automatically.

• Jacobian: A matrix or name of function that describes the Jacobian . 

• Mass: Matrix or name of function that computes the mass matrix M(t, y). If you do 
not provide a mass matrix, daspk uses the unit matrix.

• MaxOrder: The maximum order of the backward differentiation formula (BDF), 
which must be an integer between 1 and 5. The default value is 5.

• MaxStep: Maximum step size (a positive scalar value). By default, the maximum step 
size is one tenth of the interval in tlist.

• OutputFcn: The name of a callback function that daspk invokes after each step.

• RelTol: The relative tolerance——a scalar positive value. It can also be a vector with 
one value for each dependent variable in y that daspk interprets as weights for a 

y∂
∂f
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single scalar relative tolerance value.The default value is 1e-3 (or 0.01% relative 
tolerance).

• Stats: Display statistics for the computational effort after computing the solution. 
Set it to on to display the statistics. The default value is off.

To set these values, provide them as pairs of option names (field names) and option 
values using the odeset function. The fields for options that you do not specify 
contain the empty matrix and daspk then uses the default value:

opts = odeset('abstol',1e-2,'maxstep',0.1,'stats','on')

opts = 

        AbsTol:  [0.010000]
       Complex:  []
   InitialStep:  []
      Jacobian:  []
          Mass:  []
      MaxOrder:  []
       MaxStep:  [0.100000]
     OutputFcn:  []
     OutputSel:  []
        RelTol:  []
         Stats:  'on'

The input for the option names (field names) in not case sensitive. To update only 
certain options, pass the existing options structure as the first input argument:

newopts = odeset(opts,'abstol',5e-2);

To check the value of an ODE option in the options structure, use the odeget 
function:

atol = odeget(opts,'abstol');

Solving the Lotka-Volterra Equations

As a first example, consider the Lotka-Volterra equations, which describe population 
fluctuations in predators and preys that interact. This results in two coupled nonlinear 
ODEs for the prey populations (y1) and the predator population (y2). Four parameters 
control the dynamics: the growth rate of prey (R1), the rate at which predators kill prey 
(R2), the death rate of predators (R3), and the rate of increase in predator population 
due to prey consumption (R4):
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To simplify the equations, set all four parameters to 1. Then the function that describes 
f, the right-hand side in the equations above:

function ydot = lotkavolterra(t,y)
ydot = zeros(2,1);
ydot(1) = y(1)-y(1).*y(2);
ydot(2) = -y(2)+y(1).*y(2);

Notice that you need to use pointwise multiplication (.*), because y is a vector.

If you save this as lotkavolterra.m in a directory that is on the M-file path, you can 
call daspk to compute the solution from 0 to 10, using a starting value of 2 for the prey 
population and 1 for the predator population:

[t,y] = daspk('lotkavolterra',[0 10], [2; 1]);
plot(t,y)
title('Solution to the Lotka-Volterra equations')

y·1 R1y1 R2y1y2–=

y·2 R3y2– R4y1y2+=⎝
⎜
⎜
⎛
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This gives the following plot:

Figure 10-1: Prey population (blue) and predator population (green).

To plot a phase curve (y2 as a function of y1), type:

plot(y(:,2),y(:,1))
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Figure 10-2: The phase curve for a solution to the Lotka-Volterra equations.

Solving the van der Pol Equation

The van der Pol equation is the following second-order PDE:

It describes self-sustaining oscillations. The parameter µ has a great impact on the 
solution: A high value of µ makes the ODE “stiff,” and it exhibits faster changes in the 
solution. In the special case of µ = 0, it is the equation for a simple harmonic motion.

For this example, you must rewrite the second-order ODE into a system of two 
first-order PDEs:

where y2 is y in the original equation, and y1 is the time-derivative of y.

y·· µ 1 y2
–( )y· y+=

y·1 µ 1 y2
2

–( )y1 y2–=

y·2 y1=
O D E S  A N D  D A E S  |  243



244 |  C H A P T E
In this case, it is also interesting to vary the parameter µ. It is therefore an extra input 
argument to the function vanderpol.m that implements the right-hand side:

function ydot = vanderpol(t,y,mu)
ydot = zeros(2,1);
ydot(1) = mu*(1-y(2).^2).*y(1)-y(2);
ydot(2) = y(1);

It is also of interest to get some statistics for the computational cost. Therefore, turn 
on the statistics option:

opts = odeset('stats','on');

Call daspk with a time interval of 0 to 100, a small initial value for y, and µ = 0.1:

[t,y] = daspk('vanderpol',[0 100], [0;0.0001],opts,0.1);
277 time steps taken
314 residual evaluations
6 Jacobian evaluations
302 linear system solutions
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The solver reports the number of time steps, the number of residual evaluations, the 
number of Jacobian evaluations, and the number of linear system solutions. 
Figure 10-3 contains a plot of the solution.

Figure 10-3: The solution to the van der Pol equation with µ = 0.1.
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In Figure 10-4 you can see the phase curve for this solution:

Figure 10-4: Phase curve for the solution to the van der Pol equation with µ = 0.1.

If you increase µ to 1, the call is:

[t,y] = daspk('vanderpol',[0 100],[0;0.0001],opts,1);
1095 time steps taken
4069 residual evaluations
864 Jacobian evaluations
3113 linear system solutions
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As you can see from the statistics information, the computational cost increases. 
Figure 10-5 shows the solution:

Figure 10-5: The solution to the van der Pol equation with µ = 1.

Finally, increasing the value of µ to 100 makes the ODE much more stiff, and the 
dynamics change so that you get an abrupt change in the solution after some time. This 
To see this, increase the solution interval to 1000 and plot only y2. You also have to 
use stricter tolerances than the default values:

opts = odeset(opts,'abstol',1e-9,'reltol',1e-9);
[t,y] = daspk('vanderpol',[0 1000],[0;0.0001],opts,100);
13041 time steps taken
31585 residual evaluations
5121 Jacobian evaluations
26166 linear system solutions
plot(t,y(:,2))
O D E S  A N D  D A E S  |  247



248 |  C H A P T E
Figure 10-6 shows how the solution behaves in this case:

Figure 10-6: The solution to the van der Pol equation with µ = 100.
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C r e a t i n g  U s e r  I n t e r f a c e s
The COMSOL Script environment includes Java-based tools for creating 
customized graphical user interfaces (GUIs) that can make calls to other COMSOL 
Script functions as well as to functions within COMSOL Multiphysics. In this way 
you can build sophisticated scripts or mathematical models and place a user 
interface around them that provides access only to those parameters that might 
need changing or that automatically present results in a very specific way. 
Introducing you to these tools, this chapter contains an overview of the various 
components and functions as well as an example of building a small user interface 
using COMSOL Script.
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F r ame s  and D i a l o g  Box e s

A frame is the main window for an application. You supply the text to display on the 
title bar as the first argument to the frame function.

You can add menus to a frame, which also acts as a panel to which you can add user 
interface components. A dialog box has a frame as its parent but otherwise behaves the 
same as a frame. Use the Size property to specify the desired size of a frame or dialog 
box. If you give no size, COMSOL Script makes it the smallest size that fits all the 
components you have added to it. Frames and dialog boxes are invisible while you are 
adding components to them; call the show method to display the frame or dialog box 
when you have added all the desired components.

Menus

The menu function creates main menus, which appear at the top of a frame or dialog 
box. You pass the string to display on the menu as an argument. To create individual 
menu items that drop down from the main menu use the menuitem function. Here 
you pass the string to display as the first argument plus the name of the function to 
execute when the menu item is selected as the second argument.

As an exercise, create a small application that has a several menus and items:

f=frame('My Application','size',[300 150]);
m1=menu('File');
m1.add(menuitem('New','newaction'));
m1.add(menuitem('Exit','exitaction'));
m2=menu('Help');
m2.add(menuitem('Help','helpaction'));
m2.addSeparator;
m2.add(menuitem('About','aboutaction'));
f.addMenu(m1);
f.addMenu(m2);
f.setAlignment('center');
f.add(label('tag','label'));
f.show;

Create this script in a text editor and save it as an M-file somewhere on your M-file 
path.

Next you must add the code for the functions these menu items call. Define the 
functions newaction, exitaction, helpaction, and aboutaction as follows:
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function newaction(event)
frame=event.parent;
frame.get('label').setText('New');

function exitaction(event)
frame=event.parent;
frame.close;

function helpaction(event)
frame=event.parent;
frame.get('label').setText('Help');

function aboutaction(event)
frame=event.parent;
dlg=dialog('About','parent',frame);
dlg.add(label('About My Application.'),1,1);
dlg.setAlignment('center');
dlg.add(button('OK'),2,1);
dlg.show;

Save each of these functions in separate M-files: newaction.m, exitaction.m, 
helpaction.m, and aboutaction.m on the M-file path.

The menu is now complete. Choosing the New and Help menu items updates the text 
on the label in the main area. The Exit menu item closes the frame, and the About menu 
item opens a new smaller dialog box (this code does not define an action for the OK 
button in the About My Application dialog box; see“Event Handling” on page 269 for 
information about how to associate an action with events such as mouse clicks). 

Storing Application Data

When you write an application you usually have some kind of data structure that you 
want to access from different event handlers in the user interface. Use the storedata 
and getdata functions to accomplish this.

storedata(f,data)

stores the variable data in f, which can be a frame or a dialog box. Retrieve the variable 
later on using
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getdata(f)

data can be any of the data types supported by COMSOL Script, but it is usually best 
to let it be a structure.
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U s e r  I n t e r f a c e  Componen t s

Introduction

To make a dialog box or panel useful, you must populate it with components that 
accept operator instructions and display results. The GUI component library in 
COMSOL Script supplies functions for creating most of the user-interface 
components that are available in Java. These functions return a Java object that 
contains the corresponding Java Swing component. You can then interact with the 
objects by calling methods on them using the Java interface in COMSOL Script. 

Swing is the standard GUI component library that is included in Java. Details about 
Java and Swing are available at http://java.sun.com.

The available components are:

TABLE 11-1:  GUI COMPONENT FUNCTIONS

FUNCTION NAME DESCRIPTION

axes An axes object into which you plot arbitrary graphics (see “Axes” 
on page 193)

button A button

buttongroup A button group that synchronizes the selection state for option 
(radio) buttons and toggle buttons

checkbox A check box

combobox A combo box

dialog A dialog box

frame A user-interface window

label Displays text and images

listbox A list box

menu A main menu or submenu added to a dialog or a frame

menuitem A menu item that executes some action

panel A panel into which you add components or other panels

radiobutton An option (radio) button

scrollpane Adds scroll bars around a component

table A table

tabbedpane Add panels to a tabbedpane to create different tabs.

textarea A multiple-line area for entering text
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To learn how to position components on a panel or frame, see “Panels and Layout 
Management” on page 262. For now, though, examine the various components that 
are at your disposal.

Labels and Image Icons

Labels display text or images (in the form of an image icon) at an arbitrary location on 
a frame or panel. To create a label, take the text you wish to display and supply it as an 
argument to the label function:

l=label('Enter name:');

An image icon is an image that is displayed on a label, button, check box, radio button, 
or toggle button. Create it by giving the name of a GIF, JPEG, or PNG file as an 
argument to the imageicon function:

im=imageicon('myimage.jpeg');

The label function also accepts the optional properties Text and Image with which 
you can directly specify either or both text and an image. For instance,

im=imageicon('myimage.jpeg');
l=label('text','Number of data points:','image',im);

Buttons and Toggle Buttons

Buttons, check boxes, option (radio) buttons, and toggle buttons are all similar in that 
you create any of them by supplying a first argument that is the string to display with 
the component. As with labels, with these components you can also use the properties 
Text and Image to specify a text and/or an image to display on the component.

b=button('OK');
c=checkbox('Show grid');
r=radiobutton('On');
t=togglebutton('More>>');

Use buttongroup to synchronize the selection state for option buttons and toggle 
buttons so that selecting one option button in the group deselects all other option 
buttons. First create a button group, then add the components that should be 
synchronized to that group.

textfield A single-line area for entering text

togglebutton A button that a user can select or deselect

TABLE 11-1:  GUI COMPONENT FUNCTIONS

FUNCTION NAME DESCRIPTION
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f=frame('Buttons');
p1=panel;
bg=buttongroup;
r1=radiobutton('On');
r2=radiobutton('Off');
bg.add(r1);
bg.add(r2);
p1.add(r1,1,1);
p1.add(r2,2,1);
c1=checkbox('Red');
c2=checkbox('Green');
p2=panel;
p2.add(c1,1,1);
p2.add(c2,2,1);
b1=button('OK');
t1=togglebutton('Toggle');
f.add(p1,1,1);
f.add(p2,1,2);
f.add(b1,2,1);
f.add(t1,2,2);

r1.setValue('on');
c2.setSelected(true);
t1.setSelected(true);

f.show;

Use the getValue method to determine if a button is selected by reading the resulting 
string 'on' or 'off', and use the setValue method set the button’s state to one of 
those strings. The methods getSelected and setSelected are similar but use true 
and false to indicate if the button is selected or not.

Text Fields and Text Areas

To enter a single line of text use a text field; in contrast, a text area holds multiple lines 
of text. You define the size of a text field as the number of characters it should hold, 
and define the size of a text area as the number of rows and columns of text it should 
hold.

t1=textfield(12);
t2=textarea(5,20);
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The optional property Text can set an initial string that should appear in the text field 
or text area. After you have created the component, read its text with the getValue 
method and modify the text with setValue(text).

Combo Boxes and List Boxes

Combo boxes and list boxes display multiple descriptive strings and for each also store 
a corresponding value string. Specify the descriptive strings with the Descr property, 
and specify the corresponding values with the Items property. You can also use the 
Items property alone—in that case, the specified strings serve as both values and 
descriptions. Use both Items and Descr to let the strings in Items be the value of 
some property and the strings in Descr be the corresponding descriptions.

f=frame('Lists');
cb=combobox('items',{'interp','flat','none'}, ...
            'descr',{'Interpolated','Flat','None'});
lb=listbox('items',{'r','g','b','c','m'}, ...
           'descr',{'Red','Green','Blue','Cyan','Magenta'}, ...
           'size',[100 140]);
f.add(lb,1,1,2,1);
f.add(cb,1,2);
f.packColumn(2,2);
f.show;

Combo boxes and list boxes have almost the same methods for getting and setting the 
selection and the values to display. The list box has a few more methods, however, 
because it allows users to select multiple items.

TABLE 11-2:  METHODS FOR MANIPULATING COMBO BOX AND LIST BOX OBJECTS.

METHOD DESCRIPTION

addListSelectionListener(name) Specifies that the function with the given name 
should run when the selection in the list box 
changes.

getSelectedIndex Returns an index to the currently selected 
item in the combobox/listbox.
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Tabbed Panes and Scroll Panes

COMSOL Script supports two types of the pane object. The first is the tabbedpane, 
which is the page that appears when you click one of multiple tabs across the top of a 
tabbed dialog box; the second is the scrollpane, which places scroll bars around a 
given component on a dialog box. The following example show how to use pane 
objects to create a tabbed dialog box.

To create a dialog box with multiple tabs, first call the tabbedpane function; then call 
the addTab method, and pass to it the text to display on the tab as well as the name of 
the page to display when the tab is clicked. Consider this example:

f=frame('Tabs','size',[300 200]);
f.setFill('both');
tp=tabbedpane;
p1=panel;
p2=panel;
p3=panel;
p1.add(label('This text is displayed on the first tab'));
p2.add(label('This text is displayed on the second tab'));
p3.add(label('This text is displayed on the third tab'));
tp.addTab('First',p1);
tp.addTab('Second',p2);
tp.addTab('Third',p3);
f.add(tp);

getSelectedIndices Returns an array with indices to the selected 
items in the listbox.

getValue Returns a string corresponding to the current 
selected item in the combobox/listbox.

setItems(items) Sets the items to display in the combobox/
listbox by passing a cell array of strings.

setItems(items,descr) Sets the descriptions to display in the 
combobox/listbox and their corresponding 
values by passing two cell arrays of strings.

setSelectedIndex(ind) Selects the item with the specified index in 
the combobox/listbox.

setSelectedIndices(ind) Selects the items in the listbox corresponding 
to the indices in the vector ind.

setValue(value) Selects the item with the specified value in the 
combobox/listbox.

TABLE 11-2:  METHODS FOR MANIPULATING COMBO BOX AND LIST BOX OBJECTS.

METHOD DESCRIPTION
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f.show;

While tabbedpane works with an entire page in a dialog box, scrollpane works with 
an individual component—it adds scroll bars around a component that is too large to 
display in an existing dialog box, panel or frame. When working with the scrollpane 
function, as the first argument pass the name of the component that gets the scroll 
bars, then use the Size property to specify the desired size of the scroll pane. Take care 
in this regard because if you do not specify a size, the scroll pane becomes very small. 
For an example of a scroll pane, see the result of the code snippet in the next section 
on tables.

Tables

Call the table function to create a table. Use the following property-value pairs to 
specify the number of rows and columns, column headers, and other appropriate 
parameters.

TABLE 11-3:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

autoadd On | Off off Determines whether rows should 
automatically be added to the end of the 
table as needed when the user enters 
values.

cols integer 2 The number of columns in the table.

editablecols integer 
array

all Indices to the columns that should be 
editable.

rows integer 10 The number of rows in the table.
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As an exercise, create a table and display some material names in it. To the table add a 
scroll pane so the table’s size can exceed that of the frame.

f=frame('Table');
t=table('rows',20,'cols',6,'width',[80 100 100 70 70 70], ...
        'titles',{'Material','Density','Conductivity','','',''});
scroll=scrollpane(t,'size',[400 200]);
f.add(scroll,1,1,'both');
f.show;

material{1,1}='Aluminum';
material{2,1}='Copper';
material{3,1}='Iron';
material{4,1}='Magnesium';
material{5,1}='Silicon';
settabledata(t,material);

data=[2700 3.774e7;8700 5.998e7;7870 1.12e7;
      1770 1.087e7;2330 163];
t.setValue(1:5,2:3,data);

Use the getValue and setValue methods on a table to read and modify numerical 
values. In addition, some corresponding methods take index vectors to rows and 
columns so that you can get and set values only in certain parts of a table. Table cells 

titles cell array 
of strings

The headings for each column.

width integer 
array

The desired width of the columns. It is 
either a scalar specifying the same width 
for all columns, or a vector of the same 
length as the number of columns. If you 
supply no value, each column is given a 
suitable width to fit its title.

TABLE 11-3:  VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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that are empty or that cannot be converted to numerical values return NaN in the 
corresponding positions in the output matrix.

The functions settabledata and gettabledata read and modify values from cell 
matrices of strings. This functionality is useful if you wish to format numerical values 
before setting them or to get and set non-numerical values such as strings.

Axes

The axes object is one of the most useful components in COMSOL Script user 
interfaces. It creates a set of 2D or 3D axes into which a COMSOL Script program 
then plots data in the form of lines or surfaces. See “2D Graphics” on page 205 and 
“3D Graphics” on page 215 for more information about 2D plots and 3D plots.

An axes object is the same component we use in the plotting windows built into 
COMSOL Script. You create an instance of this object using the axes function, then 
retrieve a handle to it with the getHandle method. This handle then serves as the 
Parent property for plotting functions such as plot, line, surf, and patch. The 
handle can also control properties such as axis limits, tick marks, labels, and titles.

As a default, an axes component has a very small size. Thus it is best to specify a fill 
style of 'both' and use a large weight for the grid cell when adding it to a panel (see 
the section in this chapter, “Panels and Layout Management” on page 262). These 
steps make sure that the axes component stretches to fill all extra space not needed by 
other components on a panel.

As an example, create a simple figure window by adding an axes object to a frame and 
then plot some data in it.

f1=frame('My Figure','size',[600 500]);
ax=axes;
p=panel;
p.add(label('x values:'),1,1);
p.add(textfield(20,'text','linspace(0,10,100)'),1,2);
p.addHSeparator(40,1,3);
p.add(label('Function to plot:'),1,4);
p.add(textfield(20,'text','exp(-sqrt(x)).*cos(3*x)'),1,5);
p.packRow(1,6);
p.add(button('Plot'),1,7);
f1.setWeight(1e6,1e6);
f1.add(ax,1,1,'both');
f1.resetWeight;
f1.add(p,2,1,'horizontal');
f1.show;
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x=linspace(0,10,100);
y=exp(-sqrt(x)).*cos(3*x);
parent=ax.getHandle;
plot(x,y,'parent',parent);
set(parent,'title','exp(-sqrt(x)).*cos(3*x)');

The code that plots the function would normally be in an actionListener method 
for the Plot button. It could use eval calls to get x and y vectors from the text strings 
in the text fields and then plot that data in the axes object.
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Pan e l s  a nd L a y ou t  Manag emen t

A panel is an area within a larger object such as a frame or dialog box, often 
distinguished from the rest of a dialog box with a ruled line, in which you add 
components or even other panels. To create a panel in COMSOL Script, you work 
with a layout manager that is based on the Java GridBagLayout class. This means that 
you divide a panel into a grid and then add components to different cells in the grid. 
Each component has a preferred size that defines the size of each cell. The cells, in 
turn, define the size of the entire panel. Thus there is no need to manually account for 
different font sizes on different computing platforms and so on when laying out 
components in a dialog box.

Adding Components

When adding a GUI component to a cell in the panel grid, you can specify how it 
should be aligned within the cell and if it should fill out the cell in the horizontal and 
vertical directions. With various add methods you specify the cell to which you want 
to add a component. You can also specify that a component should span several cells. 
There is no need to specify the grid size; the software determines it automatically from 
the maximum row and column numbers.

TABLE 11-4:  METHODS FOR ADDING COMPONENTS TO A PANEL.

METHOD DESCRIPTION

add(comp,row,col) Adds a component to the cell at the 
given row and column.

add(comp,row,col,nrows,ncols) Adds a component to the cell at the 
given row and column. The component 
spans the specified number of rows and 
columns.
R  1 1 :  C R E A T I N G  U S E R  I N T E R F A C E S



As an exercise, create a frame with buttons that have different fill styles and alignments:

f=frame('Fill and Alignment','size',[400 200]);
f.add(button('COMSOL'),1,1,2,1,'both');
f.add(button('Script'),1,2,'vertical');
f.add(button('Plot'),1,3,'horizontal');
f.setAlignment('south');
f.add(button('Show'),2,2);
f.setAlignment('east');
f.add(button('Hide'),2,3);
f.show;

This code snippet divides the frame into a 2-by-3 grid. The COMSOL button in the first 
column is specified to span two rows and to fill the space in the cells in which it lies. 
The Script button fills its cell only vertically, and the width needed to display the Script 
string determines this component’s width. The Plot button fills its cell horizontally, 
and its height is determined by that needed to display the text on it. The Show and Hide 
buttons have sizes determined by the strings they display, and they are aligned to the 
south and east in their cells, respectively.

add(comp,row,col,fill) Adds a component and specifies how it 
should fill the cell to which it is assigned. 
Fill is a string that tells the component 
to stretch to fill the cell in certain 
directions. It can have one of the values 
'both', 'horizontal', or 
'vertical'.

add(comp,row,col,nrwos,ncols,fill) The same as 
add(comp,row,col,fill) but also 
allows you to specify the number of 
rows and columns the component 
should span.

TABLE 11-4:  METHODS FOR ADDING COMPONENTS TO A PANEL.

METHOD DESCRIPTION
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The next example shows how to create a frame and on it place two panels with labels, 
text fields, buttons, and combo boxes.

f=frame('Layout');
p1=panel;
p1.add(label('Name:'),1,1);
p1.add(textfield(12),1,2);
p1.add(textfield(12),1,3);
p1.add(label('Address:'),2,1);
p1.add(textfield(30),2,2,1,2);
p1.add(label('Country:'),3,1);
countries={'France','Germany','Sweden','USA'};
p1.add(combobox('items',countries),3,2);
bp1=panel;
bp1.add(button('OK'),1,1);
bp1.add(button('Cancel'),1,2);
bp1.add(button('Apply'),1,3);
p1.addVSeparator(4,4,1);
p1.add(bp1,5,1,1,3);
p1.addBorder('First');

p2=panel;
p2.add(label('Name:'),1,1);
p2.add(textfield(12),1,2,'horizontal');
p2.setAlignment('east');
p2.add(textfield(12),1,3);
p2.setAlignment('west');
p2.add(label('Address:'),2,1);
p2.add(textfield(30),2,2,1,2);
p2.add(label('Country:'),3,1);
p2.add(combobox('items',countries),3,2,'horizontal');
bp2=panel;
bp2.add(button('OK'),1,1);
bp2.add(button('Cancel'),1,2);
bp2.add(button('Apply'),1,3);
p2.addVSeparator(4,4,1);
p2.setAlignment('east');
p2.add(bp2,5,1,1,3);
p2.addBorder('Second');

f.add(p1,1,1);
f.add(p2,2,1);

f.show;
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The panels are similar and are each divided into a 5-by-3 grid. The first column holds 
the labels. The Address text field spans both Columns 2 and 3. Because it is more than 
twice as wide as the Name text fields, extra gray space is available in Columns 2 and 3 
after the Name text fields. In the upper panel, the width of the Country combo box is 
determined by the length of the longest pull-down description in that combo box, 
whereas the lower panel specifies that the Country combo box and the Name text field 
should fill their cells horizontally—a requirement that results in a nice alignment 
between them. A vertical separator is added above the panels that hold the buttons, 
and in the lower panel its alignment is set to 'east'.

Distributing Extra Space

If a panel is larger than required by its components, the extra space is distributed 
between the grid cells according to their relative weights. By default, each cell has a 
weight of 1 in both the x and y directions. You can set higher weight values for certain 
cells if you want them to get more of the extra space.

You can also use the packRow and packColumn methods to specify that all components 
in a row or a column should be moved away as much as possible from a certain cell.

TABLE 11-5:  METHODS FOR CONTROLLING HOW EXTRA SPACE IS DISTRIBUTED.

METHOD DESCRIPTION

pack Packs (shifts) components on the panel towards the 
upper left corner. Can, for example, be used before 
adding a panel to a tabbedpane to make sure the 
components on each tab stretch to fill the tab.

packColumn(row,col) Packs (shifts) components in a column away from the 
specified row and column.
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Consider this example:

f=frame('Extra Space','size',[400 200]);
f.setFill('both');
p1=panel;
p1.setFill('both');
p1.add(button('1'),1,1);
p1.setWeightY(1e6);
p1.add(button('2'),2,1);
p1.resetWeight;
p1.add(button('3'),3,1);
p2=panel;
p2.setFill('both');
p2.add(button('4'),1,1);
p2.add(button('5'),2,1);
p2.add(button('6'),3,1);
p2.packColumn(4,1);
p3=panel;
p3.setFill('both');
p3.add(button('7'),1,1);
p3.add(button('8'),2,1);
p3.add(button('9'),3,1);
f.add(p1,1,1);
f.add(p2,1,2);
f.setWeightX(1e6);
f.add(p3,1,3);
f.resetWeight;
f.show;

packRow(row,col) Packs (shifts) components in a row away from the 
specified row and column.

resetWeight Resets the weights to their default values, which is 1 in 
both the x and y directions.

setWeight(x,y) Sets the weight in the x and y directions for any 
components added after you make this call. The 
components’ relative values of the weights determine 
how extra space within the panel should be distributed 
if the panel is larger than needed by the preferred size of 
its components.

setWeightX(x) Set the weight only in the x direction.

setWeightY(y) Set the weight only in the y direction.

TABLE 11-5:  METHODS FOR CONTROLLING HOW EXTRA SPACE IS DISTRIBUTED.

METHOD DESCRIPTION
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This example adds panels in three columns. In the first column, you set a large weight 
in the y direction before adding the 2 button. In this way that cell gets all the extra 
vertical space, and because you add the button with a fill style of 'both', it stretches 
to fill the cell. For the panel in the second column, a packColumn call moves the 
components away from Row 4 on that panel. Before the panel in the third column is 
added, you set the weight in the x direction to a large value for that cell. In this way 
the third column gets all the extra horizontal space.

Adding Empty Space

To give a cell a certain width or height without adding a component to it, use the 
addHSeparator and addVSeparator methods, which create extra space between 
components. You can also use these methods in cells where you have already added 
another component to force that cell to reach a certain minimum width or height.

f=frame('Separators');
f.setFill('both');
f.add(button('1'),1,1);
f.add(button('2'),2,1);
f.addVSeparator(20,3,1);
f.add(button('3'),4,1);
f.addHSeparator(30,1,2);
f.add(button('4'),1,3);
f.add(button('5'),2,3);
f.addVSeparator(60,2,3);
f.addHSeparator(120,2,3);
f.add(button('6'),4,3);
f.add(button('7'),1,4);
f.add(button('8'),2,4);
f.add(button('9'),4,4);
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f.show;

Here the buttons are laid out on a 4-by-4 grid where there are no buttons on Row 3. 
This code snippet adds a horizontal separator with a width of 30 pixels in Column 2 
and adds a vertical separator with a height of 20 pixels in Row 3. It also adds a 
horizontal separator and a vertical separator in the same cell as the 5 button to make 
that cell larger than required by the button itself. 

Accessing Components

To specify a tag when creating a component, use the Tag property. With it you can later 
access that component by calling the get method on a panel, dialog, or frame. For 
instance, examine this code:

f=frame('Tags');
f.add(label('Width:'),1,1);
f.add(textfield(10,'tag','width'),1,2);
f.add(label('Height:'),2,1);
f.add(textfield(10,'tag','height'),2,2);
f.show;
t1=f.get('width');
t2=f.get('height');
t1.setValue('400');
t2.setValue('300');

The two text fields are created without assigning them to a specific variable. Instead 
they are given a tag when created. This tag is then used with the get method on frame 
to access the text fields and set the text in them.
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Ev en t  Hand l i n g

With GUI components selected and placed on a panel, it is now time to assign actions 
to them. You can specify that GUI events such as the click of a button, mouse 
movements, or the change of the selection in a list box should run a certain M-file. 
Simply specify the name of the function to run as an argument to the appropriate 
method. For instance, to specify that the function okaction should run when the user 
clicks the OK button, write these two lines of code:

b=button('OK');
b.addActionListener('okaction');

The following table lists the methods that add event handlers to certain types of 
components.

When calling an event-handling function, you supply one argument that is a structure 
containing information about the event. The event structure always has the following 
fields:

• parent—The dialog box or frame in which the source component for the event lies

TABLE 11-6:  METHODS FOR ADDING EVENT HANDLERS

METHOD COMPONENTS DESCRIPTION

addActionListener button, 
checkbox, 
combobox, 
radiobutton, 
togglebutton

Run a function when a button 
is clicked or the selection of 
the component changes.

addActionListenerThread button Run a function in a separate 
thread when a button is 
clicked. This can be used for 
operations that execute for a 
long time and need to update 
graphics while running.

addFocusListener all Run a function when a 
component gains or loses 
focus.

addListSelectionListener listbox Run a function when the 
selection in a listbox changes.

addMouseListener all Run a function when the 
cursor is moved or clicked 
over a component.
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• source—The component that is the source of the event

• type—A string specifying the type of event

Generally you use the parent field to identify the frame or dialog box in which the 
component causing the event is situated. Then, to access other components in the 
frame and their values, call the get method along with tags to the components.

The third field in the event structure, the type field, can have a number of values as 
indicated in the following table:

In this list of values, note that for mouse events used on an axes component, the event 
structure also contains the fields x and y that give the coordinates where the mouse 
event occurred.

TABLE 11-7:  VALUE OF THE TYPE FIELD FOR DIFFERENT TYPES OF EVENTS.

VALUES OF TYPE FIELD TYPE OF EVENT

'action' An action event has occurred.

'focusgained' A component has gained focus.

'focuslost' A component has lost focus.

'list' The selection in a list box has changed.

'mouseentered' The mouse was moved on top of a component.

'mouseexited' The mouse was moved away from a component.

'mouseclicked' A mouse button was clicked on top of a component.

'mousepressed' A mouse button was pressed on top of a component.

'mousereleased' A mouse button was released on top of a component.
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Ex amp l e  U s e r  I n t e r f a c e

This example shows how to create a simple GUI. It includes a table in which you can 
enter coordinates for data points. You then specify an interpolation method to 
interpolate between this data. It creates a plot with the data points as markers and the 
interpolated values as a line with a given color, line style, and line width.

Note: The files for this example are available in the demos directory in the 
installation.

Start by writing the code that draws the GUI and specifies which functions to use as 
event listeners:

f=frame('Interpolation');
p1=panel;

dp=panel;
dp.setFill('horizontal');
t1=table('rows',30,'cols',2,'titles',{'X','Y'},
'width',[90 90],'tag','data');
sc=scrollpane(t1,'size',[200 280],'horizontal','never');

dp.add(sc,1,1,1,2);
dp.add(label('Interpolation method:'),2,1);
dp.add(combobox('items',{'nearest','linear','cubic'}, ...
                'descr',{'Nearest','Linear','Cubic'}, ...
                'tag','method'),2,2);
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dp.addBorder('Data');

lp=panel;
lp.setFill('horizontal');
lp.add(label('Line style:'),1,1);
lp.add(combobox('items',{'-','--',':','-.'}, ...
                'descr',{'Solid','Dashed','Dotted','Dash-dot'}, ...
                'tag','linestyle'),1,2);

lp.add(label('Line color:'),2,1);
lp.add(combobox('items',{'r','g','b'}, ...
                'descr',{'Red','Green','Blue'}, ...
                'tag','linecolor'),2,2);

lp.add(label('Line width:'),3,1);
lp.add(textfield(10,'text','1','tag','linewidth'),3,2);
lp.addBorder('Line settings');

mp=panel;
mp.setFill('horizontal');
mp.add(label('Marker:'),5,1);
mp.add(combobox('items',{'+','*','o','s'}, ...
                'descr',{'Plus','Star','Circle','Square'}, ...
                'tag','marker'),5,2);

mp.add(label('Marker color:'),6,1);
mp.add(combobox('items',{'r','g','b'}, ...
                'descr',{'Red','Green','Blue'}, ...
                'tag','markercolor'),6,2);

mp.addBorder('Marker settings');

p1.add(dp,1,1,'horizontal');
p1.add(lp,2,1,'horizontal');
p1.add(mp,3,1,'horizontal');
p1.setAlignment('east');
p1.addVSeparator(4,4,1);
p1.add(button('Plot','tag','plot'),5,1);

f.add(p1,1,1);
f.setWeight(1e6,1e6);
f.add(axes('tag','axes','size',[600 600]),1,2,'both');
f.resetWeight;

f.get('plot').addActionListener('interpaction');
f.get('axes').addMouseListener('interpmouse');
f.show;
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Note the following:

• The combo boxes use descriptive values and corresponding property names that 
they pass to the interp1 and plot functions.

• On the top level, the frame is divided into two panels: one to the left, and the axes 
object to the right.

• You add the panels to the left panel with the 'horizontal' fill style to align the 
borders. You also specify the panels as having 'horizontal' fill for the components 
you add to them. This means that the combo boxes and text fields line up even if 
the maximum lengths of the strings in the combo boxes differ.

• You add the table to a scroll pane with only a vertical scroll bar; specify the width of 
the columns explicitly to fit into the scrolling viewport.

• You set a high weight before adding the axes object, which has a fill style of 'both'.

• You assign tags to the components so it is possible to access them in the event 
listeners.

• You specify interpaction as the function to run when the user clicks the Plot 
button.

• You specify interpmouse as the function to run when the user moves the mouse 
and clicks over the axes object.

The function interpaction uses the parent field in the event structure to get the 
frame, and it then calls the get method on the frame to get the components and their 
values. It calls the getHandle method on the axes object to obtain a handle to that 
object; that handle then serves as the Parent property to the Plot function.

function interpaction(event)

% Get parent frame of event source
frame=event.parent;

% Get value from components using their tags
method=frame.get('method').getValue;
linestyle=frame.get('linestyle').getValue;
linecolor=frame.get('linecolor').getValue;
linewidth=str2num(frame.get('linewidth').getValue);
marker=frame.get('marker').getValue;
markercolor=frame.get('markercolor').getValue;

% Get data from table and interpolate
data=frame.get('data').getValue;
data=data(~isnan(data(:,1)),:);  % Remove NaNs from empty rows.
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xi=data(:,1)';
yi=data(:,2)';
[xi,ind]=sort(xi);
yi=yi(ind);
x=linspace(min(xi),max(xi),100);
y=interp1(xi,yi,x,method);

% Get handle to axes and clear before plotting into it
parent=frame.get('axes').getHandle;
cla(parent);
h=plot(x,y,'color',linecolor,'linewidth',linewidth, ...
       'linestyle',linestyle,'parent',parent);
set(h,'hold','on');
plot(xi,yi,'linestyle','none','marker',marker, ...
     'color',markercolor,'parent',parent);

The example also adds a mouse listener to the axes object; it lets the user click positions 
for the data points instead of entering them in the table. The function finds the first 
empty row in the data table and enters the clicked coordinate in that row. Note also 
that it checks that the event type is 'mouseclicked', because the function also runs 
when the user moves, presses, or releases the mouse.

function interpmouse(event)
if (strcmp(event.type,'mouseclicked'))
  x=event.x;
  y=event.y;
  frame=event.parent;
  table=frame.get('data');
  data=table.getValue;
  first=find(isnan(data(:,1)));
  if ~isempty(first)
    table.setValue(first(1),1:2,[x y]);
    parent=event.source.getHandle;
    line(x,y,'linestyle','none','marker','*','parent',parent);
  end
end

The x and y fields in the event structure get the coordinate in the axes object for the 
mouse click. The routine then draws a marker at that position in the axes object.
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U s e r - D e f i n e d  C l a s s e s
Using COMSOL Script it is possible to define new data types, classes, and to 
create objects that are instances of these classes. A class is an aggregate of fields and 
methods.

The class model used is inspired by Java’s class system.
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I n t r o du c t o r y  E x amp l e :  R e c t a n g l e

The file Rectangle.csl defines the class Rectangle:

class Rectangle
%A class for rectangles.

public x0 x1  % x0<x1
public y0 y1  % y0<y1

function Rectangle(varargin)
%RECTANGLE(X0, Y0, X1, Y1) creates a rectangle with vertices
%in (x0,y0) and (x1,y1).
switch nargin
case 4
  in = varargin;
  [x0 x1] = deal(min(in{1}, in{3}), max(in{1}, in{3}));
  [y0 y1] = deal(min(in{2}, in{4}), max(in{2}, in{4}));
case 1
  r = varargin{1};
  [x0 x1] = [r.x0 r.x1];
  [y0 y1] = [r.y0 r.y1];
otherwise
  error('Usage: Rectangle(x0, y0, x1, y1)');
end

public function out = area
%AREA returns the area of the rectangle.
out = (x1-x0)*(y1-y0);

public static function out = overlap(r1, r2)
%OVERLAP(R1, R2) returns the area of the overlap between the
%two rectangles R1 and R2.
out = max(min(r1.x1, r2.x1)-max(r1.x0, r2.x0), 0)*...
      max(min(r1.y1, r2.y1)-max(r1.y0, r2.y0), 0);

This defines a Rectangle class with the four fields x0, y0, x1, and y1, a constructor, 
and the two methods area and overlap. To create a Rectangle object, use the same 
syntax as for a function call:

r = Rectangle(1, 3, 2, 9)
r = 
Rectangle object
  x0:  [1]
  x1:  [2]
  y0:  [3]
  y1:  [9]
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r.area

ans = 
6

The call Rectangle(1, 3, 2, 9) returns a rectangle with vertices in (1, 3) and (2, 9). 
The variable r is of the type Rectangle; it is an instance of the Rectangle class. There 
can only be one definition of a class, but there can be many instances of it. By default, 
the fields of an object are displayed in the same way as if it were a structure. 

The call r.area invokes the area method of the object r. The syntax for invoking a 
method without arguments is the same as for accessing a field of a structure.

The class contains three methods: the constructor Rectangle, the accessor area, and 
the static function overlap. The method declarations look like declarations of local 
functions in a function M-file, but unlike local functions, they can be accessed outside 
the class.

overlap is an example of a static method: it is invoked when overlap is invoked with 
arguments where at least one is a Rectangle:

r = Rectangle(1, 5, 6, 8);
s = Rectangle(3, 2, 5, 7);
overlap(r, s)

ans =
4

The overlap method is not visible if none of the arguments is a Rectangle: for 
example, overlap(1,2) gives an error.
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T h e  S t r u c t u r e  o f  t h e  C l a s s  F i l e

A class is defined by a .csl-file on the path that has the following contents:

• Class header

• Precedence declarations

• Field declarations

• Method declarations

Only the class header is mandatory. Below you find brief descriptions of the contents 
of each part of the file. The next section contains a more detailed description.

Class Header

The class header declares the name of the class, its copy semantics, and its superclass, 
if any. The most basic form is a value class with no superclass:

class Rectangle

The name of the class, here Rectangle, must coincide with the filename, here 
Rectangle.csl. That the class is a value class means that a copy is made whenever an 
instance of the class is used as argument to a function, or is used in an assignment. All 
other data types except for Java objects have value semantics. The opposite is a 
reference class, declared with the reference modifier:

reference class Rectangle

Reference semantics means that a true copy of the object is never made, only references 
to the same object. This is the semantics that Java objects have.

The superclass of a class is declared using the extends keyword:

class Rectangle extends Shape

The superclass must be defined by a .csl-file on the path.

Precedence Declarations

This optional section contains the classes that have higher or lower precedence than 
the class being declared. It contains zero or more lines of the form

superiorto <classname>

or
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inferiorto <classname>

Field Declarations

This optional section contains zero or more field declarations of the forms

<access modifiers> <name> = <expression

or

<access modifiers> <name1> [<name2> ...]

The fields declared are like the fields of a structure, with the difference that a class 
always contains the same fields. The access modifiers control where the field is visible. 
You must specify one of public, protected, and private, and you can optionally use 
static and transient.

The first syntax allows for initial values to be supplied:

public version = 1;

This declares the field version with the default value 1. This means that the version 
field is assigned to 1 when an instance of the class is created. Fields without initial 
values are assigned to [].

Method Declarations

This optional section contains zero or more method declarations of the form

[<access modifiers>] <function declaration>

You can specify one of the access modifiers public, protected, and private, as well 
as static. The method is considered public unless you specify protected or 
private.

Except for the optional access modifiers, the syntax of a function declaration is the 
same as for a local function declaration in an M-file. 
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A c c e s s  Mod i f i e r s

You can assign access modifiers to the fields and methods of a class. There are three 
types of modifiers:

• Visibility modifiers: public, protected, and private. They specify where the 
member is visible: public means that the member is visible everywhere, protected 
that it is visible in the class and classes inheriting from it, and private that it is 
visible only in the class where it was declared.

• Static modifier: static. A static member is one that is associated with the class, not 
with an instance of the class. The opposite is an instance member (the default).

• Transient modifier: transient. COMSOL Script does not save a field marked as 
transient when you run the command save. You can use this to avoid saving 
temporary data that is easy to recompute.

Each member field must have a visibility modifier specified. For methods this is not 
necessary; if omitted, the default visibility is public.

A class where all fields are public behaves a lot like a structure: It is possible to read 
and assign values to all fields using the var.field syntax. Restricting the visibility can 
be useful for hiding class internals that are inconsequential for the user of the class.
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A class can be viewed as a structure with a predefined set of fields, the instance 
(nonstatic) fields. Static fields have semantics similar to global or persistent 
variables.

Instance Fields

Fields not declared as static are instance fields: They belong to an instance of the class, 
like fields in a structure. The fields of the Rectangle class are examples of instance 
fields:

class Rectangle

public x0 x1  % x0<x1
public y0 y1  % y0<y1

Outside of the class, you can use these fields like the fields of a structure:

r = Rectangle(2, 3, 6, 7);
r.x1

ans = 
6

This is only possible for public fields; you cannot access protected and private 
fields this way. It is also possible to modify public fields like fields of a structure:

r = Rectangle(2, 3, 6, 7);
r.y1 = 10

r = 
Rectangle object
  x0:  [2]
  x1:  [6]
  y0:  [3]
  y1:  [10]

When a nonstatic method of a class is run, you can access its instance fields like local 
variables:

public function out = area
%AREA returns the area of the rectangle.
out = (x1-x0)*(y1-y0);
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The values of x0, x1, y0, and y1 are taken from the instance fields, and any assignments 
to them would result in the instance fields being changed.

Static Fields

Fields declared static belong to the class, not any instance of it. As an example, 
consider the class MathConst:

class MathConst

% The golden ratio
public static golden = (sqrt(5)+1)/2;
% Perfect numbers less than 10^11
public static perfect = [6 28 496 8128 33550336 8589869056];

The two fields golden and perfect are static. Their values are set using initializers, 
(see the next section for an explanation of this). To access them, access the class like a 
structure:

MathConst.golden

ans = 
1.6180

MathConst.perfect(2:3)

ans = 
28  496

It is also possible to change their values:

MathConst.golden = -17

Initialization of Fields

The MathConst class illustrates initialization:

public static golden = (sqrt(5)+1)/2;

The above means that when the class is loaded, the static field golden is assigned the 
expression in the right-hand side. For instance fields, initializers provide initial values 
when the object is created. As an example, consider the point class:

class Point

public x = 2;
public y = 5;
R  1 2 :  U S E R - D E F I N E D  C L A S S E S



The default placement of the point is at coordinates (2, 5):

p = Point

p = 
Point object
  x:  [2]
  y:  [5]

If a field is not given an initializer, it is assigned to []. More specifically: When an object 
is created, all instance fields are initialized to []. Then initializers, if any, are evaluated 
in the order the fields are declared. This means that

public x;
public y = {x 5};
public z = length(y);

is equivalent to

public x = [];
public y = {[] 5};
public z = 2;
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Membe r  Me t h od s

Constructor

The constructor is a function with the same name as the class and is called when an 
instance of the class is created. The purpose of the constructor is to set up a valid 
object, possibly using input arguments. It cannot be static and must not return 
anything. As an example, consider the constructor of the Rectangle class:

function Rectangle(varargin)
%RECTANGLE(X0, Y0, X1, X1) creates a rectangle with vertices
%in (x0,y0) and (x1,y1).
switch nargin
case 4
  in = varargin;
  [x0 x1] = deal(min(in{1}, in{3}), max(in{1}, in{3}));
  [y0 y1] = deal(min(in{2}, in{4}), max(in{2}, in{4}));
...

The constructor is called whenever a Rectangle is created: When

r = Rectangle(1, 3, 2, 9)

is executed, an empty Rectangle object is created. At this point, the four instance 
fields x0, x1, y0, and y1 have been initialized with []. Then the constructor is invoked 
for the new object. The constructor is an instance method and can therefore modify 
the instance fields: The assignments to, for example, x0 modify the field x0 of the 
instance. The methods of a class differ from local functions in this respect: A local 
function Rectangle with the above contents would assign values to x0 in its own 
workspace, but when leaving the function, these values would be lost.

A class does not need a constructor: If there is no constructor, the fields are assigned 
default values if provided, otherwise [].

Instance Methods

An instance method is a method that is not declared static. It operates on an instance 
of a class and has access to the instance fields. The area method in the Rectangle class 
is an example of an instance method:

public function out = area
%AREA returns the area of the rectangle.
out = (x1-x0)*(y1-y0);
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An instance method can read or write the instance fields like local variables, just like 
the constructor. area uses the coordinates of the rectangle to compute its area. 

Static Methods

A static method has access to the static fields of the class but not to any instance fields 
as it cannot be run for any instance of the class. The overlap method of the 
Rectangle class is static:

public static function out = overlap(r1, r2)
%OVERLAP(R1, R2) returns the area of the overlap between the
%two rectangles R1 and R2.
out = max(min(r1.x1, r2.x1)-max(r1.x0, r2.x0), 0)*...
      max(min(r1.y1, r2.y1)-max(r1.y0, r2.y0), 0);

There are two way to invoke a static method:

• Calling it like a function with one or more objects as arguments:

r = Rectangle(1, 5, 6, 8);
s = Rectangle(3, 2, 5, 7);
overlap(r, s)

ans = 
4

• Specifying it explicitly:

Rectangle.overlap(r, s)

ans = 
4

The first syntax works because at least one of the arguments to overlap is an object, 
here of the class Rectangle, and the class Rectangle has a visible static method called 
overlap. 
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I n h e r i t a n c e

Sometimes a class is a specialization or extension of another class. You can specify this 
relation in the class header using the extends keyword:

class Rectangle extends Shape

A rectangle is a specialization of the shape concept, and it therefore makes sense to let 
the class Rectangle inherit from the class Shape, which then becomes the superclass 
of Rectangle, the derived class. The members and methods of the superclass are 
visible in the derived class. Suppose that the Shape and Rectangle classes contain the 
following fields:

class Shape
public name
...

class Rectangle extends Shape
public x0 x1
public y0 y1
...

The Rectangle class contains five fields: The four fields declared in Rectangle, and 
the field declared in the superclass, Shape. For a user of the class, there is no distinction 
between the two types of fields:

r = Rectangle(1, 3, 2, 9);
r.name = 'COMSOL';
r.name

ans =
  COMSOL
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Differences

When you make an assignment a = b, COMSOL Script normally assigns a copy of b 
to a. This is the case for all data types except for Java objects and instances of reference 
classes: For these data types, only a reference is copied. Consider the class RefClass 
defined as follows:

reference class RefClass
public x = 5;

The software only copies a reference when an assignment is made:

r = RefClass;
s = r;
r.x = 10;
s.x

ans = 
10

Consider on the other hand the class ValueClass, defined as follows:

class ValueClass
public x = 5;

For a value class, the assignment makes a true copy:

v = ValueClass;
s = v;
v.x = 10;
s.x

ans = 
5

The same rules apply when passing arguments to functions: For an instance of a value 
class, a copy of the value is passed; for an instance of a reference class, a reference to 
the value is passed.
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Choosing Class Type

The main factor determining the class type is how you view the class:

• If you think of the class as a structure augmented with methods, declare it as a value 
class.

• If you think of the class as a lightweight Java class, declare it as a reference class.

A reference class cannot inherit from a value class, or vice versa. Thus the choice of class 
type for a base class affects the entire class hierarchy.

If you define several different classes, try to use the same class type for all of them. 
Mixing class types can easily lead to bugs as the difference in semantics is subtle.
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Functions That You Can Only Use for Objects

T H E  T H I S  F U N C T I O N

Inside an instance method, this returns the instance for which the method is run. 

T H E  S U P E R  F U N C T I O N

When a constructor is run in a derived class, you can use super to run the constructor 
of the superclass. Suppose Rectangle inherits from Shape:

class Rectangle extends Shape

...

function Rectangle(varargin)
super(varargin);
...

The call super(varargin) runs the constructor of the Shape class.

It is also possible to use super as a structure to access or modify visible fields or 
methods from the superclass: super.a = 17; sets the field a in the superclass to 17. 
This can be useful if a member in the superclass has been shadowed by a member with 
the same name in the derived class.

super can be used to resolve name conflicts between methods in a class and .M-file 
functions: Suppose that the class Potential contains a method called gradient. 
Then the .M-file function gradient is shadowed by the method gradient: Calling 
gradient from the Potential class invokes the method gradient, not the function 
gradient. By instead calling super.gradient, the function gradient is called unless 
there is a method gradient in a superclass of Potential. That is, the .M-file functions 
are implicit members of a common base class of all user-defined classes.

T H E  C L O N E  F U N C T I O N

The clone function creates a true copy of an object. For a value object, this has no 
effect, but for a reference object it is necessary in order to copy the contents, not only 
a reference to the object. The class RefClass was above defined as

reference class RefClass
public x = 5;
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Use the clone function to create a true copy of a RefClass object:

r = RefClass;
s = clone(r);
r.x = 10;
s.x

ans = 
5

Without clone, only a reference would be copied.

Functions with Special Semantics for Objects

C L E A R  C L A S S E S

clear classes removes all variables, just like clear does, but it also tries to remove 
all class definitions. This is necessary if the definition of a class changes: Unless you 
perform clear classes, COMSOL Script uses the old class definition even if the 
class file on disk changes.

clear classes can only remove the definitions of classes of which there are no 
instances. This means that sometimes not all classes are removed: If clear classes 
is called from a function and there still are instances of some class in the root 
workspace, then that class cannot be cleared. The same thing can happen if you store 
objects in global or persistent variables.

H E L P  F O R  A  C L A S S

help for a class displays the comment block following the class header as well as the 
comment blocks following each public nonstatic method:

help Rectangle

A class for rectangles.

RECTANGLE(X0, Y0, X1, Y1) creates a rectangle with vertices
in (x0,y0) and (x1,y1).

AREA returns the area of the rectangle.

OVERLAP(R1, R2) returns the area of the overlap between the
two rectangles R1 and R2.

You can also retrieve the help text for a method:

help Rectangle.overlap
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OVERLAP(R1, R2) returns the area of the overlap between the
two rectangles R1 and R2.

If you have a variable which is an instance of a class you can get help for its class or a 
method of the class using a variation of the above syntax:

r = Rectangle(2, 3, 6, 7);
help r

A class for rectangles.

RECTANGLE(X0, Y0, X1, Y1) creates a rectangle with vertices
...

help r.overlap

OVERLAP(R1, R2) returns the area of the overlap between the
two rectangles R1 and R2.

This notation is more compact and has the advantage that you do not even have to 
know class r belongs to, something which is useful if you are working with a hierarchy 
of classes.

T H E  F I E L D N A M E S  F U N C T I O N

For an object, fieldnames returns the names of the instance fields that are visible from 
the workspace where fieldnames is called:

r = Rectangle(2, 3, 6, 7);
fieldnames(r)

ans = 
  'x0'
  'x1'
  'y0'
  'y1'

All the fields of the Rectangle class are public, and fieldnames therefore returns 
them. private and protected members are only returned by fieldnames when 
invoked from a method of the class.

T H E  M E T H O D S  F U N C T I O N

methods displays the methods declared by a class:

methods('Rectangle')

class Rectangle
  public function Rectangle
  public function area
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By default, methods only displays public nonstatic methods. It is possible to select 
methods to display based on access modifiers:

methods('Rectangle', 'static')

class Rectangle
  public static function overlap

The second argument to methods is a string or cell array of strings that lists all access 
modifiers to include.

When requesting output, methods returns a cell array:

c = methods('Rectangle', 'static')

c = 
{'overlap'}

T H E  S T R U C T  F U N C T I O N

When invoked for an object, struct returns a structure containing the fields of the 
object that are visible in the workspace where struct is called:

r = Rectangle(1, 3, 2, 9);
struct(r)

ans = 
  x0:  [1]
  x1:  [2]
  y0:  [3]
  y1:  [9]
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Ove r l o a d i n g

Overloading Operators

You can overload all unary and binary arithmetic, relational, and logical operators, as 
well as the concatenation operators [ , ] and [ ; ]. To overload an operator, create a 
public static function that defines the semantics of the overloaded function. As an 
example, consider a class Rational that represents rational numbers:

class Rational
%RATIONAL is a class for exact representation of a rational number
%as a ratio between integers.

private a  % Numerator
private b  % Denominator, always > 0

...

static function out = plus(r1, r2)
%PLUS Sum.
%   OUT = PLUS(R1, R2) returns the sum of R1 and R2.
r1 = Rational(r1);
r2 = Rational(r2);
out = Rational(r1.a*r2.b+r1.b*r2.a, r1.b*r2.b);

...

The static function plus provides an overload for the + operator:

Rational(1,3)+Rational(1/4)  % 1/3+1/4 = 7/12
  7 / 12
Rational(pi)+1               % uses 355/113 as approximation of pi
  468/113

A demonstration example in this release includes the complete definition of the 
Rational class. Run help Rational or type Rational to see its contents.

Each operator has a corresponding function that the software invokes when at least one 
of the operands is an object. This is the function that the class must provide for it to 
define an overloaded operator. The example above includes overloading of the + 
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operator by defining the plus member method. Table 12-1 contains the complete 
map between operators and functions:

TABLE 12-1:  OPERATORS AND THEIR CORRESPONDING FUNCTIONS

OPERATOR FUNCTION

+ (unary, +a) uplus

+ (binary, a+b) plus

- (unary, -a) uminus

- (binary, a-b) minus

* mtimes

.* times

/ mrdivide

./ rdivide

\ mldivide

.\ ldivide

^ mpower

.^ power

== eq

~= ne

>= ge

> gt

<= lt

< le

& and

| or

~ not

[ , ,] horzcat

[ ; ; ] vertcat

: colon

' ctranspose

.' transpose
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Overloading Assignment and Indexing

F I E L D  R E A D / W R I T E

If a class has an instance method called fieldread, then COMSOL Script calls that 
function when it reads a field of an object using the var.field syntax. The fieldread 
method must take one input argument and return one output:

function out = fieldread(field)

The field argument is the string that follows the . (dot) in var.field. By 
overloading fieldread it is possible to let a class behave as if it has fields that it does 
not have. You can use this overloading for making the representation of the data 
independent of the interface to the class.

Similarly, if a class has an instance function called fieldwrite, then that function is 
called when a field of an object is written using the var.field = val syntax. It must 
take two input arguments and not return anything:

function fieldwrite(field, val)

The field parameter is the string that followed the . in var.field and the val 
parameter is the value to which the field was assigned. You can use fieldwrite when 
the fields of the class have dependencies: Changing the value of one field can force the 
recalculation of others.

A R R A Y  R E A D / W R I T E

An object can only be indexed using parentheses if it has an instance method called 
arrayread: If c is an object, then c(args) is interpreted as c.arrayread(args), 
where arrayread is invoked for the arguments (one or more) and is expected to 
return one value:

function out = arrayread(args)

Overloading arrayread can be useful for classes where the parentheses denote 
evaluation, for instance in a class representing a mathematical function of one or more 
variables.

Similarly, array assignment using the syntax c(args) = val is interpreted as 
c.arraywrite(args, val).

C E L L  A R R A Y  R E A D / W R I T E

It is only possible to index an object using curly brackets if it has an instance method 
called cellread: If c is an object, then c{args} is interpreted as c.cellread(args) 
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where cellread is invoked for the arguments (one or more) and is expected to return 
one value:

function out = cellread(args)

Similarly, cell array assignment using the syntax c{args} = val is interpreted as 
c.cellwrite(args, val).

O V E R L O A D I N G  E N D

When indexing into an object that has an instance method called end, then the value 
of end is resolved by calling this method with two arguments: The index where end 
occurs and the total number of indices. E.g. a(1:end, 5) would be equivalent to 
a(1:a.end(1, 2)) if a belongs to a class with an overloaded end method. If the class 
has no overloaded end method but instead has an overloaded size method, then the 
standard semantics of end are used with the size evaluated using the size method.

Overloading Save and Load

When an object is saved to file using save, the default behavior is to save all 
nontransient instance fields. It is possible to override this behavior by a class providing 
a writeobject method. This method must have the interface

public function out = writeobject

COMSOL Script writes the output from writeobject to file when the object is saved.

If the class has an overloaded writeobject method it usually also has to provide an 
overloaded readobject method: This method is called when a object is loaded from 
file using load. It must have the interface

public function readobject(data)

When the software loads an object, it first creates an empty instance of its class. Then 
the readobject method is invoked, and the data argument is the output from 
writeobject when the object was saved.

You can overload readobject but not writeobject. In this case, the input to 
readobject is the default representation of the object: As a cell array with one column 
for each level of the class hierarchy. Consider the Rectangle class inheriting from 
Shape:

class Shape
public name
...
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class Rectangle extends Shape
public x0 x1
public y0 y1

A Rectangle object with vertices in (2, 3) and (5, 7) and the name 'MyRect' would 
be saved as the cell array

{'Shape'                 'Rectangle'
 struct('name','MyRect') struct('x0',2,'x1',5,'y0',3, y1',7}

This would be the argument to an overloaded readobject in Rectangle if no 
overloaded writeobject was present. There is one column for each level of the class 
hierarchy. The first row contains the name class names, and the second row contains a 
structure with one field for each nontransient field on that level of the hierarchy.

Overloading Display

The default way to display an object is to display its public fields like the fields of a 
structure:

r = Rectangle(1, 3, 2, 9)

r = 
Rectangle object
  x0:  [1]
  x1:  [2]
  y0:  [3]
  y1:  [9]

If the class has a public nonstatic function called display, COMSOL Script invokes it 
when it displays an object of the class. You can extend the Rectangle class with such 
a method:

public function display
sprintf('Rectangle with corners (%.2f,%.2f) and (%.2f,%.2f).', ...
        x0, y0, x1, y1)

This results in the following output:

r = Rectangle(1, 3, 2, 9)

ans = 
Rectangle with corners (1.00, 3.00) and (2.00, 9.00).
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P r e c e d en c e

Precedence Between Functions and Methods

Methods in different classes can have the same name, and method names can also 
coincide with names of functions, both built-in functions and M-files. COMSOL 
Script resolves a function invocation of the form func(arg1, ...) by considering 
possible interpretations in the following order:

1 As an array index expression, if there is a variable called func in the workspace.

2 As the invocation of the static method func of the class of any object in the 
argument list.

3 As a call to the built-in function func.

4 As a call to the method func in the class where execution currently takes place.

5 As a call to the user-defined function func.

6 Interpretations 3–5 tried using case-insensitive name matching.

The Rectangle class contains a static method called overlap. Suppose that there also 
is an M-file, overlap.m. By rule 2 above,

overlap(Rectangle(1,2,3,4), Rectangle(5,6,7,8))

invokes the overlap method of the Rectangle class, but

overlap(5, 7)

instead calls overlap.m.

Precedence Between Methods from Different Classes

When a function call contains several object arguments, COMSOL Script normally 
considers classes in the order they appear in the argument list: Suppose that the classes 
Rectangle and Circle both have a static overlap method. Then

overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

is interpreted as

Rectangle.overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

The overlap method of the Circle class would only be run if there were no overlap 
method in Rectangle.
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In the example above, the two classes Rectangle and Circle have equal precedence. 
You can specify the precedence between classes using superiorto and inferiorto in 
the class file. The classes listed in a superiorto declaration have lower priority than 
the current class, those listed in an inferiorto declaration have higher priority.

The Circle class can be modified as follows:

class Circle

superiorto Rectangle

With this change, the methods of the Circle class are always given priority over 
methods in the Rectangle class when the argument list contains Circle and 
Rectangle objects. Then

overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

is interpreted as

Circle.overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

It is possible to combine several superiorto and inferiorto declarations in the same 
class:

class Circle

superiorto Rectangle Square
inferiorto Hexagon

Note: Excessive use of superiorto and inferiorto makes the program flow hard 
to follow.
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U s i n g  C l a s s e s  a s  Pa c k a g e s

You can use classes to bundle groups of functions together: A class without instance 
fields where all methods are public and static can serve as a container for a set of 
related functions. As an example, consider the following class:

class MyMaths

static function y = sinc(x)
%SINC(X) returns SIN(X)/X if X is nonzero, otherwise 1.
y = ones(size(x));
ix = find(x~=0);
y(ix) = sin(x(ix))./x(ix);

static function y = smhs(x, scale)
%SMHS(x) approximates the step function Y=(X>0) by smoothing the
%transition within the interval -SCALE < X < SCALE.
x=x./scale;
y=(x>-1 & x<1).*(0.5+x.*(0.75-0.25*x.*x))+(x>=1);

You can view MyMaths as a package that contains the two functions sinc and smhs:

MyMaths.sinc(0:3)

ans = 
         1     0.8415     0.4546     0.0470

By creating a class containing a group of related functions, preferably small, it becomes 
easier to maintain the functions, as only one file is ever changed. Sharing code between 
functions also becomes easier.
R  1 2 :  U S E R - D E F I N E D  C L A S S E S



 13
J a v a  I n t e r f a c e
Java is a powerful programming language with a large library of built-in classes. 
COMSOL Script provides support for creating and manipulating Java objects. This 
makes it possible to connect COMSOL Script with existing Java programs and to 
create scripts where the COMSOL Script and Java languages are mixed.
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De c l a r a t i o n  o f  J a v a  Me t h od s

For COMSOL Script to be able to invoke a Java method, it needs its declaration. You 
supply declarations using the javaDeclare command:

javaDeclare('my.decls')

The argument to javaDeclare is the name of a file containing Java declarations of all 
methods and constructors that you want to be able to call. A sample declaration file 
can have the following contents:

// Sample declaration file my.decls

// Constructor and methods taken from java.lang.String
java.lang.String(byte[]);
static java.lang.String java.lang.String.valueOf(double);
java.lang.String java.lang.String.substring(int, int);

/* Another class */
java.lang.Double(double);

Conventions and restrictions:

• public visibility is assumed if no visibility is specified. Only public methods can be 
called through the Java interface.

• Abbreviated class names are not accepted. For example, String is not expanded 
into java.lang.String.

• For overloaded methods, the number of arguments must differ. It is not possible to 
declare two methods in a class that have the same name and number of arguments.
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C r e a t i n g  and U s i n g  J a v a  Ob j e c t s

Creating Java Objects and Invoking Methods

To create a Java object, use any Java class constructor:

s = java.lang.String('Multiphysics')
s =
Multiphysics

d = java.lang.Double(17)
d =
17.0

This code snippet creates both a java.lang.String object s with the value 
'Multiphysics' and a java.lang.Double object d with the value 17. 

To invoke public fields or member methods, use the same notation as for structs:

s.toUpperCase
ans =
MULTIPHYSICS

s.substring(5)
ans =
physics

d.isInfinite
ans =
false

To create a Java object with a constructor without arguments, omit the argument list:

s = java.lang.String;

A similar notation is used when accessing static class members:

java.lang.Double.MAX_VAL
ans =
1.798e+308

Creating and Using Java Arrays

You cannot use the constructor syntax to create an array of Java objects. It is, however, 
possible to do so using the javaArray function:

s = javaArray('java.lang.String',3)
s =
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  null
  null
  null

This command creates a 3x1 array of java.lang.String objects. The elements of the 
array are not initialized during creation, hence all elements of the array are null. To 
access or modify the array, use the same syntax as for all other data types:

s(2) = java.lang.String('COMSOL')
s =
  null
  COMSOL
  null

COMSOL Script supports only 1D Java array objects.

Functions for Creating and Using Java Objects

The standard way to create a Java object is to use the constructor as described earlier. 
It requires that you know the class name, thus you cannot use a class constructor when 
the class name is stored in a variable. In this case, turn to the javaObject function:

cl = 'java.lang.String';
s = javaObject(cl, 'Multiphysics')

This is equivalent to the explicit creation method using the java.lang.String 
constructor syntax.

The same problem can arise when accessing a static method, and for this purpose use 
the javaMethod function:

javaMethod('parseDouble', 'java.lang.Double', '3.14')
ans =
3.140000

This is equivalent to java.lang.Double.parseDouble('3.14').

Passing Java Objects as Arguments to Functions

Like all other data types, Java objects can be sent as arguments to functions. Parameter 
passing does not work in the same way for Java objects as it does for the other data 
types. In Java, when an object serves as an argument to a method, the software sends 
a reference. COMSOL Script uses the same semantics for Java objects, and this means 
that if a function modifies an input argument that is a Java object, then the 
corresponding object in the caller’s workspace is modified. Similarly, when the code 
contains assignments between Java variables, only the reference is copied.
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As an example, consider the following function, which returns the reversal of a 
java.util.ArrayList object:

function out = revlist(list)
out = list;
for i=0:(out.size-1)/2
  j = out.size-i-1;
  tmp = out.get(i);
  out.set(i, out.get(j));
  out.set(j, tmp);
end

The returned list is indeed the reversal of the input argument, but running this code 
modifies the input in the process:

list = java.util.ArrayList;
list.add(2);
list.add(3);
list.add(5);
list2 = revlist(list)
list2 = 
[5.0, 3.0, 2.0]
list
list =
[5.0, 3.0, 2.0]

Note that the assignment out = list; in revlist does not solve the problem 
because this command only copies a reference to the Java object. A better solution is 
to replace this assignment with out = list.clone;, which creates a new object 
instead of a copy.
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T y p e  Conv e r s i o n s

Conversion of Arguments to Java Methods

For most types, the conversion of a value from COMSOL Script is straightforward. 
When converting from a COMSOL Script array to a Java array, it converts 
element-by-element, possibly using rounding or truncation if the range of the Java 
type is smaller than the range of the COMSOL Script type.

A special case is the conversion of the empty matrix, []. When mapped to 
java.lang.Object, it is converted to the null reference.

Return Values From Java Methods

When converting return values from Java methods, COMSOL Script uses the 
following type map:

COMSOL Script preserves the number of dimensions during the return-value 
conversion; it converts a Java double[][][] array into a 3D double matrix in 
COMSOL Script.

The Char and Double Conversions

C H A R

The char function can convert Java objects to character matrices:

TABLE 13-1:  TYPE MAP FROM JAVA TO COMSOL SCRIPTS

JAVA TYPES SCRIPT TYPE

char, java.lang.Character character

logicalboolean, java.lang.Boolean

byte, java.lang.Byte,short, 
java.lang.Short, int, 
java.lang.Integer, long, 
java.lang.Long, float, 
java.lang.Float, double, 
java.lang.Double

double

null []

java.Object Java object of the same type
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s = java.lang.String('COMSOL');
t = char(s);
ischar(t)
ans =
true

For a java.lang.String object, char returns a character row vector containing the 
characters of the string. For a java.lang.String[], it returns a character matrix 
where each row corresponds to one element of the array.

char can convert other Java types only if they contain a public toChar method that 
returns a java.lang.String. If so, char invokes the toChar method and then 
proceeds to convert the returned java.lang.String.

D O U B L E

The double function can similarly convert Java objects to double matrices:

n = java.lang.Integer(8192);
d = double(n)
d =
8192

For java.lang.Number objects or arrays, double returns a double matrix that 
contains the result of converting each element to a double.

double can convert other Java types only if they contain a public toDouble method 
that returns a double.
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E x t e r n a l  A P I
COMSOL Script is a powerful environment, but sometimes you might want to 
interface it to code written in a low-level language. This chapter describes an API 
used for connecting Script with C code.
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I n t r o du c t o r y  E x amp l e s

This section contains two small examples that illustrate how to proceed when 
interfacing to external code. The files for the examples are available in the script/
demos directory in the installation.

Compiling and Executing a Simple Function

Consider the expression sum(sin(A(:))). It is very compact and usually fast enough, 
but the price you pay for the compactness is that it needs more memory and is slower 
than the corresponding C code. It is therefore a good candidate for implementation as 
an external function. An external function has an .M-file that describes its interface and 
contains its help text (if any). So, as a quick exercise, follow the steps to create 
sinsum.m:

function s = sinsum{'sinsum', 'work'}(A)
%SINSUM(A)
%   S = SINSUM(A) returns sum(sin(A(:))) where A is full real.

The syntax {'sinsum', 'work'} means that the function work in the shared library 
sinsum implements the function.

The source file sinsum.c contains the implementation of the algorithm:

#include <math.h>
#include "scriptext.h"

CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
                    int nIn, clData *in[]) {
  int i;
  size_t nElems;
  double sum = 0;
  double *ptr;
  if ((nOut!=1) || (nIn!=1) || (clGetType(in[0])!=CL_REAL))
    clError(env, "Bad arguments.", 1);
  nElems = clGetNElems(in[0]);
  ptr = clGetRealPtr(in[0]);
  for (i=0; i<nElems; i++)
    sum += sin(ptr[i]);
  out[0] = clNewReal(env, sum);
}
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This small file illustrates many parts of the API:

• The header file scriptext.h contains the declaration of the API.

• The interface of the library entry point, here the function work, always has the same 
format as in this example. The parameters have the following interpretations:

- env is the script environment. Many API functions take it as an argument.

- nOut is the number of outputs expected from the function.

- out is a vector through which Script retrieves the outputs when the function 
completes successfully.

- nIn is the number of input arguments.

- in is a vector of input arguments.

• External code must perform complete argument tests because incorrect 
assumptions typically result in crashes. The function clError is used for abnormal 
termination of the external function.

• The contents of matrices are available through raw C pointers, here illustrated with 
the call to clGetRealPtr. All full matrices are stored in column-major order.

To compile the code, enter the following at the Script prompt:

compile -O sinsum.c

COMSOL Script might not be able to determine which compiler to use, especially if 
you are running Windows. See the section “Compilation” for more advice on this 
aspect. The -O option enables optimization; it can be omitted.

If the compilation was successful you can call sinsum:

sinsum(1:5)
ans = 
   0.1762

You can also verify that it is faster than the corresponding .M-code:

A = rand(2000)-0.5;
tic, sum(sin(A(:))), toc
ans = 
-495.4401
Elapsed time:  0.437 s
tic, sinsum(A), toc
ans = 
-495.4401
Elapsed time:  0.281 s
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The C version is almost twice as fast and uses less memory, but it is more specialized 
and requires much more code. This example is somewhat contrived, but there are cases 
where rewriting a tight loop in C code gives a large performance improvement.

Working with Sparse Matrices

You can retrieve the elements of full matrices by indexing in an array. For sparse 
matrices the representation is space-efficient but more complex. The topic of this 
example is a function that computes the Euclidean norms of the rows of a sparse 
matrix A. This can be computed as sqrt(sum(A.^2, 2)), but the more compact 
solution is slower and needs more memory.

The interface to the external function is defined as follows in rownorm.m:

function d = rownorm{'rownorm', 'work'}(A)
%ROWNORM(A)
%  D = ROWNORM(A) returns a vector D such that D(N) is the Euclidean
%  norm of the Nth row of the sparse matrix A. This is equivalent to
%  sqrt(sum(A.^2, 2)).

The source file rownorm.c contains the implementation of the algorithm:

#include <math.h>
#include "scriptext.h"

CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
                    int nIn, clData *in[]) {
  int i, j;
  int nRows, nCols;
  int row, col;
  double *outPtr;
  size_t *colPtr;
  size_t *rowPtr;
  double *dataPtr;
  if ((nOut!=1) || (nIn!=1) || (clGetType(in[0])!=CL_REAL_SPARSE))
    clError(env, "Bad arguments.", 1);
  nRows = clGetSize(in[0], 0);
  nCols = clGetSize(in[0], 1);
  out[0] = clNewFull2D(env, CL_REAL, nRows, 1);
  outPtr = clGetRealPtr(out[0]);
  for (i=0; i<nRows; i++)
    outPtr[0] = 0.0;
  /* Retrieve sparse representation of in[0]. */
  colPtr = clGetSparseColPtr(in[0]);
  rowPtr = clGetSparseRowPtr(in[0]);
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  dataPtr = clGetSparseRealPtr(in[0]);
  for (col=0; col<nCols; col++) {
    /* Iterate over nonzero elements in column col. */
    for (i=colPtr[col]; i<colPtr[col+1]; i++) {
      double val = dataPtr[i];
      outPtr[rowPtr[i]] += val*val;
    }
  }
  for (i=0; i<nRows; i++)
    outPtr[i] = sqrt(outPtr[i]);
}

The entry point and error-handling code are similar to the previous example, but there 
are several new features:

• The return value, a real nRows × 1 vector, is allocated using clNewFull2D. A pointer 
to the data is obtained using clGetRealPtr.

• The sparse input argument, in[0], is represented as a triplet of vectors:

- A vector colPtr such that colPtr[n] is the number of nonzero entries in 
columns less than n

- A vector rowPtr containing the nonzero elements’ row numbers

- A vector dataPtr containing the nonzero elements’ values

• The loop iterating over the nonzero elements is typical for how this should be done. 
It iterates over the columns of in[0], and for each column it deals with its nonzero 
elements. You should always iterate over the columns and not the rows of a sparse 
matrices because this leads to simpler and faster code.

Compiling and running the code is done as earlier:

compile -O rownorm.c
rownorm(sprand(3, 10, 0.1))

ans =
     0.3692
     0.3435
     0.0386
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U s i n g  t h e  AP I

M-File Interface

A function with an external implementation has a function header but no function 
body except for possibly a comment block. The function header has the following 
structure:

function outargs = func{lib name, entry point}(inargs)

lib name is the name of the shared library (a .dll or .so file depending on the operating 
system) containing the implementation, and entry point is the name of the entry 
point to use when invoking the function. The library name and entry point are both 
strings, such as in the earlier example:

function s = sinsum{'sinsum', 'work'}(A)

The library and entry point names can, but need not, coincide.

The function’s input and output arguments, inargs and outargs, respectively, are 
specified in the same way as for normal functions.

Entry Point

The entry point was discussed in the examples in the previous section. It always has the 
same signature:

CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
                    int nIn, clData *in[]);

The nIn elements of the in vector are the inputs to the function, the nOut elements 
of the out vector should contain the outputs from the function if it returns successfully. 
The CL_EXPORT tag is necessary for the function to get the proper linkage.

A library can provide implementations of several functions by having one entry point 
for each function.

Memory Management

Externally invoked code can allocate memory in two ways:

• Using the standard C allocation functions malloc, calloc, and realloc

• Using the API wrapper functions clMalloc, clCalloc, and clRealloc
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The second alternative has the advantage that memory leaks are no longer possible; 
when execution returns to COMSOL Script from the external function, all allocated 
but not freed blocks are freed automatically.

The code invoking the external function assumes that it is a pure function in the sense 
that it does not maintain an internal state by storing items—for example, pointers to 
clData—in static variables.

Error Handling

The API functions communicate errors to the caller in their return values. For instance, 
a number of functions return NULL in case of a error. Always check the return values 
and do not make any unjustified assumptions about the data types of input arguments 
to the external function or else your code will crash.
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AP I  R e f e r e n c e

Data Types

C L E N V

Represents the execution environment in which external functions run. 

C L D A T A

Represents a matrix of any type and size. Each matrix type corresponds to a symbolic 
constants defined in scriptext.h:

•  CL_INVALID: Illegal matrix type

•  CL_REAL: Full real

•  CL_COMPLEX: Full complex

•  CL_LOGICAL: Full logical

•  CL_CHAR: Full character

•  CL_UINT8: Full uint8

•  CL_REAL_SPARSE: Sparse real

•  CL_COMPLEX_SPARSE: Sparse complex

All values except for CL_INVALID can be returned by the function clGetType. 
CL_INVALID can be used as a sentinel value that is guaranteed not to collide with any 
existing matrix type.

C L L O G I C A L

Represents a logical scalar, implemented as an unsigned char.

C L C H A R

Represents a character scalar, implemented as an unsigned short.

C L U I N T 8

Represents a uint8 scalar, implemented as an unsigned char.

C L C O M P L E X

Represents a complex element in a sparse matrix, implemented as a struct containing 
a real and an imaginary part.
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C L F U N C T I O N

The function pointer type of an entry point to a library. Usually this type need not be 
referred to explicitly.

Functions

Most functions in this API are accessors for data stored in matrices, but some perform 
more complex tasks. A rough categorization of the functions is as follows:

TABLE 14-1:  TYPE ACCESSOR

FUNCTION NAME DESCRIPTION

clGetType Matrix type

TABLE 14-2:  SIZE ACCESSORS

FUNCTION NAME DESCRIPTION

clGetNDims Number of dimensions

clGetSize Size of a dimension

clGetNElems Number of elements

TABLE 14-3:  FULL MATRIX ACCESSORS

FUNCTION NAME DESCRIPTION

clGetRealPtr Pointer to real data

clGetImagPtr Pointer to imaginary data

clGetCharPtr Pointer to character data

clGetUint8Ptr Pointer to uint8 data

clGetLogicalPtr Pointer to logical data

TABLE 14-4:  SPARSE MATRIX ACCESSORS

FUNCTION NAME DESCRIPTION

clGetSparseColPtr Pointer to column pointers

clGetSparseRowPtr Pointer to row indices

clGetSparseRealPtr Pointer to nonzero data of real sparse matrix

clGetSparseComplexPtr Pointer to nonzero data of complex sparse matrix
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clGetNzmax Allocation of nonzero elements

clGetNnz Number of nonzero elements

TABLE 14-5:  MATRIX CREATORS

FUNCTION NAME DESCRIPTION

clNewFull Create full matrix

clNewFull2D Create full 2D matrix

clNewReal Create real scalar

clNewComplex Create complex scalar

clNewChar Create character string

clNewSparse Create sparse matrix

clNewCopy Make copy of matrix

TABLE 14-6:  MEMORY MANAGEMENTS

FUNCTION NAME DESCRIPTION

clMalloc Allocate memory with malloc

clCalloc Allocate memory with calloc

clRealloc Reallocate memory with realloc

clFree Free allocated matrix or memory

TABLE 14-7:  NUMERIC UTILITIES

FUNCTION NAME DESCRIPTION

clGetEps Get eps

clGetInf Get infinity

clGetNaN Get not-a-number

TABLE 14-8:  ERROR HANDLING

FUNCTION NAME DESCRIPTION

clGetLastError Get last error message

clClearError Clear error message

TABLE 14-4:  SPARSE MATRIX ACCESSORS

FUNCTION NAME DESCRIPTION
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void * clCalloc(clEnv *env, size_t nmemb, size_t size)

Allocates and clears memory using the standard C function calloc. The memory 
block is deallocated when the external function returns unless it has already been 
deallocated. Returns NULL if memory allocation fails or if size is 0.

Inputs:

•  env is the script environment.

•  nmemb is the number of elements to allocate.

•  size is the size of each element in bytes.

C L C L E A R E R R O R

void clClearError(clEnv *env)

Clears the error message previously set either using clError or as a result of failures 
in the callback functions clEvalExpr and clEvalFunc.

Input: env is the script environment.

C L E R R O R

void clError(clEnv *env, const char *msg, int returnNow)

Sets the error message to msg. If an error message is set when the external function 
returns, then it is passed to the script that is running. Calling with an empty msg is 
equivalent to calling clClearError. 

Inputs:

•  env is the script environment.

clError Set error message

clWarning Emit warning

TABLE 14-9:  CALLBACKS

FUNCTION NAME DESCRIPTION

clEvalExpr Evaluate expression or statement

clEvalFunc Call function

TABLE 14-8:  ERROR HANDLING

FUNCTION NAME DESCRIPTION
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•  msg is the error message.

•  returnNow is a flag that controls whether execution of the external function should 
stop immediately. Use this feature only when running C code; it is implemented 
using longjmp, and using it in C++ code almost never works because destructors 
are not run and exception handling could fail.

C L E V A L E X P R

clData * clEvalExpr(clEnv *env, const char *expr, int getRes)

Evaluates an expression using Script. If evaluation fails, the error message is stored and 
can be retrieved using clGetLastError.

Inputs:

•  env is the script environment.

•  expr is the expression to evaluate.

•  getRes is a flag to set if you want the results of the expression: If nonzero it is 
returned, otherwise it is ignored.

Example: a = clEvalExpr(env, 'sin(1)', 1) assigns to a the value of sin(1).

C L E V A L F U N C

void clEvalFunc(clEnv *env, const char *func, int nOut, 
                clData *out[], int nIn, clData *in[])

Evaluates a function using Script. If evaluation fails, the error message is stored and can 
be retrieved using clGetLastError.

Inputs:

•  env is the script environment.

•  func is the function to call.

•  nOut is the number of output arguments expected.

•  out is a vector in which outputs are placed if the evaluation succeeds.

•  nIn is the number of input arguments.

•  in is a vector of input arguments.

Example:

clData *grid[2]; evalFunc(env, 'meshgrid', 2, grid, xrange, yrange) 
computes a 2D grid using meshgrid of xrange and yrange and places the grid’s 
x-coordinates in grid[0] and its y-coordinates in grid[1].
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void clFree(clEnv *env, void *ptr)

Deallocates a matrix or memory block.

Inputs:

•  env is the script environment.

•  ptr is either a matrix created using the one of the clNew functions or a memory 
block allocated using either the standard C allocation functions (malloc, calloc, 
and realloc) or their counterparts in this API (clMalloc, clCalloc, and 
clRealloc).

C L G E T C H A R P T R

clChar * clGetCharPtr(clData *data)

Returns a pointer to the first element of a nonempty character matrix. For any other 
matrix type it returns NULL. The matrix elements are stored in column-major order.

Input: data is a nonempty character matrix.

C L G E T E P S

double clGetEps(clEnv *env)

Returns the smallest real number ε such that 1+ε is greater than 1.

Input: env is the script environment.

C L G E T I M A G P T R

double * clGetImagPtr(clData *data)

Returns a pointer to the first element of the imaginary part of a nonempty full complex 
matrix. For any other matrix type it returns NULL. The matrix elements are stored in 
column-major order.

Input: data is a nonempty full complex matrix.

C L G E T I N F

double clGetInf(clEnv *env)

Returns infinity.

Input: env is the script environment.
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C L G E T L A S T E R R O R

const char * clGetLastError(const clEnv *env)

Returns the most recently set error message; returns NULL if there were none. Error 
messages are set when the callback functions clEvalExpr and clEvalFunc fail, or by 
the external function itself using clError. The pointer returned is only valid until the 
next time any function in the API is called.

Input: env is the script environment.

C L G E T L O G I C A L P T R

clLogical * clGetLogicalPtr(clData *data)

Returns a pointer to the first element of a nonempty logical matrix. For any other 
matrix type it returns NULL. The matrix elements are stored in column-major order.

Input: data is a nonempty logical matrix.

C L G E T N A N

double clGetNaN(clEnv *env)

Returns the not-a-number value, that is, the result of undefined operations such that 
0/0.

Input: env is the script environment.

C L G E T N D I M S

int clGetNDims(const clData *data)

Returns the number of dimensions of data. All matrices have at least two dimensions; 
trailing unit dimensions beyond dimension two are ignored.

Input: data is a matrix.

C L G E T N E L E M S

size_t clGetNElems(const clData *data)

Returns the total number of elements in a matrix, that is, the product of the size vector.

Input: data is a matrix.

C L G E T N N Z

size_t clGetNnz(const clData *data)
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Returns the number of nonzero elements in a matrix.

Input: data is a matrix.

C L G E T N Z M A X

size_t clGetNzmax(const clData *data)

Returns the allocation of nonzero elements. For a full matrix this is always the product 
of the size vector, but for a sparse matrix it can be anything from 0 to the product of 
the size vector. It is always greater than or equal to clGetNnz.

Input: data is a matrix.

C L G E T R E A L P T R

double * clGetRealPtr(clData *data)

Returns a pointer to the first element of the real part of a nonempty full real matrix. 
For any other matrix type it returns NULL. The matrix elements are stored in 
column-major order.

Input: data is a nonempty full real or complex matrix.

C L G E T S I Z E

size_t clGetSize(const clData *data, int dim)

Returns the size of the dimth dimension. The dimensions start from 1, so you can use 
clGetSize(data, 1) and clGetSize(data, 2) to retrieve the number of rows and 
columns, respectively, of data. If dim is less than 1 or larger than the number of 
dimensions of data, it returns 1.

Inputs:

•  data is a matrix.

•  dim is the dimension whose size is returned.

C L G E T S P A R S E C O L P T R

size_t * clGetSparseColPtr(clData *data)
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Returns a pointer to the sparse matrix column pointers if data is sparse and NULL if 
data is full. The returned pointer col has the following properties:

•  col[n] is the number of nonzero elements in the first n columns of data for any n 
between 0 and nCols inclusive, where nCols is the number of columns of data.

•  The nonzero elements in column n have indices col[n-1]...col[n]-1 in the 
blocks returned by clGetSparseComplexPtr, clGetSparseRealPtr, and 
clGetSparseRowPtr.

Note: Any changes made to the vector must respect these properties when the external 
function returns.

Input: data is a sparse matrix.

C L G E T S P A R S E C O M P L E X P T R

clComplex * clGetSparseComplexPtr(clData *data)

Returns the vector containing the values of the nonzero elements of the complex 
sparse matrix data. The length of the vector is clGetNzmax(). It returns NULL if data 
is full or real.

See clGetSparseColPtr for how the flat vector of values is mapped to matrix 
elements.

Input: data is a sparse complex matrix.

C L G E T S P A R S E R E A L P T R

double * clGetSparseRealPtr(clData *data)

Returns the vector containing the values of the nonzero elements of the real sparse 
matrix data. The length of the vector is clGetNzmax(). it returns NULL if data is full 
or complex.

See clGetSparseColPtr for how the flat vector of values is mapped to matrix 
elements.

Input: data is a sparse real matrix.

C L G E T S P A R S E R O W P T R

size_t * clGetSparseRowPtr(clData *data)

Returns the vector containing the row numbers of the nonzero elements of data if 
data is sparse, otherwise it returns NULL. The length of the vector is clGetNzmax() 
and the row numbers are zero-based.
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See clGetSparseColPtr for how the flat vector of row numbers is mapped to matrix 
elements.

Input: data is a sparse matrix.

C L G E T TY P E

int clGetType(const clData *data)

Returns the type of a matrix. Possible values are the following constants, all declared 
in scriptext.h:

•  CL_REAL: Returned if data is full real

•  CL_COMPLEX: Returned if data is full complex

•  CL_LOGICAL: Returned if data is full logical

•  CL_CHAR: Returned if data is full character

•  CL_UINT8: Returned if data is full uint8

•  CL_REAL_SPARSE: Returned if data is sparse real

•  CL_COMPLEX_SPARSE: Returned if data is sparse complex

Input: data is a matrix.

C L G E T U I N T 8 P T R

clUint8 * clGetUint8Ptr(clData *data)

Returns a pointer to the first element of a nonempty uint8 matrix. For any other matrix 
type it returns NULL. The matrix elements are stored in column-major order.

Input: data is a nonempty uint8 matrix.

C L M A L L O C

void * clMalloc(clEnv *env, size_t size)

Allocates memory using the standard C function malloc. The memory block is 
deallocated when the external function returns unless it has already been deallocated. 
Returns NULL if memory allocation fails or if size is 0.

Inputs:

•  env is the script environment.

•  size is the number of bytes to allocate.
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C L N E W C H A R

clData * clNewChar(clEnv *env, const char *str)

Creates and returns a character row vector. The returned matrix is 0 × 0 if str is empty, 
otherwise 1 × n where n is the length of str.

Inputs:

•  env is the script environment.

•  str is a null-terminated string.

C L N E W C O M P L E X

clData * clNewComplex(clEnv *env, double real, double imag)

Creates a complex 1× 1 matrix.

Inputs:

•  env is the script environment.

•  real is the real part.

•  imag is the imaginary part.

C L N E W C O P Y

clData * clNewCopy(const clData *orig)

Makes a copy of a matrix. The contents of the two matrices are not shared, so changing 
the copy does not affect orig.

Input: orig is a matrix.

C L N E W F U L L

clData * clNewFull(clEnv *env, int type, int nDims, 
const size_t *dims)

Creates and returns a new full matrix. It returns NULL if the creation failed. The 
returned matrix always has at least two dimensions; if 0 or 1 dimensions are supplied, 
trailing unit dimensions are added to make the matrix 2D.

Inputs:

•  env is the script environment.

•  type is the matrix type, must be one of CL_REAL, CL_COMPLEX, CL_LOGICAL, 
CL_CHAR, or CL_UINT8.
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•  nDims is the number of dimensions.

•  dims contains the dimensions of the matrix.

C L N E W F U L L 2 D

clData * clNewFull2D(clEnv *env, int type, size_t nRows, 
size_t nCols)

Creates and returns a new full 2D matrix. It returns NULL if the creation failed.

Inputs:

•  env is the script environment.

•  nRows is the number of rows.

•  nCols is the number of columns.

C L N E W R E A L

clData * clNewReal(clEnv *env, double val)

Creates and returns a real 1× 1 matrix.

Inputs:

•  env is the script environment.

•  val is the value.

C L N E W S P A R S E

clData * clNewSparse(clEnv *env, int type, size_t nRows, 
size_t nCols, size_t nzMax)

Creates and returns a sparse matrix. It returns NULL if the creation failed.

Inputs:

•  env is the script environment.

•  type is the matrix type, must be CL_REAL_SPARSE or CL_COMPLEX_SPARSE.

•  nRows is the number of rows.

•  nCols is the number of columns.

•  nzMax is the allocation of nonzero elements. This is an upper bound on the number 
of nonzero elements with which the matrix can be populated.
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C L R E A L L O C

void * clRealloc(clEnv *env, void *ptr, size_t size)

Reallocates memory using the standard C function realloc. The memory block is 
deallocated when the external function returns unless it has already been deallocated. 
It returns NULL if memory allocation fails or if size is 0.

Inputs:

•  env is the script environment.

•  ptr is the memory block to reallocate, originally allocated using either the standard 
C allocation functions (malloc, calloc, and realloc) or their counterparts in this 
API (clMalloc, clCalloc, and clRealloc).

•  size is the new size of the block (in bytes) after reallocation.

C L WA R N I N G

void clWarning(clEnv *env, const char *msg, const char *id)

Emits a warning when the external function returns. Calling this function has the same 
effect as running warning(msg,id) in a script.

Inputs:

•  env is the script environment.

•  msg is the warning message.

•  id is the warning category.
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Comp i l a t i o n

Compiling from Within COMSOL Script

The compile function is used when compiling from within COMSOL Script. It takes 
as its argument one or more C source files. The default behavior is to compile the files 
and link them into a shared library.

Configuration Files

A configuration file is used to define the characteristics of a platform/compiler 
combination. If this combination is not explicitly set with the -f argument to compile 
(see below), it uses a default configuration. The default files are located in COMSOLDIR/
bin where COMSOLDIR is the directory where COMSOL Script was installed.

The configuration file contains specifications of the compiler, paths, and options 
described using the format of Unix shell files: A line of the form VAR=VALUE assigns 
the value VALUE to the variable VAR. The following variables can be used:

TABLE 14-10:  CONFIGURATION FILE NAMES

PLATFORM COMPILER

PC/Windows (32-bit) compileopts_win32

PC/Windows (64-bit) compileopts_win64

PC/Linux (32-bit) compileopts_glnx86

PC/Linux (64-bit) compileopts_glnxa64

Itanium/Linux compileopts_glnxi64

Sun/Solaris (32-bit) compileopts_sol2

Sun/Solaris (64-bit) compileopts_sol2

Mac OS X compileopts_macosx

Intel Mac compileopts_maci32

TABLE 14-11:  CONFIGURATION FILE VARIABLES

VARIABLE INTERPRETATION

BINPATH Search path for compiler, linker, and SETUPCMD (see 
below)

CC C compiler

CFLAGS Default compiler flags
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The easiest way to create a configuration file is to copy the default configuration file 
from the platform at hand and make the necessary modifications.

Compilation Options

The following options are accepted by the compile function:

DEBUGFLAGS Extra compiler flags that makes the C compiler 
generate debug information

INCLUDEPATHFLAG Compiler flag used to set the include path

LD Linker

LDFLAGS Linker flags

LDLIBS Linker flag used to set the library path

LINKFLAG Linker flag that precedes a library linked against

OBJEXT File extension of object files

OPTFLAGS Extra compiler flags that makes the C compiler 
generated optimized object code

SETUPCMD Command executed before compilation starts

TABLE 14-12:  COMPILATION OPTIONS

OPTION FUNCTION

-c The source code files are compiled but not linked

-DSYMBOL Defines the preprocessor macro SYMBOL when compiling. 
Equivalent to inserting #define SYMBOL in the source 
code files

-DSYMBOL=VALUE Assigns the value VALUE to the preprocessor macro 
SYMBOL. Equivalent to inserting #define SYMBOL VALUE 
in the source code files

-fFILE Compilation options are read from FILE

-g Debug information is generated by the compiler

-h, -help Displays a help text

-IDIR Adds the directory DIR to the include file path

-LDIR Adds the directory DIR to the link directory path

-lLIB Adds the library LIB to the list of libraries to link against

-oOUTLIB Sets the name of the generated shared library to OUTLIB

-O Enables optimization

TABLE 14-11:  CONFIGURATION FILE VARIABLES

VARIABLE INTERPRETATION
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Compiling from Within a Project or Makefile

The shared library containing the implementation of the external function need not be 
compiled from within COMSOL Script. For a library containing several source-code 
files a project or makefile is typically used. The following changes to the compilation 
environment are necessary for compiling external code:

• The directory COMSOLDIR/script/external must be added to the include path.

• The directory COMSOLDIR/lib/PLATFORM must be added to the link path, and the 
library flscriptext must be linked against. Here COMSOLDIR is the directory 
where COMSOL Script was installed, and PLATFORM is one of the platform 
abbreviations listed in Table 14-10, for example, win32 or glnx86.
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O th e r  L anguag e s

Fortran

Fortran code can be interfaced by writing a small C wrapper on top of the Fortran 
code. The wrapper declares an entry point, converts function arguments, and calls a 
function written in the Fortran library.

C++

C++ code can be interfaced without a C wrapper as long as the entry point is declared 
as extern "C":

extern "C"
CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
                    int nIn, clData *in[]);

C++ functions not tagged with extern "C" cannot be called because name mangling 
and calling conventions differ between C and C++.

A potential problem when interfacing C++ code is symbol collisions between libraries 
needed by the external code and libraries needed by COMSOL Script. This can happen 
if the external code and COMSOL’s code are compiled with different compilers. The 
following compiler versions were used to compile COMSOL’s code:

TABLE 14-13:  C++ COMPILERS USED BY COMSOL

PLATFORM COMPILER

PC/Windows (32-bit) Visual Studio 2005

PC/Windows (64-bit) Visual Studio 2005

PC/Linux (32-bit) Intel 9.1 with GCC 3.4.4

PC/Linux (64-bit) Intel 9.1 with GCC 3.4.4

Itanium/Linux Intel 9.1 with GCC 3.4.4

Sun/Solaris (32-bit) Sun Studio 8.0

Sun/Solaris (64-bit) Sun Studio 11.0

Mac OS X GCC 3.3

Intel Mac GCC 4.0.1
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% (comments) 120

& (logical and) 53

&& (scalar logical and) 53

() (dynamic field names) 82

(:) 37

. (field in structure) 79, 80

.* (pointwise multiplication) 44

... (continuation) 12

./ (pointwise division) 45

.\ (pointwise division) 45

.^ (pointwise power) 45

.’ (nonconjugate transpose) 40

/ (right division) 44, 99

: (colon) 24, 37

; 12

< (less than) 50

<= (less than or equal) 50

= (assignment) 51

== (equal) 50

> (greater than) 50

>= greater than or equal 50

[...] (array building) 12

[] (empty matrix) 27

\ (left division) 44, 99, 109

^ (power) 45

{:} (comma-separated list) 74

{} (empty cell array) 73

| (logical or) 53

|| (scalar logical or) 53

~ (not) 53

~= (not equal) 50

’ (Hermitian transpose) 40

’ (string delimiter) 62

2D graphics 205

3D graphics 215

A A1 notation, for data from Excel 177

abs function 47, 64

absolute tolerance 239

accumulated products 143

accumulated sums 143

acos function 48

acosh function 48

acot function 48

acoth function 48

acsc function 48

acsch function 48

adaptive quadrature 174

add method 262

addition 42

addpath function 121

airy function 49

Airy functions 49

alignment of GUI components 263

all function 55

ambient light 222

angle function 47

annotations 198

ans function 13

antialiasing 233

any function 55

apostrophes

in strings 63

application data

storing and retrieving 251

arithmetic operators 15

function-based form of 46

precedence of 16

using parentheses with 16

arithmetics 15–17

arrays

repeating in a pattern 56
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special functions for modifying 56

ASCII code

converting to strings 65

ASCII format

saving data in 176

asec function 48

asech function 48

asin function 48

asinh function 48

assignin function 89

assigning values

to variables in other workspaces 89

assignment operator 13, 51

assignments

overloading for classes 295

atan function 48

atan2 function 48

atanh function 48

AVI movie format 234

axes function 253, 260

axes limits 193, 194

axes objects 188, 193, 260

creating and modifying 193

properties for 202

using multiple 196

axis function 193

azimuth 227

B band matrix 29

bandwidth 29

bar function 147

bar graphs 147

barycentric coordinates 168

base-10 logarithm 47

base2dec function 64, 67

batch mode 125

bessel function 49

Bessel functions 49

besselh function 49

besseli function 49

besselj function 49

besselk function 49

bessely function 49

beta function 49

betainc function 49

betaln function 49

bin2dec function 64, 67

bitand function 54

bitcmp function 54

bitget function 54

bitmap graphics 232

bitmax function 54

bitor function 54

bitset function 54

bitshift function 54

bitwise logical operators 54

bitxor function 54

blanks function 63

blkdiag function 56

BMP image format 229

bottlenecks, finding 94

box function 193

break statement 86

breakpoints

removing 101

setting 100

where errors occur 101

builtin function 122

built-in functions 122

button function 253

buttongroup function 253, 254

buttons 254

C C++ 332

call stack, when debugging 101

camera

controlling position of 227

history of settings 190



position of 228

target location for 228

up vector 228

campos function 228

camtarget function 228

camup function 228

camva function 228

cart2pol function 49

cart2sph function 49

case sensitivity 14

case statement 87

cat function 38

catch statement 91

catching errors 91

ceil function 47

cell array of strings 62

branching using 88

cell arrays 72

applying functions to 75, 81

as lists of variables 74

creating 72

empty 73

in branches 87

modifying 73, 80

nested 73

referencing 73, 80

cell function 73, 76

cell2mat function 76

cell2struct function 76, 82

cellfun function 75, 76

cellstr function 63, 72, 76

changing directory 18

char data type 62

char function 64, 306

character arrays 62

character codes for formatting 68

check boxes 254

checkbox function 253

chol function 116

Cholesky factorization 110

circshift function 56

cla function 193

class function 23

class types 287

choosing 288

classes

displaying methods for 291

using as packages 300

clc function 12

clear function 14, 134

for classes 290

clearing command window 12

clf function 189

clock function 184, 185

clone function 289

colon operator 24, 37

color scale 217

colorbar function 217

colormap function 215, 217

colormaps 217

colors

of faces and edges 220

combo boxes 256

methods for 256

combobox function 253

Command Reference 19

command window 8

commands

running at startup 19

commands, entering 12

comma-separated lists 65, 74

comments in M-files 120

common errors 98

common identifiers 136

comparing arrays 52

compilation 329
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complex arrays 27

in plots 208

complex conjugate 40

complex function 28, 47

complex numbers 16

complex Schur form 113

computer function 17

computer, checking type of 17

COMSOL Multiphysics 10, 28, 237, 249

starting from COMSOL Script 10

COMSOL Reaction Engineering Lab 10

COMSOL Script

documentation set 2

environment 8

exiting 11

starting 8

COMSOL Script Command Reference 

19

COMSOL Script data types 22

COMSOL Script Help Desk 19

concatenating arrays and matrices 38

cond function 107, 108

condeig function 107, 108

condition numbers 107

2-norm 107

for an inversion 107

for eigenvalues 107

conditional branching 84

configuration files 329

conj function 40, 47

conjugate transpose 40

constructors 276

continuation of current line 12

continue statement 86

contour labels 213

contour plots 213

conv function 162, 170

conv2 function 170

conversion characters

in sprintf function 68

convn function 170

convolution 162

copy of plots 190

corrcoef function 146

correlation coefficients 142

cos function 48

cot function 48

cov function 146

covar function 142

covariance matrix 142

creating arrays

special functions for 25

creating variables 12

cross function 43, 49

csc function 48

csch function 48

cumprod function 143, 146

cumsum function 143, 146

cumtrapz function 175

current directory 18

D DAEs 238

DASPK 238

retrieving settings for 240

setting options for 240

statistics from 240

syntax for inputs 239

daspk function 238

data

converting to strings 66

saving to files 176

data analysis 138

plots for 147

data input/output 176

data types 22

double arrays 24

identifying 23



date function 184, 185

date, getting current 184

dbclear function 101, 102

dbcont function 100, 102

dbdown function 101, 102

dbquit function 102

dbstack function 102

dbstatus function 102

dbstep function 102

dbstop function 100, 102

dbtype function 102

dbup function 101, 102

deal function 74, 76

deblank function 64

debug call stack 101

debug commands 99

debugging 98

dec2base function 64, 67

dec2bin function 64

dec2hex function 64, 67

deconv function 162, 170

deconvolution 162

del2 function 173, 175

Delaunay elements 168

delaunay function 166, 170

Delaunay triangulation 166

interpolation on 168

delaunay3 function 166, 170

delete function 182

delimited data, reading from text files 

177

density

of sparse matrices 29

derivative

approximation of 172

desktop environment 8

det function 105, 108

determinant 105

determinant of a matrix 105

diag function 56

dialog boxes 250

with multiple tabs 257

dialog function 253

diary function 11

dictionary sort 144

diff function 172, 175

difference

of an array 172

difference equation

direct form II transposed 156

differential algebraic equations 238

differentiation 172

digital filter 156

dir function 18

direct form II transposed difference 

equation 156

directional light 222

directory

changing 18

contents of current 18

current 18

discrete Laplacian 173

disp function 63

division operators 99

dlmread function 177, 182

dlmwrite function 177, 182

dlsim function 159

documentation set 2

dolly in/out 190

dot function 43, 49

dot product 43

double arrays

creating 24

double function 28, 34, 307

drawnow function 189

dynamic field names 81
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E early exit from functions 86

echo function 121

editing plots 191, 210

eig function 112, 116

eigenvalues

computing 112

of a matrix 112

eigenvectors

of a matrix 112

scaling of 112

eigs function 29, 112, 116

elapsed time 185

elementary math functions 47

element-by-element division 45

element-by-element multiplication 44

elementwise logical operators 53

elevation 227

ellipsis 12

else statement 84

elseif statement 85

empty matrices 27

converting to Java 306

encrypt function 123

encrypting M-files 123

end function 36, 84

end of array 36

entering commands 12

eps function 15

EPS image format 229

equality operator 51

equation system

creating sparse matrix for 30

solving using sparse matrices for 32

equation systems

solving 109

erf function 49

erfc function 49

erfcx function 49

erfinv function 49

error bars 148

error function 91

error handling 91

error message

retrieving latest 92

setting 92

errorbar function 148

errors

throwing 91

etime function 185

Euclidean norm 106

of eigenvectors 112

eval function 69, 71

evalc function 70, 71

evalin function 70, 71

evaluating

functions 135

strings 69

event handlers 269

Excel, interfacing with 179

exist function 122

exit function 20

exiting the program 19

exp function 47

exp2 function 47

expm function 114, 116

exponential

of a matrix 114

external API 309

compilation 329

M-file interface 314

extrapolation 161

F factor function 49

factorial function 49

factorials 143

false function 34

fast Fourier transform 155



fclose function 178, 182

feof function 182

ferror function 182

feval function 71

FFT algorithm 155

fft function 155, 159

fft2 function 155, 159

fftn function 155, 159

fftshift function 159

fgetl function 182

Fibonacci number 128

fieldnames function 82

for objects 291

fields

adding 81

default value of 79

deleting 81

in structures 78

modifying value of 80

syntax for adding and accessing 79

figure function 189

figure windows 188

example of creating 260

functions for 189

toolbar in 189

fileparts function 182

files

closing 178

opening 178

writing formatted data to 178

filesep function 182

filled contour plots 213

fill-in 29

filter function 156, 159

find function 51

find function with sparse matrices 33

findobj function 211

findstr function 64

first-order step response 157

fitting a polynomial 163

fix function 47

flipdim function 56

fliplr function 56

flipud function 56

floating-point arithmetic 15

floor function 47

flow control 84–88

fonts, sizes of 262

fopen function 178, 182

for loops 85

looping over elements in cell arrays 86

for statement 85

format function 17

format strings in plot commands 206

formatted data

reading and writing 178

formatted strings 67, 199

formula function 136

Fortran 332

Fourier transform 155

fprintf function 67, 178, 182

frame function 253

frames 250

example of creating 264

fread function 182

freqspace function 56

frewind function 182

Frobenius norm 106

fscanf function 178, 182

fseek function 182

ftell function 182

full function 29

fullfile function 182

function arguments 131

function definition 127

function workspace 127
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function-based forms of operators 46

functions 120, 127

alternative call syntax for 130

calling syntax for 130

evaluating 135

for statistical analysis 146

help text for 128

inline 135

locking 134

recursive calls of 129

refreshing path to 122

syntax for 127

updating 134

funm function 116

fwrite function 178, 182

G gamma function 49

gammainc function 49

gammaln function 49

gca function 189, 193, 194

gcd function 49

gcf function 189

generalized eigenvalue problem 112

genpath function 121

get function 210

getdata function 251

getfield function 82

gettabledata function 260

global statement 96

global variables 96

effects of using 97

gradient function 173, 175

graphics

2D 205

3D 215

Greek characters 200

greek symbols 200

grid function 193

griddata function 167, 170

griddata3 function 167, 170

griddatan function 167, 170

grids, equally-spaced 57

GUI components library 253

GUI components. See user interface 

components

GUIs 249

example of 271

H handle

to current axes object 189, 194

to current figure window 189

headlights 190, 222

help

Help Desk 19

online 19

help function 19

for classes 290

help text for functions 128

Hermite interpolation 160, 164

Hermitian transpose 40

hess function 110, 116

Hessenberg form 110

hex2dec function 67

hex2num function 64, 67

hidden function 215

higher-order ODEs 238

hist function 149, 154

histc function 146, 150

histogram counts 149

histograms 149

hold function 193, 196

horizontal concatenation 38

horzcat function 38

HTML formatting 199

HTML tags 199

hyperbolic functions 48

I i 16

I/O functions 176, 182



identifying data types 23

identity matrix 26

sparse 30

IEEE floating-point arithmetic 15

if statement 84

if statements 84

ifft function 155, 159

ifft2 function 155, 159

ifftn function 155, 159

ifftshift function 159

imag function 28, 47

image export 232

image icons 254

imageicon function 254

images

data structure for 229

displaying 230

formats for 229

reading 230

saving 231

size of 232

storing plots as 231

imaginary unit 16

ind2sub function 36, 51

indexing 35

in cell arrays 72

overloading for classes 295

using multiple subscripting 37

inf function 16

inferiorto declaration 299

infinity 16

infinity norm 106

initial-value problems 238

inline function 135

inline functions 135

precedence for 122

inner product 43

input arguments 14

checking names of variables in 134

checking the number of 131

handling of 14

variable number of 132

input function 90

input variables

passing by value 130

inputname function 134

int2str function 64, 66

integration 172

interp1 function 160, 171

interp2 function 160, 171

interp3 function 160, 171

interpolation 160

linear 160

methods for 160

on Delaunay triangulation 168

using splines 164

intersect function 76

inv function 41, 108

inverse hyperbolic functions 48

inverse of a matrix 41

ipermute function 58

isa function 23

iscell function 76

iscellstr function 64, 76

ischar function 64

isclass function 75

isdir field 18

isempty function 27, 39

isequal function 52

isequalwithequalnans function 52

isfield function 82

isfinite function 52

isglobal function 96

ishold function 193

isinf function 52

iskeyword function 89
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isletter function 64

islogical function 33

ismember function 76

isnan function 52

ispc function 18

isprime function 49

isreal function 28, 47

isscalar function 27, 39

issparse function 29

isstr function 64

isstruct function 82

isunix function 18

isvarname function 89

isvector function 39

iswhite function 64

J j 16

Jacobian 239

Java arrays

creating 303

Java class constructors 303

Java GridBagLayout class 262

Java interface 301

Java methods

converting return values from 306

Java objects

arrays of 303

creating 303

functions for 304

invoking methods 303

passing as arguments 304

javaArray function 303

javaMethod function 304

javaObject function 304

JPEG image format 229

K keyboard function 101

kron function 115, 116

Kronecker tensor product 115

L label function 253, 254

labels 254

LAPACK 109

DGEQRF and ZGEQRF functions 111

DPOTRF and ZPOTRF functions 110

Laplacian 173

largest singular value 106

last element in an array 36

lasterr function 92

lasterror function 92

layout manager 262

lcm function 49

least squares polynomial fit 163

left associativity 16

left division 99, 109

left matrix divide 44

legend function 193, 198

legends 198

length function 27, 39

light function 215

lighting 215, 222

lighting function 215

lights 222

line continuation 12

line function 205, 226, 260

line objects 210

properties of 212

line plots

in 3D 226

line styles 207

linear algebra algorithms 109

linear congruential generator 97

linear equation systems 109

solvers for 44

linear indexing 51

linear interpolation 160

linear-index vector 36

linear-system sensitivity 107



linspace function 25

list boxes 256

methods for 256

listbox function 253

lists of variables 74

load function 20, 176, 182

loading

data from files 176

data from MAT-files 179

Lobatto quadrature 174

local functions 129

locking functions 134

log function 47

log10 function 47

logarithmic scales in plots 205, 209

logarithms

base-10 47

natural 47

of matrices 114

logging inputs and outputs 11

logical arrays 33, 50

converting to double arrays 34

logical complement 53

logical function 34

logical indexing 37

logical operators 53

bitwise 54

elementwise 53

loglog function 205

logm function 114, 116

logspace function 25

loop variables 86

looping 84

loops

breaking out of 86

using pointwise operators instead of 

93

Lotka-Volterra equations 240

lower function 64

low-level graphics objects 210

ls function 19

LU decomposition 109

lu function 109, 116

M markers 207

mat2cell function 72, 76

mat2str function 64, 66

material function 215

materials 222

reflections from 224

MAT-files 179

math symbols 201

mathematical constants 16

matrices

as input to plots 207

matrix analysis 104

matrix dimension 98

matrix exponential 114

matrix factorization 110

matrix functions 108

matrix functions, adding 115

matrix logarithm 114

matrix multiplication 43

matrix norms 106

matrix power 45

matrix-division operators 44

matrix-vector products 43

max function 139, 146

maximum norms 106

maximum values 139

MC-files 123

mean function 141, 146

mean values 141

median function 141, 146

median values. 141

menu function 250, 253

menu items 250
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menuitem function 250, 253

menus 250

mesh function 215, 216, 220

mesh plots 167

meshgrid function 56, 57

meshz function 215, 216, 220

methods 276

invoking for Java objects 303

methods function 291

M-file interface 314

M-file path 120, 121

mfilename function 123

M-files

creating 120

displaying contents of 121

echoing the lines of 121

maximum length of file name 120

retrieve name of running 123

running 11

Microsoft Excel, interfacing with 179

min function 139, 146

minimum norms 106

minimum values 139

mislocked function 135

missing data 145

mkpp function 165, 171

mldivide function 116

mlock function 134

mod function 47

modifying arrays

special functions for 56

modulus of arrays 47

mouse listener 274

mouse movements 269

movie function 234

movies

example of generating 234

formats for 234

generating 234

methods for creating 234

mrdivide function 116

multidimensional arrays 57

special functions for 58

multidimensional indexing 36

multidisciplinary modeling 5

munlock function 135

N namelengthmax function 120

nan function 16

NaNs 16

and relational operators 51

handling in data 145

nargchk function 131, 134

nargin function 131, 134

nargout function 131, 134

nargoutchk function 132, 134

natural logarithm 47

ndgrid function 58

ndims function 39

nearest neighbor interpolation 160

nested cell arrays 73

nested control flows 84

nested structures 79

newplot function 193, 194

nnz function 29

nonconjugate transpose 40

nonsingular matrix 105

norm function 105, 108

normally distributed random numbers 26

norms 105

not function 53

not-a-number 16

null function 111, 116

null space of a matrix 111

num2cell function 72, 76

num2hex function 64, 67

num2str function 64, 66



number of bits, for sound data 181

number of dimensions

in an array 39

number of elements

in an array 39

numel function 38, 39

numerical integration 174, 175

nzmax function 30

O objects 276

odeget function 240

ODEs 238

examples of solving 240, 243

setting options for 240

syntax for specifying 239

systems of 238

odeset function 240

ones function 25

online help 19

operating system commands 18

operating system, checking type of 17

operators

corresponding functions for 294

overloading 293

option buttons 254

ordinary differential equations 238

ordschur function 114, 116

orth function 111, 116

orthogonal factorization 111

orthographic projection 190

orthonormal bases 111

otherwise statement 87

outer products 43

output arguments 14

checking the number of 131

variable number of 132

output formats 17

overloading 293–297

assignments 295

indexing 295

of operators 293

save and load commands 296

the display of an object 297

P packages 300

pane objects 257

panel function 253

panels 250

layout of 262

panning 190

parentheses 16

partial differential equations 237

patch function 215, 218, 260

patch plots 215

patches

example of plot using 218

properties of 221

path

adding directories to 121

for M-files 121

path function 121

pathsep function 182

pchip function 171

PDEs 237

performance considerations 93–95

permute function 58

persistent statement 97

persistent variable 97

perspective projection 190

phase curve 242, 246

pi 16

pi function 16

piecewise polynomial

for spline interpolant 164

pinv function 41, 108

plot function 205, 260

plot3 function 215, 226

plots
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3D plot types 215

adding to existing plot 195

copying 190

editing 190, 191

examples of 124, 198, 205, 208, 209, 

210, 211, 216, 217, 219, 223, 225, 

226, 260

exporting 189

printing 189

stairstep 150

stem 152

PNG image format 229

P-norms 106

point light 222

pointwise division 45

pointwise multiplication 44

pol2cart function 49

poly function 171

polyder function 162, 171

polyfit function 163, 171

polyint function 162, 171

polynomials 161

division of 162

evaluating 162

fitting to data 163

integrating and differentiating 162

multiplication of 162

roots of 162

polyval function 162, 171

power operator 45

ppval function 164, 171

precedence 298

precedence order

of functions 122

predator-prey model 240

primes function 49

principal logarithm 114

printing plots 189

prod function 143, 146

prodofsize function 75

products 143

profiling the code 94

projection 190

prompt, when debugging 100

pseudoinverse 41

psi function 50

pwd function 18

Q QR factorization 111

qr function 116

quad function 174, 175

quadl function 174, 175

quadrature 174

QuickTime

movie format 234

quit function 20

R radio buttons 254

radiobutton function 253

radius of convergence 115

rand function 26

randn function 26

random numbers 26

as sparse matrices 30

rank 41

rank function 41, 104, 108

rank of a matrix 104

rat function 50

rational fraction approximation 50

rats function 50

real function 47

real Schur form 113

reallog function 47

realpow function 47

realsqrt function 47

recursive function calls 129

reference classes 287

reflecting lights 224



refreshing the path view 121

rehash function 121

relational operators 50

relative tolerance

in ODE/DAE solver 239

in quadrature formulas 175

rem function 47

repmat function 56

reserved words 89

reshape function 56

reshaping an array 56

resolution, of images 232

resuming normal execution 100

return statement 86

RGB triplet 208, 212

RGB values 217

right division 99

right matrix divide 44

rmfield function 82

rmpath function 121

roots function 162, 171

rot90 function 56

round function 47

rounding

functions for 47

row-and-column index 51

run function 125

running M-files 11

S sample rates, for sound data 181

save function 19, 176, 182

saveimage function 231

saving

data to MAT-files 179

workspace data to files 19, 176

scalar AND and OR operators 53

scalar expansion 51

scalar product 43

scalars 27

expanding to constant matrices 98

scaling

of images 233

scene lights 190, 222

Schur decomposition 113

reordering of 114

Schur forms 113

schur function 113, 116

script files 120

scripts

creating 124

running 124

running at startup 19

running in batch mode 125

scroll bars 257

scrollpanel function 253

sec function 48

semicolon

to prevent display of output 12

semilogx function 205

semilogy function 205

sensitivity of linear system 107

set function 210

set functions 76

setdiff function 76

setfield function 82

setxor function 76

shading function 215, 220

shiftdim function 56

shininess 225

shortcut keys 11

sign function 47

signal processing 155

signum function 47

Simpson’s rule, 174

sin function 48

singular matrix 41

singular value
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in matrix norm 106

singular value decomposition 113

singular values 113

sinh function 48

size function 38, 39

sizes of arrays 38

sort function 144, 146

sorting data 144

sortrows function 144, 146

sound function 181, 182

sounds

playing 181

reading from files 180

soundsc function 181, 182

sparse eigenvalue problems 112

sparse function 30

sparse matrices 28

creating 30

creating equation system matrix using 

30

functions for 29

in external API 312

output from operations with 33

solving equation system using 32

sparsity pattern, displaying 32

spdiags function 30

special math functions 49

specular color 225

speye function 30

sph2cart function 50

spline function 164, 171

spline interpolation 160, 164

spones function 30

spotlights 222

sprand function 30

sprandn function 30

sprandsym function 30

sprintf function 64, 67

spy function 32

sqrt function 47

sqrtm function 46

square root 47

square roots 46

squeeze function 58, 59

sscanf function 64

stairs function 150

stairstep plots 150

standard deviation 141

startup.m script 19

state-space models 158

statistical analysis

functions for 146

statistics 138

from ODE solver 240

std function 141, 146

stem function 152

stem plots 152

stem3 function 152

step response 157

step sizes 239

stiff ODEs 247

stiff problems 238

storedata function 251

str2num function 64

straight quotes

in strings 63

straight single quote

as transpose operator 40

strcat function 64

strcmp function 64

strcmpi function 64

strfind function 64

strings 62

apostrophes in 63

branching using 88

displaying 63



evaluating 69

single quotes in 63

strjust function 64

strmatch function 64

strncmp function 64

strncmpi function 65

strread function 182

strrep function 65

strtok function 65

strtrim function 65

struct function 78, 82

for objects 292

struct2cell function 72, 76, 82

structure arrays 78

accessing field names dynamically 81

creating 78

modifying 80

nested 79

referencing 80

structures 78

strvcat function 65

sub2ind function 36, 51

subfunctions 129

subplot function 193, 196

subscripting 35

subset of arrays

indexing into 37

subspace function 146

subtraction 42

sum function 143, 146

sums 143

super function 289

superiorto declaration 299

surf function 215, 216, 220, 260

surface function 215, 216

surface plots 215

example of 216

surface properties 221

svd function 113, 116

switch statement 87

symvar function 65, 135

T tabbedpane function 253, 257

table function 253, 258

tables 258

tabs 257

tan function 48

Taylor series 115

tempdir function 182

tempname function 182

tensor product 115

tensor products 59

text fields 255

text file

reading data from 176

reading delimited data from 177

text function 193, 198

text symbols 201

textarea function 253

textfield function 254

textread function 182

this function 289

tic function 185

TIFF image format 229

time

elapsed 185

getting current 184

tinterp function 168, 171

title function 193, 198

toc function 185

toggle buttons 254

togglebutton function 254

tolerances

absolute 239

relative 239

toolbar 188

in figure windows 189
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tprod function 59

trace function 104, 108

trace of a matrix 104

transfer functions 156

transparency 190

transpose

of complex-valued matrix 40

of matrix 40

transpose operator 40

trapezoidal numerical integration 175

trapz function 175

triangulation 166

trigonometric functions 48

unit for angles 48

tril function 56

trimesh function 167, 171

trisurf function 167, 171

triu function 56

true function 34

try statement 91

tsearch function 168, 171

tsearchn function 168, 171

type conversions

for chars 306

for doubles 306

type function 121

typographical conventions 4

U uint8 function 15

unary minus 46

unary plus 46

unicode 201

uniformly distributed random numbers 

26

union function 76

unique function 76

unmkpp function 166, 171

unsigned integers 15

unwrap function 47

updating functions 134

upper function 65

upper Hessenberg form 110

user inputs 90

user interface components 253

accessing 268

adding 262

alignment of 263

axes objects 260

buttons 254

check boxes 254

combo boxes 256

event handling for 269

list boxes 256

spacing between 265

tables 258

text fields 255

toggle buttons 254

user interfaces 249

components in 253

example of 271

V value classes 287

van der Pol equation 243

Vandermonde matrix 163

var function 142, 146

varargin function 74, 134
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variable number of function arguments 
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variables
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variance 141
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vector gradient 173

vector graphics 232
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vectorize function 136

vectorizing
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creating 24
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view angle 228
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W warning function 92
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displaying 92

wave sound files 180
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while statement 85
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workspace
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X xlabel function 193, 198
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xlswrite function 180, 183
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