
 COMSOL
 Script ™

V E R S I O N 1 . 2

U
SER’S G

UIDE

How to contact COMSOL:

Benelux
COMSOL BV
Röntgenlaan 19
2719 DX Zoetermeer
The Netherlands
Phone: +31 (0) 79 363 4230
Fax: +31 (0) 79 361 4212
info@femlab.nl
www.femlab.nl

Denmark
COMSOL A/S
Diplomvej 376
2800 Kgs. Lyngby
Phone: +45 88 70 82 00
Fax: +45 88 70 80 90
info@comsol.dk
www.comsol.dk

Finland
COMSOL OY
Arabianranta 6
FIN-00560 Helsinki
Phone: +358 9 2510 400
Fax: +358 9 2510 4010
info@comsol.fi
www.comsol.fi

France
COMSOL France
WTC, 5 pl. Robert Schuman
F-38000 Grenoble
Phone: +33 (0)4 76 46 49 01
Fax: +33 (0)4 76 46 07 42
info@comsol.fr
www.comsol.fr

Germany
FEMLAB GmbH
Berliner Str. 4
D-37073 Göttingen
Phone: +49-551-99721-0
Fax: +49-551-99721-29
info@femlab.de
www.femlab.de

Italy
COMSOL S.r.l.
Via Vittorio Emanuele II, 22
25122 Brescia
Phone: +39-030-3793800
Fax: +39-030-3793899
info.it@comsol.com
www.it.comsol.com

Norway
COMSOL AS
Søndre gate 7
NO-7485 Trondheim
Phone: +47 73 84 24 00
Fax: +47 73 84 24 01
info@comsol.no
www.comsol.no

Sweden
COMSOL AB
Tegnérgatan 23
SE-111 40 Stockholm
Phone: +46 8 412 95 00
Fax: +46 8 412 95 10
info@comsol.se
www.comsol.se

Switzerland
FEMLAB GmbH
Technoparkstrasse 1
CH-8005 Zürich
Phone: +41 (0)44 445 2140
Fax: +41 (0)44 445 2141
info@femlab.ch
www.femlab.ch

United Kingdom
COMSOL Ltd.
UH Innovation Centre
College Lane
Hatfield
Hertfordshire AL10 9AB
Phone:+44-(0)-1707 284747
Fax: +44-(0)-1707 284746
info.uk@comsol.com
www.uk.comsol.com

United States
COMSOL, Inc.
1 New England Executive Park
Suite 350
Burlington, MA 01803
Phone: +1-781-273-3322
Fax: +1-781-273-6603

COMSOL, Inc.
10850 Wilshire Boulevard
Suite 800
Los Angeles, CA 90024
Phone: +1-310-441-4800
Fax: +1-310-441-0868

COMSOL, Inc.
744 Cowper Street
Palo Alto, CA 94301
Phone: +1-650-324-9935
Fax: +1-650-324-9936

info@comsol.com
www.comsol.com

For a complete list of international
representatives, visit
www.comsol.com/contact

Company home page
www.comsol.com

COMSOL user forums
www.comsol.com/support/forums

COMSOL Script User’s Guide
 © COPYRIGHT 1994–2007 by COMSOL AB. All rights reserved

Patent pending

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from COMSOL AB.

COMSOL, COMSOL Multiphysics, COMSOL Reaction Engineering Lab, and FEMLAB are registered
trademarks of COMSOL AB. COMSOL Script is a trademark of COMSOL AB.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Version: October 2007 COMSOL 3.4

C O N T E N T S

C h a p t e r 1 : I n t r o d u c t i o n

The Documentation Set 2

Typographical Conventions 4

About COMSOL Script 5

C h a p t e r 2 : C O M S O L S c r i p t B a s i c s

Using COMSOL Script 8

Starting COMSOL Script . 8

The COMSOL Script Environment 8

Using Commands and Creating Variables 12

Numbers and Arithmetics 15

Checking the Computer and Operating System 17

Running General Operating System Commands 18

Displaying and Changing Directory 18

Running Commands at Startup 19

Getting Help . 19

Saving the Workspace and Exiting the Program 19

C h a p t e r 3 : V e c t o r s , M a t r i c e s , a n d A r r a y s

The COMSOL Script Data Types 22

Overview of Data Types . 22

Identifying Data Types . 23

Creating Vectors, Matrices, and Double Arrays 24

Creating Double Arrays . 24

Array Sizes and Empty Matrices 26

Sparse Matrices . 28
C O N T E N T S | i

ii | C O N T E N T S
Logical Arrays . 33

Working with Matrices and Arrays 35

Indexing and Subscripting. 35

Building Arrays From Other Arrays 38

General Functions for Array Sizes 38

Matrix Transposition . 40

Matrix Inversion . 41

Elementary and Special Math Functions 42

Relational and Logical Operators and Functions 50

Special Functions for Modifying Arrays 56

Creating and Using Multidimensional Arrays 57

Tensor Products and Contractions 59

C h a p t e r 4 : D a t a T y p e s f o r N o n - N u m e r i c V a l u e s :

S t r i n g s , C e l l A r r a y s , S t r u c t u r e s

Strings and Character Arrays 62

Creating and Modifying Strings. 62

Summary of Functions for Converting and Modifying Strings 63

Using String Functions—Some Examples 65

Evaluating Strings . 69

Cell Arrays 72

Creating Cell Arrays . 72

Working With Cell Arrays 73

Set Functions . 76

Structures 78

Creating Structures . 78

Working With Structures 80

Summary of Functions Related to Structure Arrays 82

C h a p t e r 5 : T h e P r o g r a m m i n g L a n g u a g e

Flow Control 84

IF Statements . 84

WHILE Loops . 85

FOR Loops . 85

BREAK, CONTINUE, and RETURN Statements 86

The SWITCH Statement . 87

Working with Variables 89

Naming Variables . 89

Assigning a Value to a Variables in Other Workspaces 89

Getting User Input . 90

Error Handling 91

The TRY and CATCH Statements 91

Throwing Errors and Displaying Warnings 91

Performance Considerations 93

Using Built-in Functions Instead of FOR 93

Using Logical Operators Instead of IF 93

Using Pointwise Operators Instead of Loops 93

Profiling to Find Bottlenecks 94

Global and Persistent Variables 96

Global Variables . 96

Persistent Variables . 97

Debugging 98

Common Errors . 98

Debug Commands . 99
C O N T E N T S | iii

iv | C O N T E N T S
C h a p t e r 6 : L i n e a r A l g e b r a a n d M a t r i x F u n c t i o n s

Matrix Functions and Matrix Analysis 104

Elementary Matrix Functions 104

Matrix Analysis . 104

Summary of Matrix Functions 108

Linear-Algebra Algorithms 109

LU Decomposition and Solving Linear Equation Systems 109

Matrix Factorization—Cholesky and QR 110

Orthonormal Bases for Null Spaces and Ranges 111

Eigenvalues and Eigenvectors of a Matrix 112

Singular Value Decomposition and Schur Decomposition. 113

The Matrix Exponential 114

The Matrix Logarithm . 114

Evaluating Other Matrix Functions 115

The Kronecker Tensor Product 115

Summary of Linear-Algebra Functions 116

References . 117

C h a p t e r 7 : S c r i p t s , F u n c t i o n s , a n d M - f i l e s

Overview of M-Files 120

Creating an M-file . 120

The M-file Path . 121

Precedence Order For M-files, Functions, and Variables 122

Retrieving the Name of the Running M-File 123

Encrypting M-files . 123

Scripts 124

Creating and Running Scripts 124

Running Scripts in Batch Mode. 125

Functions 127

Syntax for Function M-Files 127

A Short Example—Fibonacci Numbers 128

Local Functions (Subfunctions). 129

Calling Functions . 130

Working With Function Arguments 131

Updating and Locking Functions 134

Evaluating Functions. 135

Inline Functions . 135

C h a p t e r 8 : D a t a A n a l y s i s , S t a t i s t i c s , a n d I / O

Data-Analysis Overview 138

Statistical Analysis 139

Computing Minimum and Maximum Values 139

Computing Mean and Median Values 141

Computing Standard Deviations, Variances, and Correlations 141

Computing Sums and Products 143

Sorting Data . 144

Handling NaNs and Missing Data 145

Summary of Functions for Statistical Analysis 146

Data Analysis Plots 147

Bar Graphs . 147

Error Bars . 148

Histograms . 149

Stairstep Plots . 150

Stem Plots . 152

Summary of Functions for Data Analysis Plots 154

Signal-Processing Tools 155

Using the FFT Functions 155

Using the Digital Filter Function 156

Simulating Discrete-Time State-Space Models 158

Summary of Signal-Processing Functions 159
C O N T E N T S | v

vi | C O N T E N T S
Interpolation and Polynomials 160

Interpolating Data . 160

Working With Polynomials 161

Data Gridding and Triangulation of Point Data 166

Summary of Interpolation and Polynomial Functions 170

Differentiation and Integration 172

Difference, Gradients, and Laplacian Computations 172

Numerical Integration . 174

Summary of Differentiation and Integration Functions 175

Reference . 175

Data Input/Output 176

Saving and Loading Data To and From a File 176

Reading and Writing Formatted Data To a File. 178

Saving and Loading MAT-Files 179

Interfacing With Microsoft Excel Spreadsheets 179

Reading and Writing Sound Files and Playing Sounds 180

Summary of Input/Output Functions 182

Date and Time Functions 184

Getting the Current Date and Time. 184

Measuring Elapsed Time 185

Summary of Functions for Date and Time 185

C h a p t e r 9 : P l o t t i n g a n d V i s u a l i z i n g D a t a

Introduction to Graphics Objects 188

The Figure Window 189

Figure Window Functions 189

Figure Window Toolbar 189

The Edit Plot Dialog Box 191

Axes 193

Overview of Axes Functions 193

Getting an Axes Object for Plotting 194

Controlling Axes Limits 194

Adding Plots to an Existing Plot 195

Using Multiple Axes Objects 196

Adding Annotations . 198

Axes Properties . 202

2D Graphics 205

Overview of 2D Graphics Functions 205

The Plot Command . 205

Plotting Complex Data 208

Plotting Logarithmic Data 209

Low-Level Graphics . 210

Editing Plots. 210

Contour Plots . 213

3D Graphics 215

Overview of 3D Graphics Functions 215

Surf and Mesh Commands 216

Colormaps and Color Bars 217

Patches . 218

Patch and Surface Properties 221

Lights and Materials . 222

3D Plots and Lines . 226

Specifying the View . 227

Camera View Angle, Target, Position, and Up Vector 228

Working With Images and Movies 229

Image and Movie Functions and Formats 229

Reading and Displaying Images 230

Saving Images . 231

Generating Movies . 234
C O N T E N T S | vii

viii | C O N T E N T S
C h a p t e r 1 0 : S o l v i n g D i f f e r e n t i a l E q u a t i o n s

ODEs and DAEs 238

Introduction . 238

Using the DASPK Solver 238

Setting and Retrieving ODE Solver Options 239

Solving the Lotka-Volterra Equations 240

Solving the van der Pol Equation 243

References . 248

C h a p t e r 1 1 : C r e a t i n g U s e r I n t e r f a c e s

Frames and Dialog Boxes 250

Menus . 250

Storing Application Data 251

User Interface Components 253

Introduction . 253

Labels and Image Icons. 254

Buttons and Toggle Buttons 254

Text Fields and Text Areas 255

Combo Boxes and List Boxes 256

Tabbed Panes and Scroll Panes 257

Tables . 258

Axes . 260

Panels and Layout Management 262

Adding Components . 262

Distributing Extra Space 265

Adding Empty Space . 267

Accessing Components 268

Event Handling 269

Example User Interface 271

C h a p t e r 1 2 : U s e r - D e f i n e d C l a s s e s

Introductory Example: Rectangle 276

The Structure of the Class File 278

Class Header . 278

Precedence Declarations 278

Field Declarations . 279

Method Declarations . 279

Access Modifiers 280

Member Fields 281

Instance Fields . 281

Static Fields . 282

Initialization of Fields . 282

Member Methods 284

Constructor . 284

Instance Methods. 284

Static Methods. 285

Inheritance 286

Reference and Value Classes 287

Differences . 287

Choosing Class Type . 288

Built-In Object Functions 289

Functions That You Can Only Use for Objects 289

Functions with Special Semantics for Objects 290
C O N T E N T S | ix

x | C O N T E N T S
Overloading 293

Overloading Operators 293

Overloading Assignment and Indexing 295

Overloading Save and Load 296

Overloading Display. 297

Precedence 298

Precedence Between Functions and Methods 298

Precedence Between Methods from Different Classes 298

Using Classes as Packages 300

C h a p t e r 1 3 : J a v a I n t e r f a c e

Declaration of Java Methods 302

Creating and Using Java Objects 303

Creating Java Objects and Invoking Methods 303

Creating and Using Java Arrays. 303

Functions for Creating and Using Java Objects 304

Passing Java Objects as Arguments to Functions 304

Type Conversions 306

Conversion of Arguments to Java Methods 306

Return Values From Java Methods 306

The Char and Double Conversions 306

C h a p t e r 1 4 : E x t e r n a l A P I

Introductory Examples 310

Compiling and Executing a Simple Function 310

Working with Sparse Matrices 312

Using the API 314

M-File Interface . 314

Entry Point . 314

Memory Management . 314

Error Handling . 315

API Reference 316

Data Types . 316

Functions . 317

Compilation 329

Compiling from Within COMSOL Script 329

Configuration Files . 329

Compilation Options . 330

Compiling from Within a Project or Makefile 331

Other Languages 332

Fortran . 332

C++. 332

 INDEX 333
C O N T E N T S | xi

xii | C O N T E N T S

 1
I n t r o d u c t i o n
Welcome to COMSOL Script™! This User’s Guide details features and
techniques that help you use this powerful scripting language for all sorts of
technical computing. Through examples and code samples you will get an
understanding of the programming language; its data types; its mathematical,
logical, and other functions; and its powerful graphics capabilities. This book also
provides an introduction to the possibilities to build customized graphical user
interfaces using COMSOL Script and to interface with the Java programming
language.

This introductory chapter provides an overview of COMSOL Script.
 1

2 | C H A P T E R
Th e Do cumen t a t i o n S e t

The documentation set for COMSOL Script consists of the following volumes:

• COMSOL Quick Installation Guide—basic information for installing the
COMSOL software and getting started. Included in the DVD/CD package.

• COMSOL New Release Highlights—information about new features and models
in the 3.4 release. Included in the DVD/CD package.

• COMSOL License Agreement—the license agreement. Included in the DVD/CD
package.

• COMSOL Installation and Operations Guide—besides covering various
installation options for COMSOL Script, it describes the system requirements and
options for running various COMSOL software products.

• COMSOL Script User’s Guide—the book you are reading, it explains how to use
the vast range of functions in the COMSOL Script language. This guide also
describes the programming-language features in COMSOL Script as well as the
powerful graphics capabilities and tools it provides for creating custom graphical
user interfaces.

• COMSOL Script Command Reference—provided only as online documentation as
a PDF and in HTML format, it reviews each function in the COMSOL Script
environment with syntax descriptions and examples.

If you have received COMSOL Script together with COMSOL Multiphysics® 3.4, the
full documentation set that ships with COMSOL Multiphysics additionally includes
the following titles:

• COMSOL Multiphysics Quick Start and Quick Reference—provides a quick
overview of COMSOL Multiphysics’ capabilities and how to access them. A
reference section contains comprehensive lists of predefined variable names,
mathematical functions, COMSOL Multiphysics operators, equation forms, and
application modes.

• COMSOL Multiphysics User’s Guide—covers the functionality of COMSOL
Multiphysics across its entire range of capabilities from geometry modeling to
postprocessing. It serves as a tutorial and a reference guide to using COMSOL
Multiphysics at every stage in the modeling process.
1 : I N T R O D U C T I O N

• COMSOL Multiphysics Modeling Guide—provides an in-depth examination of the
software’s application modes and how to use them to model different types of
physics and to perform equation-based modeling using PDEs.

• COMSOL Multiphysics Model Library—consists of a collection of ready-to-run
models that cover many classic problems and equations from science and
engineering. These models have two goals: to show the versatility of COMSOL
Multiphysics and the wide range of applications it covers; and to form an educational
basis from which you can learn about COMSOL Multiphysics and also gain an
understanding of the underlying physics.

• COMSOL Multiphysics Scripting Guide—shows how to access all of COMSOL
Multiphysics’s capabilities within the COMSOL Script environment or MATLAB.

• COMSOL Multiphysics Reference Guide—provided only as online documentation
as a PDF file and in HTML format, it reviews each command that lets you access
the functions in COMSOL Multiphysics from within the COMSOL Script
environment or MATLAB. Additionally, it describes some advanced features and
settings in COMSOL Multiphysics, and provides background material and
references.

In addition, each of the optional discipline-specific modules

• AC/DC Module

• Acoustics Module

• Chemical Engineering Module

• Earth Science Module

• Heat Transfer Module

• MEMS Module

• RF Module

• Structural Mechanics Module

comes with its own User’s Guide and Model Library.

The optional CAD Import Module and Material Library also come with their own
User’s Guide.

Note: The full documentation set is available in electronic versions—as PDF files and
HTML format—after installation.
T H E D O C U M E N T A T I O N S E T | 3

4 | C H A P T E R
Typographical Conventions

All COMSOL manuals use a set of consistent typographical conventions that should
make it easy for you to follow the discussion, realize what you can expect to see on the
screen, and know which data you must enter into various data-entry fields. In
particular, you should be aware of these conventions:

• A boldface font of the shown size and style indicates that the given word(s) appear
exactly that way on the COMSOL graphical user interface (for toolbar buttons in
the corresponding tooltip). For instance, we often refer to the Model Navigator,
which is the window that appears when you start a new modeling session in
COMSOL; the corresponding window on the screen has the title Model Navigator.
As another example, the instructions might say to click the Multiphysics button, and
the boldface font indicates that you can expect to see a button with that exact label
on the COMSOL user interface.

• The names of other items on the graphical user interface that do not have direct
labels contain a leading uppercase letter. For instance, we often refer to the Draw
toolbar; this vertical bar containing many icons appears on the left side of the user
interface during geometry modeling. However, nowhere on the screen will you see
the term “Draw” referring to this toolbar (if it were on the screen, we would print
it in this manual as the Draw menu).

• The symbol > indicates a menu item or an item in a folder in the Model Navigator.
For example, Physics>Equation System>Subdomain Settings is equivalent to: On the
Physics menu, point to Equation System and then click Subdomain Settings.
COMSOL Multiphysics>Heat Transfer>Conduction means: Open the COMSOL

Multiphysics folder, open the Heat Transfer folder, and select Conduction.

• A Code (monospace) font indicates keyboard entries in the user interface. You might
see an instruction such as “Type 1.25 in the Current density edit field.” The
monospace font also indicates COMSOL Script codes.

• An italic font indicates the introduction of important terminology. Expect to find
an explanation in the same paragraph or in the Glossary. The names of books in the
COMSOL documentation set also appear using an italic font.
1 : I N T R O D U C T I O N

Abou t COMSOL S c r i p t

We are delighted you have chosen COMSOL Script for your technical computing
needs. We believe that we have created a software tool that both complements and
expands on the capabilities in the COMSOL Multiphysics multiphysics-modeling
environment.

At its heart, COMSOL Script is a fully-featured technical analysis and visualization
package. A command-line interface enables easy access to data, functions, and results.
Its roughly 500 commands cover linear algebra, numeric and trigonometric
calculations, support for objects and classes, as well as data visualization in both 2D
and 3D. The COMSOL Script Desktop provides an interactive development
environment for creating, editing, running, and debugging your scripts and functions.
Because COMSOL Script is an interpreted language, you can quickly experiment with
various commands. You can easily save a command sequence to create an optimized
routine in a text editor.

Further, COMSOL Script’s graphing and visualization capabilities set new standards
for packages in this category. A set of Java-based tools enable you to quickly construct
professional-looking graphical user interfaces. You can build a sophisticated model and
then create a user interface that makes the model’s functionality accessible to other
users who do not need or have a mastery of the specific equations or physics upon
which the model is based.

While COMSOL Script offers enormous power as a standalone technical computing
environment, its competitive edge sits in a seamless integration with COMSOL
Multiphysics, our flagship scientific-modeling software. Easy-to-use scripting
combined with powerful modeling capabilities—in one and the same environment—
fill a gap in the scientific-software market. Any model you create can be saved as a
text-file representation that you can run in COMSOL Script to perform tasks such as
design-optimization and parametric studies. You can, for instance, write a script that
solves a model for a range of values to optimize that model around one or more
variables. You can similarly automate many routine tasks such as creating a series of
different geometries or solving using a series of different meshes to check the
convergence of the solution.

This release also brings two add-on labs, the Optimization Lab and the
Signals & Systems Lab, which bring additional functionality to COMSOL Scripts in
the areas of optimization, signal processing, and systems analysis.
A B O U T C O M S O L S C R I P T | 5

6 | C H A P T E R
We hope that this documentation set introduces you to all of this power. We’re also
certain that your imaginations will come up with some very creative uses of COMSOL
Script. We’re anxious to hear about your innovative uses and invite you to get in touch
with us with any feedback whatsoever. We plan on developing it even further, so let us
know what kinds of functionality would serve you best.
1 : I N T R O D U C T I O N

 2
C O M S O L S c r i p t B a s i c s
COMSOL Script provides a powerful scripting environment for many
technical-computing applications. The following chapter provides an overview of
the user interface and reviews the fundamentals for creating variables, statements,
script files, and graphics.
 7

8 | C H A P T E R
U s i n g COMSOL S c r i p t

Starting COMSOL Script

If you want to run COMSOL Script as a standalone program, start it by
double-clicking the COMSOL Script icon (on the Windows desktop) or, on other
platforms, by starting the program through a type of Start menu or from a command
prompt.

To run COMSOL Script as a part of COMSOL Multiphysics, start it by choosing
File>COMSOL Script in the latter environment.

The COMSOL Script Environment

T H E D E S K T O P E N V I R O N M E N T

COMSOL Script provides a desktop environment with several different views. The
most important is the Command Prompt in which you interactively enter commands
and also run scripts and functions, which hold sets of commands that you store as
2 : C O M S O L S C R I P T B A S I C S

M-files (text files with the extension .m). The desktop also contains an editor with
which you can edit M-files.

Figure 2-1: The COMSOL Script desktop environment.

T H E D E S K T O P V I E W S

COMSOL Script provides a number views into your code that are useful at various
stages of code development and execution. These windows are not static; you can
rearrange the views by dragging and dropping them inside the desktop window.

The Workspace view shows the variables in the active workspace.

The Command History view shows a history of the commands that you have entered at
the command prompt. Double click on a command if you want to execute it again.
U S I N G C O M S O L S C R I P T | 9

10 | C H A P T E R
The Path view shows the path used to look for M-files. See “The M-file Path” on page
121 for information on how to add and remove directories to the path.

The Breakpoints view list the break points that have been set in different M-files.
Double-click on a line to open the M-file in the editor with the line of the break point
selected. See “Debug Commands” on page 99 for information on how to add and
remove break points.

The Debug view shows the debug call stack when COMSOL Script has stopped at a
break point. You can double click on different lines in the debug call stack to move to
that point in the call hierarchy. During a debug session, the Workspace view can display
the variables for the function being debugged.

In the Progress view you can see progress and convergence information such at times
when you call command-line functions for things such as meshing and solving for a
COMSOL Multiphysics model.

T H E M A I N M E N U

At the top of the desktop window you see a menu with four selections. The File menu
and the Edit menu contain commands for the editor that is built into the desktop. The
View menu contains commands for reopening any of the desktop views if you have
closed them, and the Help menu leads you to documentation and help resources.

The File menu contains these commands:

• New Editor: This command opens a new session of the editor with an empty file.

• Open File: Select this command to browse for a file to open in the editor. You can
also type edit filename at the command prompt to open a certain file.

• COMSOL Multiphysics: Select this command if you wish to run COMSOL Script
together with COMSOL Multiphysics. This command brings up the Model

Navigator window, which is the starting point for all COMSOL Multiphysics work.
Note that this command exists only if you have COMSOL Multiphysics installed on
your system.

• Reaction Engineering Lab: Select this command if you wish to run COMSOL Script
together with the COMSOL Reaction Engineering Lab. Note that this command
exists only if you have the COMSOL Reaction Engineering Lab installed on your
system.
 2 : C O M S O L S C R I P T B A S I C S

• Exit. Choose this command to exit the COMSOL Script environment, which also
means that you lose the contents of the current workspace.

• The File menu also contains menu items for closing the active editor or all editors as
well as for printing the contents of the active editor.

The Edit menu contains commands that are associated with the editor. They can be
used to undo and redo things you have typed in. It also contains commands for cut,
copy/paste, and for finding text in an editor window.

C O M M A N D - L I N E E D I T I N G A N D N A V I G A T I O N

Within the COMSOL Script editing window there is a command prompt. You can
move the cursor within the current command as well as up and down the command
history using the shortcut keys and navigation keys listed in Table 2-1.

With these shortcut keys it is easy to correct a typing mistake or to make small changes
to a command. In addition, COMSOL Script saves previous commands in a buffer (the
scrolling buffer, for which you can control the size in the Preferences dialog box).

S T O R I N G C O M M A N D W I N D O W I N P U T A N D O U T P U T I N A F I L E

COMSOL Script can create a text file that stores all commands that you type and all
output from the software. Use the diary function to start the logging of command
window inputs and outputs to a file. Typing

diary mylog.txt

TABLE 2-1: COMSOL SCRIPT SHORTCUT KEYS

KEY COMMAND

Up arrow Recall previous line

Down arrow Recall next line

Left arrow or Ctrl+B Move left one character

Right arrow or Ctrl+F Move right one character

Ctrl+left arrow Move left one word

Ctrl+right arrow Move right one word

Home or Ctrl+A Move to beginning of line

End or Ctrl+E Move to end of line

Esc Delete current line

Delete Delete character at cursor

Backspace Delete character left of cursor

Ctrl+K Delete from cursor to end of line
U S I N G C O M S O L S C R I P T | 11

12 | C H A P T E R
stores all subsequent inputs and outputs that appear in the command window to the
file mylog.txt. You can temporarily turn the logging off and flush the file by typing

diary off

To turn logging back on type

diary on

C L E A R I N G T H E C O M M A N D W I N D O W

To clear the command window enter the command clc.

Using Commands and Creating Variables

C R E A T I N G V A R I A B L E S A N D E N T E R I N G C O M M A N D S

COMSOL Script supports several data types and objects (see “The COMSOL Script
Data Types” on page 22). As an example, suppose you want to create an array of
double floating-point numbers using an explicit list of data. To do so, enclose the list
using brackets ([and]) and type the data separated by blanks or commas. Use a
semicolon to indicate the end of a row.

Enter the following to create a 3 x 3 identity matrix:

I = [1 0 0; 0 1 0; 0 0 1]

This results in the output

I =

 1 0 0
 0 1 0
 0 0 1

Use a semicolon at the end of the statement to prevent COMSOL Script from
displaying the result:

I = [1 0 0; 0 1 0; 0 0 1];

In either case, the result is stored in the variable I, which remains in the main
workspace until you clear the variable or exit from COMSOL Script.

If you want to continue with more commands or data entry on the next line, type ...
(an ellipsis), which acts as a line continuation symbol. COMSOL Script then interprets
the entries on the next line as a continuation of the current line:

K = [1 2 3 4 5 6 7 8 9 10; ...
11 12 13 14 15 16 17 18 19 20];
 2 : C O M S O L S C R I P T B A S I C S

These two lines create a 2 x 10 matrix with the numbers 1 to 10 in the first row and
the numbers 11 to 20 in the second row (the semicolon indicates the start of a new
row).

S T A T E M E N T S , V A R I A B L E S , A N D T H E WO R K S P A C E

COMSOL Script interprets and evaluates all statements that you enter from the
keyboard (or statements contained in a script or function you call). Statements typically
take the form

 variable = expression

or

 expression

The expression can contain mathematical functions and operators, data, and other
variables. COMSOL Script evaluates the expression and assigns the result to the
variable that appears to the left of the assignment operator =. If you enter the
expression directly without assigning it to a variable, COMSOL Script automatically
creates the variable ans. For instance:

2*pi

produces

ans =

6.283185

Getting Information about the Workspace and Variables
To list all the variable in the workspace, enter the command who:

who

I
ans

This output shows that there are two variables in the workspace, I and ans. To get
more detailed information, type whos:

whos
 Name Size Memory Type

 I 3x3 72 double array
 ans 1x1 8 double

Each element of a real double floating-point number requires eight bytes of memory.
U S I N G C O M S O L S C R I P T | 13

14 | C H A P T E R
Clearing the Workspace
To clear the workspace, use the clear command in one of its two forms:

clear all

clears all variables from the workspace, whereas

clear I

clears only the variable I. Enter clear variable1 variable2 … to clear more than
one variable.

Upper and Lower Case for Variables and Functions
COMSOL Script is case sensitive, so a and A, for example, represent different variables.
For functions and operators, you must use only lower case: asin(I) gives a matrix
with π/2 on the diagonal, whereas ASIN(I) produces an error because the software
does not recognize the unknown function ASIN.

I N P U T A N D O U T P U T A R G U M E N T S

Functions can have multiple input and output arguments:

[a,i] = sort(rand(5),2);

This example with the function sort uses two input arguments and two output
arguments. Notice that the first input argument contains a function, rand.

Even if a function can have one or more output arguments, you can often call it with
fewer or no output arguments. Compare the two function calls:

a = sort(rand(5),2);
sort(rand(5),2)

Using just one output argument (as in the first function call) you do not get the index
array that sort provides as a second output argument. Using no output argument (as
in the second function call), COMSOL Script returns the output in the variable ans.

Note: COMSOL Script never modifies any input arguments. Also, if the function
does not modify the input arguments, the copy of the variables that you provide as
inputs is by reference and not by value.
 2 : C O M S O L S C R I P T B A S I C S

Numbers and Arithmetics

E N T E R I N G F L O A T I N G - PO I N T N U M B E R S

To enter floating-point numbers use conventional decimal notation with an optional
decimal point and a leading minus sign. Use either E or e to indicate an exponent in a
power-of-ten scale factor: Both -1.527E-10 and -1.527e-10 equal −1.527·10−10.

COMSOL Script uses IEEE double-precision floating-point arithmetic, which gives a
relative accuracy of 2−52 or approximately 16 significant digits. You can access this level
of relative accuracy in the function eps, which provides the difference between a
number and the next larger number. The range for a floating-point number is
approximately 10−308 to 10308.

U S I N G O T H E R N U M E R I C A L F O R M A T S

It is possible to create unsigned integer arrays using the uint8 function. For example,

u = uint8(4);

creates the variable u that contains 4 as an unsigned integer, using 1 byte of storage
instead of 8 bytes for the corresponding double-precision floating point number.

The functions int8, int16, int32, int64, uint16, uint32, and uint64 also exist but
return double-precision floating point data.

B A S I C A R I T H M E T I C S A N D M A T H E M A T I C A L F U N C T I O N S

Table 2-2 lists the arithmetic operators built into the COMSOL Script language:

(For the difference between the right- and left-division operators see “Division” on
page 44). The language also supplies element-by-element versions of the
multiplication, right division, and power operators as well as a full range of
trigonometric, logical, and other mathematical functions. See “Working with Matrices
and Arrays” on page 35 for more information.

TABLE 2-2: ARITHMETIC OPERATORS

OPERATOR ARITHMETIC OPERATION

 + Addition, unary plus

 - Subtraction, unary minus

 * Multiplication

 / Right division

 \ Left division

 ̂ Power
U S I N G C O M S O L S C R I P T | 15

16 | C H A P T E R
Operator Precedence and Associativity
COMSOL Script evaluates its operators using the following order of precedence:

1 Power (^)

2 Unary minus (-)

3 Multiplication and division (*, /, \)

4 Addition and subtraction (+, -)

You can force a different precedence using parentheses. The software evaluates the
expressions from left to right using left associativity, which means that, for example,
12/4/3 evaluates to 1, just as does (12/4)/3, whereas 12/(4/3) evaluates to 9.

Mathematical Functions and Constants
COMSOL Script includes, as built-in functions, most elementary mathematical
functions such as abs, sqrt, sin, log, and many more. Full lists of all mathematical
and logical functions and operators appear in the sections “Elementary and Special
Math Functions” on page 42 and “Relational and Logical Operators and Functions”
on page 50.

Further, several other built-in functions return mathematical constants:

• pi returns π.

• i and j each return i, the imaginary unit (the square root of −1).

• Inf stands for infinity. For example, the result of dividing a nonzero number by zero
is Inf.

• NaN stands for “Not a Number” in the IEEE standard. NaN is the result of a
mathematically undefined operations such as 0/0.

Note: You can override the values of pi, eps, i, and j by defining variables using any
of those names. This can lead to unexpected results. If you want to use i and j as
named variables, then use sqrt(-1) for the imaginary unit.

Using Complex Numbers
You can use complex numbers in all COMSOL Script functions and operations. For
example, to enter a matrix with complex-valued elements type either:

C = [1 0 1; 1 2 3; 0 1 0] + i*[1 1 1; 4 5 6; 1 0 1]

or the following line, which produces the same result:
 2 : C O M S O L S C R I P T B A S I C S

C = [1+i i 1+i; 1+4i 2+5i 3+6i; i 1 i]

To get the real and imaginary parts of complex-valued data, use the real and imag
functions, respectively. The abs function computes the absolute value:

x = 1+i;
imag(x)
ans =
 1
abs(x)
ans =
 1.414214

O U T P U T F O R M A T S

In its command window, COMSOL Script displays the results of any statements you
enter unless the statements end with a semicolon. You control the way the output
appears using the format command; internally, however, COMSOL Script performs
all computation using full double-precision floating point numbers.

The default display format, short, shows roughly six significant decimal digits, except
for integers:

A = [3 pi 1/3]
A =
 3 3.141593 0.333333

To show the data using full precision, use format long or format hex:

format long
A
A =
 3 3.1415926535898 0.3333333333333

format hex
A
A =
 4008000000000000 400921fb54442d18 3fd5555555555555

Type format with no argument to return to the default format.

Checking the Computer and Operating System

To see the characteristics of the computer on which you run COMSOL Script, use the
computer function:

computer

ans =
U S I N G C O M S O L S C R I P T | 17

18 | C H A P T E R
 PCWIN

The computer function can also returns the maximum number of bytes that a matrix
can occupy.

In addition, use the function ispc and isunix to check if COMSOL Script is running
on a PC or under UNIX.

Running General Operating System Commands

The functions unix, dos, and system all provide access to operating system
commands. These functions run the command in the input string and provide an exit
code as the output. If the function could run the command successfully, the exit code
is 0. An optional second output argument contains the output of the command. For
example, the following three statements all store the contents of the working directory
as a string in the variable out:

[status, out] = dos('dir');
[status, out] = system(['cmd.exe /C ' 'dir']);
[statis, out] = unix('ls');

Use the two first statements, which are equivalent, when you run COMSOL Script in
Windows; use the last statement in a UNIX or Linux environment.

Displaying and Changing Directory

COMSOL Scripts contains functions for displaying the name and contents of the
current directory and to change directory.

To print the current (working directory) type:

pwd

To list the contents of the current directory use the dir function:

dir

You can also use an output argument:

f = dir;

This statement returns a structure array where each element contains four fields that
contain the name, creation date, the file size (in bytes), and a Boolean flag, isdir,
which is True for a directory and False for a file.
 2 : C O M S O L S C R I P T B A S I C S

You can also list other directories using dir by passing the path as an input argument.
The statement

dir('C:\')

lists the files and directories that reside directly under C:\.

The function ls is the same as dir.

To change the current directory use the function cd:

cd ..

moves one level up in the directory structure.

Running Commands at Startup

It is convenient to run some commands, such as adding paths to directories where you
store M-files or predefined variables, directly at startup. Put those commands in a script
file and save it as startup.m in the COMSOL Script startup directory. COMSOL
Script then runs this script file each time you start the software.

For more information about scripts in general, see “Scripts” on page 124.

Getting Help

From the COMSOL Script Help Desk you have access to this book and the COMSOL
Script Command Reference in HTML and PDF formats. To access the Help Desk, go
to the Help menu at the top of the COMSOL Script command window and choose
Help Desk, or simply press F1.

There is also online help available at the command prompt. Type help to get a list of
help topics. To get help on a specific topic, function, or operator, type help topic.
For example,

help plot

provides information about the use of the plot command for creating plots.

Saving the Workspace and Exiting the Program

To save variables in the workspace to a file, use the save command. For instance,

save temp A C
U S I N G C O M S O L S C R I P T | 19

20 | C H A P T E R
saves the variables A and C to the file temp.flws. Use the command load to restore
variables into the COMSOL Script workspace:

load temp

To exit COMSOL Script, type quit or exit. Doing so clears all variables and data
from the workspace, so be sure to save any workspace information if you plan to use it
again.
 2 : C O M S O L S C R I P T B A S I C S

 3
V e c t o r s , M a t r i c e s , a n d A r r a y s
The COMSOL Script environment offers a variety of data types that make for
flexible programming. This and the following chapter review the available data
types, their properties, and how to use them. This chapter focuses on matrices,
sparse matrices, arrays, logical arrays, and the operations available to operate on
them including indexing and subscripting, matrix inversion and transposition, and
mathematical operators.

The next chapter, “Data Types for Non-Numeric Values: Strings, Cell Arrays,
Structures” on page 61 focuses on data types that also work with non-numeric data
such as character arrays, cell arrays, structures, as well as the special operators and
functions available to work on them.
 21

22 | C H A P T E R
T h e COMSOL S c r i p t Da t a T ype s

Overview of Data Types

COMSOL Script provides a number of data types (classes):

• Double arrays: 1D arrays (vectors), 2D arrays (matrices), and multidimensional
arrays of double floating-point complex numbers.

- Class name and constructor function: double

• Sparse double arrays, which are similar to double arrays but store only the nonzero
elements (and their locations).

- Class name and constructor function: sparse

• Logical arrays of any dimension containing elements that are True or False.

- Class name and constructor function: logical

The above data types are the subject of this chapter; the following data types are the
subject of the following chapter:

• Character arrays (strings): an array of strings. For multiple strings of different
length, it is convenient to use a cell array of strings.

- Class name and constructor function: char (cell for cell array of strings)

• Cell arrays, which are arrays of any dimension where each element is a cell that can
contain any other data type, for example, a string, a matrix, or another cell array.

- Class name and constructor function: cell

• Structures: Structure arrays are flexible data types that can include multiple fields
and values. The contents of each field can be any data type, for example, a string, a
matrix, or another structures.

- Class name and constructor function: struct

• Inline function object: An object that defines an inline function.

- Class name and constructor function: inline

• Java object: It is possible to create Java objects and arrays of Java objects in the
COMSOL Script workspace. See “Java Interface” on page 301 for more
information about using Java objects.
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

Identifying Data Types

To list all the variables in the workspace and their data types, enter the whos command.

Alternately, to get the class (data type) of an object (variable), use the class function:

l=true;
class(l)

ans =

logical

To check if a variable is of a certain data type, use the isa function:

isa(l,'logical')

ans =

true

isa(l,'double')

ans =

false
T H E C O M S O L S C R I P T D A T A TY P E S | 23

24 | C H A P T E R
C r e a t i n g V e c t o r s , Ma t r i c e s , a nd
Doub l e A r r a y s

Vectors, matrices, and arrays are the workhorse data types in COMSOL Script, and this
package makes it very easy to create them. Vectors and matrices are common instances
of double arrays, those that use double floating-point numbers to store values in each
element. The following section describes the various commands that allow you to
create these data types.

Creating Double Arrays

COMSOL Script offers several ways to create a double array:

• Enter values directly with by using brackets ([]) to enclose all the data and
semicolons (;) to indicate the end of rows (see the examples in this section as well
as in Chapter 2, “COMSOL Script Basics,”)

• Use the colon (:) operator to create a vector

• Use special functions to create vectors (linspace, logspace)

• Use special function to create arrays (ones, zeros, rand, randn, eye)

• Use special functions to create sparse matrices (sparse, speye)

• Read data from a binary data file (a file that contains workspace data and that you
save using the save function) or text file using the load function.

U S I N G T H E C O L O N (:) O P E R A T O R T O C R E A T E VE C T O R S

The colon operator (:) can create a row vector with a unit increment from the starting
value to the ending value. For example:

x = 1:10
x =
 1 2 3 4 5 6 7 8 9 10

To create vectors with increments other than one, use the syntax
start:increment:end as in:

x = 0:.2:1
x =
 0 0.200000 0.400000 0.600000 0.800000 1
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

If the ending values is smaller than the starting value, you can use a negative increment
to create a vector of decreasing numbers:

x = 10:-2:0
x =
 10 8 6 4 2 0

U S I N G L I N S P A C E A N D L O G S P A C E T O C R E A T E VE C T O R S

Another way to create a vector of equally spaced numbers is to use the linspace
function:

x = linspace(0,1,4)
x =
 0 0.333333 0.666667 1

linspace(start,end,N) creates a vector of N equally spaced numbers from start
to end. If you do not provide a third argument, linspace creates a vector of 100
equally spaced numbers. When you ask for fewer than two values in the vector (that is,
where N < 2), linspace returns the value end (the value in the second input
argument).

Similarly, logspace(start,end,N) creates a vector of N numbers placed equally
along the logarithmic scale from 10start to 10end.

x = logspace(0,1,4)
x =
 1 2.154435 4.641589 10

Note that if you set end equal to π, the command creates points between 10start and
π, not . If you do not provide a third argument, logspace creates a vector of 50
logarithmically equally spaced numbers. For N < 2, logspace returns 10end.

U S I N G S P E C I A L F U N C T I O N S T O C R E A T E A R R A Y S

Creating Arrays of Zeros and Ones
Use the commands zeros and ones to create arrays filled completely with zeros or
ones:

ones(2,1,2)
ans(:,:,1) =
 1
 1

ans(:,:,2) =
 1
 1

10π
C R E A T I N G VE C T O R S , M A T R I C E S , A N D D O U B L E A R R A Y S | 25

26 | C H A P T E R
Each input argument provides the number of elements for that dimension of the array.
The output for a three-dimensional array provides the first two dimensions as matrix
“pages,” one for each of the elements in the third dimension. Providing just one input
argument creates a square matrix (a 2D array):

zeros(3)
ans =
 0 0 0
 0 0 0
 0 0 0

In other words, zeros(3) is equal to zeros(3,3). Using zeros or ones with no
input arguments creates a scalar of value 0 or 1, respectively.

Creating Identity Matrices
The command eye(N) creates an N-by-N identity matrix, that is, a matrix with ones
on the diagonal and with all off-diagonal elements set to zero. It is also possible to use
eye for an N-by-M rectangular matrix: eye(N,M).

Creating Random Numbers
To create an array of random numbers distributed uniformly across the interval 0 to 1,
use rand, where the first argument is the seed and the second is the number of values
to generate:

rand(1,5)
ans =
 0.317308 0.913270 0.375324 0.225387 0.528039

To create an array of random numbers between from a normal distribution with a
mean value of 0 and a variance (and standard deviation) of 1, use randn:

randn(1,5)
ans =
 0.749796 0.626937 -2.132375 -0.467405 0.308421

Both rand and randn produce pseudorandom numbers. See the COMSOL Script
Command Reference entries on rand and randn for information about determining
and changing the state of the random-number generator.

Array Sizes and Empty Matrices

Some 2D matrices are special cases and represent scalars, vectors, and even empty
matrices.
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

VE C T O R S

Vectors are 1-by-n arrays (row vectors) or n-by-1 arrays (column vectors). The
command rv = rand(1,5) creates a random row vector of length 5, whereas v =
ones(100,1) creates a column vector of 100 ones. To check the length of a vector,
use the length function:

length(v)

ans =

100

For arrays that are not vectors, length returns the maximum length of any dimension.
To test if an array is a vector, use the isvector function.

S C A L A R S

Scalar numbers are 1-by-1 arrays. p = pi is an example of a statement that creates a
scalar variable p. To test if an array is a scalar, use the isscalar function.

T H E E M P T Y M A T R I X

An empty matrix is an array that in any dimension has the size 0. To create an empty
0-by-0 matrix, use []:

e = [];

To check if an array is empty, use the isempty function.

Empty matrices of size n-by-0 or 0-by-m are useful in many applications of linear
algebra. You can create such empty matrices directly using one of the special functions
for creating arrays, for example, zeros:

ze = zeros(0,5);

creates a 0-by-5 empty array.

One way to use of the 0-by-0 empty matrix [] is to remove parts of an array:

A = rand(5);
A(1:3,:) = [];

removes the first three rows in A.

C O M P L E X A R R A Y S V S . D O U B L E A R R A Y S

COMSOL Script stores the real and imaginary parts of complex-valued data and
identifies these variables as complex arrays. A complex array requires twice the memory
as a double array. The output from a computation becomes a double array or a complex
C R E A T I N G VE C T O R S , M A T R I C E S , A N D D O U B L E A R R A Y S | 27

28 | C H A P T E R
array depending on if the result is complex or not. You can use complex arrays and
double arrays without having to differentiate between them. For example, a =
sqrt(-1) results in a complex array, whereas b = imag(a) results in a double array.

To check if a variable is a complex array or a double array, use the isreal function,
which is True for double arrays but not for complex arrays. To explicitly create a
complex or double array, use the complex and double commands:

a = complex(1,0)

a =

1

isreal(a)

ans =

false

b = double(a)

b=

1

isreal(a)

ans =

false

Sparse Matrices

Sparse matrices provide an efficient way to store data in a matrix that contains only a
few nonzero elements. Instead of storing the entire array, you can store just those
elements and their locations. Sparse matrices often appear in computational physics
when solving large systems of linear equations, an example being system matrices such
as the stiffness matrix from a finite-element analysis. When working with COMSOL
Multiphysics, the assemble function provides such sparse matrices as output data.

Sparse matrices make it possible to store and process matrices that would be too large
to handle if the software had to deal with them as full matrices. Special versions of the
matrix-computational tools work with sparse matrices and produce sparse matrices as
their output. The computations that take advantage of sparsity can also execute faster.
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

One issue with efficient algorithms for sparse matrices concerns fill-in, a reduction of
the sparsity during the execution of an algorithm when zero elements change to
nonzero elements. Sparse algorithms try to minimize fill-in by, for example, switching
rows and columns. In many applications, the sparse matrix is a band matrix, and the
bandwidth is an indication of the matrix sparsity.

Even if a set of data is sparse, COMSOL Script does not take advantage of that fact
unless you store the data as a sparse matrix. To see the difference in performance and
storage requirements, consider two 1000-by-1000 identity matrices:

s1 = speye(1000);
s2 = eye(1000);
whos
 Name Size Memory Type

 s1 1000x1000 16000 sparse double array
 s2 1000x1000 8000000 double array

tic, s1*s1; toc

Elapsed time: 0.0 s

tic, s2*s2; toc

Elapsed time: 1.062 s

In this case, storing the sparse matrix requires only 0.2% of the memory needed to
store the full matrix. Also, multiplying the sparse matrix with itself is much faster than
doing the same thing with the full matrix.

The density of a sparse matrix is the ratio of the number of nonzero elements to the
total number of elements, which in this case is 0.001. Low density for a matrix is a
good indication that you should treat it as a sparse matrix.

S P A R S E M A T R I X F U N C T I O N S

The following functions are available for working with sparse matrices:

TABLE 3-1: SPARSE-ALGORITHM FUNCTIONS

FUNCTION
NAME

DESCRIPTION

eigs Compute a few eigenvalues of a sparse matrix

full Convert a matrix from sparse to full

issparse True for a sparse matrix

nnz Number of nonzero elements
C R E A T I N G VE C T O R S , M A T R I C E S , A N D D O U B L E A R R A Y S | 29

30 | C H A P T E R
Note: The sparse data type is available only as sparse matrices, that is, 2D matrices
or vectors of real or complex data.

C R E A T I N G S P A R S E M A T R I C E S

To create sparse matrices use the sparse, spdiags, speye, spones, sprand, sprandn,
and sprandsym commands.

The sparse command works in several ways:

• It converts a standard double matrix into a sparse matrix:

s1 = eye(10);
s2 = sparse(s1);

• It creates an mxn all-zero sparse matrix:

s = sparse(m,n);

• You can provide the sparse function with the matrix size, row and column index
vectors for the location of the nonzero data, plus the data itself.

As an example of creating a sparse matrix in this fashion, consider solving the following
equation system:

nzmax Number of nonzero elements for which space is allocated

sparse Create a sparse matrix

spdiags Sparse diagonal or band matrix manipulation

speye Create a sparse identity matrix

spones Sparse matrix of ones

sprand Sparse random matrix with uniformly distributed numbers

sprandn Sparse random matrix with normally distributed numbers

sprandsym Symmetric sparse random matrix with normally distributed numbers

TABLE 3-1: SPARSE-ALGORITHM FUNCTIONS

FUNCTION
NAME

DESCRIPTION
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

 (3-1)

This is a relatively sparse symmetric band matrix, which could represent the numeric
solution to some kind of differential equation. To create the 7-by-7 matrix as a sparse
matrix, first make sparse matrices from the diagonal and each subdiagonal, then add
them together:

D = sparse(1:7,1:7,10*ones(1,7),7,7);
S1 = sparse(2:7,1:6,ones(1,6),7,7);
S2 = sparse(6:7,1:2,-ones(1,2),7,7);
S = S2+S1+D+S1'+S2';

You can use the spdiags command to extract diagonals from a sparse matrix or to
create a sparse matrix from diagonals. When you specify the indices of the diagonals,
0 indicates the diagonal, −1 indicates the first subdiagonal, 1 indicates the first
superdiagonal, and so on. For example,

S = spdiags(C,D,A);

returns a sparse copy of a matrix A with diagonals D replaced by the columns in C. If

A = [1 2 3; 4 5 6; 7 8 9]
D = [-1 0];
C = [10 0; -5 12; 0 0];
S = spdiags(C,D,A);

full(S)

ans =

 0 2 3
 10 12 6
 7 -5 0

S is a sparse matrix, but this example displays it as a full matrix to show how spdiags
modifies the original matrix A. The call to spdiags replaces the first subdiagonal with
[10, -5] and the main diagonal with [0, 12, 0]. The column in C is longer than
the subdiagonal, and in this case spdiags uses the upper part of the column in C; for

10 1 0 0 0 1– 0
1 10 1 0 0 0 1–

0 1 10 1 0 0 0
0 0 1 10 1 0 0
0 0 0 1 10 1 0
1– 0 0 0 1 10 1
0 1– 0 0 0 1 10

x

1
2
3
4
5
6
7

=

C R E A T I N G VE C T O R S , M A T R I C E S , A N D D O U B L E A R R A Y S | 31

32 | C H A P T E R
superdiagonals, elements in the resulting sparse matrix contains the lower part of the
column.

See the command-line help and COMSOL Script Command Reference for a full
description of available syntaxes for the spdiags command.

D I S P L A Y I N G T H E S P A R S I T Y P A T T E R N

To plot the sparsity pattern, use the spy function:

spy(S)

produces the following plot for the matrix S from the previous example:

Figure 3-1: Sparsity patterns for a 7-by-7 sparse matrix.

WO R K I N G W I T H S P A R S E M A T R I C E S

For sparse matrices, COMSOL Script supports all of its matrix arithmetic, logical, and
indexing functions as described in the following section. For example, to solve
Equation 3-1, use the “backslash” or \ operator (see “Division” on page 44):

R = (1:7)';
x = S\R
x =

 0.127368
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

 0.230168
 0.243581
 0.334021
 0.416213
 0.503852
 0.672632

(The single string quote, ', is a transpose operator that converts R from a row vector
to a column vector; see “Matrix Transposition” on page 40 for more information.)

Using the FIND Command
The find command, which finds nonzero entries, is very useful in connection with
sparse matrices. As an example, revisit the matrix S from the previous example:

[i,j,v] = find(S);
[n,m] = size(S);
S = sparse(i,j,v,n,m);

The output from find, regardless whether it operates on a sparse or a full matrix, is in
the same format that you use to create a sparse matrix.

Output From Operations With Sparse Matrices
As you saw from the previous example, solving a system of linear equations where the
system matrix is a sparse matrix results in a full solution vector. On the other hand,
multiplying a sparse matrix with itself results in another sparse matrix. The following
rules apply for the output from operations with sparse matrices:

• If the function’s output is a scalar or a vector, the output is always a full scalar or
vector (for example, size).

• Indexing into a sparse matrix always produces a sparse matrix, except when you
index into a single element to output a scalar. In that case, the output is a full scalar.

• Operations with mixed operands produce results that are full matrices, except for
elementwise multiplication of a sparse array with a full array (A.*B, where A is sparse
and B is full), which provides a sparse array.

To explicitly convert from a sparse matrix to a full matrix or vice versa, use the sparse
and full functions.

Logical Arrays

The results from logical and relational operators are all logical arrays. To test if an array
is logical, use the islogical function:

A = [0 0.6; 0.1 0.3];
B = (A>.5)
C R E A T I N G VE C T O R S , M A T R I C E S , A N D D O U B L E A R R A Y S | 33

34 | C H A P T E R
B =

 false true
 false false

islogical(A)

ans =

false

islogical(B)

ans =

true

To make an array logical, use the logical command. All nonzero values then become
True, while zeros become False.

To convert a logical array to a double array, use the double command. If you use a
logical array with arithmetic operators or functions, however, COMSOL Script
interprets it as a double array with ones (where the elements are True) and zeros
(where the elements are False):

logical(A)

ans =

 false true
 true true

double(B)

ans =

 0 1
 0 0

A+B

ans =

 0 1.600000
 0.100000 0.300000

To set individual elements in a logical array, use the true and false commands:

B(1,1) = true;
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

Work i n g w i t h Ma t r i c e s and A r r a y s

COMSOL Script provides many vector and matrix operations but also supports a
powerful, efficient form of coding that performs element-by-element operations on
each element in a double array. When working with a matrix, it is not necessary to write
a loop that operates on each element individually. For instance, you simply write A+1
to add the scalar 1 to every element of the matrix A.

Consider another example that performs some trigonometric operations on every
element in a matrix:

A = 1:10
B = round(sin(pi*A/2))

B =

 1 0 -1 0 1 0 -1 0 1 0

These functions make for much more compact and efficient code than writing the
equivalent loop:

A = 1:10
B = zeros(1,10);
for i=1:10
 B(i) = round(sin(pi*A(i)/2));
end

This section starts by describing basic matrix operations such as indexing, inversions
and transpositions; it then moves on to show how to perform elementary math and
trig functions; it then looks at special functions such as relational operators and set
functions.

Although COMSOL Script comes with a wide range of functions and operators, it is
not unusual to have special requirements where a new type of function would prove
helpful in streamlining your code. For such cases, it is easy to extend the library of
mathematical or other functions by writing your own COMSOL Script functions. See
“Functions” on page 127 for more information about creating your own functions.

Indexing and Subscripting

To access individual elements in a matrix (or an array of any size), enclose the subscript
in parentheses:
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 35

36 | C H A P T E R
A = [1 2 3 4; 5 6 7 8; 9 10 11 12];
A(2,3)

ans =

7

As you can see, A(2,3) refers to the element in the second row and the third column.
You can also use linear indexing with a single subscript. In the case of a 2D matrix with
ni rows and nj columns, the element with subscripts i and j gets the linear index

,

so you can access the same element using A(8).

To switch between a multidimensional index and a linear-index vector, use the
functions ind2sub and sub2ind:

linind = sub2ind([3 4],2,3)

linind =

 8

[subi, subj] = ind2sub([3 4],linind);

The last call results in subi = 2 and subj = 3. The first input argument to both
functions provides the size of the array into which you want to index.

You can also use subscripts that are vectors or matrices. For example, A(1:2,3:4) is a
2 × 2 submatrix consisting of the first two rows and the third and fourth columns in A.
Using the colon alone refers to all the corresponding elements in that dimension (a
row or column for a matrix). Thus

A(1:2,:)

contains the first two rows, and

A(:,2)

gives all the values in the second column.

Use end to refer to the last element in an array. For instance,

A(end,:)

is the last row in A.

You can also use a vector with negative increments to change the order of columns and
rows:

j 1–()ni i+
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

A(:,end:-1:1)

reverses the column order in A:

Using the colon (:) alone in a subscript reshapes an array into a long column vector,
as in the following example:

A(:)

ans =

 1
 5
 9
 2
 6
 10
 3
 7
 11
 4
 8
 12

L O G I C A L I N D E X I N G

Logical indexing means that you work with a logical array to index into another array.
This acts as a sort of masking operation where the position of the elements that are
True in the logical array determine which elements to access. This is a powerful feature,
for example, to remove elements with a certain property.

As an example, set to zero all the elements in a matrix that are smaller than a certain
threshold value:

A = rand(4);
threshold = 0.25;
A(A<threshold) = 0
A =

 0 0.432789 0 0.707649
 0 0.605391 0.804140 0.555403
 0.984947 0.611451 0.798391 0.803094
 0.461474 0.937855 0.264659 0.786913

I N D E X I N G I N T O A S U B S E T O F A N A R R A Y

It is possible to reference element in a subset of an array using multiple subscripting:

A = [1 2 3 4; 5 6 7 8; 9 10 11 12];
A(1:2,1:2)(2,:)(1)
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 37

38 | C H A P T E R
ans =

5

The multiple subscripting A(1:2,1:2)(2,:)(1) first references a 2x2 submatrix from
A (with the elements [1 2; 5 6]), then references the second row in that submatrix
([5 6], and finally picks the first element in that row, 5. This can sometimes be useful
to avoid creating variables to store the intermediate results.

Building Arrays From Other Arrays

You can build larger arrays and matrices by concatenating arrays and matrices using
brackets:

H = [A, A, ones(3,8)];

This concatenates the matrices horizontally, forming a 3x16 matrix. To concatenate
the same matrices vertically, type:

V = [A; A; ones(6,4)];

This creates a 12x4 matrix. Notice that the array sizes must be consistent: in the
horizontal concatenation, all matrices must have the same number of rows (3); in the
vertical concatenation, the same holds true for the number of columns. You can extend
an array in all directions as long as the array sizes match.

There are also functions that perform the equivalent array concatenations. Use cat to
concatenate along any dimension (providing the dimension as the first input
argument). horzcat and vertcat concatenates arrays horizontally and vertically,
respectively.

H = cat(2,A,A,ones(3,8));
H = horzcat(A,A,ones(3,8));

both create the same matrix H as the previous example using brackets. Likewise:

V = cat(1,A,A,ones(6,4));
V = vertcat(A,A,ones(6,4));

both create the same matrix V as the previous example using brackets.

General Functions for Array Sizes

The function size returns the size of all dimensions of an array:

A = rand(5,9);
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

[nrow,ncol] = size(A)

nrow =

5

ncol =

9

The function numel returns the number of element in the array:

numel(A)

ans =

45

numel(A) is the same as prod(size(A)).

The function ndims returns the number of dimension in the array:

ndims(A)

ans =

2

ndims(A) is the same as length(size(A)).

S U M M A R Y O F F U N C T I O N S F O R S I Z E S A N D TY P E S O F A R R A Y S

The following list summarizes functions for getting the dimension of an array or for
checking which type of array it is:

TABLE 3-2: ARRAY SIZE AND TYPE FUNCTIONS

FUNCTION
NAME

DESCRIPTION

isempty Check for empty arrays

isscalar Check if a variable is a scalar

isvector Check if a variable is a vector

length Largest dimension of an array

ndims Number of dimensions of an array

numel Number of elements in an array

size Size of an array
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 39

40 | C H A P T E R
Matrix Transposition

To transpose a matrix, use the ' (straight single quote) operator:

A = [1 2; 3 4];
A'
ans =
 1 3
 2 4

You can also transpose a vector:

A = [1 0 2]
A'
ans =
 1
 0
 2

There is no transpose operator for arrays of dimension larger than two.

TR A N S P O S I T I O N O F C O M P L E X - V A L U E D D A T A

The standard transpose operator ' performs a Hermitian transpose (or conjugate
transpose), where the transpose contains the complex conjugate:

C = [1+i 2-i;3-i 4+3i]
C =
 1+i 2-i
 3-i 4+3i

C'
ans =
 1-i 3+i
 2+i 4-3i

To get a transposition that is not conjugated, use the nonconjugate transpose
operator, .' (period-straight quote):

C.'
ans =
 1+i 3-1
 2-i 4+3i

To achieve the same result, you can also use the function conj, which takes the
complex conjugate:

conj(C')
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

Matrix Inversion

To compute the inverse of a matrix, use the inv command:

A = [1 0 0; 0 2 0; 0 0 3];
inv(A)
ans =
 1 0 0
 0 0.50000 0
 0 0 0.333333

If the matrix is singular, that is, it does not have full rank (all rows or columns are
linearly independent), the inv command issues a warning for a singular matrix. To
check for a matrix’ rank (the number of linearly independent rows or columns), use the
rank command:

rank(A)
ans =
 3
rank(zeros(3))
ans =
 0

The inv command works only for square matrices. For nonsquare matrices, the pinv
command computes a pseudoinverse of a matrix A, which is a matrix A+ such that
AA+A = A. A+ has the following properties:

• A+ has the same format as the transpose of A.

• AA+A = A

• A+AA+= A+

• AA+ and A+A are Hermitian matrices.

Consider the following example:

pinv(A)
ans =
 1 0 0
 0 0.50000 0
 0 0 0.333333
a = [10i 5 0]
b = pinv(a)
ans =
 0.800000 0-0.400000i 0
 0+0.400000i 0.200000 0
 0 0 0

Another command, pinv(x,tol), uses the tolerance in tol to compute the
pseudoinverse.
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 41

42 | C H A P T E R
Elementary and Special Math Functions

You can use standard arithmetic operators (addition, subtraction, multiplication,
division, and power) on large classes of 1D and 2D arrays (vectors and matrices). Only
addition and subtraction are well-defined operators for arrays of any dimension. For all
arrays, special element-by-element operators perform multiplication, division, and
power operations on each element in an array (addition and subtraction do not differ
between matrix operators and element-by-element operators).

Note: Additional information about logical and relational operators and math
functions that work with double arrays appears in the COMSOL Script Command
Reference.

As noted earlier, COMSOL Script provides a large set of math functions, all of which
work on arrays in an elementwise fashion so you can always work in a “vectorized” way.
For more information about specific functions, see the COMSOL Script Command
Reference or type help followed by the function name at the command prompt.

A D D I T I O N A N D S U B T R A C T I O N

Use the standard operators + and − to add or subtract arrays of the same dimension:

A = [5 6; 7 8]; B = [1 2; 3 4];
C = A+B
C =
 6 8
 10 12
C = A-B
C =
 4 4
 4 4

As a special case, you can add or subtract a scalar to a matrix or multidimensional array.
COMSOL Script then adds this value to or subtracts this values from every element in
the other operand:

A+1
ans =
 6 7
 8 9
B-1
ans =
 0 1
 2 3
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

M U L T I P L I C A T I O N

Use the * operator for matrix multiplication. Matrix multiplication requires that the
“inner dimension” of the matrices or vectors agree. An inner product (dot product or
scalar product) of two vector produces a scalar number:

x = 1:5;
y = [1 0 2 0 3];
x*y'
ans =
 22

Note that x*y is not a valid matrix multiplication (you cannot multiply two row
vectors) and results in an error message. There are two outer products, each being the
transpose of the other:

x'*y
ans =
 1 0 2 0 3
 2 0 4 0 6
 3 0 6 0 9
 4 0 8 0 12
 5 0 10 0 15
y'*x
ans =
 1 2 3 4 5
 0 0 0 0 0
 2 4 6 8 10
 0 0 0 0 0
 3 6 9 12 15

COMSOL Script supplies a special function for inner products (x · y) named dot, and
a function for vector cross products (x × y) named cross:

dot(x,y)
ans =
 22
a=[1 0 0];b=[0 1 0];
cross(a,b)
ans =
 0 0 1

You can also calculate matrix-vector products of the type y = Ax:

A=[1 2 3; 4 5 6; 7 8 9]; x = [1 0 1]';
y = A*x
y =
 4
 10
 16
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 43

44 | C H A P T E R
For element-by-element multiplication or pointwise multiplication of two arrays with
equal dimensions, use the .* operator:

A*A'
ans =
 14 32 50
 32 77 122
 50 122 194
A.*A'
ans =
 1 8 21
 8 25 48
 21 48 81

Multiplying an array by a scalar is equivalent to element-by-element multiplication
with an array where each element contains that scalar:

A*2
ans =
 2 4 6
 8 10 12
 14 16 18
A.*[2 2 2; 2 2 2; 2 2 2]
ans =
 2 4 6
 8 10 12
 14 16 18

D I V I S I O N

COMSOL Script provides two matrix-division operators or linear equation system
solvers: / (right matrix divide, or “slash”) and \ (left matrix divide, or “backslash”).

What is the difference? For a nonsingular matrix C and another matrix B, the
right-matrix division B/C is equivalent to B*inv(C), but it is computed without
explicit matrix inversion. In the same way, the left-matrix division C\B is equivalent to
inv(C)*B. In fact, the right-matrix division relies on the left-matrix division in that B/
C = (C'\B')'. In general, it is also true that X = C\B is a solution to C*X = B, and
that X = B/C is a solution to X*C = B.

If C is not square, the result from a matrix division is a solution in the least-squares
sense to an overdetermined or underdetermined system of equations. For a left-matrix
division (C\B), the number of rows in C and B must be the same. The result, X, is an
mxn matrix, where m is the number of columns in C, and n is the number of columns
in B.

For example, solve the equation system
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

using the \ operator:

A = [1 2; 3 4];
B = [0; 1];
x = A\B

x =

 1.000000
 -0.500000

The element-by-element or pointwise division operators, ./ and .\, divide the
elements in the left matrix or array with the elements in the right matrix or array, and
vice versa:

x = [1 2 3];
y = [2 2 2];
x./y
ans =
 0.500000 1 1.500000
x.\y
ans =
 2 1 1.666667

Note that x and y must have the same dimension.

PO W E R

A matrix power Xy exists if X is a square matrix and y is a scalar. If y is a positive integer,
it is possible to compute Xy using repeated matrix multiplication. To compute the
matrix power for positive integer powers, use the ^ operator:

A = rand(3);
B = A^10;

This is the same as:

B = A*A*A*A*A*A*A*A*A*A;

The element-by-element or pointwise power operator .^ works on elements in arrays
and matrices:

• z = x.^y when x and y have the same dimension. The result for element zij is .

x1 2x2+ 0=

3x1 4x2+ 1=⎝
⎜
⎜
⎛

xij
yij
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 45

46 | C H A P T E R
• z = x.^y when the base x is a scalar. The result for element zij is then .

• z = x.^y when the exponent y is a scalar. The result for element zij is then xij
y.

S Q U A R E R O O T S

The function sqrt computes the elementwise square root for each element in an array.
For the square root of a matrix, use the sqrtm function, which computes the principal
square root X for the matrix A, that is, X2 = A.

E Q U I V A L E N T F U N C T I O N A L F O R M O F A R I T H M E T I C O P E R A T O R S

All arithmetic operators have an equivalent function-based form. Thus, for example,
you can write

C = plus(A,B);

which is equivalent to

C = A+B;

The following list shows the function-based form of all arithmetic and transpose
operators:

TABLE 3-3: FUNCTIONAL FORM OF ARITHMETIC OPERATORS

OPERATOR STANDARD FORM FUNCTION-BASED FORM

Sum C = A+B C = plus(A,B)

Unary plus +A C = uplus(A)

Minus C = A−B C = minus(A,B)

Unary minus −A C = uminus(A)

Multiplication
(pointwise)

C = A.*B C = times(A,B)

Matrix multiplication C = A*B C = mtimes(A,B)

Left division
(pointwise)

C = A.\B C = ldivide(A,B)

Left division
(pointwise)

C = A.\B C = ldivide(A,B)

Right division
(pointwise)

C = A./B C = rdivide(A,B)

Right division
(equation system
solver)

C = A/B C = mrdivide(A,B)

Power (pointwise) C = A.^B C = power(A,B)

Matrix power C = A^B C = mpower(A,B)

x
yij
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

E L E M E N T A R Y M A T H F U N C T I O N S

Beyond the basic operators, COMSOL Script provides the following elementary math
functions:

Matrix transpose C = A.' C = transpose(A)

Matrix complex
conjugate transpose

C = A' C = ctranspose(A)

TABLE 3-4: ELEMENTARY MATH FUNCTIONS

FUNCTION NAME FUNCTION DESCRIPTION

abs Absolute value/complex magnitude

angle Phase angle

sqrt Square root

realsqrt Square root of nonnegative real array

real Real part

imag Imaginary part

complex Create complex array

conj Complex conjugate

isreal True for double, character, and logical arrays

round Round to the nearest integer

ceil Round to the nearest larger integer

floor Round to the nearest smaller integer

fix Round toward zero

sign Signum function

mod Modulus of arrays

rem Remainder of modulus

exp Exponential base e

exp2 Base-2 power

realpow Power of a real matrix

log Natural logarithm

log10 Logarithm base 10

reallog Natural logarithm of nonnegative real number

unwrap Remove phase jumps

TABLE 3-3: FUNCTIONAL FORM OF ARITHMETIC OPERATORS

OPERATOR STANDARD FORM FUNCTION-BASED FORM
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 47

48 | C H A P T E R
TR I G O N O M E T R I C A N D H Y P E R B O L I C F U N C T I O N S

Available trigonometric functions and hyperbolic functions in COMSOL Script
include:

The atan2 function takes two input arguments; atan2(Y,X) computes the pointwise
inverse tangent of the two matrices X and Y. For scalars, atan2(y,x) is the angle α
such that tan(α) = y/x. All trigonometric function assume that the input angles are in
radians.

TABLE 3-5: TRIGONOMETRIC FUNCTIONS

FUNCTION NAME TRIGONOMETRIC FUNCTION

sin Sine

cos Cosine

tan Tangent

cot Cotangent

sec Secant

csc Cosecant

asin Inverse sine (arc sine)

acos Inverse cosine (arc cosine)

atan Inverse tangent (arc tangent)

atan2 Binary (four-quadrant) arc tangent

acot Inverse cotangent (arc cotangent)

asec Inverse secant

acsc Inverse cosecant

sinh Hyperbolic sine

cosh Hyperbolic cosine

tanh Hyperbolic tangent

coth Hyperbolic cotangent

sech Hyperbolic secant

csch Hyperbolic cosecant

asinh Inverse hyperbolic sine (hyperbolic arc sine)

acosh Inverse hyperbolic cosine (hyperbolic arc cosine)

atanh Inverse hyperbolic tangent (hyperbolic arc tangent)

acoth Inverse hyperbolic cotangent (hyperbolic arc cotangent)

asech Inverse hyperbolic secant

acsch Inverse hyperbolic cosecant
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

S P E C I A L M A T H F U N C T I O N S

COMSOL Script comes with the following special math functions that provide more
advanced capabilities:

TABLE 3-6: SPECIAL MATH FUNCTIONS

FUNCTION NAME FUNCTION DESCRIPTION

airy Airy functions

bessel Bessel function of the first kind

besselh Bessel function of the third kind (Hankel function)

besseli Modified Bessel function of the first kind

besselj Bessel function of the first kind

besselk Modified Bessel function of the second kind

bessely Bessel function of the second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

cart2pol Transform from Cartesian to polar coordinates

cart2sph Transform from Cartesian to spherical coordinates

cross Cross product

dot Scalar product (dot product)

erf Error function

erfc Complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

factor Prime factors

factorial Factorial function

gamma Gamma function

gammainc Incomplete gamma function

gammaln Logarithm of gamma function

gcd Greatest common divisor

isprime True for prime numbers

lcm Least common multiple

pol2cart Transform from polar to Cartesian coordinates

primes Generate prime numbers
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 49

50 | C H A P T E R
Relational and Logical Operators and Functions

R E L A T I O N A L O P E R A T O R S A N D T H E F I N D C O M M A N D

The following relational operators are available for comparing the contents of two
arrays of equal size:

These operators compare each element in the first array with the corresponding
element in the second array, producing a logical array of the same size, where the
elements are True if the relation holds and False otherwise:

A=[1 2; 3 4];
B=[1 1; 3 3];
A>B

ans =

 false true
 false true

You can also compare an array to a scalar number:

A==1

ans =

 true false
 false false

psi Psi function (digamma function)

rat Rational fraction approximation

rats String representation of rational fraction approximation

sph2cart Transform from spherical to Cartesian coordinates

RELATIONAL OPERATOR FUNCTION-BASED FORM MEANING

< C = lt(A,B) Less than

<= C = le(A,B) Less than or equal

> C = gt(A,B) Greater than

>= C = ge(A,B) Greater than or equal

== C = eq(A,B) Equal

~= C = ne(A,B) Not equal

TABLE 3-6: SPECIAL MATH FUNCTIONS

FUNCTION NAME FUNCTION DESCRIPTION
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

Notice the difference between the == operator, which tests for equality, and the
assignment operator =.

Using the FIND Command
It is often interesting to use the find command in combination with relational
operators to determine the indices of certain elements in an array. To find the element
in A that equals 3, type:

i = find(A==3)

This returns 2 in the variable i, because A(2) is 3 (the single subscript, or linear index,
runs top-down from the first column to the last column). To convert the subscript 2
to row-and-column indices, use the ind2sub function:

[ii,jj] = ind2sub(size(A),i)

which returns ii = 2 for row 2 and jj = 1 for column 1. To go from row-and-column
subscripts to single subscripts, use the sub2ind function.

If you instead want the row and column indexes directly from the call to find, use

[i,j] = find(A==3)

Finally, you can also get the nonzero values of a matrix (defined by the corresponding
positions in the row and column indexes) in the third output variable:

[i,j,val] = ind(A)

If you want to replace the elements in A that are greater than 1 with zeros, type:

i = find(A>1);
A(i)=0;

This last statement works because of scalar expansion, that is, COMSOL Script assigns
a scalar to all indices i in the matrix A.

Relational Operators and NaNs (Not-A-Numbers) and Nonfinite Numbers
All relational operators return false when comparing something to NaNs, for
example:

A = ones(2);
A(1,1) = NaN;
A < NaN

ans =

 false false
 false false
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 51

52 | C H A P T E R
So, to locate all elements in an array that are NaNs, you should instead use the special
command isnan, which returns True in any such case:

isnan(A)

ans =

 true false
 false false

Next suppose you want to replace all occurrences of NaN with zeros. For this task,
type:

A(isnan(A)) = 0;

(See also “Handling NaNs and Missing Data” on page 145.)

If any elements of the array are infinite (or), you can make comparisons such as:

A(1,1) = inf;
A==inf

ans =

 true false
 false false

The command isinf returns true for all elements in an array that are Inf or -Inf.
The command isfinite returns true for any element that is not NaN, Inf, or -Inf:

A(2,2) = NaN;
isfinite(A)

ans =

 false true
 true false

Comparing Entire Arrays
You can also compare two values or two arrays to check if they are equal using the
isequal command. For two arrays, it returns True if and only if the sizes are the same
and all elements are the same; isequal(NaN,NaN), however, returns False. To
compare two arrays and consider them equal if they have NaNs in the same elements,
use the isequalwithequalnans command. Continuing with the same matrix A as
earlier in this section:

B = A;
isequal(A,B)

∞ ∞–
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

ans =
 false

isequalwithequalnans(A,B)
ans =
 true

Note: The isequal and isequalwithequalnans functions also work for other data
types such as cell arrays and structures.

L O G I C A L O P E R A T O R S

Logical operators in COMSOL Script are available both as element-wise operators for
arrays and bitwise operators.

Element-wise Logical Operators
The following logical operator operate pointwise on arrays:

The logical complement, not, is a unary operator. ~A returns True where A is False (or
Zero), and it returns False where A is True (or nonzero).

In addition, consider the scalar AND and OR operators, && and ||. The sequence
a&&b returns True if a and b are scalars that both have the value True (nonzero);
otherwise it returns False. Further, a||b returns True if either a or b have the value
True (nonzero); otherwise it returns False. In both cases, these are “short-circuited”
operators, which means that COMSOL Script does not evaluate the second input
argument (b) unless it is necessary, that is, a&&b returns False without evaluating b if a
is already False, and a||b returns True without evaluating b if a is already True.

TABLE 3-7: LOGICAL OPERATORS

LOGICAL OPERATOR FUNCTION-BASED FORM MEANING

| C = or(A,B) Logical OR

& C = and(A,B) Logical AND

Not available C = xor(A,B) Logical XOR

~ C = not(A) Not, logical complement
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 53

54 | C H A P T E R
In addition, you can work with bitwise logical operators that operate on nonnegative
integer arrays. The following table lists the bitwise logical operators:

The position entries for the bitwise functions must be integers in the range of 1 to 53.
The least significant bit takes position 1 and the most significant bit takes position 53.

As an example, consider b1 = 5 and b2 = 3. In binary form, b1 = 101 and b2 = 011.
Then

c1 = bitor(b1,b2)
c1 =

7
c2 = bitxor(b1,b2)
c2 =

6
c3 = bitset(b1,3,0)
c1 =

1

T H E A N Y A N D A L L F U N C T I O N S

Several additional relational and logical functions prove useful when working with
logical operators.

TABLE 3-8: BITWISE LOGICAL OPERATORS

BITWISE LOGICAL OPERATOR MEANING

C = bitand(A,B) Bitwise AND

C = bitor(A,B) Bitwise OR

C = bitxor(A,B) Bitwise XOR

C = bitcmp(A,B) Bitwise complement

C = bitget(A,POS) Extracts values of the bits in position POS in A

C = bitset(A,POS) Returns A with bits in position POS set

C = bitset(A,POS,VAL) Returns A with bits in position POS set to VAL

C = bitshift(A,SHIFT) Shifts the bits in A by SHIFT steps

C = bitshift(A,SHIFT,NDIG) Shifts the bits in A by SHIFT steps and then
zeroes out all bits with positions larger than
NDIG

C = bitmax Largest integer for use with bitwise functions
(2^53-1)
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

The any function determines if any element along a specific dimension is nonzero.
any(X) returns True if any element in X is nonzero. For a matrix X, the result of
any(X) is a row vector where each element is True or False depending on whether or
not any elements of the corresponding column of X are nonzero. To get a scalar value,
write any(any(X)).

For the case when X is an array of a dimension higher than two, any(X) tests for
nonzero elements along the first nonsingleton dimension of X. You can also specify a
dimension along which any looks for nonzero elements; specifically, Y = any(X,dim)
tests X for nonzero elements along the dimension dim. For example, if a program
requires that all elements of a vector X be positive, the following code uses any to check
for this and issue an error message:

if any(X<=0)
 error(‘All elements in X must be positive.’)
end

The all function works in the same way but determines if all the elements along a
specific dimension are nonzero.

S U M M A R Y O F L O G I C A L A N D R E L A T I O N A L F U N C T I O N S

The following table provides an overview of the logical and relational functions that
this section covers (in addition to the operators). Additional logical functions deal with
sizes (see “Summary of Functions for Sizes and Types of Arrays” on page 39) and
check for data types (see the following sections on other data types).

TABLE 3-9: SUMMARY OF LOGICAL AND RELATIONAL FUNCTIONS

FUNCTION NAME DESCRIPTION

any True if any elements are nonzero

all True if all elements are nonzero

find Find indices of nonzero values

isequal True if values are equal

isequalwithequalnans True if values are equal (including NaNs)

islogical True if array is logical

isfinite True if elements are finite

isinf True if elements are infinite

isnan True if elements are NaNs
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 55

56 | C H A P T E R
Special Functions for Modifying Arrays

COMSOL Script provides a number of functions for modifying and reshaping arrays
and for creating special arrays from other arrays. The following table provides an
overview of these functions:

For example, create a matrix using repmat:

A = repmat(eye(2),2,3));

This creates a 4 × 6 matrix A where half the elements are ones and the other half are
zeros.

Then reshape it into a 2 × 12 matrix:

B = reshape(A,2,12);

The resulting matrix has the same column-major order contents as the input (that is,
A(:) and B(:) are identical).

In addition to using repmat, you can duplicate a vector using direct indexing:

v = [1; 2; 3; 4];
v(:,ones(1,4))

ans =

TABLE 3-10: FUNCTIONS FOR MODIFYING AND CREATING SPECIAL ARRAYS

FUNCTION NAME DESCRIPTION

blkdiag Create a block-diagonal matrix (or cell array)

circshift Shift the indices of a matrix circularly

diag Extract diagonal from matrix or create diagonal matrix

flipdim Flip dimension of matrix

fliplr Flip matrix horizontally

flipud Flip matrix vertically

freqspace Create frequency range

meshgrid Create 2D or 3D grid

repmat Create matrix by repeating another matrix in a pattern

reshape Reshape array

rot90 Rotate matrix counter-clockwise

shiftdim Shift matrix dimensions

tril Extract elements below the main diagonal of a matrix

triu Extract elements above the main diagonal of a matrix
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

 1 1 1 1
 2 2 2 2
 3 3 3 3
 4 4 4 4

This works by providing a row vector of ones, referencing the one column in v multiple
times.

U S I N G M E S H G R I D T O G E N E R A T E A G R I D

The meshgrid function is useful for creating an equally spaced grid that is useful for
plotting a function that depends on x and y (or x, y, and z). meshgrid creates both 2D
and 3D grids from input vectors. Type

[x,y] = meshgrid(1:2:10,0:0.1:1);

to create a 2D grid defined by the x-range vector and the y-range vector in the
input.The resulting matrices are both of size 11x5, that is, the length of the y-range
vector times the length of the x-range vector.

For other gridding and triangulation functions, see “Data Gridding and Triangulation
of Point Data” on page 166.

Creating and Using Multidimensional Arrays

Multidimensional arrays are arrays of dimension three or higher. Most elementwise
functions and basic array functions work the same with multidimensional arrays. Other
functions that work with matrices, such as matrix multiplication, are not defined for
multidimensional arrays.

You create multidimensional array in the same way as you create matrices and vectors:

r = rand(2,2,3)

r(:,:,1) =

 0.677801 0.987402
 0.151510 0.739669

r(:,:,2) =

 0.585750 0.250217
 0.256429 0.566606

r(:,:,3) =
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 57

58 | C H A P T E R
 0.097483 0.585205
 0.620439 0.379947

COMSOL Script displays multidimensional arrays by showing each two-dimensional
“page.”

Subscripting also extends into multidimensional arrays:

r(2,1,2)

ans =

0.256429

You can compute the sine of all elements in r independently of its dimension.

s = sin(r);
size(s)

ans =

 2 2 3

The output from all elementwise functions has the same size as the input, in this case
a 2x2x3 array.

S P E C I A L F U N C T I O N S F O R WO R K I N G W I T H M U L T I D I M E N S I O N A L A R R A Y S

Some functions are especially useful when working with multidimensional array. The
following table provides an overview of such functions:

The permute and ipermute functions are equivalents of the transpose operator for
matrices:

A = ones(2,6,7);
B = permute(A,[3 1 2]);
size(B)

ans =

TABLE 3-11: FUNCTIONS FOR WORKING WITH MULTIDIMENSIONAL ARRAYS

FUNCTION
NAME

DESCRIPTION

ipermute Inverse permute the order of dimensions of a multidimensional
array

ndgrid Create multidimensional grid

permute Permute the order of dimensions of a multidimensional array

squeeze Remove unit dimensions from a multidimensional array
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

 7 2 6

C = ipermute(B,[3 1 2]);

Using ipermute makes C identical to A.

The function squeeze removes any “singleton” dimension in multidimensional array
(demission with size 1):

A = rand(2,1,3,1,5);
B = squeeze(A);
size(B)

ans =

 2 3 5

Tensor Products and Contractions

The tprod function provides the possibility to compute various tensor products. The
symbol often appears to indicate the product of the tensors A and B. A tensor
product represents the most general bilinear operation or “generalized multiplication”
for the tensors. The general syntax for tprod is

C= tprod(A, B, IA, IB);

which computes the tensor product of the arrays (tensors) A and B, optionally followed
by contractions and setting some indices equal. The vectors IA and IB describe the
mapping from input indices to output indices as well as how to perform the
contractions. To show how this works, the following examples uses matrices:

• C = tprod(A, B, [1 2], [3 4]) is the tensor (outer) product of the matrices A
and B.

• C = tprod(A, B, [1 -1], [-1 2]) is the ordinary matrix product of the matrices
A and B.

• C = tprod(A, ONES(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all entries in
the matrix A.

• C = tprod(A, EYE(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all diagonal
entries in the matrix A (the trace).

S P E C I F Y I N G T H E I N D E X V E C T O R S I A A N D I B

The numbers in IA and IB must be distinct, and if a number occurs both in IA and IB,
the corresponding dimensions in A and B must have the same size. The summation
takes place over index variables with negative numbers. If a negative number occurs in

A B⊗
W O R K I N G W I T H M A T R I C E S A N D A R R A Y S | 59

60 | C H A P T E R
A, it must also occur in B, and the other way around. You must use the same set of
negative numbers in both IA and IB. The tprod function also assumes that the union
of the numbers in IA and IB, together with 0, form a contiguous sequence of integers.
 3 : V E C T O R S , M A T R I C E S , A N D A R R A Y S

 4
D a t a T y p e s f o r N o n - N u m e r i c V a l u e s :
S t r i n g s , C e l l A r r a y s , S t r u c t u r e s
Although the core computations you likely perform with COMSOL Script are
based on numerical data types, any sophisticated programming language also
provides powerful capabilities to handle non-numeric data types such as characters,
non-numeric arrays, and structures (for a complete list of data types, see “The
COMSOL Script Data Types” on page 22). They can handle tasks for everything
from simple purposes such as labeling a plot axis to being as complex as gridded
panels in a user-interface window. This chapter introduces you to these various data
types and how to work with them. The data structures in COMSOL Multiphysics
make extensive use of data types like cell arrays and structures to store data
structures and user inputs of various types.
 61

62 | C H A P T E R
S t r i n g s and Cha r a c t e r A r r a y s

Although a string is simply a number of printable characters, symbols, and the control
codes used with them, they are extremely useful in a programming language, especially
for I/O operations and labeling a graphical user interface. COMSOL Script stores
strings in character arrays (the data type char). The character array is typically a 1D
array, where each element represents one character. It is also possible to use character
matrices, where each row represents one string. All rows then have equal length, so you
must add spaces to the end of shorter strings. A better alternative if you are working
with several strings is to use a cell array of strings. In such a cell array, each cell
contains a string, and each string can be of different sizes.

Creating and Modifying Strings

To create a string, define it by enclosing it in single straight quotes ('):

s = 'Hello, World!'

s =

 Hello, World!

On a string you can use the same indexing and matrix operations as with a numeric
vector, as the following examples show:

• Access part of a string:

s(1:5)

ans =

 Hello

• Modify a string:

s(end) = '.'

s =

 Hello, World.

• Concatenate a string from several smaller strings:

s = ['Hello,', ' ', 'World!']

s =
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

 Hello, World!

To display a string, use the disp command:

disp(s)
Hello, World!

Because straight quotes or apostrophes enclose a string, you must use two single
quotes inside a string if you want that quote to actually appear in the string itself:

s='A programmer''s code'

s =

 A programmer's code

To create a cell array of strings, use the curly braces to create the cell array and to access
its contents in the same way as with other cell arrays:

sc = {'This', 'is', 'a', 'cell', 'array','of', 'strings'};
sc{end}

ans =

 strings

You can also use the function cellstr to convert a character array to a cell array of
strings:

s = ['Hello ';'World!'];
c = cellstr(s)

c =

 'Hello '
 'World!'

Conversely, char(c) converts a cell array of strings back to a character array.

Summary of Functions for Converting and Modifying Strings

COMSOL Script provides a number of functions for converting strings to and from
different formats and for modifying and checking strings:

TABLE 4-1: STRING FUNCTIONS

FUNCTION NAME DESCRIPTION

blanks Create a string of blanks

cellstr Convert a character matrix to a cell array of strings
S T R I N G S A N D C H A R A C T E R A R R A Y S | 63

64 | C H A P T E R
abs Convert a character matrix to ASCII values

base2dec Convert strings in a specific base to decimal integers

bin2dec Convert binary strings to decimal integers

char Convert a value to a character matrix

deblank Remove trailing blanks

dec2base Convert decimal integers to strings in a specific base

dec2bin Convert decimal integers to binary strings

dec2hex Convert decimal integers to hexadecimal strings

findstr Find a shorter string within a longer string

hex2num Convert IEEE-754 hexadecimal strings to decimal numbers

int2str Integer-to-string conversion

iscellstr Test if a variable is a cell array of strings

ischar Test if variable is a character matrix

isletter Test for letters in the alphabet

isspace Test for white spaces (horizontal tab, new line, vertical tab,
form feed, carriage return, and space)

isstr Test if a variable is a character matrix

lower Convert to lower-case letters

mat2str Create a string from a value

num2hex Convert decimal numbers to IEEE-754 hexadecimal strings

num2str Convert a number to a string

sprintf Convert data to a formatted string

sscanf Read formatted date from a string

str2num Convert a string to a number

strcat Concatenate strings

strcmp Compare strings

strcmpi Compare strings, ignoring case

strfind Find one string within another

strjust Justify a character array

strmatch Find string matches

strncmp Compare a specific number of characters in two strings

TABLE 4-1: STRING FUNCTIONS

FUNCTION NAME DESCRIPTION
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

Using String Functions—Some Examples

C O N V E R T I N G B E T W E E N A S C I I C O D E S A N D S T R I N G S

It is possible to convert a string to the corresponding ASCII codes using the
commands abs or double:

s = 'ABC';
a = abs(s)

a =

 65 66 67

To go the other way, use char to convert ASCII data to a character array:

char(a)

ans =

 ABC

WO R K I N G W I T H S T R I N G F U N C T I O N S

Consider some additional useful examples of string functions:

• Combine strtrim and upper to remove blanks and convert to uppercase letters:

upper(strtrim(' comsol '))

ans =

 COMSOL

• Use strtok to retrieve information from a comma-separated list:

strncmpi Compare a specific number of characters in two strings,
ignoring case

strrep Search and replace strings

strtok Retrieve the first token

strtrim Remove leading and trailing white-space characters

strvcat Concatenate strings vertically

symvar Find identifiers in expression string

upper Convert to upper-case letters

TABLE 4-1: STRING FUNCTIONS

FUNCTION NAME DESCRIPTION
S T R I N G S A N D C H A R A C T E R A R R A Y S | 65

66 | C H A P T E R
fruits='apple, pear, banana, pineapple, mango, orange';
[fruit, remainder]=strtok(fruits,',')

fruit =

 apple

Calling strtok again with the remainder as the input retrieves the next item in the
list:

[fruit, remainder]=strtok(remainder,',')

fruit =

 pear

C O N V E R T I N G D A T A TO S T R I N G S

The functions int2str, mat2str, and num2str all convert numerical data to strings:

• int2str converts an integer to a string (rounding any noninteger value):

s = int2str(10.2/5)

s =

 2

• mat2str creates a string that, when you evaluate it, produces the same values as the
input:

s = mat2str([linspace(-2,2,5);ones(1,5)])

s =

 [-2, -1, 0, 1, 2; 1, 1, 1, 1, 1]

eval(s)

ans =

 -2 -1 0 1 2
 1 1 1 1 1

• num2str converts a number to a string with the ability to format the string:

s = num2str(pi)

s =

 3.1416

s = num2str(pi,8)
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

s =

 3.1415927

s = num2str(pi,'%.9E')

s =

 3.141592654E+000

In addition, base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2hex, and
num2hex all convert between string and integers using different bases:

d = base2dec('101',2)

d =

 5

d = base2dec('101',10)

d =

 101

Using the SPRINTF Command
For maximum flexibility and control of formatting, use the sprintf command (the
command fprintf works in the same way as sprintf but prints to a file). sprintf
takes a C-style formatting string that can contain conversion specifications for the
input data. Each specification begins with the % character followed by optional flags,
width and precision fields, and a required conversion character. For example,

sprintf('%-+8.5f',pi)

prints π using a decimal floating point number with a (minimum) width of 8 characters
width and 5 digits after the decimal point. In addition, the number includes the sign
and is left justified.

As noted, the first field has the % character, which is optionally followed by one of the
flags in this table:

TABLE 4-2: SPRINTF/FPRINTF FLAG CHARACTERS

FLAG CHARACTER DESCRIPTION

- Result is left justified

+ Always print the sign

0 Pad with Zeros instead of spaces
S T R I N G S A N D C H A R A C T E R A R R A Y S | 67

68 | C H A P T E R
Note that it is possible to combine flags and have more than one flag at a time.

The width and precision fields typically are of the format w.f, where w is the width in
characters for the data, and f is the precision as number of digits after the decimal
point.

The sprintf and fprintf commands also require one of the following conversion
characters:

In this list, %g uses exponential notation when the exponent is larger than or equal to
the precision, or if the exponent is less than −4. The default precision is 6. Precision
means the number of digits to the right of the decimal point for %f and the total
number of digits for %g—which always removes insignificant zeros.

Finally, you have access to the following character codes for special formatting in
strings:

Examine some examples using sprintf:

sprintf('A: %-+10.2f ',[10.045,1.02])

ans =

 A: +10.04 A: +1.02

sprintf('A: %.1f B: %.3e\n',[1.01 1.00001,1.1],[1e4 1e-4 1])

TABLE 4-3: SPRINTF/FPRINTF CONVERSION CHARACTERS

CONVERSION CHARACTER DESCRIPTION

d Integer notation

e Exponential notation using lowercase e

E Exponential notation using uppercase E

g Exponential or fixed-point notation.

G Identical to 'g', but uses uppercase E for
exponential notation

i Integer notation (identical to 'd')

s String

TABLE 4-4: SPRINTF/FPRINTF SPECIAL CHARACTER

SPECIAL CHARACTER DESCRIPTION

\n New line

\t Tab

'' Apostrophe
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

ans =

 A: 1.0 B: 1.000e+004
 A: 1.0 B: 1.000e-004
 A: 1.1 B: 1.000e+000

Evaluating Strings

COMSOL Script can evaluate commands and statements you store in strings.

E V A L U A T I N G S T R I N G S

The general command for evaluating strings is the eval command, which evaluates an
expression or a sequence of statements:

eval('a=pi+2')

a =

5.141593

If you use one or more output arguments, eval evaluates the expressions in the input
and returns the results:

a = eval('pi+3');
a

a =

6.141593

To trap errors, eval provides a second input argument. If you provide two input
arguments, eval evaluates the expressions in the second input argument if the
evaluation of the first input argument results in an error:

statement = 'sinu(pi/2);';
errormsg = 'disp(''Invalid function'')''
eval(statement,errormsg)
Invalid function

Note: To handle errors, it is usually better to use the try and catch functions instead
of eval. See “The TRY and CATCH Statements” on page 91 for more information.
S T R I N G S A N D C H A R A C T E R A R R A Y S | 69

70 | C H A P T E R
E X A M P L E S O F U S I N G T H E E V A L F U N C T I O N

One use of eval is to create varying names for files or variables. The following two
examples illustrate this technique:

To create twelve variables, rand1, rand2, …, rand12, and store a random matrix in
each of them, type:

for k=1:12
 eval(['rand', int2str(k), '=rand(3);']);
end

To save the contents in variables d1, d2, …, d10 as ASCII data in the text file
data1.txt, data2.txt, …, data10.txt, type:

for k = 1:10
 filename = ['data', int2str(k), '.txt'];
 variablename = ['d', int2str(k)];
 eval(['save ', filename , ' ', variablename, ' -ascii'])
end

In many cases, however, you can replace the use of eval with a direct function call. In
the previous example (saving text file), it is possible to replace the call to eval with the
following code that uses the standard function calling syntax when calling the save
function:

save(filename,variablename,'-ascii')

This improves readability and is easier to write.

R E T R I E V I N G O U T P U T D U R I N G E V A L U A T I O N

To retrieve any output that occurs during the evaluation of statement, use the evalc
function instead of eval. evalc provides this output in a first output argument:

[out,...] = evalc(...);

Otherwise, evalc is similar to eval.

E V A L U A T I N G S T A T E M E N T S I N D I F F E R E N T WO R K S P A C E S

The function evalin works just like eval but provides the opportunity to do the
evaluation of the statements in another workspace than the one where the evalin
function occurs.

evalin('base',...)

evaluates the statements in the main workspace.

evalin('caller',...)
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

evaluates the statements in the parent workspace in the function call stack.

If you call the function that contains evalin from the COMSOL Script command
window, the caller workspace is the main workspace.

E V A L U A T I N G F U N C T I O N S

To evaluate functions, use the feval command. See “Evaluating Functions” on page
135 for more information about feval.

S U M M A R Y O F E V A L U A T I O N F U N C T I O N S

COMSOL Script provides the following functions for evaluating expressions and
functions:

TABLE 4-5: EVALUATION FUNCTIONS

FUNCTION NAME DESCRIPTION

eval Evaluate an expression or a sequence of statements

evalc Evaluate an expression or a sequence of statements
and retrieve all outputs

evalin Evaluate an expression or a sequence of statements in
a specific workspace

feval Evaluate a function
S T R I N G S A N D C H A R A C T E R A R R A Y S | 71

72 | C H A P T E R
C e l l A r r a y s

A cell array is one that can contain data of different types in its elements or cells
including numerical values and arrays, strings, structures, and even other cell arrays.
This ability makes it a flexible structure for data that is nonuniform (and that cannot
fit into a numeric array) or unstructured (so that a structure array is not suitable).

Creating Cell Arrays

You create cell arrays in several ways:

• Use the { and } symbols (curly braces) in the same way you use [and] to create
numeric arrays:

c1 = {'a string', rand(3), 5; {1, 'another string'}, 1, eye(3)}

c1 =

 'a string' [3x3 double] [5]
 {[1] 'another string'} [1] [3x3 double]

• Assign a value to a cell using two different types of indexing:

- With indexing into the cell array’s contents, you specify the contents of a cell by
indexing using curly braces ({}):

 c2{1,3} = 'the third cell'

 c2 =

 [] [] 'the third cell'

- With standard indexing, you specify an individual cell:

 c3(1,3) = {'the third cell'}

You then have to provide a cell in the assignment and not the contents of the cell.
This example produces the same results as the example for content indexing.

• Use the conversion functions cellstr, mat2cell, num2cell, and struct2cell.
For example,

c = mat2cell(rand(5, 15), [2 3], [4 5 6])

creates a 2 × 3 cell array where c(1,1) is the 2 × 4 submatrix in the upper left corner
of the random matrix.
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

• Create a cell array with empty cells using the cell command:

c3 = cell(2,3,3);

You can create cell arrays of any dimension. To create an empty cell array, use {}, which
is similar to [] for numeric arrays (you can also use cell(0,0) to create an empty 0×0
cell array).

C R E A T I N G C E L L A R R A Y S W I T H I N C E L L A R R A Y S (N E S T E D C E L L A R R A Y S)

It is permissible to create nested cell arrays in several levels by using multiple sets of
curly braces and the cell command. The line

c = {{{1}, rand(2)},{pi}}

creates a 1x2 cell array where the first cell contains another 1x2 cell array, and the
second cell contains a 1x1 cell array. To create a 1x2 cell array with two 3x2 cell arrays
with empty cells, type:

c = {cell(3,2), cell(3,2)}

c =

 [2x2 cell] [2x2 cell]

Working With Cell Arrays

If the contents of a cell array consist of another variable, note that the cell contains a
copy of the variable and not a pointer to it. This means that changing the contents of
the cell does not change the data in the other variable.

R E F E R E N C I N G A N D M O D I F Y I N G C E L L A R R A Y S

You reference and work with cell arrays in the same way as other arrays in COMSOL
Script. As noted earlier, in addition to cell indexing, content indexing using curly
braces makes it possible to modify cell contents.

For instance, start with the cell array:

c = {{{1}, rand(2)} 5; eye(3), {pi}}

To add a column with cells containing the number 2 and the string 'string', write
this line of code:

c(:,end+1) = {2; 'string'};

To remove the middle column, try this line:

c(:,2) = [];
C E L L A R R A Y S | 73

74 | C H A P T E R
To create a double array d and store in it the random matrix currently in the cell array
in the top left cell of c, use this line:

d = c{1,1}{1,2};

To replace the string 'string' with 'character array' using indexing into the cell
array contents, type:

c{2,2} = 'character array';

or, using standard indexing, type:

c(2,2) = {'character array'};

You can reshape a cell array just as it is possible with other arrays using, for example,
reshape or the colon (:) and transpose (') operators. For instance,

c = reshape(c,1,4)

converts c from a 2 ×2 cell array to a 1× 4 cell array. A faster way to do this job is

c(:)'

U S I N G C E L L A R R A Y S A S L I S T S O F V A R I A B L E S

You can work with cell arrays as lists of variables, using indexing into the contents with
{}, in a similar way as a comma-separated list of variables. The following example
shows how this works with three input arguments to the function plot.

With separate variables for the input data you might write

x=linspace(0,2*pi,50);
y=sin(x);
format = 'ro--';
plot(x,y,format);

Using a cell array to store the input arguments, the equivalent call to plot changes to:

args = {x, y, format};
plot(args{:});

The syntax args{:} works in the same way as inputting the three comma-separated
input arguments.

On the other hand, the function deal is useful for distributing the contents of a cell
array into individual variables, such as in

[x,y,format]=deal(args{:});

The varargin and varargout arguments, which are available with COMSOL Script
functions, are cell arrays that provide the ability to handle varying number of input and
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

output arguments of different types. See “Variable Number of Input and Output
Arguments” on page 132 for more information about varargin and varargout.

A P P L Y I N G F U N C T I O N S TO T H E C O N T E N T S O F C E L L A R R A Y S

If you are working with a function that return a scalar numerical value for any input,
you can then apply that function directly to a cell array with the cellfun function:

c = {rand(3), eye(5), zeros(2), pi}
maxnorms = cellfun('norm',c,inf)

maxnorms =

 2.269629 1 0 3.141593

The first argument in cellfun is the name of the function to apply to the cell contents,
in this case norm. The second input argument is the cell array, here c; any additional
optional input arguments to cellfun in turn serve as input arguments to the function
that works on the cell array.

In addition, two special functions work with cellfun—prodofsize and isclass:

sizes = cellfun('prodofsize',c)

sizes =

 9 25 4 1

The input argument 'prodofsize' generates an output that contains the number of
elements in each cell, that is, prod(size(c{i}) for each cell c{i}. As for the second
of those two functions,

dbls = cellfun('isclass',c,'double')

dbls =

 1 1 1 1

The input argument 'isclass' checks the type of class (data structure) in each cell.
You provide the name of the class as the third input argument. The output is of the
same size; it is 1 if the contents of the cell is of this class and 0 otherwise. Notice that
this is a numerical array. To convert it to a logical array, use logical(dbls);

If the function you want to apply does not return a scalar numerical value, use a loop
to apply the function to the contents of the cells. For example,

for i=1:length(c)
 cellmax{i}=max(c{i});
C E L L A R R A Y S | 75

76 | C H A P T E R
end

produces a cell array cellmax, where each cell is a row vector containing the maximum
value of each column in the matrix in the corresponding cell in c.

S U M M A R Y O F F U N C T I O N S F O R W O R K I N G W I T H C E L L A R R A Y S

The following table summarizes the functions related to cell arrays:

Set Functions

A number of functions are designed to work with sets. Using them, COMSOL Script
interprets arrays or cell arrays of strings as sets. The following set functions are
available:

TABLE 4-6: CELL ARRAY FUNCTIONS

FUNCTION NAME DESCRIPTION

cell Create a cell array

cellstr Convert a character array to a cell array of strings

cell2mat Convert a cell array to a matrix

cell2struct Convert a cell array to a structure

cellfun Apply a function to the elements of a cell array

deal Distribute function inputs to output variables

iscell True if the variable is a cell array

iscellstr True if the variable is a cell array of strings

mat2cell Create a cell array from a matrix

num2cell Create a cell array from a numerical array

struct2cell Convert a structure array to a cell array

TABLE 4-7: SET FUNCTIONS

FUNCTION
NAME

DESCRIPTION

intersect Set intersection

ismember Determine set members

setdiff Set difference

setxor Set exclusive OR

union Set union

unique Retrieve unique elements
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

U S I N G S E T F U N C T I O N S W I T H VE C T O R S A N D M A T R I C E S

The standard syntax works for vectors:

A = 1:10

A =

 1 2 3 4 5 6 7 8 9 10

B = 6:15

B =

 6 7 8 9 10 11 12 13 14 15

C = ones(1,10);

intersect(A,B)

ans =

 6 7 8 9 10

ismember(10,A)

ans =

true

unique(C)

ans =

 1

If you have 2D sets (matrices), the set functions support an extra input argument,
'rows'. For example, setdiff(A,B,'rows') returns the row set difference (the rows
in A that are not in B, where A and B must have the same number of columns).

In addition, you can get index vectors into the set vectors by providing additional
output arguments. For details, see the online help for the individual functions.
C E L L A R R A Y S | 77

78 | C H A P T E R
S t r u c t u r e s

A structure, more formally known as a structure array, is an array with fields that act as
separate containers for different data. It is somewhat similar to the struct data structure
in C/C++. Structures are convenient when you have data of different types that are
related; for instance, a structure array is suitable for creating a small database where
each structure is a “record.” As with other arrays, you can have a single structure (a
1x1 structure array), 1D or 2D arrays of structures, or even multidimensional structure
arrays.

This section works with one example, specifically, a structure array that stores data
about elements in the periodic table. The structure array holds this information:

• The symbol, such as H for hydrogen (a string)

• The name (a string)

• The atomic number (a numerical scalar)

• The mass numbers for the most common isotopes (a numerical array)

• The atomic weight (a numerical scalar)

Creating Structures

You create structures in two ways:

• Use the struct command. For instance,

s = struct

creates an empty structure without any fields. To create a single structure, use pairs
of field names and field values in the call to struct:

elements = struct('symbol','H','name','Hydrogen',...
'atomic_number',1,'mass_numbers',1:3,'atomic_weight',1.00797);
elements =

 symbol: 'H'
 name: 'Hydrogen'
 atomic_number: [1]
 mass_numbers: [1 2 3]
 atomic_weight: [1.007970]

To create a structure array, pass the values for each structure into a cell array for each
field (all cell arrays must be of the same size, but COMSOL Script expands scalar
values):
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

elements =
struct('symbol',{'H','He'},'name',{'Hydrogen','Helium'},...
'atomic_number',{1 2},'mass_numbers',{1:3, 3:4},...
'atomic_weight',{1.00797 4.0026})

elements =

1x2 struct array:
 symbol
 name
 atomic_number
 mass_numbers
 atomic_weight

• Use direct assignment statements. The syntax for adding fields to a structure is to
type a dot (.) followed by the field name:

elements.symbol = 'H';
elements.name = 'Hydrogen';
elements.atomic_number = 1;
elements.mass_numbers = 1:3;
elements.atomic_weight = 1.00797;

Use standard array subscripting to add additional structures:

elements(2).symbol = 'He';
elements(2).name = 'Helium';
elements(2).atomic_number = 2;
elements(2).mass_numbers = 3:4;
elements(2).atomic_weight = 4.0026;

You need not enter data in all fields. For fields into which you do not assign a value,
COMSOL Script sets the default value of an empty double array ([]):

elements(3).symbol = 'Li';
elements(3).name = 'Lithium';
elements(3)

ans =

 symbol: 'Li'
 name: 'Lithium'
 atomic_number: []
 mass_numbers: []
 atomic_weight: []’

C R E A T I N G N E S T E D S T R U C T U R E A R R A Y S

The contents of a field in a structure can be any COMSOL data structure, including
another structure, which makes it possible to create nested structure arrays. For
example, if you want to include more information about the isotopes of an element,
S T R U C T U R E S | 79

80 | C H A P T E R
you could create another structure array, isotopes, that contains a numeric field for
the mass number and a logical flag that indicates if the isotope is stable. For hydrogen,
isotopes becomes a 1×3 structure array:

isotopes.mass_number = 1;
isotopes.stable = true;
isotopes(2).mass_number = 2;
isotopes(2).stable = true;
isotopes(3).mass_number = 3;
isotopes(3).stable = false;

To add this to the elements structure array, use the direct assignment syntax:

elements.isotopes = isotopes;

Working With Structures

Many of the standard ways of working with arrays in COMSOL Script also apply to
structure arrays. Specific to structures is the “dot” syntax to access the value of an
individual field.

R E F E R E N C I N G A N D M O D I F Y I N G S T R U C T U R E A R R A Y S

You can access individual structures in a structure array with standard references using
subscripts in parenthesis. To get or modify the value of an individual field, append .
(dot) followed by the name of the field:

elements(13).name

ans =

 Aluminium

To change the name of that element from spelling in British English to American
English, type:

elements(13).name = 'Aluminum';

You can also access the field values for all structures in the array using brackets ([]),
which is most useful for scalar numerical data. The line

atomicweights = [elements.atomic_weights];

produces a double array with the atomic weights for each element.

To access field values in a nested structure array, use the dot syntax to reach underlying
fields, indexing into each structure array:

elements(1).isotopes(2).stable
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

ans =

true

A D D I N G A N D D E L E T I N G F I E L D S

To add a field to a structure, simply use a direct assignment:

elements(2).group = 'Noble gas';

For structures in a structure array where you have not assigned a value to the new field,
the value is the empty matrix.

If you want to remove a field from the structure, use the rmfield function. As an
example, remove the mass_numbers fields, which became redundant after adding the
isotopes structure:

elements = rmfield(elements,'mass_numbers');

A P P L Y I N G F U N C T I O N S TO T H E C O N T E N T S O F S T R U C T U R E S

You can use functions and operate on data in the various structure fields just as with
any other COMSOL Script arrays. For example, to get the number of common
isotopes for hydrogen, type:

nhiso = length(elements(1).mass_numbers)

nhiso =

3

Using the bracket syntax it is possible to operate on a field in all of the structures in a
structure array. This is useful for statistical analysis, particularly when the field value is
a scalar value. For example, to compute the mean atomic weight for the first 13
elements:

mean([elements(1:13).atomic_weight])

ans =

14.404209

U S I N G D Y N A M I C F I E L D N A M E S I N P R O G R A M S

In functions, where the name of a field name may be an input argument, it is
convenient to use dynamic field name that COMSOL Script evaluates when the
function runs. This is useful, for example, if you work with a structure that contains all
elements as individual fields: elements.hydrogen, elements.helium,
elements.lithium, and so on. Then you can create a function that takes the element
S T R U C T U R E S | 81

82 | C H A P T E R
name as an input argument, element_name, and computes the number of isotopes. To
indicate a dynamics field name, surround it with parentheses:

no_iso = length([elements.(element_name).isotopes.mass_number]);

would access the mass numbers in elements.hydrogen.isotopes.mass_number if
the variable element_name contains the string hydrogen. (element_name) is the
dynamic field name, which COMSOL Script replaces with hydrogen when running
the code.

You can also use the functions getfield and setfield to get the contents of a field
and assign a value to a field, respectively. To achieve the same functionality using
getfield instead of the dynamic field name syntax, type:

this_element = getfield(elements,element_name);
no_iso = length([this_element.isotopes.mass_number]);

Summary of Functions Related to Structure Arrays

The following table summarizes the functions related to structures:

TABLE 4-8: STRUCTURE FUNCTIONS

FUNCTION NAME DESCRIPTION

cell2struct Convert a cell array to a structure

fieldnames Return a cell array with field names

getfield Get the value of a structure field

isfield True for fields

isstruct True for structures

rmfield Remove a field from a structure

setfield Set the value of a structure field

struct Create a structure array

struct2cell Convert a structure array to a cell array
 4 : D A T A TY P E S F O R N O N - N U M E R I C V A L U E S : S T R I N G S , C E L L A R R A Y S , S T R U C T U R E S

 5
T h e P r o g r a m m i n g L a n g u a g e
COMSOL Script is a scripting environment that includes a full high-level
programming language. In the following chapter you will learn how to use the
programming language to control the flow of the code by means of conditional
statements and loops as well as other language constructs. Further, a section
describes the debugging tools that help you find and correct problems in scripts
and functions.
 83

84 | C H A P T E R
F l ow Con t r o l

For controlling the flow of a program or script, COMSOL Script provides the
following statements:

• if—for conditional branching

• while—for looping as long as a certain condition is True

• for—for looping

• break, continue, and return—for breaking out of a loop, continuing in a loop,
and returning from a function, respectively

• switch—for branching among several cases based on an expression

It is permissible to create nested control flows in COMSOL Script programs.

IF Statements

 if is the simplest way to execute one or more statements when a condition is met:

if rank(A)<3
 warning('Matrix does not have full rank!')
end

The condition, here rank(A)<3, can be any expression that evaluates to a logical or
double matrix. The block of statements between if and end execute if all the elements
of the condition are True.

You can combine an if with an else to run either of two statement blocks:

if x<0
 heaviside = 0;
else
 heaviside = 1;
end

COMSOL Script runs the first statement block if the condition is True; otherwise it
executes the second statement block. Under no circumstances does the program
execute both blocks.

As just pointed out, use an if-else construct when there are two statement blocks to
choose from; when there are more than two statement blocks, use if-elseif instead:

if (x<=0) || (x>=3)
 y = 0;
 5 : T H E P R O G R A M M I N G L A N G U A G E

elseif x<1
 y = x;
elseif x<2
 y = 1;
else
 y = 3-x;
end

You can place any number of elseif blocks between if and end. It is also possible to
combine elseif with else; in this case, else must come after all the elseif blocks.

WHILE Loops

Insert while loops to execute a block of statements for as long as a condition is
fulfilled. The following example finds the smallest n such that the harmonic series H(n)
exceeds 10:

H = 0;
n = 1;
while H<10
 H = H+1/n;
 n = n+1;
end
n
n =
 12368
H
H =
10.000043

COMSOL Script executes the statements between while and end as long as the
condition evaluates to an all-True logical matrix. If the condition is False from the
beginning, the statements never execute.

FOR Loops

A for loop runs a block of statements once for each value in a list:

H = 0;
for n=1:12368
 H = H+1/n;
end
H
H =
10.000043
F L O W C O N T R O L | 85

86 | C H A P T E R
This example runs the loop body (the statement H = H+1/N) a total of 12,368 times,
once for each n in the list.

In the previous example the list of values is numerical. This need not be the case—it is
also possible to loop over the elements of a cell array:

for noble={'He', 'Ne', 'Ar', 'Kr', 'Xe', 'Rn'}
 disp(noble)
end

In this example, the loop body runs six times, once for each element in the cell array.

The for statement runs the loop body once for each column in the loop variable. For
row vectors, as in the previous examples, this is the same as executing the loop body
for each element, but not for matrices:

A = rand(5,10);
for col=A
 max(col)
end

This example creates a 5x10 random matrix and, for each column, determines the
maximum element. The loop body executes ten times.

BREAK, CONTINUE, and RETURN Statements

You can break off the execution of a for loop or a while loop with the break
command. If the loops are nested, break only stops the execution of the innermost
loop. Outside of loops, you can stop the execution of a function using the return
statement. COMSOL Script then returns to the keyboard or to the function that
invoked the function that contains the return statement. Normally, COMSOL Script
runs a function to the ending statement and then returns. When you use return for
an early exit from a function that defines output arguments, make sure that you have
assigned values to these output variables at the point where the return statement
occurs.

To continue with the next iteration in a loop without running the remaining
statements in the loop, use the continue statement. In nested loops, continue passes
control to the next iteration of the loop that encloses it.
 5 : T H E P R O G R A M M I N G L A N G U A G E

The SWITCH Statement

The switch statement is a generalization of if where there are several possible
branches to take. The following example displays the name of an element when given
its atomic number:

switch number
case 1
 disp('Hydrogen')
case 2
 disp('Helium')
case 3
 disp('Lithium')
end

The program evaluates the condition (number) just once and compares it to the case
branches in order. It then executes the statements associated with the first case that
matches the condition. If none of the cases match, then it does not execute any
statements.

Note: Unlike languages such as Java and C, COMSOL Script executes at most one
case—there is no implicit fall through that causes execution to proceed with a further
case.

Many applications require that program flow follow the same branch for a number of
values. This is possible in a case construct by using a cell array of values:

switch n
case {2 3 5 7}
 disp('Prime')
case {1 4 6 8 9 10}
 disp('Not prime')
otherwise
 disp('Don''t know')
end

The program logic first tests n against the values in the cell array {2 3 5 7}, and if it
finds a match it executes the statement for the case. If not, it tests the second cell array.
This example also illustrates the use of the otherwise statement block. If none of the
cases match and there is an otherwise block at the end of the switch statement, then
the commands following the otherwise statement execute.
F L O W C O N T R O L | 87

88 | C H A P T E R
If the expression following switch is numeric, then the program tests it against the
cases using the equality operator (==). The expression can also be a string, in which
case the test for equality uses the strcmp function:

switch element_name
case 'Hydrogen'
 mass = 1.008;
case 'Helium'
 mass = 4.003;
case 'Lithium'
 mass = 4.941'
end

To take the same branch for several different values, use cell arrays of strings in the cases
as in this example:

switch element_name
case {'Helium', 'Neon', 'Argon', 'Krypton', 'Xenon', 'Radon'}
 disp('Noble gas')
case {'Lithium', 'Sodium', 'Potassium', ...
 'Rubidium', 'Cesium', 'Francium'}
 disp('Alkali metal')
end
 5 : T H E P R O G R A M M I N G L A N G U A G E

Work i n g w i t h V a r i a b l e s

This section contains information about naming of variables in a COMSOL Script
program, the possibility to assign a value to a variable in another workspace, and
getting user input.

Naming Variables

The names of variables follow the same conventions as file names:

• Variable names are case sensitive

• A variable name can only contain letters, digits, and underscores

• A variable name must start with a letter

To check if a variable name is valid, use the isvarname function:

isvarname('2_fcn')

ans =

false

Also, you cannot use variable names that are reserved words in the COMSOL Script
language such as if, for, and while. Use the function iskeyword to check is a string
contains a reserved word:

iskeyword('case')

ans =

true

Assigning a Value to a Variables in Other Workspaces

Normally, when you assign a value to a variable, this takes place in the local workspace
(which is the main workspace when working directly in the command windows or
when running scripts). If you need to assign a value to a variable in another workspace,
use the assignin function:

assingin('base',var,value)

assigns the value val to the variable in the string var in the main workspace.

assingin('caller',...)
W O R K I N G W I T H V A R I A B L E S | 89

90 | C H A P T E R
assigns a value to a variable in the parent workspace in the function call stack.

One use of assignin is to store data from the local function in the main workspace.

If you call the function that contains assignin from the COMSOL Script command
window, the caller workspace is the main workspace.

Getting User Input

You can let the user provide input to a variable when running a function or script. To
do so, use the input function:

a = input('Question:');

displays Question: at the command prompt and waits for user input.

COMSOL Script evaluates the input in the current workspace and assigns the result to
the output variable.

If you want to use the input as a string, call input using the string s as a second input
argument:

a = input('Question:','s');

COMSOL Script then returns the string that the user enters without evaluating it.
 5 : T H E P R O G R A M M I N G L A N G U A G E

E r r o r Hand l i n g

When you write programs with COMSOL Script, a number of statements help you
catch errors and then take appropriate action. You can also throw errors and issue
warnings.

The TRY and CATCH Statements

The try-catch construct provides a means to handle errors gracefully:

try
 b = A(n);
catch
 disp('n out of range, using b=1.')
 b = 1;
end

If an error occurs during the execution of the statements between try and catch,
COMSOL Script runs the statements in the catch block. In this example, A is a matrix
indexed using n. If n is not a valid index, then the statements in the catch block inform
the user of this fact and continue execution despite the error. Without the try-catch
construct, an invalid index would halt execution and issue an error message.

It is possible to rewrite the previous example using try without a catch clause:

b = 1;
try
 b = A(n);
end

Here, if an error occurs when executing the statements between try and end,
COMSOL Script continues and runs the statements following the try-end block. In
other words, omitting the catch block has the same effect as putting no statements
between catch and end.

Throwing Errors and Displaying Warnings

In COMSOL Script functions you can throw an error with the error function. For
instance, the following code causes an error to occur and displays the text in errormsg:

error(erromsg)

COMSOL Script ignores a call to error if the string that you pass is empty.
E R R O R H A N D L I N G | 91

92 | C H A P T E R
You can also display a warning message. For example,

warning(warningmsg)

displays the text in warningmsg. This does not stop the program from running.

S E T T I N G O R R E T R I E V I N G T H E L A S T E R R O R M E S S A G E

You can retrieve or set the last (current) error message with the lasterr and
lasterror functions. The difference between them is that lasterr works with a
string as an error message, and lasterror works with an error-message structure that
has a field for the error message and an identifier. Most often you are only interested
in the error message itself. In that case, it is easier to use lasterr. The line of code

errormsg = lasterr;

returns the current error message, whereas

lasterr(newerrormsg)

sets the current error message to the string in newerrormsg.
 5 : T H E P R O G R A M M I N G L A N G U A G E

Pe r f o rman c e C on s i d e r a t i o n s

In several situations you can improve the performance of a COMSOL Script program
by using alternatives to flow-control statements. All of these cases are examples of
“vectorization,” that is, taking advantage of the ability of COMSOL Script functions
to use arrays instead of scalar as input variables, thereby avoiding the need for a loop.

Using Built-in Functions Instead of FOR

The constructs described in the previous sections are general in scope, but they can
sometimes lead to poor performance and verbose code. As an example, revisit an
example from the for section:

H = 0;
for n=1:12368
 H = H+1/n;
end

You can replace this loop with a single line:

H = sum(1./(1:12368));

that is clearer and executes much faster. For many common operations, such as sum as
shown here, built-in functions do the job better than loops.

Using Logical Operators Instead of IF

It is often possible to replace if statements with logical operators:

L = logical(size(A));
for i=1:numel(A)
 L(i) = A(i)>0;
end

This code computes a logical matrix L that is True in the positions where A is positive.
A faster and more compact way to accomplish the same thing is with a matrix-wise
comparison:

L = A>0;

Using Pointwise Operators Instead of Loops

The loop
P E R F O R M A N C E C O N S I D E R A T I O N S | 93

94 | C H A P T E R
C = zeros(size(A));
for i=1:numels(A)
 C(i) = A(i)*sin(A(i));
end

can also be optimized with a single command; write it instead using pointwise
multiplication:

C = A.*sin(A);

Profiling to Find Bottlenecks

By generating profiling information for a function or script, you get an instant
overview of which functions that run most frequently and where the COMSOL Script
code spends most of the CPU time. This makes it possible to find potential bottlenecks
in a large function or script. To start collecting profiling information, type

profile on

You can stop collecting information using profile off and clear the profiling
information using profile clear. Type profile report followed by the function name
to print a report showing the profiling information for that function or script file. The
following code provides a small example:

profile clear
profile on
corrcoef(rand(1000),'row','complete','alpha',0.04);
profile off
profile report corrcoef

This prints a report to the command line about the total time spent in corrcoef and
the number of times and relative time spent on each line in the M-file. An excerpt from
the report is:

1 0.00% alpha = 0.05;
1 0.00% row = allstr;
1 0.00% for rowid = flagind:2:nargin-1
2 0.00% if isequal(varargin{rowid},'alpha')
1 0.00% alpha = varargin{rowid+1};
1 0.00% if ~isscalar(alpha) || alpha < 0 || alpha > 1

This reveals that COMSOL Script ran all the lines above once, except for the fourth
line from the top of this section, which ran twice. None of this code contributed
significantly to the total time spent running corrcoef. Further down the report, the
following line explains where most of the time was spent:

1 82.07% C = cov(x);
 5 : T H E P R O G R A M M I N G L A N G U A G E

This is a call to another function, cov. To see the profiling information for that
functions, type

profile report cov
P E R F O R M A N C E C O N S I D E R A T I O N S | 95

96 | C H A P T E R
G l oba l and Pe r s i s t e n t V a r i a b l e s

Global Variables

Sometimes one or more variables appear in a large number of functions, and it would
be cumbersome to pass these variables around using function calls. The solution is to
use global variables.

To declare a variable as global, use global:

global STEPSIZE

Variables declared as such have their values stored in a global workspace accessible from
any function or workspace. As an example, consider the following lines running at the
command prompt:

global STEPSIZE
STEPSIZE = 0.001;
...
area = quadrature('sin',0,1)

where the quadrature function performs numerical integration using the trapezoidal
rule:

function out = quadrature(func,a,b)
global STEPSIZE
out = STEPSIZE*sum(feval(func,(a+STEPSIZE/2):STEPSIZE:b));

When quadrature runs, the global STEPSIZE declaration results in COMSOL
Script taking the value of STEPSIZE from the main workspace. If STEPSIZE is modified
within the function, then its value also changes in the main workspace.

When you declare a value as global, doing so removes any existing value it has. If you
declare a variable as global when using it for the first time, it is initialized to the empty
matrix:

A = 17;
global A
A
A =
[]

To check if a variable is global, use the isglobal function: isglobal('A').
 5 : T H E P R O G R A M M I N G L A N G U A G E

Persistent Variables

The fact that you can modify global variables everywhere is a strength as well as a
weakness. Sometimes a function has some internal state that you want to save between
consecutive calls. It is possible to implement this idea using a global variable, but there
is always the risk that some other routine might also modify that global state variable.
A better solution is to use a persistent variable, whose value as declared in a function
remains across calls, but it is not possible to read or modify it elsewhere.

Consider the following function, which generates pseudorandom numbers between 0
and 1 with a linear congruential generator:

function out = lcg
persistent STATE
if isempty(STATE)
 STATE = 12345;
end
STATE = mod(1103515245*STATE+12345, 2^31);
out = STATE/2^31;

lcg uses the persistent variable STATE to remember the number-generator’s state. Just
as when working with global variables, the first time you make a persistent
declaration for a variable, it is initialized with the empty matrix. The if
isempty(STATE) test in lcg uses this behavior to detect if the code must initialize the
STATE variable because it is the first time that the function runs.

A WO R D O F C A U T I O N

Global variables are easy to use—and overuse. They introduce global dependencies,
and as a result the code becomes more difficult to understand and maintain. Avoid the
excessive use of global variables, especially in projects that consist of more than a few
functions. Persistent variables do not suffer from this problem, so use them instead of
global variables when possible.

When declaring global variables in functions that other programmers will use, try to
select expressive variable names. This decreases the risk of collisions between global
variables in different functions. Such collisions can be difficult to detect because they
do not lead to immediate errors; global variables can silently receive bad values that
lead to problems in completely unrelated code.
G L O B A L A N D P E R S I S T E N T V A R I A B L E S | 97

98 | C H A P T E R
Debugg i n g

Some errors can appear relatively frequently when you program with COMSOL Script.
This section describes the most common errors and how to use the debugging tools
to find the cause.

Common Errors

A R R A Y I N D E X O U T O F B O U N D S

An extremely common programming error is using invalid array indices:

A = 1:10;
...
A(10,1)
Error: Array index 1 is 10, dimension length is 1.

COMSOL Script catches all attempts to use invalid indices during program execution,
but the sources of the errors can still be difficult to find. This example shows a common
error: A is a 1 × 10 matrix (a row vector) that a routine later indexes as a 10×1 matrix,
a column vector. You can remove the error here by replacing A(10,1) with A(1,10)
or, even better, A(10).

There is no foolproof way to avoid such errors, but they occur less often if you write
code with consistency in mind. Avoid mixing row and column vectors among variables
with similar usage.

M A T R I X D I M E N S I O N S D I S A G R E E

All operators and most built-in functions require that matrix dimensions be
compatible:

A = rand(3, 4);
...
B = rand(4, 3);
...
C = sin(A)+cos(B);
Error: Matrix dimensions must agree.
Error in built-in function plus.

The only exception to this rule is that COMSOL Script expands scalars to constant

matrices in most situations. Code such as
A = rand(3, 4);
 5 : T H E P R O G R A M M I N G L A N G U A G E

...
B = pi;
...
C = sin(A)+cos(B);

runs without error because the software implicitly expands B into a 3×4 matrix where
all elements equal π.

M I X I N G P O I N T W I S E A N D M A T R I X O P E R A T O R S

Pointwise operators such as .* operate on individual matrix elements, but matrix
operators such as * operate on entire matrices. A common error is to mix the two
operator types in the same expression, which often leads to errors:

A = 1:5;
B = 6:10;
C = sin(A)+cos(B)+A*B;
Error: Incompatible dimensions in matrix multiplication.
Error in built-in function mtimes.

Replacing A*B with A.*B eliminates this problem.

C O N F U S I N G / A N D \

To solve the linear system of equations Ax = b, use x = A\b (see the section
“Elementary and Special Math Functions” on page 42 for more information about /
and \. The similar looking code x = A/b usually results in an error:

A = rand(4, 4);
b = rand(4, 1);
x = A/b;
Error: Incompatible matrix dimensions.
Error in built-in function mrdivide.

For some arguments, confusing A\b with A/b does not result in an error, but the
answer is not as expected because the answer solves the wrong problem: x=A/b is the
solution to the system b'x'=A'.

Debug Commands

When writing any nontrivial program, it is inevitable that errors occur. You can often
correct common errors, such as the ones just described, by reading the error message,
but as noted earlier many errors can be difficult to locate. This section covers
debugging commands useful for locating errors, and they include setting breakpoints
and stepping through code.
D E B U G G I N G | 99

100 | C H A P T E
S E T T I N G B R E A K P O I N T S A N D S T E P P I N G T H R O U G H C O D E

The command dbstop sets a breakpoint on a function or a line in a function. Consider
again the lcg function:

function out = lcg
persistent STATE
if isempty(STATE)
 STATE = 12345;
end
STATE = mod(1103515245*STATE+12345, 2^31);
out = STATE/2^31;

 dbstop lcg sets a breakpoint on the lcg function. The next time that function is
called, the program pauses its execution and enters a special state:

C» dbstop lcg
C» lcg
lcg 2 persistent STATE
D»

Notice how the prompt changes from C» to D» to highlight the new state. You can
enter any command or expression at the debug prompt, but note that some debug
commands can exist only in this state. For instance, to step through the code use the
dbstep command:

D» dbstep
lcg 3 if isempty(STATE)
D» dbstep
lcg 4 STATE = 12345;
D» dbstep
lcg 6 STATE = mod(1103515245*STATE+12345, 2^31);
D» dbstep
lcg 7 out = STATE/2^31;
D» STATE
STATE =
1406932606

 dbstep executes the line on which execution has stopped, then it stops on the next
line in the same function. Repeated applications of dbstop is one way to follow
program flow. To resume normal execution, use dbcont:

D» dbcont

ans =

0.655154
R 5 : T H E P R O G R A M M I N G L A N G U A G E

Remove one or more breakpoints with dbclear. Called without any arguments, it
removes all breakpoints; called with arguments, it behaves as the opposite to dbstop.
For instance, dbclear lcg removes the breakpoint set on the lcg function.

To set a breakpoint on a line of a function, use dbstop with a line-number argument:

C» dbclear
C» dbstop lcg 6
C» lcg
lcg 6 STATE = mod(1103515245*STATE+12345, 2^31);
D»

To remove a breakpoint set on a line, use dbclear with a line-number argument. To
remove the breakpoint in this example, call dbclear lcg 6.

You can also set a manual breakpoint in a script or function using the keyboard
command.

M OV I N G U P A N D D O W N I N T H E D E B U G C A L L S T A C K

Use dbup and dbdown to move up and down in the debug call stack. These commands
change the debug workspace to the parent (dbup) or child (dbdown) of the current
debug workspace. Using these functions you can explore all workspaces in the call
stack. To use dbdown, you must first run dbup at least once. Using an integer input
argument to dbup and dbdown, for example, dbup(3), is equivalent to making that
many calls to dbup and dbdown without input arguments.

E R R O R B R E A K P O I N T S

The breakpoints in the previous section were set on specific lines of a function. A
common situation when debugging a functions is tracking down why an error occurs.
To do so, run the function, note the line number where the error occurs, set a
breakpoint on that line, and then run it again. COMSOL Script then stops running
the function when it reaches that line, and you can examine the cause of the problem.
This approach is cumbersome if the line where the error occurs executes many times.
A better solution is to use dbstop if error, which causes execution to stop only
when an error occurs.

Summary of DEBUG Functions
D E B U G G I N G | 101

102 | C H A P T E
The following table summarizes the debug functions:

TABLE 5-1: DEBUG FUNCTIONS

FUNCTION NAME DESCRIPTION

dbclear Remove breakpoint

dbcont Continue execution

dbdown Move down in debug call stack

dbquit Stop execution

dbstack Display function-call stack

dbstatus List breakpoint conditions

dbstep Step to the next source code line

dbstop Set breakpoint

dbtype Display source code of function

dbup Move up in debug call stack
R 5 : T H E P R O G R A M M I N G L A N G U A G E

 6
L i n e a r A l g e b r a a n d M a t r i x F u n c t i o n s
The core of COMSOL Script consists of functions for linear algebra and matrix
functions such as equation-system solvers, norms, eigenvalues, LU factorization,
and singular-value decomposition (SVD). This chapter describes how to use these
functions.
 103

104 | C H A P T E
Ma t r i x Fun c t i o n s and Ma t r i x Ana l y s i s

For details about basic matrix operations such as inversion (including the
pseudoinverse) and transposition, see “Working with Matrices and Arrays” on page 35.

Elementary Matrix Functions

Most COMSOL Script functions work on matrices in an element-by-element fashion
so that, for example, sqrt(M) and cos(M) compute matrices of the same size as the
matrix M containing elements and cos(Mij), respectively.

Matrix Analysis

Important matrix concepts that COMSOL Multiphysics addresses include trace, rank,
determinant, norms, and condition numbers.

T H E TR A C E O F A M A T R I X

The trace function computes the trace of a matrix (that is, the sum of the diagonal
elements):

trace(diag([1 5 10]))

ans =

16

T H E R A N K O F A M A T R I X

To compute the rank of a matrix, use the rank function, which returns the maximum
number of independent rows or columns:

rank(eye(3))

ans =

3
rank(ones(3))

ans =

1

Mij
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

T H E D E T E R M I N A N T O F A M A T R I X

The determinant of a matrix A, det(A), is an interesting property. In particular, it is
nonzero if and only if the matrix is nonsingular. To compute the determinant, use the
det function:

det([1 2 3; 1 0 1; 1 1 1])

ans =

2

For a singular matrix, COMSOL Script issues a warning:

det(ones(2))
Warning: Singular matrix.

ans =

0

One property of determinants is that det(AB) = det(A) det(B):

A = [1 2; 1 4];
B = [5 0; 1 5];
det(A)

ans =

2

det(B)

ans =

25

det(A*B)

ans =

50.000000

VE C T O R A N D M A TR I X N O R M S

With the norm function you can compute a number of vector norms and matrix
norms. A norm is a scalar quantity that is associated with a matrix or vector and that
has certain properties (for example, it is nonnegative and zero exactly when the matrix
or vector contains zeros only).
M A T R I X F U N C T I O N S A N D M A T R I X A N A L Y S I S | 105

106 | C H A P T E
Vector Norms
Use norm to compute the following vector norms:

• Euclidean norm: norm(V)

• P-norms: norm(V,p)

• Maximum and minimum norms: norm(V,inf) and norm(V,-inf)

For a vector V, norm(V) is the same as sqrt(V.^2); norm(V,1) is the same as sum(V);
while norm(V,inf) and norm(V,-inf) are the same as max(V) and min(V),
respectively:

V = [0 1 2 3 4 5]
norm(V)

ans =

7.416198

sqrt(V.^2)

ans =

7.416198

Matrix Norms
Use norm to compute the following matrix norms:

• Largest singular value: norm(A), norm(A,2)

• 1-norm: norm(A,1)

• Frobenius norm: norm(A,'fro')

• Infinity norm: norm(A,inf)

The Frobenius norm is the same as sqrt(sum(sum(abs(A).^2))), and the largest
singular value norm is the same as max(svd(A)).

A = [10 2; 3 5];
norm(A)

ans =

11.052182

max(svd(A))

ans =
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

11.052182

norm(A,'fro')

ans =

11.747340

sqrt(sum(sum(abs(A).^2)))

ans =

11.747340

C O N D I T I O N N U M B E R S

The cond function returns the condition number for an inversion, and it is a measure
of linear-system sensitivity, that is, how much a small perturbation of the input matrix
affects the resulting inverse. It is the product of a matrix’s norm and that of its inverse.
The larger the condition number κ(A) of a matrix A, the more sensitive it is. A singular
matrix has the convention that κ(A) = .

cond(A) computes the 2-norm condition number. Use cond(A,p) for other P-norms.
The condition number is equal to the ratio of the largest to smallest singular value:

A = [10 2; 3 5];
cond(A)

ans =

2.776153

sv = svd(A);
max(sv)/min(sv)

ans =

2.776153

Use condeig to compute the condition number for the eigenvalues.

∞

M A T R I X F U N C T I O N S A N D M A T R I X A N A L Y S I S | 107

108 | C H A P T E
Summary of Matrix Functions

The following list provides a summary of fundamental matrix functions and functions
for matrix analysis:

TABLE 6-1: MATRIX FUNCTIONS

FUNCTION NAME DESCRIPTION

cond Condition number for inversion

condeig Condition number for eigenvalue

det Determinant

inv Matrix inverse

norm Matrix or vector norm

pinv Pseudoinverse

rank Rank of a matrix

trace Trace of a matrix
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

L i n e a r - A l g e b r a A l g o r i t hm s

This section covers the functions in COMSOL Script that implement fundamental
linear-algebra algorithms for general linear systems, orthogonalization, and eigenvalue
problems. For a theoretical treatment of matrix computations, see Ref. 1.

These algorithms are based on the linear-algebra package LAPACK (Ref. 2).

For complete information about available syntaxes for the functions, see the COMSOL
Script Command Reference or the online help).

LU Decomposition and Solving Linear Equation Systems

When solving a system of linear equations Ax = b using Gaussian elimination, it is
useful to divide the system matrix A into a lower triangular matrix L and an upper
triangular matrix U so that A = LU. To do so, use the lu function:

A = [1 2 3 ; 1 4 9; 1 8 27];
[L,U] = lu(A)
L =

 1 0 0
 1 0.333333 1
 1 1 0

U =

 1 2 3
 0 6 24
 0 0 -2

It is easy to verify that A and L*U are equal.

To solve a system of equations with COMSOL Script, use / and \ (the slash and
backslash operators, or right division and left division operators), which also work for
over- and underdetermined equation systems. To solve the equation Ax = b for x, with
b equal to [2; 10; 44], use

x = A\b
x =

 3
 -5
 3
L I N E A R - A L G E B R A A L G O R I T H M S | 109

110 | C H A P T E
For more information about the / and \ operators see “Elementary and Special Math
Functions” on page 42.

lu, /, and \ all work with sparse matrices as well as standard full matrices. You can also
call lu so that its output also includes permutation matrices.

H E S S E N B E R G F O R M

Another matrix form similar to an upper triangular matrix is the upper Hessenberg
form of a square matrix, which is zero below the first subdiagonal. To compute the
Hessenberg form of a matrix, use the hess function:

A = [1 1 0; 1 1 1; 1 0 1];
H = hess(A)

H=

 1 -0.707107 -0.707107
 -1.414214 1.500000 -0.500000
 0 0.500000 0.500000

The Hessenberg form of a matrix A has the same eigenvalues as A.

With an additional output argument, hess also returns unitary matrix Q such that
Q*H*Q' is equal to A.

Matrix Factorization—Cholesky and QR

COMSOL Script also supplies functions for Cholesky factorization and orthogonal
factorization using the QR algorithm.

C H O L E S K Y F A C T O R I Z A T I O N

For a symmetric (or Hermitian) positive definite matrix A, it is possible to compute a
Cholesky factor C such that A = C CT. To do so in COMSOL Script, use the chol
function:

C = chol(A);

This operator uses the DPOTRF and ZPOTRF functions from LAPACK and supports
matrices that are not positive definite; it does so through a second output argument P
such that C'*C = A(1:P-1,1:P-1).
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

Q R F A C T O R I Z A T I O N

QR factorization, or orthogonal factorization, is not restricted to square matrices. The
QR factorization of a matrix A gives a product of an orthogonal square matrix Q and
an upper triangular matrix R such that A = QR. To compute the Q and R factors, type:

[Q,R] = qr(A)

You can also get the output from the LAPACK algorithms DGEQRF and ZGEQRF
by typing

qr(A)

Other options include reduced-size factorizations.

Orthonormal Bases for Null Spaces and Ranges

Two functions in COMSOL Script compute orthonormal bases: null, which
computes an orthonormal basis of the null space of a matrix, and orth, which
computes an orthonormal basis of the range of a matrix.

The number of columns in the orthonormal basis of the range of a matrix are the same
as the matrix rank.

The null space of a matrix A is the space of vectors x such that A x = 0.

The following example illustrates these properties:

A = [1 2 3; 4 5 6; 7 8 9];
N= null(A)

N =

 -0.408248
 0.816497
 -0.408248

A*N

ans =

 0
 -4.441e-016
 0

O=orth(A)

O =
L I N E A R - A L G E B R A A L G O R I T H M S | 111

112 | C H A P T E
 -0.214837 0.887231
 -0.520587 0.249644
 -0.826338 -0.387943

rank(A)

ans =

2

For both null and orth you can supply a tolerance as a second input argument.

Eigenvalues and Eigenvectors of a Matrix

Computing the eigenvalues λ and the eigenvectors x for a matrix A is important in
many applications where you investigate a system’s dynamics.

The eigenvectors and eigenvalues for A have the property that A x = λ x. Eigenvalues
can be complex even if the matrix A is real.

To compute the eigenvalues and eigenvectors, use the eig function:

[x,lambda] = eig(A)

where lambda is a diagonal matrix with the eigenvalues on the diagonal.

You can also compute the solution to a generalized eigenvalue problem A x = λ B x by
typing

[x,lambda] = eig(A,B)

As an example, compute the eigenvalues and eigenvectors of a 3-by-3 matrix A:

A = [0 1 1;-1 0 0; 0 0 1];
[x,lambda]=eig(A);
lambda
lambda =

 0 + 1i 0 + 0i 0 + 0i
 0 + 0i 0 - 1i 0 + 0i
 0 + 0i 0 + 0i 1 + 0i

In this case, two of the eigenvalues are complex (i and −i), and the third one is 1. From
the definition of an eigenvector x, it is clear that you can multiply that vector by any
number and it is still an eigenvector. The eig function scales the eigenvectors so that
their Euclidean norm is 1.

For sparse eigenvalue problems, use the eigs function, which computes a few
eigenvalues and eigenvectors for a sparse matrix.
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

Singular Value Decomposition and Schur Decomposition

The functions svd and schur implement singular value decomposition and Schur
decomposition, respectively.

S I N G U L A R V A L U E D E C O M P O S I T I O N

For a real matrix A, there exist orthogonal matrices U and V such that UTAV = σ,
which is a diagonal matrix that contains the singular values of A. To compute the
singular values σ as well as U and V for a matrix, call the svd function:

[U,sigma,V] = svd(A);

One aspect of the singular values is their relation to matrix norms. For example, the
largest singular value is a common 2-norm of a matrix.

S C H U R D E C O M P O S I T I O N

For a square matrix A, there exists a unitary matrix Q such that QH A Q = T = D + N is
a Schur decomposition of A, where D is a diagonal matrix of eigenvalues, and N is a
strictly upper triangular matrix. There are two forms of the Schur decomposition: real
and complex Schur forms.

To compute the real Schur form enter

T = schur(A)

and to get the complex Schur form of A type

T = schur(A,'complex')

Using the default real form, schur puts the eigenvalues on the diagonal if they are real
and in a 2 × 2 block on the diagonal if they are complex. In the latter case, the complex
eigenvalues are the eigenvalues of each block.

The complex Schur form gives the eigenvalues on the diagonal, independent of
whether they are real or complex.

To get the unitary matrix Q, type

[U,T] = schur(A,...)

This example shows the structure of the Schur decomposition and its relationship to
the eigenvalues of a matrix:

A=[1 2 1;2 2 1; 3 2 1];
schur(A)

ans =
L I N E A R - A L G E B R A A L G O R I T H M S | 113

114 | C H A P T E
 4.828427 2.041241 0.620171
 0 -0.828427 0.669867
 0 0 7.031e-018

eig(A)
eig(A)

ans =

 4.828427
 -0.828427
 -7.031e-018

To reorder the unitary matrix U and Schur matrix T (the output from a call to schur),
so that a selected cluster of eigenvalues appears in the leading diagonal blocks, use the
ordschur function.

[U1,T1] = ordschur(U,T,order)

where the third input argument (order) can be a logical vector, where a true (1) entry
signifies a selected eigenvalue, or an integer vector, where each element corresponds
to one eigenvalue.

The Matrix Exponential

The function expm computes the matrix exponential, eA, for a square matrix A:

B = expm(A);

and it equals the series I + A + A2/2! + A3/3! + …

The matrix exponential of a diagonal matrix is a diagonal matrix with the nonzero
elements equal to .

Do not confuse this function with the elementwise exponential exp, which computes
the exponential for each element in the input vector.

The Matrix Logarithm

The function logm computes the matrix logarithm, ln(A), for a square matrix A:

B = logm(A);

The function uses an iterative algorithm to compute the principal logarithm of a matrix
A. This algorithm does not necessarily converge for all square matrices A, and it is only
defined for matrices with positive real eigenvalues.

eAii
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

Do not confuse this function with the elementwise logarithm log, which computes the
natural logarithm for each element in the input vector.

Evaluating Other Matrix Functions

In addition to the predefined functions, you can use the funm function to evaluate
additional functions that are possible to evaluate on a square matrix. The function must
have a Taylor series with an infinite radius of convergence, such as trigonometric
functions. In the M-file that you create for a matrix function, you must also define the
derivative of that function so that the function call can ask for a derivative of any order.
For example, to implement a matrix version of cosh, coshm, create a short M-file,
coshm.m:

function c = coshm(a,k)
if mod(k,2);
 c = sinh(a);
else
 c = cosh(a);
end

Depending on if k contains an even or odd number, the function returns the correct
derivative, sinh(a) for odd derivatives, and cosh(a) itself for even derivatives. To then
compute the hyperbolic cosine for a square matrix A:

coshypm = funm(A,'coshm');

In addition, you can pass additional properties such as tolerances using a third input
argument to funm. See the command-line help for funm or the COMSOL Script
Command Reference for details.

The Kronecker Tensor Product

The Kronecker tensor product of an m1-by-n1 matrix A and an m2-by-n2 matrix B is
an (m1m2)-by-(n1n2) matrix with elements formed according to the following
example for a 2-by-2 matrix A and a 4-by-2 matrix B:

so that the result is an 8-by-2 matrix.

To compute the Kronecker tensor product, use the kron function:

A B⊗
a11B a12B

a21B a22B
=

L I N E A R - A L G E B R A A L G O R I T H M S | 115

116 | C H A P T E
C = kron(A,B)

The following example shows what the Kronecker tensor product looks like for the
product of a 2-by-2 and a 2-by-3 matrix:

kron([1 2;0 2],[2,3,4;1,1,1])

ans =

 2 3 4 4 6 8
 1 1 1 2 2 2
 0 0 0 4 6 8
 0 0 0 2 2 2

Summary of Linear-Algebra Functions

The following list summarizes the linear-algebra functions in COMSOL Script:

TABLE 6-2: LINEAR ALGEBRA FUNCTIONS

FUNCTION NAME DESCRIPTION

chol Cholesky factorization

eig Compute eigenvalues and eigenvectors

eigs Compute a few eigenvalues and eigenvectors of a sparse matrix

expm Matrix exponential

funm Evaluate matrix function

hess Hessenberg form

kron Kronecker tensor product

logm Matrix logarithm

lu LU decomposition

mldivide, / Solve linear system of equations

mrdivide, \

null

Solve linear system of equations

Orthonormal basis of the null space of a matrix

ordschur Reorder Schur factorization

orth Orthonormal basis of the range of a matrix

qr QR factorization

schur Schur decomposition

svd Singular value decomposition
R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

References

1. Gene H. Golub and Charles F. van Loan, Matrix Computations, 3rd ed., The
Johns Hopkins University Press, 1996.

2. http://www.netlib.org/lapack/.
L I N E A R - A L G E B R A A L G O R I T H M S | 117

118 | C H A P T E
 R 6 : L I N E A R A L G E B R A A N D M A T R I X F U N C T I O N S

 7
S c r i p t s , F u n c t i o n s , a n d M - f i l e s
This chapter reviews the difference between script files and functions, and it also
shows how to work with these M-files in the COMSOL Script environment. For
more information about Model M-files, which are script files that contain
COMSOL Multiphysics models, see the COMSOL Multiphysics User’s Guide and
the COMSOL Multiphysics Scripting Guide.
 119

120 | C H A P T E
Ove r v i ew o f M - F i l e s

COMSOL Script lets you write a program that contains a wide range of functions and
language components. In that way you can automate computations and extend the
COMSOL Script environment with new functions. To create a COMSOL Script
program, simply collect the statements that make up the code into an M-file, a text file
with the extension .m. To run the code in the M-file, save it in a directory that is part
of the M-file path and call it from the command line.

There are two types of M-files:

• Script files, which are collections of COMSOL Script commands. You run these files
exactly as if you were to type them at the command prompt. All commands operate
in the main workspace and can modify, create, and delete variables in the that
workspace. Scripts are useful for automating sequences of commands. A script
allows no input or output arguments.

• Functions, which have a separate workspace and can handle multiple input and
output arguments. Use functions to extend the COMSOL Script language with
functionality that suits your applications.

Creating an M-file

Because all M-files are plain-text files, you can create or modify them with any text
editor. An M-file must have the extension .m, and function names can include only the
following characters:

• Letters (the name must begin with a letter)

• Numbers

• Underscores

For variable names, the same rules apply (see “Naming Variables” on page 89).

The length of an M-file name must not be longer than the number that the function
namelengthmax returns (the same limit applies to variable names). The operating
system can also have restrictions on the length of a file name.

I N S E R T I N G C O M M E N T S

You can insert comments anywhere in an M-file with the % character. All text on a line
after the % character becomes a comment that COMSOL Script does not execute.
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

D I S P L A Y I N G C O N T E N T S O F A N M - F I L E

Use the type function to display the contents of an M-file or any other text file. The
input can be the absolute path to a text file or the name of an M-file. For example, type
std displays the contents of the COMSOL Script function std.m.

E C H O I N G T H E L I N E S O F A M - F I L E

To enable echoing of the lines that COMSOL Script run in a user-defined function or
script, use the echo function:

echo on

turns on echoing of all user-defined M-files.

echo off

turns off the echoing.

To toggle echoing on and off for the function myfcn, type

echo myfcn

The M-file Path

Any M-files you wish to call must reside in a directory somewhere on the M-file path.
To check what the current path is, type

path

You can also use the path function to set the path and to prepend or append directories
to the current path. For instance,

path('C:\MyCOMSOLFcns', path)

adds the directory C:\MyCOMSOLFcns to the top of the current path. You can also use
the addpath function to add directories to the M-file path; the rmpath function
removes paths.

To get the path string for an entire directory tree, including all subdirectories, use the
function genpath.

To refresh the view of the path, use the function rehash. For each function on the
path, rehash checks if that function has been modified since it was loaded into
memory and reloads it if this is the case. Type

rehash path

to refresh the view of all directories on the path and load new and modified functions.
O V E R V I E W O F M - F I L E S | 121

122 | C H A P T E
If you have created a new function that “shadows” an existing function on the path,
you must run rehash path.

Precedence Order For M-files, Functions, and Variables

In an M-file path you can place M-file functions, built-in functions, and variables all
with the same name. If you type that name at the command prompt, the following
precedence order determines which of the variables and functions COMSOL Script
calls first:

1 Variables in the current workspace and inline functions (see “Inline Functions” on
page 135)

2 Built-in functions

3 Local functions (those inside a function; see “Local Functions (Subfunctions)” on
page 129)

4 Functions in the current directory

5 Functions elsewhere on the path (if there is more than one, the function that appears
first in the M-file path takes precedence)

This means that variables have the highest precedence, so you must clear any variable
with the same name as a function. Also, you cannot write a function with the same
name as a built-in function (most of the functions in the COMSOL Script libraries are
built-in functions). To make COMSOL Script run a built-in function even if there is a
variable with same name, use the builtin command. For example,

d = builtin('det',[1 6; 4 8])

computes the determinant of a matrix even if a variable det exists in the current
workspace.

To check which function COMSOL Script runs, use the which function:

which fft

fft is a built-in function.

The exist function returns one of the following integers when you call it with the
name of a variable or function:

• 0 if no variable or function with that name exists

• 1 if it is a variable

• 2 if it is a file
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

• 5 if it is a built-in function

• 7 if it is a directory

• 8 if it is a Java class

exist fft

ans =

5

Retrieving the Name of the Running M-File

Use the function mfilename to get the name of the running M-file (script or
function). It is only useful to call this function in an M-file. From the COMSOL Script
command window, a call to mfilename returns an empty string.

Encrypting M-files

You can protect the contents of custom M-files using the encrypt command, which
creates encrypted versions of the files in the input arguments. The input files must exist
and be valid M-files. For each input file, COMSOL Script creates an MC-file in the
current directory (extension .mc). When you run an MC-file, it is equivalent to the
original M-file, but encrypt has scrambled its contents to make it unreadable. Use the
optional input argument -inplace to make encrypt store each MC-file in the same
directories as the corresponding M-file.
O V E R V I E W O F M - F I L E S | 123

124 | C H A P T E
S c r i p t s

Creating and Running Scripts

Scripts automate sequences of COMSOL Script commands. A script does not require
any special syntax: simply add COMSOL Script statements and comments into an
M-file. For instance, the following script plots a number of sine curves of different
frequencies:

x=0:0.1:10;
colors = 'krgymcbkr'
plot(x,sin(2*pi*x));
hold on
for k=2:7
 plot(x,k*sin(2*pi*k*x),colors(k-1));
end
hold off

If you save this command sequence in an M-file called sinescript.m in the current
directory or somewhere on the M-file path, you can then call it from the COMSOL
Script command prompt at any time by just typing its name:

sinescript
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

This command then produces this plot:

In addition, it creates the variables x, colors, and k, which remain in the main
workspace. This modification of the workspace contents is something that you can take
advantage of by writing scripts that create workspace data, for example, by reading data
from files.

You can also execute a script with the run function as in

run sinescript

This command also works when you put the name of the script in a string variable:

script = 'sinescript';
run(script)

Running Scripts in Batch Mode

It is possible to run COMSOL Script files in batch mode without using the command
window. Instead, you invoke the scripts from the operating system command prompt
with the comsol command:

comsol batch myscript
S C R I P T S | 125

126 | C H A P T E
runs the script in myscript.m in batch mode. The script cannot contain any interactive
commands. Plots work only if you have an active display, but the comsol command
quits after running the script, so plots do not remain on the screen and you lose any
data that the script does not save to file. Running scripts in batch mode can be useful,
for example, for processing of large amounts of data to and from data files.

Note: In Windows, use comsolbatch.exe or comsolbatch64.exe instead of
comsol batch; for example, comsolbatch myscript to run the script myscript.m.
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

Fun c t i o n s

Functions can extend the COMSOL Script language with custom commands that you
call just like built-in functions (in fact, some of the functions in COMSOL Script are
M-files just like those you add yourself).

Functions are M-files that typically accept one or more input arguments and provide
results in one or more output arguments. The code in a function operates in a separate
function workspace, so the variables in a function do not appear in the main
workspace.

Syntax for Function M-Files

For an M-file to work as a function, it must contain certain components: a definition,
help text, and a body.

T H E F U N C T I O N D E F I N I T I O N

The function definition is the first line in the M-file and starts with the keyword
function:

function f = fibonacci(n)

The function arguments include the following:

• The output arguments, which in this case is only one: f. If you have more than one
output argument, enclose them in brackets and separate them by commas:

function [a,b] = myfcn(c)

If the function has no output arguments, the output can be blank:

function drawthis(data)

• The function’s name, which should be the same as the name of the M-file (if they
differ, the name of the M-file invokes the function)

Note: Names of functions and variables are case sensitive. We recommend using all
lowercase letters for function names.

• The input arguments, enclosed in parenthesis. Typically, a function has at least one
input argument.
F U N C T I O N S | 127

128 | C H A P T E
Note: You can create functions that work with a variable number of input and output
arguments (see “Variable Number of Input and Output Arguments” on page 132).

O N L I N E H E L P T E X T

The second line in the M-file, immediately after the function definition, is a comment
line (starting with %) that serves as a 1-line summary of the function. For example:

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.

This line appears when you search for functions using lookfor.

Immediately after this line you can add comment lines that acts as help text:

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.
% y = fibonacci(n) computes the n:th Fibonacci number.
% A Fibonacci number is the sum of the two previous
% Fibonacci numbers. The first and second Fibonacci numbers
% are 1.

This text appears when you type help fibonacci at the command prompt.

F U N C T I O N B O D Y A N D A D D I T I O N A L C O M M E N T S

The Help text ends when the function body starts. It can start with a blank line. Any
comment lines appearing after a line of code or an empty line is considered an internal
comment that the program does not display. In the function body, you can mix lines
of code, comment lines, and empty lines.

A Short Example—Fibonacci Numbers

As a short example of a function, write one that returns the nth Fibonacci number. The
function has one input argument, n, for the Fibonacci number to compute, and one
output argument, f, the corresponding Fibonacci number.

The definition of a Fibonacci number Fn is

for n = 3, 4, … with F1 = F2 = 1.

Saving the following code in fibonacci.m implements a function fibonacci:

Fn Fn 1– Fn 2–+=
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.
% y = fibonacci(n) computes the n:th Fibonacci number.
% A Fibonacci number is the sum of the two previou
% Fibonacci numbers. The first and second Fibonacci numbers
% are 1.
y = [1 1];
for i=3:n
 y(i) = y(i-1)+y(i-2);
end
f = y(n);

This function computes all n Fibonacci numbers in y and returns the nth one in f:

f = fibonacci(8)

f =

21

A L T E R N A T I V E S O L U T I O N U S I N G R E C U R S I V E F U N C T I O N C A L L S

It is possible for a function to call itself in recursive function calls. Because Fibonacci
numbers are a sum of the two previous Fibonacci numbers, this case provides an
example of where recursive function calls can be useful:

function f = fibonacci(n)
%FIBONACCI Compute the Fibonacci number.
% y = fibonacci(n) computes the n:th Fibonacci number.
% A Fibonacci number is the sum of the two previou
% Fibonacci numbers. The first and second Fibonacci numbers
% are 1.
if n<3
 f = 1;
else
 f = fibonacci(n-1)+fibonacci(n-2);
end

Note: Make sure that the chain of recursive function calls is limited. Otherwise you
could reach a recursion limit and the function will not run to completion.

Local Functions (Subfunctions)

A function can contain other functions, which are local functions or subfunctions that
only the code in the main function can invoke. They are not available outside of the
F U N C T I O N S | 129

130 | C H A P T E
main function. All subfunctions must reside in the same file as the main function, so a
function with two subfunction has the following structure:

functin y = main_function(a,b)
…
t = sub_function1(a);
…
s = sub_function2(b);
…
y = t+s;
…
function y = sub_function1(a)
…
function y = sub_function2(a)
…

where … indicates additional code in the main function and the subfunctions.

Calling Functions

The calling syntax for functions is:

output = functionname(input1, input2, ...)

with one output argument, and

[output1, output2, …] = functionname(input1, input2, ...)

with multiple output arguments (notice that you must surround the variables for the
output arguments in brackets). COMSOL Script passes the input variables by value.

It is possible to call a function with fewer input arguments than the ones that it defines
(a function should support this capability or otherwise issue an error message). If you
provide more than the maximum number of input arguments, an error occurs (see
“Variable Number of Input and Output Arguments” on page 132 for information
about supporting a variable number of input arguments).

A L T E R N A T I V E F U N C T I O N C A L L S Y N T A X

For functions that take strings as inputs, an alternative calling syntax is:

functionname input1 input2 …

Using this syntax, COMSOL Script interprets the input arguments as string literals. No
output arguments are allowed. This syntax is useful with commands such as help,
save, load, disp, and clear.

For example,
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

load mydata -ascii

is similar to

load('mydata','-ascii')

and is easier to type.

There are two situations where you must use the standard function-calling syntax:

• If the input is stored in a string:

i = 2;
datafile = ['mydata', int2str(i)];
load(datafile,'-ascii')

• If you want to store the output in a variable:

s = load('mydata','-ascii');

Working With Function Arguments

A number of functions can help you work with a variable number of input and output
arguments.

C H E C K I N G T H E N U M B E R O F I N P U T A N D O U T P U T A R G U M E N T S

Use the nargin and nargout functions to check the number of input and output
arguments, respectively, in a call to a function.

 nargin makes it possible to branch the code based on the number of input arguments
or to supply default values if the function call does not provide all the input variables:

function f = inputchk(x,y,z)

switch nargin
case 1
 error('inputchk must have at least 2 input arguments.');
case 2
 z = 0;
end
f = x+y+z;

You can also use nargchk to check the range for the number of input variables. It takes
the lower bound, upper bound, and actual number of input arguments and returns an
error message if the actual number is not within these bounds. The following code
checks that there are either 2 or 3 input arguments and displays an error otherwise:

msg = nargchk(2,3,nargin);
if ~isempty(msg)
F U N C T I O N S | 131

132 | C H A P T E
 error(msg)
end

Using nargout makes it possible to supply the output variables that the function call
asks for. For example, a plot function can return a handle to the graphical object only
if the user calls it with an output argument h. The following code snippet placed at the
end of such a function uses nargout to accomplish this task:

if nargout==1
 h = h_object;
end

Here h_object is a local variable that contains the handle.

You can check the range for the number of output variables using nargoutchk in the
same way as nargchk works for input arguments.

Note: For functions with output arguments, it is important that the function assigns a
value for each of them in all branches where the function call returns. Otherwise, an
error occurs because of an unassigned output variable.

V A R I A B L E N U M B E R O F I N P U T A N D O U T P U T A R G U M E N T S

Instead of providing a large number of input and output arguments to cover all
possible cases, the varargin and varargout functions allow a variable number of
input and output arguments. You can combine both functions with conventional input
and output arguments, but they must appear last in the argument list.

Both varargin and varargout are cell arrays, where each cell contains one argument.
To unpack them, loop over all cells:

function variableargs(varargin)
for k = 1:length(varargin)
 a1 = varargin{1};
 a2 = varargin{2}
...
end

The unpacking requires knowledge about what the contents of the different input
arguments should be. A common use of varargin is to handle multiple input
arguments in a call to another function from within the function that you write. For
example, the following function draws a line plot of a mathematical function in the
interval between 0 and 1, and it then accepts additional property names and property
values that control the line’s appearance:
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

function h = fcnplot(fcn,varargin)
x=0:0.1:10;
y = feval(fcn,x);
cla
hl=line(x,y,varargin{:});
if nargout==1
 h = hl;
end

(See “Evaluating Functions” on page 135 for more information about feval.)

The call to line includes the x and y data plus additional comma-separated input
arguments through varargin{:}. The call

fcnplot('sin','color','g','linewidth',3)

produces this plot:

The following code provides an example of how to use varargout:

function [varargout]=variableoutputs(input)
for k = 1:nargout
 varargout{k} = input(k);
end
F U N C T I O N S | 133

134 | C H A P T E
This routine works if input contains a numeric vector of the same length as the
number of output arguments. Each output argument then contains a scalar numeric
value from the array.

C H E C K I N G T H E N A M E S O F V A R I A B L E S I N I N P U T A R G U M E N T S

To get the name of an input to a function, use the inputname function:

 name = inputname(2);

returns the name of the variable that is used as the second input argument to the
function that currently runs. If the input does not map to a variable in the calling
workspace, inputname returns an empty string.

S U M M A R Y O F F U N C T I O N - A R G U M E N T F U N C T I O N S

The following table summarizes the functions for working with input and output
arguments

Updating and Locking Functions

To remove all user-defined functions from the workspace to make sure that COMSOL
Script runs an updated version, type

clear functions

To prevent this command from clearing a certain function, use the mlock function:

mlock fibonacci

TABLE 7-1: FUNCTION-ARGUMENT FUNCTIONS

FUNCTION NAME DESCRIPTION

inputname Get the name of an input to a function

nargchk Check that the number of arguments supplied to a function is

in a specified range

nargin Number of input arguments

nargout Number of output arguments

nargoutchk Check that the number of outputs expected from a function

is in a specified range

varargin Retrieve arguments to a function with variable number of

input arguments

varargout Set outputs from a function with a variable number of outputs
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

It locks the function fibonacci in memory so that the clear functions command
does not remove it. To remove the function lock, type

munlock fibonacci

Use mislocked to check if a function is locked in memory.

Locking a function can be useful to prevent the clear command from removing it.
Locking a function prevents any persistent variables defined in the file from getting
reinitialized.

Evaluating Functions

The feval command evaluates functions using a string with the function name as the
first input argument. It is useful if the function name comes from a file or as an input
argument. The following code snippet asks the user for a function name and then calls
it with one input argument. The code assumes that this is a function of one variable
that operates pointwise on a vector, as are most math functions in COMSOL Script.

fcn = input('Type a function name:','s');
y = feval(fcn,0:0.1:10);

Inline Functions

Inline functions provide a way to create functions based on an expression that you give
as a string:

scfun = inline('sin(2*pi*x).*cos(y.^2)');

Then call scfun with two input variables, x and y:

scfun(0.25,0)

ans =

1

You can place explicit input arguments in the call to inline, but COMSOL Script
finds the inputs as the identifiers that you can also find with the function symvar:

c=symvar('sin(2*pi*x).*cos(y.^2)')

c =

 'x'
 'y'
F U N C T I O N S | 135

136 | C H A P T E
symvar ignores the following common identifiers: eps, i, inf, Inf, nan, NaN, and pi.

To check the argument names for an inline function, use argnames.

To get the expression for an inline function, call formula, which returns it in a string.

A useful function when working with expressions for inline functions is vectorize,
which makes sure that all multiplication, division, and power operators are the
pointwise operators .*, ./, and .^ instead of *, /, and ^, which are matrix operators
in COMSOL Script. Consider this example:

vectorize('sin(2*pi*x)*cos(y^2)')

ans =

 sin(2.*pi.*x).*cos(y.^2)
R 7 : S C R I P T S , F U N C T I O N S , A N D M - F I L E S

 8
D a t a A n a l y s i s , S t a t i s t i c s , a n d I / O
This chapter describes the data-analysis capabilities, statistics functions,
signal-processing tools, and I/O features in COMSOL Script. Using these
functions, you can read data and perform statistical and other types of analysis. The
chapter also contains information about date and time functions and functions.
 137

138 | C H A P T E
Da t a - Ana l y s i s O v e r v i ew

COMSOL Script provides many functions for data analysis and statistics:

• Statistical functions for the computation of minima and maxima, mean values,
medians, and other statistical measures as well as sorting data and making histogram
counts

• Signal-processing tools such as the FFT and a general function for 1D digital
filtering

• Functions for interpolation, triangulation, and polynomials

• Numerical differentiation and integration routines
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

S t a t i s t i c a l Ana l y s i s

COMSOL Script provides many basic functions for statistical analysis and sorting.

Computing Minimum and Maximum Values

Compute minimum and maximum values for any numerical array using the functions
min and max:

a = rand(1,5)

a =

 0.132797 0.633481 0.136563 0.519387 0.242814

max(a)

ans =

0.633481

min(a)
ans =

0.132797

For complex data, min and max use the magnitude only and ignore the phase:

max(2-2i,2+i)

ans =

2 - 2i

This example also illustrates the syntax min(A,B) and max(A,B), where the functions
return the largest or smallest of A and B, both matrices that must be of the same size
(or scalar, which COMSOL Script expands).

For a matrix, min and max return a row vector containing the min or max of each
column in the matrix. For multidimensional arrays, they return the min/max along the
first nonsingleton dimension of the array. You can also use the syntax min(A,[],dim)
and max(A,[],dim) to take the min and max along the dimension in dim:

A = rand(3,1,2)

A(:,:,1) =
S T A T I S T I C A L A N A L Y S I S | 139

140 | C H A P T E
 0.873289
 0.750284
 0.841772

A(:,:,2) =

 0.297192
 0.763758
 0.751643

max(A)

ans(:,:,1) =

 0.873289

ans(:,:,2) =

 0.763758

max(A,[],2)

ans(:,:,1) =

 0.873289
 0.750284
 0.841772

ans(:,:,2) =

 0.297192
 0.763758
 0.751643

max(A,[],3)

ans =

 0.873289
 0.763758
 0.841772

In this case, 1 is the first nonsingleton dimension, so max(A,[],1) is the same as
max(A).

O B T A I N I N G T H E I N D E X T O T H E M I N I M U M O R M A X I M U M VA L U E

By adding an output argument in the calls to min and max, you get the indices for the
smallest or largest elements:
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

x = [1 9 2 3 4 5];
[xmax, i] = max(x)

xmax =

9

i =

2

Computing Mean and Median Values

Similarly, call mean and median to compute the mean and median values for an array:

A = [1 1:10];
mean(A)

ans =

5.090909

median(A)
ans =

5

For a matrix, mean and median work in the same way as max and mean.

Computing Standard Deviations, Variances, and Correlations

S T A N D A R D D E V I A T I O N A N D V A R I A N C E

To compute the standard deviation, use the std function. Specifically, y = std(X)
and y = std(X,0) compute the standard deviation of X, normalizing Y by N − 1,
where N is the sample size. Similarly, y = std(X,1) computes the standard deviation
of X, normalizing y by N.

You can also employ a weight vector w to compute the standard deviation. Here,
y = std(X,w) computes the standard deviation of X using the weight vector w, which
std normalizes to sum to one. Note that w must contain only nonnegative elements
and must be of the same length as X along the dimension for which std computes the
standard deviation.
S T A T I S T I C A L A N A L Y S I S | 141

142 | C H A P T E
For a matrix, std returns a row vector containing the standard deviation of each
column in the matrix. For a multidimensional array, std returns the standard deviation
along the array’s first nonsingleton dimension. Use the syntax std(A,w,dim) to
compute the standard deviation along the dimension in dim.

The var function computes the variance, and it has the same syntax and input
arguments as std. For the same input, std(A) is the same as sqrt(var(A)).

C O V A R I A N C E M A T R I C E S

Use the covar function to compute the covariance matrix for a matrix X:

X = [0 1 2; 2 3 4;1 0 3];
c = cov(X);
v = diag(c)';
v1 = var(X);

As you can se if you run this script, the diagonal of c contains the variance of each
column of X. The cov function uses normalization by M−1, where M is the number of
observations, and it also removes the mean from each column before calculation.

C O R R E L A T I O N C O E F F I C I E N T S

If you want to compute correlation coefficients, use the corrcoef function. The input
X is a matrix where each row is an observation and each column a variable. The
resulting correlation coefficients matrix R is a matrix such that each element

where C is the covariance matrix of the input X. Using an optional second output
argument, corrcoef can also return the p-value, which represents the probability of
getting a correlation as large as the observed value, given that the null hypothesis is
true. Optional third and fourth output arguments contain lower and upper bounds,
respectively, for a confidence interval that you can specify. The default setting provides
95% confidence intervals.

If the input data contains NaNs, which can represent missing data (see “Handling
NaNs and Missing Data” on page 145 for more information), you can control how
corrcoef treats these NaNs using the property rows. The string all (the default)
means that all data is used, resulting in NaNs in the output. If you provide the string
complete, the function ignores all rows that contain NaNs. The string rows, finally,
makes corrcoef use rows with no NaNs in column i or j to compute Rij.

Rij
Cij

CiiCjj

--------------------=
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

Computing Sums and Products

COMSOL Script includes functions for both standard sums and products of the
elements in an array and accumulated sums and products.

The function sum computes the sum of an array, while prod computes its product. For
a matrix, the output of sum and prod is a row vector containing the sum or product of
each column in the matrix. For a multidimensional array, the output is the sum or
product along the first nonsingleton dimension. Using sum(X,dim) or prod(X,dim)
returns the sum or product of X along the dimension in dim.

The functions cumsum and cumprod compute the accumulated sum and the
accumulated product, respectively. The output is the same size as the input and
contains the cumulative sum or cumulative product along the first nonsingleton
dimension of the input array. Use cumsum(X,dim) and cumprod(X,dim) to compute
the cumulative sum and cumulative product of the elements along dimension dim of
the input array X.

Some examples:

• Compute the factorial of 10 (10!):

prod(1:10);

and all factorials from 1! to 10!:

cumprod(1:10)

(You can also use the factorial function to compute factorials.)

• Let the 3 × 12 array A contain sales data from three offices during each month of a
year:

A=round(1000*rand(3,12))
A =

 471 415 522 154 171 203 981 998 591 533 602 768
 767 119 107 190 656 726 306 134 447 605 635 338
 968 909 369 600 152 129 455 792 663 238 496 950

Then, to compute the total sales for each month:

sum(A)

ans =

 2206 1443 998 944 979 1058
 1742 1924 1701 1376 1733 2056

To compute the accumulated total sales for each month and each office type:
S T A T I S T I C A L A N A L Y S I S | 143

144 | C H A P T E
cumsum(A)

The accumulated total sales for each month is:

cumsum(sum(A))

The sum total of all sales during the year is:

sum(sum(A))

The total sales during the year for each office is:

sum(A,2)

Sorting Data

Use the sort function to sort array elements in ascending order. If the data is in a
matrix, the function sorts each column. For a multidimensional array, it sorts along the
first nonsingleton dimension. Further, y = sort(x,dim) sorts x along the dimension
in dim.

To get the original index of the elements, add an extra output argument:

[y,ind] = sort(x);

ind is then an array of the same size as x containing the original index of each element
in y along the dimension in which X is sorted.

If the input data contains complex values, sort sorts them first by magnitude and then
by angle.

To sort rows, the function y = sortrows(x) sorts the rows of x in ascending order
(x must be a matrix or a column vector). Using a second input argument, y =
sortrows(x,col), sorts the rows of x according to the columns specified in col,
which must be a vector of positive integers, where each entry specifies one column.

sortrows behaves like a dictionary sort:

A=strvcat('Azimuth','Aluminum','Aluminium','Alumina','Alligator')
A =

 Azimuth
 Aluminum
 Aluminium
 Alumina
 Alligator

char(sortrows(abs(A)))

ans =
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

 Alligator
 Alumina
 Aluminium
 Aluminum
 Azimuth

char(sortrows(abs(A),7))

As =

 Alumina
 Azimuth
 Aluminium
 Alligator
 Aluminum

The last call to sortrows in this example made it sort along Column 7.

Handling NaNs and Missing Data

When an NaN appears in an array, it can represent missing or non-numeric data. In
COMSOL Script, an NaN propagates through computations because the output from
most functions is NaN if the input contains an NaN. So, to do statistical measures on
data with NaNs, you must first remove them and then make the computations on the
remaining data.

Consider finding the mean value of the columns in the matrix A:

A = [1 2 NaN 3 4; 5 NaN 6 NaN NaN; NaN 7 8 9 10]'

A =

 1 5 NaN
 2 NaN 7
 NaN 6 8
 3 NaN 9
 4 NaN 10

mean(A)

ans =

 NaN NaN NaN

Instead of using mean directly, use a loop that removes the NaNs from each column:

for i=1:size(A,2)
 col = A(:,i);
S T A T I S T I C A L A N A L Y S I S | 145

146 | C H A P T E
 col = col(~isnan(col));
 mn(i) = mean(col);
end

mn

mn =

 2.500000 5.500000 8.500000

The need for the loop arises because the columns of data vary in size after the removal
of the NaNs. In the same way you could remove or replace data that, for example,
represents outliers in a data set.

For information about how the function corrcoef treats NaNs when computing
correlation coefficients, see “Correlation Coefficients” on page 142.

Summary of Functions for Statistical Analysis

The following table summarizes the functions for statistical analysis:

TABLE 8-1: FUNCTIONS FOR STATISTICAL ANALYSIS AND SORTING

FUNCTION NAME DESCRIPTION

corrcoef Compute correlation coefficients

cov Compute the covariance matrix

cumprod Compute the accumulated product of array elements

cumsum Compute the accumulated sum of array elements

histc Histogram count

max Compute the maximum value

mean Compute the mean value

median Compute the median value

min Compute the minimum value

prod Compute the product of array elements

sort Sort data in an array

sortrows Sort rows

std Compute the standard deviation

subspace Compute the principal angle between subspaces

sum Compute the sum

var Compute the variance
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

Da t a Ana l y s i s P l o t s

Bar Graphs

The function bar creates a bar graph based on the input data. For example,

sales = [120; 103; 136; 127; 141; 128; 156; 180; 173;
 182; 198; 210];
months = 1:12;
bar(months,sales)

creates the following bar graph:

You can also create groups of bars using a matrix as the second input argument:

sales = round(100*rand(10,12));
years = 1:10;
bar(years,sales)
D A T A A N A L Y S I S P L O T S | 147

148 | C H A P T E
Each group of 12 bars in the following plot represents the monthly sales during one
year

Using additional input arguments, you can stack the bars and change their color and
relative width.

Error Bars

You can add error bars to plots of data using the errorbar function. Either provide
both a lower and an upper error range or a single error range that applies to both the
lower and upper error ranges. In addition, you can supply a string that controls the line
style and color (see “The Plot Command” on page 205 for details) and also additional
property name and property value pairs for the line object. As an example, show some
random data with random lower and upper error ranges using red asterisks to indicate
the data points:

x = 1:10;
y = rand(size(x));
low = 0.25*rand(size(x));
high = 0.25*rand(size(x));
errorbar(x,y,low,high,'r*');
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

Histograms

To sort data into bins and plot them as a histogram, use the hist function.

r = randn(1,1000);
n = hist(r,20);

creates 1000 normally distributed random numbers and uses hist to divide them into
20 bins (the default is 10 bins) of equal size. The output n is a 1× 20 row vector that
contains the number of elements in r that falls into each bin. To plot this as a
histogram, call hist without output arguments:

hist(r,20)
title('Histogram of normally distributed random numbers');
D A T A A N A L Y S I S P L O T S | 149

150 | C H A P T E
The function histc stores data in bins specified by a second input argument:

n = histc(x,edges)

where edges is a vector containing monotonically nondecreasing values so that x(i)
falls in bin k if edges(k) <= x(i) < edges(k+1). At the end, the last bin includes the
values in x that match it exactly, so to include all values (except NaNs) use -inf and
inf at the ends of edges.

Stairstep Plots

The function stairs creates a stairstep graph based on the input data. For example,

x = linspace(1,10,30);
y = sin(x);
stairs(x,y,'r')

creates the following stairstep graph:
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

You can also create groups of stairs using matrices as input arguments:

x = 1:0.1:10;
y1 = sin(x); y2 = cos(x);
stairs([x(:),x(:)],[y1(:),y2(:)]);
D A T A A N A L Y S I S P L O T S | 151

152 | C H A P T E
This plots the sine and cosine functions as stairstep graphs next to each other:

Using additional input arguments, you can change the properties of the graph, such as
line width, color etc.

Stem Plots

The functions stem and stem3 create a stem graphs based on the input data. For
example,

x = 1:10;
y = sin(x);
stem(x,y,'r--');
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

creates the following graph:

You can also create groups of stems using a matrices as input arguments:

x1 = 1:10; x2 = x1+0.3;
y1 = sin(x1); y2 = cos(x2);
h=stem([x1(:),x2(:)],[y1(:),y2(:)], 'marker','cycle');

This plots the sine and cosine functions as stem graphs next to each other, using
different markers:
D A T A A N A L Y S I S P L O T S | 153

154 | C H A P T E
Using additional input arguments, you can change the properties of the graph, such as
line width, color etc.

Summary of Functions for Data Analysis Plots

The following table summarizes the functions for statistical analysis:

TABLE 8-2: FUNCTIONS FOR STATISTICAL ANALYSIS AND SORTING

FUNCTION NAME DESCRIPTION

bar Bar graph plot

errorbar Error bar plot

hist Calculate histogram data or plot histogram

stairs Stairstep plot

stem Stem plot in 2D

stem3 Stem plot in 3D
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

S i g n a l - P r o c e s s i n g T oo l s

COMSOL Script contains two signal-processing tools:

• The fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT)

• A general function for 1D digital (discrete) filtering.

Using the FFT Functions

The FFT algorithm computes the discrete fast Fourier transform of a sequence of input
data. It is an extremely common numerical algorithm in many signal-processing
applications such as filtering and power-spectrum estimations.

COMSOL Script uses the fft function to compute the FFT of a vector or a matrix.
For a matrix, it computes the FFT of the columns. Additionally, 2D and n-dimensional
FFT routines (fft2 and fftn) are also available. To calculate the inverse FFT, select
one of the functions ifft, ifft2, and ifftn.

E X A M P L E O F A N F F T F O R T H E S I N E F U N C T I O N

The sine function

has the Fourier transform:

To show this using COMSOL Script, run the following code:

x = -10:0.1:10;
k0 = 0.2;
y = sin(2*pi*k0*x);
subplot(3,1,1); plot(x,y);
title('The sine wave')
yf = fft(y);
X = -5:1/20:5;
subplot(3,1,2); plot(X,fftshift(abs(yf)));
title('The Fourier transform of a sine wave')
subplot(3,1,3); plot(x,ifft(yf));
title('The sine wave computed using ifft')

y 2πk0x()sin=

1
2
---i δ k k0+() δ k k0–()–[]
S I G N A L - P R O C E S S I N G TO O L S | 155

156 | C H A P T E
Figure 8-1: The original sine wave (top), the FFT of the sine wave (middle), and the
reconstruction of the original sine wave from the inverse FFT of the FFT of the input data
(bottom).

The function ifft shifts the frequency spectrum so that the 0 frequency point appears
in the middle, showing the peaks in the Fourier transform at k0 and −k0.

Type yf to see that the FFT of the sine wave contains complex data (the plot shows
only the real part).

Using the Digital Filter Function

filter is a general-purpose function for performing 1D digital filtering. y =
filter(b,a,x) works with a filter that is a direct form II transposed implementation
of the standard difference equation:

It implements a filter of order n−1. By specifying the a and b coefficients as vectors in
the inputs a and b, you can realize different filter types, discrete transfer functions, or

a1yn b1xn b2xn 1– … bnb 1+ xn nb– a2yn 1–– …– ana 1+ yn na––+ + +=
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

general difference equations by indentifying the number of a and b coefficients and
their values. If a1 is not equal to 1, filter normalizes all other coefficients using a1.

E X A M P L E O F F I L T E R F O R A F I R S T - O R D E R S T E P R E S P O N S E

Consider a standard first-order step response:

Using a simple difference approximation with the step h, the equivalent discrete
transfer function is

where yn is the output at time t, and yn-1 is the output at t−h. The following code
implements this equation using the filter function and tests it on an input step:

h = 0.1;
t = 0:h:10;
u = zeros(size(t));
u(11:end) = 1;
plot(t,u)
k = 1;
tau = 2;
a = [h+tau, -tau];
b = h*k;
y = filter(b,a,u);
hold on;
plot(t,y,'k--')

y k
1 τs+
---------------u=

h τ+()yn khun τyn 1–+=
S I G N A L - P R O C E S S I N G TO O L S | 157

158 | C H A P T E
Figure 8-2: Input signal (blue, solid) and simulated first-order step response (black,
dashed).

Simulating Discrete-Time State-Space Models

Use the dlsim function to simulate discrete-time state-space models on the form

The dlsim function computes the output y and the states x with the input signal u and
the state-space matrices A, B, C, and D as inputs. You can also provide an optional
initial state x0:

[y,x] = dlsim(A,B,C,D,u,x0);

x k 1+[] Ax k[] Bu k[]+=

y k[] Cx k[] Du k[]+=
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

Note: The dlsim function is a low-level function for state-space simulation. The
Signals and Systems Lab contains a comprehensive suite of tools for discrete-time and
continuous-time systems modeling and simulation.

Summary of Signal-Processing Functions

The following table summarizes the signal-processing functions in COMSOL Script:

TABLE 8-3: SIGNAL PROCESSING FUNCTIONS

FUNCTION NAME DESCRIPTION

dlsim Simulate discrete-time state-space model

fft Compute the fast Fourier transform

fft2 Compute the 2D fast Fourier transform

fftn Compute the n-dimensional fast Fourier transform

fftshift Shift a frequency spectrum computed using FFT

filter 1D digital filtering

ifft Compute the inverse fast Four transform

ifft2 Compute the inverse 2D fast Four transform

ifftn Compute the inverse n-dimensional fast Four transform

ifftshift Undo the frequency spectrum shift performed by fftshift
S I G N A L - P R O C E S S I N G TO O L S | 159

160 | C H A P T E
I n t e r p o l a t i o n and Po l y n om i a l s

This section describes the interpolation, triangulation, and polynomial functions in
COMSOL Script.

Interpolating Data

For interpolating data, COMSOL Script provides routines for 1D, 2D, and 3D data:
interp1, interp2, and interp3, respectively.

y = interp1(x,y,xi) implements a linear interpolation to determine y = f(xi) for
y = f(x). The default method is linear interpolation, but you can select another
interpolation method by providing one of the strings in Table 8-4 as an extra input
argument: y = interp1(x,y,xi,method):

For 2D and 3D interpolation, only nearest and linear are possible choices. The 2D
and 3D interpolations can handle vectors of x, y, and z (3D only) data and also a grid
matrix that you can generate with the meshgrid function.

E X A M P L E O F 1 D I N T E R P O L A T I O N

Consider interpolation within the following function:

in the interval between 0 and 1:

x = 0:0.1:1;
y = 3*sin(pi*x).*exp(sin(pi/2*x));

To interpolate to the values of y at 0.25, π/4, and 0.75, type:

xi = [0.25 pi/4 0.75];
yi = interp1(x,y,xi,'cubic')

TABLE 8-4: 1D INTERPOLATION METHODS

STRING DESCRIPTION

cubic Piecewise cubic Hermite interpolation

linear Linear interpolation

nearest Nearest neighbor

spline Cubic spline interpolation

y 3 πx()e

π
2
---x⎝ ⎠
⎛ ⎞sin

sin=
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

yi =

 3.110360 4.812198 5.343375

The exact values that result from the code

yi = 3*sin(pi*xi).*exp(sin(pi/2*xi))

when rounded to four significant digits, are 3.110, 4.812, and 5.344, and a
comparison shows that the spline interpolation does a good job at providing the
interpolated values:

E X T R A P O L A T I N G O U T S I D E O F R A N G E

The interpolation routines also support extrapolation using an extra input argument
that can take the following values:

• The string 'const' for extrapolating using a constant value

• The string 'extrap' for extrapolation using the selected interpolation method

• A scalar value, which the interpolation function returns for out-of-range values

The default extrapolation method is extrap for spline and cubic. For other
interpolation methods, the interpolation functions return NaNs for out-of-range values
if you do not provide an extrapolation method. For example, using the same x and y
as in the previous example:

xi = 1.5;
yi = interp1(x,y,xi,'cubic')
yi =

-15.839364

yi = interp1(x,y,xi)
yi =

NaN

For interpolation using polynomials and splines, see “Interpolation Using Polynomials
and Splines” on page 164.

Working With Polynomials

To represent a polynomial in COMSOL Script, it is convenient to work with a row
vector of polynomial coefficients. For example, to represent the polynomial

17x4 10x3 2x2
– 5x 3–+ +
I N T E R P O L A T I O N A N D P O L Y N O M I A L S | 161

162 | C H A P T E
type

p = [17 10 -2 5 -3]

The functions that work with polynomials interpret the elements in a row vector as the
coefficients in a polynomial, ordered by descending powers (if there were no x3 term,
for example, the second element in the vector would be 0).

Use the function roots to find the roots of a polynomial:

r =roots(p)

r =

 -1.084828 + 0i
 0.038923 + 0.622059i
 0.038923 - 0.622059i
 0.418746 + 0i

so r(4) is a positive real root.

Use the function polyval to evaluate polynomials:

polyval(p,0)

ans =

-3

polyval(p,r(4))

ans =

-8.882e-016

The last value is not exactly zero due to limited numerical precision.

You can also integrate and differentiate polynomials using the polyint and polyder
functions.

To multiply and divide polynomials, the convolution and deconvolution functions
conv and deconv are useful:

p1 = [1 1];
p2 = [1 -1];
p3 = conv(p1,p2)

p3 =

 1 0 -1
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

[p4,r] = deconv(p1,p2)
p4 =

1

r =

 0 2

The conv and deconv calls compute (x+1)(x-1) and (x+1)/(x-1), respectively, where
the polynomial division yields a remainder of 2 in the variable r.

For 2D and multidimensional convolution of matrices, use the conv2 and convn
functions, respectively.

F I T T I N G A P O L Y N O M I A L T O A S E T O F D A T A

The function polyfit is available for fitting a polynomial to a set of data. polyfit
uses a least squares polynomial fit, so that for a set of x and y values, it computes a
polynomial p that minimizes

so that p(x) is an approximation of y.

As an example, use a 10th-degree polynomial to approximate the function y = (1+x)/
(1+(5−x)2) in the interval between 0 and 10 and then plot the resulting polynomial
(see Figure 8-3):

x=0:0.1:10;
y = (1+x)./(1+(5-x).^2);
p = polyfit(x,y,10);
yp=polyval(p,x);
plot(x,y,'b',x,yp,'r*');

polyfit can also return a second output variable S, which contains a structure with
the fields R (the Cholesky factor of the Vandermonde matrix), df (the degrees of
freedom), and normr (the norm of the residuals). You can use it with polyval to
compute error estimates D as second output argument from polyval.

p xi() yi–()2

i 1=

n

∑

I N T E R P O L A T I O N A N D P O L Y N O M I A L S | 163

164 | C H A P T E
Figure 8-3: The original functions (blue, solid) and the 10th-degree polynomial
approximation (red, asterisks)

I N T E R P O L A T I O N U S I N G P O L Y N O M I A L S A N D S P L I N E S

The spline function performs cubic spline interpolation. The basic syntax is:

yi = spline(x,y,xi);

which provides spline interpolation of y at the points in x and then returns an array yi
with the values of y at the points in xi. You can also use the spline function to perform
spline interpolation and return the cubic spline interpolant as a piecewise polynomial
structure instead of returning interpolated data. To do so, use the following syntax:

pp = spline(x,y);

For a piecewise cubic Hermite interpolation, use the pchip function, which uses the
same syntax as the spline function.

You can then reuse and evaluate this piecewise polynomial using the ppval function.
The following example shows how to first interpolate points from a trigonometric
function using both spline and pchip and then reuse the piecewise polynomial for
another interpolation:
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

x = linspace(0,2*pi,10);
y = sin(x).*cos(x);
xi = linspace(0,2*pi,20);
yis = spline(x,y,xi);
yih = pchip(x,y,xi);
pps = spline(x,y);
pph = pchip(x,y);
xi1 = linspace(0,2*pi,100);
yips1 = ppval(pps,xi1);
yiph1 = ppval(pph,xi1);
plot(x,y,'b',xi,yis,'r--',xi,yih,...
 'm-.',xi1,yips1,'go',xi1,yiph1,'k*');

The following plot shows the results:

Figure 8-4: Interpolation using splines and cubic Hermite interpolation: original data
(blue, solid), coarse spline interpolation (red, dashed), coarse Hermite interpolation
(magenta, dash-dotted), fine spline interpolation (green, circles), and fine Hermite
interpolation (black, asterisks).

To create piecewise polynomials directly, use the mkpp function, which returns a
structure representing the piecewise polynomial described by its breaks and
coefficients. The breaks is a vector with increasing elements, representing the start and
end of each interval, and you provide the coefficients in a matrix where each row
contains the coefficients (in order from highest to lowest exponent) of the polynomial
I N T E R P O L A T I O N A N D P O L Y N O M I A L S | 165

166 | C H A P T E
for one interval. For example, to create a piecewise polynomial with two polynomial
species, 2x2+3x+5, and x2+x+4, on the intervals [1, 2] and [2, 5], respectively, type:

b = [1 2 5];
c = [2 3 5;1 1 4];
pp = mkpp(b,c);

To extract information from a piecewise polynomial structure, use the unmkpp
function, which returns the breaks, coefficients, number of pieces, order, and
dimension of the piecewise polynomial:

[breaks,coefs,pieces,order,dim] = unmkpp(pp);

Data Gridding and Triangulation of Point Data

D E L A U N A Y TR I A N G U L A T I O N

The functions delaunay and delaunay3 perform Delaunay triangulation of point data
in 2D and 3D, respectively. A Delaunay triangulation creates a set of triangles (or
tetrahedrons) such that no points are contained in any triangle’s (or tetrahedron’s)
circumcircle (circumscribed circle). As an example, perform a Delaunay triangulation
for some random 2D points and plot it as a mesh plot using trimesh:

x = rand(1,20);
y = rand(1,20);
t = delaunay(x,y);
trimesh(t,x,y);
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

You can also use boundary element information to control the triangulation for
geometries that includes topological information about boundaries and subdomains.
For more information, see the command-line help and the COMSOL Script
Command Reference entry for delaunay.

The mesh plot function trimesh can take height and color data to create a 3D plot.
You can also further control the properties of the line object or patch object that
trimesh creates. For a corresponding surface plot, use the trisurf function.

D A T A G R I D D I N G

For data gridding, use the functions griddata, griddata3, and griddatan, which
work on 2D data, 3D data, and n-D data, respectively.

zi = griddata(x,y,z,xi,yi);

The griddata function performs a Delaunay triangulation on x and y, where z =
f(x, y), and interpolates xi and yi linearly to determine zi = f(xi, yi). The points do not
need to be uniformly spaced. If the inputs x and y are not of the same size, COMSOL
Script interprets them as vectors of different orientation and uses x and y that are the
same as what you get from a call to meshgrid with x and y as inputs. z must either be
I N T E R P O L A T I O N A N D P O L Y N O M I A L S | 167

168 | C H A P T E
the same size as x and y or, when they are vectors of different orientation, a matrix with
the same number of rows as the length of x and the same number of columns as the
length of y. The formats as for x and y apply to xi and yi. It is also possible for the
data gridding functions to return a structure for interpolation purposes:.

s = griddata(x,y,xi,yi);

returns a structure s that contains the triangulation of x and y and information about
which Delaunay element the points in xi and yi belong to, including local
coordinates. You can use this together with the tinterp function to interpolate
different data values using the same points and triangulation (see “Search and
Interpolation Functions” on page 168). In addition, you can specify the interpolation
method as an extra input argument to the data gridding functions. The interpolation
method can be linear interpolation (linear, which is the default method) or nearest
neighbor interpolation (nearest). In this case, the nearest neighbor signifies the
closest vertex in the nearest Delaunay triangle.

The other data gridding functions, griddata3 and griddatan, work in a similar way.
For more information about the data gridding functions, including some additional
input arguments, see the COMSOL Script Command Reference or the command-line
help. An example using griddata appears in “Data Gridding and Interpolation
Example” on page 169.

S E A R C H A N D I N T E R P O L A T I O N F U N C T I O N S

To find Delaunay elements for a set of points, use the tsearch and tsearchn
functions. For example,

ind = tsearch(x,y,tri,xi,yi);

provides the indices to the Delaunay elements for all points (xi, yi) defined by the
vectors xi and yi. The vector ind contains indices into tri (or NaNs for points
outside the mesh), which is the triangulation of x and y, typically from a call to the
delaunay function. To get the barycentric coordinates for xi and yi, use the
tsearchn function:

[ind,coord] = tsearchn([x(:),y(:)],tri,[xi(:),yi(:)]);

The tsearchn function finds Delaunay elements in any space dimension and uses
point data matrices instead of vectors with x and y coordinates (containing N × 2
elements in 2D and N × 3 elements in 3D)

For interpolation on a Delaunay triangulation, use the tinterp function:

yi = tinterp(s,y);
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

This function uses the Delaunay triangulation in the structure s, which can be the
output from a call to griddata, for example, and interpolates linearly to compute the
interpolated values based on y, which must have a size that matches the original data
points. For details on the structure s, see the command-line help for tinterp and the
COMSOL Script Command Reference. The following example uses the griddata
and tinterp functions.

Data Gridding and Interpolation Example
The following script first creates 100 random points for the function

and then interpolates onto a 41x41 rectangular grid between −2 and 2 in the
x direction and the y direction. The plot shows the original data and a wireframe
surface of the interpolated data.

rand('state',0);
x = 4*rand(1,100)-2;y = 4*rand(1,100)-2;
ti = -2:.1:2;
[xi,yi] = meshgrid(ti,ti);
g = griddata(x,y,xi,yi,'linear',[],'closest');
z=sin(x).*cos(y).*exp(-2*x.^2-y.^2);
zi1 = tinterp(g,z);
plot3(x,y,z,'*');
hold on;
mesh(xi,yi,zi1);

z x() y()e 2x2– y2–()cossin=
I N T E R P O L A T I O N A N D P O L Y N O M I A L S | 169

170 | C H A P T E
Figure 8-5: Wireframe plot of interpolated data based on the function value at 100
random points.

Summary of Interpolation and Polynomial Functions

The following table summarizes functions for interpolation, triangulation, and
polynomials:

TABLE 8-5: INTERPOLATION, TRIANGULATION, AND POLYNOMIAL FUNCTIONS

FUNCTION NAME DESCRIPTION

conv Convolution of vectors (polynomial multiplication)

conv2 2D convolution of matrices

convn Multidimensional convolution of matrices

deconv Deconvolution of vectors (polynomial division)

delaunay Delaunay triangulation

delaunay3 3D Delaunay triangulation

griddata 2D data gridding

griddata3 3D data gridding

griddatan n-D data gridding
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

interp1 1D interpolation

interp2 2D interpolation

interp3 3D interpolation

mkpp Make piecewise polynomial

pchip Piecewise cubic Hermite interpolation

poly Polynomial with specific roots

polyder Differentiate a polynomial

polyfit Polynomial fit

polyint Integrate a polynomial

polyval Evaluate a polynomial

ppval Evaluate piecewise polynomial

roots Find polynomial roots

spline Cubic spline interpolation

tinterp Interpolation on Delaunay triangulation

trimesh Create a mesh plot with triangles

trisurf Create a surface plot with triangles

tsearch Find Delaunay element

tsearchn Find Delaunay element in nD

unmkpp Extract details from piecewise polynomial

TABLE 8-5: INTERPOLATION, TRIANGULATION, AND POLYNOMIAL FUNCTIONS

FUNCTION NAME DESCRIPTION
I N T E R P O L A T I O N A N D P O L Y N O M I A L S | 171

172 | C H A P T E
D i f f e r e n t i a t i o n and I n t e g r a t i o n

COMSOL Script includes several functions for numeric differentiation and
integration.

Difference, Gradients, and Laplacian Computations

C O M P U T I N G T H E D I F F E R E N C E A N D A P P R O X I M A T E D E R I V A T I V E

To approximate the derivative of a function, one approach is to compute the
differences between adjacent elements in an array with the diff function:

x = [1 2 4 7 11 16 22 29]

x =

 1 2 4 7 11 16 22 29

diff(x)

ans =

 1 2 3 4 5 6 7

The following code now illustrates how diff provides a numerical approximation of
the function’s derivative:

h = 0.01;
x = 0:h:10;
f = x.^2;
der = diff(f);
plot(x(1:end-1),f(1:end-1))
hold on
plot(x(1:end-1),der/h,'r--')
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

Figure 8-6: A plot of x2 (solid) and its approximate derivative (dashed).

The straight line representing der/h is the approximation of the derivative to x2,
which is 2x.

C O M P U T I N G A V E C T O R G R A D I E N T

The function gradient computes an approximate gradient of a vector or array. The
function assumes a spacing of 1 unless you provide a second input argument for the
spacing. For 2D data, [fx,fy] = gradient(F) computes the gradient of a matrix f,
where fx corresponds to ∂F / ∂x, the differences in the column direction, and fy
corresponds to ∂F / ∂y, the differences in the row direction. In 3D, an additional output
variable contains the gradient in the z direction.

C O M P U T I N G T H E L A P L A C I A N

The function del2 computes the discrete Laplacian of a matrix or multidimensional
array. The discrete 5-point Laplacian for a matrix is an approximation of the Laplace
differential operator, ∆, which takes the average of the surrounding four elements and
subtracts the original element. You can provide nonunit spacing using additional input
arguments.
D I F F E R E N T I A T I O N A N D I N T E G R A T I O N | 173

174 | C H A P T E
Numerical Integration

There are functions available for two methods for numerical integration: quadrature
and trapezoidal numerical integration. Both methods determine numerical values of
definite integrals.

Q U A D R A T U R E

The functions quad and quadl both provide numerical integration using quadrature
formulas. quad uses Simpson’s rule, which uses quadratic polynomials to provide exact
results for integrals of polynomials up to degree 3. quadl uses Lobatto quadrature
with a Kronrod extension (see Ref. 1). Both algorithms use adaptive quadrature, which
means that they break the integration interval into subintervals and then apply the
integration rule over each of the subintervals.

The inputs to quad and quadl are the name of the function (integrand) and the start
value and end value of the integration interval. To integrate the function y = x3 on the
interval from 0 to 10, define a function, for example myfcn.m, with the following two
lines:

function y=myfcn(x)
y = x.^3;

Notice the pointwise multiplication, which makes the function work for vector inputs.

int=quad('myfcn',0,10)

int =

2500

In this case, the integral is exact. To integrate the function y = (1+x)/(1+(5−x)2) on the
same interval using quadl, change the second line in myfcn.m to

y = (1+x)./(1+(5-x).^2);

Then call quadl (or quad) with a second output argument, which returns the number
of function evaluations:

[int,count]=quadl('myfcn',0,10);

This function call provides an integral of 16.480687 from 138 function evaluations
using the default relative tolerance of 10−6. To use a tolerance of 10−8 instead, type

[int,count]=quadl('myfcn',0,10,1e-8);

This case, the resulting integral is 16.480809 from 318 function calls.
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

You can also supply a relative tolerance and additional inputs for outputting a trace and
providing parameters as extra arguments to the function that describes the integrand
(see the online help or the COMSOL Script Command Reference for details).

TR A P E Z O I D A L N U M E R I C A L I N T E G R A T I O N

The trapz function implements trapezoidal numerical integration. trapz(x,y)
computes the integral of y as a function of x where x and y are vectors of the same size.
It is also possible to use trapz to compute the integrals of each column in a matrix and
for multidimensional arrays.

The following example computes the integral of the function y = x3 on the interval
from 0 to 10. The exact solution is 2500.

h = 0.1;
x=0:h:10;
y=x.^3;
int = trapz(x,y)

int =

2.500e+003

For cumulative numerical integration, use the function cumtrapz.

Summary of Differentiation and Integration Functions

The following table summarizes the differentiation and integration functions:

Reference

1. W. Gander and W. Gautschi, “Adaptive Quadrature—Revisited,” BIT, vol. 40, no.
1, pp. 84–101, 2000.

TABLE 8-6: DIFFERENTIATION AND INTEGRATION FUNCTIONS

FUNCTION NAME DESCRIPTION

cumtrapz Cumulative trapezoidal numerical integration

del2 Discrete Laplacian

diff Compute the difference between adjacent array elements

gradient Compute approximate gradient

quad Numerical integration using adaptive Simpson quadrature

quadl Numerical integration using adaptive Lobatto quadrature

trapz Trapezoidal numerical integration
D I F F E R E N T I A T I O N A N D I N T E G R A T I O N | 175

176 | C H A P T E
Da t a I n pu t /Ou t pu t

The basic functions for storing data to a file and loading data from a file are save and
load. Additional basic file I/O functions are available for formatting and saving data
to files. There are also functions for reading and writing sound data files and for playing
sound.

Saving and Loading Data To and From a File

To save the entire workspace to a file with the name data01, type:

save datao1

This command saves all workspace variables as binary data in the file data01.flws.
This is a binary file format that is the default file type when you save data using the
save command.

To save to a filename that is a string variable, use the functional form of save:

save(filename)

To save only the variables x, y, and u, type:

save data01 x y u

To save data in ASCII text format, add the -ascii switch:

save data01 -ascii

Another switch, -tabs, saves ASCII data in a tab-separated format.

Note: You can save only numerical 2D matrices in ASCII format.

To load workspace data from a file, use the load function:

load data01

To read the loaded data into a structure variable, type

s = load(filename);

It is also possible to read numerical matrix data from a text file (for example,
matrix.txt) using

load matrix.txt -ascii
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

There is a direct correspondence between the rows of data in the text file and the rows
of data in the resulting COMSOL Script variable. The variable name becomes the same
as the file name.

Note: Loading variables from a file overwrites any existing variables with the same
name.

To read data from a text file where the data is separated with a delimiter (typically a
whitespace character such as a space, a tab, or a line feed), use the dlmread function:

out = dlmread(filename);

reads the file filename and returns a matrix where each row contains a row of the file.
The elements of the data must be real or complex numbers. The default delimiter is
whitespace, but you can specify the delimiter as an additional input argument. Using
additional range arguments makes dlmread read a subset of the data. This is
convenient when you have a data file with header information, for example, and you
want to read the data after the header. Contrary to array indexing in COMSOL Script,
the numbering of rows and columns starts at 0, not 1. Keep this in mind when you
specify the rows and columns to read a subset of the data. It is also possible to read a
subset of the data file using Microsoft Excel’s A1 notation for the rows and columns.

You can also write data separated by a delimiter to a text file using the dlmwrite
function:

dlmwrite('mydata',data)

writes the data matrix as a comma-separated text file mydata. You can also specify the
delimiter as a third input argument and use a number of empty starting rows and
columns, which you specify as the fourth an fifth input argument, respectively. In
addition, there are additional properties that you can use, for example, to control the
precision. The property values is an integer number or significant digits or a format
string of the form used by fprintf and sprintf. An example:

data = reshape(sin(1:9), 3, 3);
dlmwrite('TABLE', data, 'delimiter', ':', 'precision', 2)

creates a file called TABLE with the following contents:

0.84:-0.76:0.66
0.91:-0.96:0.99
0.14:-0.28:0.41
D A T A I N P U T / O U T P U T | 177

178 | C H A P T E
Reading and Writing Formatted Data To a File

Using other COMSOL Script I/O functions you can write formatted data to a file.
The corresponding functions include fopen for opening files for reading and writing,
fprintf for formatted printing to a file, fscanf for reading formatted data, and
fclose for closing files. The table in the next section contains a complete list of I/O
functions. Also see the Help item for each function accessible from the command line
and found in the digital document the COMSOL Script Command Reference.

E X A M P L E O F W R I T I N G F O R M A T T E D D A T A T O F I L E

The following function takes two input vectors of the same size and writes the data to
a text-file format that the interpolation function in COMSOL Multiphysics supports.
The file has this syntax:

% Grid
x grid points separated by spaces
% Data
Data values separated by spaces

There are three basic steps to saving formatted data to a file:

1 Open a file in write mode with fopen. In the following example, the mode flag is
'wt', which opens a file for writing in text mode (on Windows only).

2 Use fprintf or fwrite to write data to the file.

3 Close the file with fclose.

The format in fprintf is '%15.5e', a floating-point number with five significant
digits.

function writefile(filename,X,Y)
% Creates an interpolation data file.
form = '%15.5e';
fid = fopen(filename,'wt');
fprintf(fid,'%% Grid\n');
fprintf(fid,strtrim(sprintf(form,X)));
fprintf(fid,'\n');
fprintf(fid,'%% Data\n');
for iZ = 1:size(Y,3)
 str = cellstr(num2str(Y(:,:,iZ)',form));
 fprintf(fid,'%s\n',str{:});
end
fclose(fid);
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

E X A M P L E O F R E A D I N G T E X T F R O M A F I L E

A routine can read the Help text from a COMSOL Script file (here, kron.m). To do
so, type the following:

kronlocation = which('kron.m');
fid = fopen(kronlocation,'r');
if fid>0
 kronstr = fread(fid);
 char(kronstr')
 fclose(fid)
end

The default format for fread is to read all characters in the file. The output is a double
array with the corresponding ASCII values of the string. The check of the file ID from
fopen make sure that COMSOL Script was able to open the file successfully; a file ID
of −1 indicates that fopen failed to open the file.

Saving and Loading MAT-Files

To save or load data to MAT-files, use the -mat switch. For example,

load -mat mydata

loads the variables in mydata.mat into the COMSOL Script workspace. If you do not
specify an extension, the default setting is to save to a .ws-file and to load from either a
.ws- or a MAT-file (extension .mat). COMSOL Script can read MAT-files created
using MATLAB version 5.0 or later. The following types of data in MAT-files are not
fully supported:

• Integers and unsigned integers (data types int*, uint16, uint32, and uint64),
which become double arrays in COMSOL Script.

• MATLAB objects, which the load function loads into structures, except for inline
functions and COMSOL Multiphysics objects created by FEMLAB/COMSOL
Multiphysics versions 3.0 and later. Loading these objects converts them into the
corresponding COMSOL Script data types.

Interfacing With Microsoft Excel Spreadsheets

You can both read data from Microsoft Excel spreadsheet files (.xls files) and update
Excel files with data from COMSOL Script.

R E A D I N G D A T A F R O M E X C E L S P R E A D S H E E T S

To read data from, for example, data.xls, type:
D A T A I N P U T / O U T P U T | 179

180 | C H A P T E
num = xlsread('data.xls');

With one output argument, xlsread only reads numerical data. You can add
additional output arguments to include text and mixed data (“raw data”):

[num,txst,raw] = xlsread('data.xls');

You can also supply an integer or string that specifies the sheet to read from and a range
using Excel’s A1 notation, for example, A1:K16:

[num,string,raw] = xlsread('data.xls',1,A1:K16);

By default, xlsread trims leading and trailing rows and columns that contains NaNs
(nonnumeric data) for the numeric and raw-data parts, and it also trims leading and
trailing empty strings for the text part. It is possible to turn off this trimming by setting
the trim property to off.

The xlsread function supports the Excel 97 format and later versions.

W R I T I N G D A T A T O E X C E L S P R E A D S H E E T S

To write data from COMSOL Script to an Excel spreadsheet, use xlswrite:

xlswrite('mydata.xls',data)

The data can be a matrix of real-valued numerical data or a cell array. For a cell array,
xlswrite only writes numerical data and strings. If you want to combine text data
with numerical data, you must use a cell array. To convert a double matrix into a cell
array, use the num2cell function.

Use one or two additional input arguments to specify a sheet and range in the
spreadsheet where you want to store the data, for example:

xlswrite('mydata.xls',data,'Sheet 1',A2:G10)

Reading and Writing Sound Files and Playing Sounds

COMSOL Script includes functions for reading and writing sound data as wave sound
files (with extension .wav) as well as functions for playing sounds.

R E A D I N G A N D W R I T I N G WAV E S O U N D F I L E S

You can read and write wave sound files using the functions wavread and wavwrite,
respectively. The sound data is pulse-code modulated signal data, where the number
of bits per sample must be 8 or 16. For a mono sound, the sound data is a column
vector, and for stereo sound, the sound data is an N × 2 matrix with two columns for
the to stereo channels.
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

The basic syntax for wavread is

data = wavread(filename);

where filename is the name of the .wav file. You can also get the sample rate, the
number of bits, and a description (if available) as the second, third, and fourth output
argument, respectively.

To output the number of frames and channels but ignore the signal, type

[nframes, nchannels] = wavread(filename,'size');

In addition, you can use a scalar or vector of length 2 as the second input argument to
wavread in order to only read the first few samples or a range of samples.

To write wave sound data to a .wav file, use wavwrite:

wavwrite(data,filename)

where data is the wave sound data, and filename is the name of the .wav file. Use
optional second and third input arguments to specify the sample rate and the number
of bits per sample (must be 8 or 16; the default is 16 bits per sample).

P L A Y I N G S O U N D S

To play a sound, use the functions sound or soundsc:

sound(data)

interprets the contents of data in data as a pulse-code modulated signal and plays it
with a sample rate of 8192 Hz using 16 bits per sample. The sound function clips
signal values outside the range of [−1, 1]. You can use optional second and third input
arguments to specify the sample rate and the number of bits per sample (8 or 16),
respectively.

The soundsc function also plays sound and uses the same syntax but scales and
translates the signal such that the minimum and maximum amplitudes sent to the
output device are −1 and 1, respectively.

Note: The sound and soundsc functions are only available if the platform has
support for sound.
D A T A I N P U T / O U T P U T | 181

182 | C H A P T E
Summary of Input/Output Functions

The following table summarizes the I/O functions:d

TABLE 8-7: I/O FUNCTIONS

FUNCTION NAME DESCRIPTION

delete Delete files or graphics objects

dlmread Read a delimited file

dlmwrite Write a delimited file

fclose Close an open file

feof Test if end-of-file has been reached

ferror Return or clear the error message

fgetl Read a line from a file (discarding line feed character)

fileparts Split a filename into path, name, and extension

filesep Get the system file separator

fopen Open a file or get information about opening a file

fprintf Write formatted output to a file

fread Read binary data from a file

frewind Rewind a file

fscanf Read formatted data from a file

fseek Move a file pointer

ftell Get the position of the file pointer

fullfile Create a file name

fwrite Write data to a binary file

load Load the workspace data from a file

pathsep Get the system path separator

save Save the workspace data to a file

sound Play a sound

soundsc Play a scaled sound

strread Read formatted text

tempdir Get the directory where temporary files can be created

tempname Get a temporary file name

textread Read a formatted text

wavread Read a .wav sound file

wavwrite Write a .wav sound file
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

xlsread Read a .xls Excel spreadsheet file

xlswrite Write to a .xls Excel spreadsheet file

TABLE 8-7: I/O FUNCTIONS

FUNCTION NAME DESCRIPTION
D A T A I N P U T / O U T P U T | 183

184 | C H A P T E
Da t e and T ime Fun c t i o n s

COMSOL Script includes functions for getting both the time and date and for
measuring the time it takes to run a function, script, or series of statements.

Getting the Current Date and Time

To get the current date, use the date function:

today = date

today =

 22-Jul-2005

date returns the current date in a string with the format DD-MMM-YYYY. You can
use the string function strtok to extract the day, month, and year into separate string
variables:

[day,remainder] = strtok(today,'-');
[month,remainder] = strtok(remainder,'-');
year = strtok(remainder,'-');

To get the current time, use the clock function:

t = clock

t =

 2005 7 22 9 26 37.250000

clock returns the current time in a 1 × 6 vector (double array). The elements represent,
from left to right:

• The current year

• The current month

• The current day

• The current hour

• The current minute

• The current second

All values except the value for seconds are integers.
R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

Measuring Elapsed Time

Three functions are available to measure elapsed time while running COMSOL Script
functions and programs:

• Use etime to get the elapsed time, in seconds, as the difference between two times.
A typical application is to first store the current time in a variable

t1 = clock;

and then run the code that you want to clock and get the elapsed time as

t2 = etime(clock,t1);

With etime you can measure several elapsed times and store them in variables for
further analysis.

• Use tic and toc for quick measurements of the elapsed time:

tic, a = norm(rand(1000)); toc

Elapsed time: 3.281 s

tic starts a timer, and toc stops it. Use t = toc to store the elapsed time.

Summary of Functions for Date and Time

The following table summarizes the functions for date and time:

TABLE 8-8: DATE AND TIME FUNCTIONS

FUNCTION NAME DESCRIPTION

clock Current time

date Current date

etime Elapsed time

tic Start the timer

toc Stop the timer
D A T E A N D T I M E F U N C T I O N S | 185

186 | C H A P T E
 R 8 : D A T A A N A L Y S I S , S T A T I S T I C S , A N D I / O

 9
P l o t t i n g a n d V i s u a l i z i n g D a t a
To plot data from an analysis or from a model, COMSOL Script provides a variety
of plots and graphs. This chapter introduces you to the various graphics objects
such as frames and axes objects as well as the different types of plots in 2D and 3D
and the functions to create them.
 187

188 | C H A P T E
I n t r o du c t i o n t o G r aph i c s Ob j e c t s

To most easily understand the terminology in this chapter, start with a short example.

Enter the following three lines of code into COMSOL Script and then examine the
result:

x=linspace(0,2*pi,100);
y=sin(x);
plot(x,y);

The plot command generates a figure window, at the top of which is a toolbar. The
figure window also contains one axes object in which the software has plotted the
desired function, sin(x). As you will see, a figure window can contain multiple axes
objects, in 2D or 3D, each plotting a different function.

Now let us look at each of these elements in detail and how to construct them.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Th e F i g u r e W indow

Figure Window Functions

A figure window is the highest-level plotting object. It contains one or more axes
objects into which you plot data sets (see “Axes” on page 193 for more information).

Start by examining some basic functions associated with a figure window:

Plotting functions create a new figure window automatically as needed. You can also
explicitly create a new figure window by typing

figure

To retrieve the handle to the current figure window, call gcf; to get the handle to the
current axes object, call gca. To make the figure with handle h the current figure
window, enter

figure(h)

Figure Window Toolbar

At the top of any figure window is a toolbar with buttons for quick access to commonly
performed tasks.

The buttons on the toolbar are, from left to right (some are available only for 3D
plots):

• Export Image—Export the plot in the figure window as an image.

• Print—Send the plot in the figure window to a printer.

TABLE 9-1: FUNCTIONS RELATED TO FIGURE WINDOWS

FUNCTION NAME DESCRIPTION

clf Clear the contents in the current figure window

drawnow Flushes graphics rendering and repaints the screen. Usually the
screen is repainted only when a script has finished, but drawnow
forces repaints while a script is running

figure Creates a new figure window

gcf Returns a handle to the current figure window
T H E F I G U R E W I N D O W | 189

190 | C H A P T E
• Copy—Copy the plot to the system clipboard.

• Export Current Plot—Export data values from the current plot to a text file.

• Edit Plot—Open a dialog box where you can change properties for axes, lines,
patches, and so on that can normally be changed using set and get in conjunction
with graphics handles.

• Orbit/Pan/Zoom—Selects the general orbit/pan/zoom mode for the mouse in 3D
plots.

• Pan—Pan when clicking and moving the mouse.

• Zoom—Zoom when clicking and moving the mouse.

• Dolly In/Out—Dollies the camera in and out when clicking and moving the mouse.

• Move as Box—When this button is pressed, a box appears instead of updating the
graphics in real time when changing camera settings with the mouse. It is useful for
very large plots or for computers with poor graphics cards.

• Scene Light—Turns on all lights added to a plot.

• Headlight—Turn on a light mounted on the camera and looking in the direction of
the camera.

• Back in Camera History—Return to the previous camera position after changing it
interactively using the mouse.

• Forward in Camera History—Move forward in camera history.

• Orthographic Projection—Use orthographic projection.

• Perspective Projection—Use perspective projection.

• Go to XY View—View the plot in the xy-plane.

• Go to YZ View—View the plot in the yz-plane.

• Go to ZX View—View the plot in the zx-plane.

• Go to Default 3D View—View the plot in the default 3D view.

• Increase Transparency—Increase the transparency of patch and surface objects.

• Decrease Transparency—Decrease the transparency of patch and surface objects.

• Zoom In—Zoom into the plot by a factor of two.

• Zoom Out—Zoom out of the plot by a factor of two.

• Zoom Window—Zooms in on a rectangular area by clicking and dragging the mouse
cursor.

• Zoom Extents—Zoom to the extents of the graphics objects currently in the figure
window so they appear at the largest possible scale without truncation.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

The Edit Plot Dialog Box

It is also possible to manually edit many of the properties for any graphic objects in a
figure window, and you do so in the Edit Plot dialog box. To open it, click the Edit Plot
button on the figure-window toolbar. To the left it shows a tree with the currently
defined axes objects in the figure window along with the graphical objects that lie in
each axes object. When you select a node in the tree, a panel appears to the right in
which you can change properties for the selected object, specifically, most of the
properties it is possible to change using set on the command line when given the
corresponding graphics handle.

Here you can change axes limits, the title, axes labels, and so on by selecting the Axes
node in the tree.

Axis ticks marks, the title, and axes labels appear using the selected font.
T H E F I G U R E W I N D O W | 191

192 | C H A P T E
In the next example, change the Facecolor, Edgecolor, and Colormap properties,
and so on, for a patch by selecting the Patch node in the tree of graphics objects.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Ax e s

Overview of Axes Functions

An axes object creates the area in which you plot data, and one figure window can
support multiple axes objects. You control axes limits and ticks marks manually or let
COMSOL Script calculate them automatically. Other functions add text, labels, and
grid lines. The following functions are related to creating and modifying axes objects:

TABLE 9-2: FUNCTIONS RELATED TO THE AXES

FUNCTION NAME DESCRIPTION

axis Change or get axes limits

box Display an axis box (3D only)

cla Clear all graphics objects from an axes object

gca Return the handle to the current axes object

grid Display a grid in the axes object

hold Specify that existing plots in the axes remain when you add new
plots

ishold Return the Hold state

legend Display a legend with the plot

newplot Return a handle to an axes object. If a current axes object already
exists, all graphics objects are cleared before the handle is returned

subplot Divide a figure window into a grid of several axes objects

title Display a title above the axes object

text Display a text at specified coordinates in the axes object

xlabel Display a label on the x-axis

xlim Set and get x-axis limits

ylabel Display a label on the y-axis

ylim Set and get y-axis limits

zlabel Display a label on the z-axis

zlim Set and get z-axis limits
A X E S | 193

194 | C H A P T E
Getting an Axes Object for Plotting

Normally you do not need to explicitly create an axes object for plotting; COMSOL
Script automatically creates a new figure window with an axes object if one does not
already exist. Plotting commands always pertain to the current axes object, which is the
one in the figure window that was the latest to have focus. Use the 'parent' property
with an axes handle to explicitly specify which axes object plots the data.

The function

h = gca

returns a handle to the current axes object. A rough equivalent is the function

h = newplot

which returns a handle to the current axes object but also clears all graphics at the same
time. It is normally needed only when working with low-level graphics functions such
as line and patch; higher-level graphics functions such as plot and surf
automatically clear the axes object they plot into before adding new graphics.

Controlling Axes Limits

COMSOL Script automatically updates axes limits to fit any plots added to an axes
object. The axis function overrides this feature and allows you to set the limits
manually. It also sets the properties 'Xlimmode' and 'Ylimmode' for the axes object
to 'manual', thereby preventing anyone or anything from updating the limits when a
program adds new graphics to the axes object.

To manually set the axis limits, pass an array with pairs of minimum and maximum
values to the axis function as in this code snippet:

x=-5:0.1:5;
y=x.^2.*cos(x);
plot(x,y);
axis([-4.5 4.5 -12 4]);
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

The same effect is possible with the functions xlim and ylim or by setting the Xlim
and Ylim properties on the handle to an axes object.

The following three ways of controlling the axes limits are equivalent:

• Using the axis function:

axis([-4.5 4.5 -12 4]);

• Using the xlim and ylim functions:

xlim([-4.5 4.5]);
ylim([-12 4]);

• Using the set function and the Xlim and Ylim properties of the axes object:

set(gca,'Xlim',[-4.5 4.5]);
set(gca,'Ylim',[-12 4]);

Adding Plots to an Existing Plot

High-level visualization commands such as plot and surf normally clear the contents
of the axes object into which they plot before they add any new graphics objects. You
can override this behavior with the hold function. It specifies that an axes object
A X E S | 195

196 | C H A P T E
should retain plots even when it receives new plots. If the axes limits are in manual
mode, they remain unchanged when plots are held. The following example illustrates
how to work with the hold command:

x=-3:0.02:3;
y=cos(x.^2);
plot(x,y);
set(gca,'xlimmode','manual');
set(gca,'ylimmode','manual');
axis([-3.2 3.2 -1.1 1.1]);
hold on;
x1=-5:0.04:5;
y1=((x1+1)/5).^2;
plot(x1,y1);

Using Multiple Axes Objects

The subplot function divides a figure window into a grid that, in turn, contains
several axes objects. Specifically, the command

subplot(rows,cols,current)
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

divides the figure window into a grid of rows × cols axes objects. The axes object with
the number current becomes the current axes. Axes numbering increases along the
columns of the first row, then along the second row, and so on.

Look at this code, which divides a figure window into four axes objects and plots a
different function in each one:

subplot(2,2,1);
x1=linspace(0,20,100);
y1=sqrt(x1);
plot(x1,y1);
subplot(2,2,2);
x2=linspace(0,5,100);
y2=round(x2);
plot(x2,y2);
subplot(2,2,3);
x3=linspace(0,10,100);
y3=x3.*cos(x3);
plot(x3,y3);
subplot(2,2,4);
x4=linspace(0,10,100);
y4=x4.*sinh(x4);
plot(x4,y4);
A X E S | 197

198 | C H A P T E
Adding Annotations

The following table lists the commands available for adding text to a plot.

To see these commands at work, examine the following example. It creates a plot of
sin(x) and cos(2*x) and displays a title, axis labels, legends, and some descriptive
text:

x=linspace(0,10,100);
y1=sin(x);
y2=cos(2*x);
plot(x,y1,'r-',x,y2,'g--');
legend('sin(x)','cos(2*x)');
title('Plot of sin(x) and cos(2*x)');
xlabel('X');
ylabel('Y');
text(1.2,0.8,'sin(x)');

TABLE 9-3: FUNCTIONS FOR ADDING TEXT TO A PLOT

FUNCTION DESCRIPTION

legend Displays a legend to the right of the plot

text Displays a text at arbitrary coordinates in the axes object

title Displays a title above the axes object

xlabel Displays a label on the x-axis

ylabel Displays a label on the y-axis

zlabel Displays a label on the z-axis
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

text(4.6,0.8,'cos(2*x)');

F O R M A T T I N G A N D S Y M B O L S

The text function can take formatted strings that include HTML tags, Greek letters,
mathematical symbols, and Unicode characters. These formatting options include the
strings in plot titles as well as x-axis, y-axis, and z-axis labels (the title, xlabel,
ylabel, and zlabel functions, respectively).

The text function supports the following HTML tags in the text string:

TABLE 9-4: VALID HTML TAGS

HTML TAG DESCRIPTION

 Enclosed text is rendered using a bold font

 Line break

<CENTER> </CENTER> Centered text

<I> </I> Enclosed text is rendered using an italic font

 List item. When the list used is (an ordered list) the
LI element is rendered with a number. When the list used
is (an unordered list) the LI element is rendered
with a bullet

 Ordered list (see also:)
A X E S | 199

200 | C H A P T E
The text function supports the following Greek character tags in the text strings:

<P> </P> Paragraph. This tag creates a line break and a space
between lines

<PRE> </PRE> Enclosed text preserves spaces and line breaks. The text
is rendered using a monospaced font

<STRIKE> </STRIKE> Enclosed text is rendered with a strike-through
appearance

 Enclosed text is rendered in subscript with the enclosed
text slightly lower than the surrounding text

 Enclosed text is rendered in superscript with the enclosed
text slightly higher than the surrounding text

<TT> </TT> Enclosed text is rendered using a monospaced font

<U> </U> Enclosed text will be underlined

 Unordered list (see also:)

TABLE 9-5: VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

\ALPHA Α \alpha α

\BETA Β \beta β

\GAMMA Γ \gamma γ

\DELTA ∆ \delta δ

\EPSILON Ε \epsilon ε

\ZETA Ζ \zeta ζ

\ETA Η \eta η

\THETA Θ \theta θ

\IOTA Ι \iota ι

\KAPPA Κ \kappa κ

\LAMBDA Λ \lambda λ

\MU Μ \mu µ

\NU Ν \nu ν

\XI Ξ \xi ξ

\OMICRON Ο \omicron ο

\PI Π \pi π

\RHO Ρ \rho ρ

TABLE 9-4: VALID HTML TAGS

HTML TAG DESCRIPTION
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

The text function supports the following math symbol tags in the text string:

In addition to these Greek and math symbols, you can specify additional characters
using Unicode numbers. Visit www.unicode.org for more information about Unicode
characters.

Examples of Formatted Texts
To plot the following mathematical text in the position (1, 2) in the current axes

,

type:

text(1,2,'sin(2\pix_i) \approx 0','FontName','Arial',...
'FontSize',16)

This example also specifies the font name and size using the optional FontName and
FontSize properties.

To add a text that includes the copyright symbol, you can use its Unicode:

text(1,1,'\u00A9 COMSOL 1994-2006')

To add an underlined title to a plot with the text divided into two lines, type:

\SIGMA Σ \sigma σ

\TAU Τ \tau τ

\UPSILON Υ \upsilon υ

\PHI Φ \phi

\CHI Χ \chi χ

\PSI Ψ \psi ψ

\OMEGA Ω \omega ω

TABLE 9-6: VALID MATH SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

\approx ≈ \bullet •

\lequal \partial ∂

\gequal ≥ \nabla

\plusmin ± \sqrt √

\infinity \integral ∫

TABLE 9-5: VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

ϕ

≤

∇

∞

2πxi()sin 0≈
A X E S | 201

202 | C H A P T E
title('<U>For long titles you can use a line break
to continue
on a second line with the remainder of the title</U>')

axis([0 2 0 3]) sets the axis to show all three text strings, as the following figure
shows:

Axes Properties

If you have a handle to an axes object, you can read and modify properties for it using
the get and set functions. The property names and their allowed values are:

TABLE 9-7: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

Box On | Off Display an axes grid box with the plot (3D only)

Clim 2-element vector The data values that map to the minimum and
maximum colors in the colormap

Climmode auto | manual Determines if Clim is calculated automatically as
the range of the plotted data, or if it is set
manually
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Equal On | Off Determines if distances in different directions
have equal length on the screen (so a circle looks
like a circle)

Fontangle normal | italic Selects normal or italics font for the title, axis
labels, and tick marks

Fontcolor colorspec Selects the font color for the title, axis labels,
and tick marks

Fontname string Selects the font type for the title, axis labels, and
tick marks

Fontsize positive integer Selects the font size for the title, axis labels, and
tick marks

Fontweight normal | bold Selects normal or bold font for the title, axis
labels, and tick marks

Grid On | Off Displays a grid

Parent handle The handle to the figure window that holds the
axes object

Tag string The tag for retrieving the axes object

Title string The title to display above the axes object

Xlabel

Ylabel

string Label to display along the x- or y-axis

Xlim

Ylim

Zlim

2-element vector Minimum and maximum limits on the x-, y-, and
z-axis

Xlimmode

Ylimmode

Zlimmode

auto | manual Determines if COMSOL Script automatically
limits the x-, y-, or z-axis to fit the plotted data,
or if you specify axis limits manually

Xscale

Yscale

linear | log Specifies a linear or log scale for the x- or y-axis

Xtick

Ytick

Ztick

vector Gives explicit positions for tick marks on the x-,
y-, or z-axis

TABLE 9-7: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
A X E S | 203

204 | C H A P T E
Xticklabel

Yticklabel

Zticklabel

cell array of strings Gives explicit strings to display at the tick marks
on the x-, y-, or z-axis

Xtickmode

Ytickmode

Ztickmode

auto | manual Determines if COMSOL Script calculates
tick-mark positions automatically on the x-, y-,
or z-axis, or if you specify them manually

TABLE 9-7: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

2D G r aph i c s

Overview of 2D Graphics Functions

Within an axes object you can plot a graph using vectors or matrices with x- and
y-coordinates. One command can create several plots, each with a different color, line
style, and marker.

Functions related to creating 2D plots are:

The Plot Command

The plot command creates 2D graphs. For example, to plot the function sin(x),
enter the following lines of code:

x=linspace(0,2*pi,100);
y=sin(x);
plot(x,y);

TABLE 9-8: FUNCTIONS FOR CREATING 2D PLOTS

FUNCTION NAME DESCRIPTION

line Low-level function for drawing line objects

loglog Creates a plot with log scales on the x- and y-axes

plot General function for plotting graphs with different colors, line
styles, and markers

semilogx Creates a plot with a log scale on the x-axis

semilogy Creates a plot with a log scale on the y-axis
2 D G R A P H I C S | 205

206 | C H A P T E
The plot command draws a line between the pairs of points in the vectors x and y. To
plot several functions in one command, add arguments with pairs of vectors at the end:

x=linspace(0,2*pi,100);
y1=x.*sin(x);
y2=(1-x).*cos(x);
plot(x,y1,x,y2);

Each plot then gets a new color to make it easier to distinguish from other plots.

The default behavior of the plot command is to connect pairs of points with a solid
line and to use a new color for each line. You can override this behavior by specifying
an optional format string after each pair of vectors. That string controls the line color,
style, and which marker to place at each point:

x=linspace(0,2*pi,50);
y1=x.*sin(x);
y2=(1-x).*cos(x);
plot(x,y1,'r*',x,y2,'g--');
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

The format string can contain one or more characters from the following table:

If you supply a marker string but no line-style string, the plot draws only the markers.

You can also use matrices as arguments to plot. In that case, each column creates a
separate line. If one of the arguments is a vector that matches either the number of
rows or the number of columns of the matrix in the other input argument, plot creates
several lines:

TABLE 9-9: STRINGS THAT CAN BE PART OF THE FORMAT STRING

COLOR MARKER LINE STYLE

r red + plus - solid

g green o circle : dotted

b blue * star -. dashdot

c cyan v triangle -- dashed

m magenta s square

y yellow p pentagram

k black
2 D G R A P H I C S | 207

208 | C H A P T E
x=1:0.1:5;
Y=[x ; x.^2 ; x.^3];
plot(x,Y);

As an alternative to the format strings, you can give property values at the end of the
plot command.

To see some of these properties in action, create a dash-dotted plot with a line width
of 3:

x=linspace(0,10,100);
y=exp(x);
plot(x,y,'linestyle','-.','linewidth',3);

Plotting Complex Data

The plot command usually ignores the imaginary part of the input data and graphs
only the real part. You can, however, pass it a single complex matrix and plot the
imaginary part against the real part. In other words,

plot(data)

where the data is complex, is a shorthand for

plot(real(data),imag(data));

For instance, plot a circle using complex data:

TABLE 9-10: VALID PROPERTY-VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec k A string or an RGB triplet
specifying the line color. If a
string, it is one of the letters r,
g, b, c, m, y, or k, meaning
red, green, blue, cyan,
magenta, yellow, and black,
respectively

linestyle One of the strings
-, :, -., --

- A string representing solid,
dotted, dash-dot, and dashed
line styles, respectively

linewidth positive scalar 1 The line width

marker v, +, o, *, s, p The marker to show along the
line

parent Axes handle gca The axes object that gets the
line
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

x=linspace(0,2*pi,100);
Y=cos(x)+i*sin(x);
plot(Y);
axis equal;

Plotting Logarithmic Data

The functions loglog, semilogx, and semilogy have the same syntax and
functionality as the plot function with the addition that a log scale appears on one or
more of the axes. Specifically, loglog sets the log scale on both axes; semilogx sets a
log scale on the x-axis; while semilogy sets a log scale on the y-axis.

When the data is logarithmic in y, it is preferable to use semilogy so as to better
resolve what happens in the y direction:

x=linspace(0,10,100);
y=2.^x;
semilogy(x,y);
2 D G R A P H I C S | 209

210 | C H A P T E
Low-Level Graphics

The plotting functions clear the axes object into which they plot and then add line
objects corresponding to the plotted data. You can create line objects directly using the
line function. It adds graphics objects to an axes object without deleting existing
graphics objects. For example,

line(X,Y)

adds one line for each of the columns in the matrices X and Y. The property values
available for the plot function are also available for the line function.

The following code snippet draws lines to form a starburst:

n = 12;
alpha = linspace(0,2*pi,n+1);
alpha = [alpha ; alpha+pi/n; alpha+2*pi/n];
r = [2*ones(1,n+1); ones(1,n+1); 2*ones(1,n+1)];
x = r.*cos(alpha);
y = r.*sin(alpha);
line(x,y);

Editing Plots

As part of the output from plot commands you can get handles to the corresponding
graphics objects. You can then use them with the functions get and set functions to
read and modify properties for the graphics objects.

The command

get(h)

returns a structure with the values of the properties for the graphics object to which h
refers. The structure’s field names correspond to the property names.

To get the value of a individual property, use

get(h,propname)

To set the value of a property, use

set(h,propname,value)

It is possible to set several property-value pairs at the same time with the set command
by appending property-value pairs to the end of the argument list.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

If you did not return a handle to a plot when initially creating it, you can later retrieve
a handle to the graphics object with the findobj function. With it you can find graphic
objects with a certain tag or of a certain type. You can, for example, type

h=findobj('type','line');

to return handles to all line objects.

To put some of these commands to work, create a plot and then change the color, line
style, and line width:

x = -5:0.1:5;
y = x.^3+2*x.^2+3*x+4;
h = plot(x,y);
set(h,'color','r','linewidth',3,'linestyle',':');
2 D G R A P H I C S | 211

212 | C H A P T E
For the line objects in 2D plots, you can get and set the properties in the following
table:

TABLE 9-11: VALID PROPERTY/VALUE PAIRS FOR LINE OBJECTS

PROPERTY VALUE DESCRIPTION

Color colorspec A string or an RGB triplet specifying the line
color. If a string, it is one of the letters r, g, b,
c, m, y, or k, corresponding to red, green,
blue, cyan, magenta, yellow, and black,
respectively

Edges n-by-2 matrix A matrix with indices into vertices. Each row
corresponds to a line segment

Hold On | Off Indicates if this line should be kept when new
plots are added to the same axes object

Legend On | Off Indicates if a legend is displayed with a plot

Legendstring string or cell array
of strings.

The string to display as a plot legend. If the
plot consists of several lines, this value is a cell
array of strings with one legend string for
each line in the plot

Linestyle One of the strings
-,:,-.,--

A string representing solid, dotted, dash-dot,
and dashed line styles, respectively

Linewidth positive scalar The line width

Marker v,+,o,*,s,p The marker to show along the line

Markerpos An integer or the
string 'all'

Tells where markers are placed on a line. It is
either the desired number of markers, or the
string 'all' specifies that markers should be
placed at all points in the plotted data

Parent Axes handle A handle to the axes object that holds the line

Tag string A tag that can be used to retrieve the line
later on

Type string The value 'line' indicates that it is a line
object

Vertices nv-by-2 matrix The coordinates along the line. Edges
contains indices into this matrix to form each
edge segment (nv is the number of vertices)

Visible On | Off Indicates if the line is visible or not

Xdata 1-by-m matrix The line’s x-coordinates

Ydata 1-by-m matrix The line’s y-coordinates
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Contour Plots

COMSOL Script provides a set of functions for creating contour plots (isolines).
Table 9-12 summarizes the available functions:

To make a contour plot with labels for the function

with both x and y in the range of −1 to 1, type:

[x,y] = meshgrid(-1:0.1:1,-1:0.1:1);
z = x.^2-y.^2;
c = contour(x,y,z);
clabel(c);

TABLE 9-12: CONTOUR FUNCTIONS

FUNCTION NAME DESCRIPTION

contour 2D contour plot

contour3 3D contour plot

contourc Contour data matrix

contourf Filled 2D contour plot

contours Contour data matrix (identical to contourc)

clabel Contour labels

z x y,() x2 y2
–=
2 D G R A P H I C S | 213

214 | C H A P T E
The function contourc (or contours) returns a contour data matrix that contains the
contour levels and coordinates for each contour line (the contour plot function
contour can also provide a contour data matrix as its first output argument, which the
previous example shows). The contour label function clabel uses the contour data
matrix as its input data. For 3D contour plots, use contour3.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

3D G r aph i c s

Overview of 3D Graphics Functions

Whereas 2D plots are limited to lines, 3D plots can create surface plots for functions
of two variables. A 3D image can also show a patch, which is an image made up of
individual triangles or quadrilaterals. An example of the use of patches is to visualize
the computational mesh from a finite element analysis.

COMSOL Script also makes it easy to generate wireframe plots or add lights to a scene
to improve its appearance. To eliminate the need to create multiple plots in the same
figure window to accommodate 2D and 3D images, there exists a 3D plot function,
plot3, similar to the 2D equivalent for drawing line plots.

The functions related to creating 3D plots are:

TABLE 9-13: FUNCTIONS FOR CREATING 3D PLOTS

FUNCTION NAME DESCRIPTION

colormap A colormap for coloring patches and surfaces

hidden Turns hidden-line removal On and Off

light Creates different types of lights

lighting Turns the scene light On or Off

material Controls the material to account for surface reflectance

mesh Creates a colored wireframe surface of quadrilaterals

meshz Creates a colored wireframe surface of quadrilaterals with a
curtain

patch Creates a patch consisting of triangles or quadrilaterals

plot3 Creates a line plot in 3D

shading Controls how color is interpolated within the element of a patch
or a surface

surf Creates a colored surface of quadrilaterals

surface Low-level function for creating a colored surface of quadrilaterals

view Controls the viewpoint position
3 D G R A P H I C S | 215

216 | C H A P T E
Surf and Mesh Commands

The surf command creates a plot from a function of two variables, giving it color and
height. You supply the x, y, and z coordinates as matrices. The plot connects
neighboring entries in the matrices to form each element in the colored surface. An
optional fourth argument to surf can supply data values for coloring the surface. If
you do not define this parameter, COMSOL Script varies the surface color based on
its height as in the following example:

x1=linspace(-5,5,30);
y1=linspace(-5,5,30);
[x,y]=meshgrid(x1,y1);
r=sqrt(x.^2+y.^2);
z=sqrt(6-r).*sin(r);
surf(x,y,z);

The mesh function is the same as surf except that it colors only the edges between the
elements and uses a white color for the elements’ interior; meshz also adds a curtain
around the plot drawn from the data points down to the lowest z value.

The surface function is the low-level function for creating surface objects. It has the
same syntax as surf but does not clear the axes before adding a surface.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Colormaps and Color Bars

To color surfaces and patches you often work with a colormap. A colormap with n
colors is an n-by-3 matrix of RGB values. For each data value, a script creates an index
into the colormap by mapping linearly between the minimum value to the first color
and the maximum value to last color. To create a colormap, call one of the functions
in the following table and give the desired number of colors as an argument:

The Clim property overrides the data values that map to the first and last color in the
colormap. This feature can, for example, help avoid the effect of extreme values; values
outside the range map to the first or the last color. A default value of Clim is associated
with each axes object, but you can also supply a separate value as a property when
creating a surface or patch.

Consider the command

colormap(cool(256))

which sets the colormap for the current figure to the cool colormap function with 256
colors. This command affects all plots that are currently in the figure window and all
plots that are added to it later on. However, each surface or patch can have a separate
colormap if you pass the Colormap property when creating it.

The function colorbar displays a color scale (color bar) to the right of the plot that
indicates which data value corresponds to each color in the colormap.

The following example displays the color bar, and it also uses Clim to specify a smaller
range. Try it also without specifying the Clim property to see what effect it has.

x1=linspace(-2,2,100);
y1=linspace(-2,2,100);
[x,y]=meshgrid(x1,y1);

TABLE 9-14: COLORMAP FUNCTIONS

FUNCTION DESCRIPTION

bone Gray scale with a touch of blue

cool Different shades of cyan and magenta

gray A gray-scale colormap

hot Colors from black to white, ranging through red, orange, and
yellow

jet All colors from dark blue to dark red, ranging through blue, cyan,
green, yellow, and red

pink Different shades of pink
3 D G R A P H I C S | 217

218 | C H A P T E
z=sin(x).*sin(y).*exp(-x.^2-y.^2);
surf(x,y,z,'colormap','jet(1024)','clim',[-0.1 0.1]);
colorbar

Patches

patch is the low-level function for creating a colored patch consisting of triangular or
quadrilateral elements. Use

patch(x,y,c)

or

patch(x,y,z,c)

to create a 2D or 3D patch, respectively. The matrices x, y, and z have three or four
rows. Each column creates an element in the corresponding patch. The matrix c holds
data values mapped to a colormap. It either has one row or the same number of rows
as x. If it has one row, each element gets one color with flat shading; otherwise, the
corners of the elements each get a separate color with interpolated shading.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Consider the following code snippet, which create a cube using the patch command.
The faces of the triangles are red, and the edges between them are colored black.

x=[0 1 1;0 1 0;0 1 1;0 1 0;0 0 0;0 0 0;
 1 1 1;1 1 1;0 0 1;0 1 1;0 0 1;0 1 1]';
y=[0 0 1;0 1 1;0 0 1;0 1 1;0 1 1;0 1 0;
 0 1 1;0 1 0;0 0 0;0 0 0;1 1 1;1 1 1]';
z=[0 0 0;0 0 0;1 1 1;1 1 1;0 0 1;0 1 1;
 0 0 1;0 1 1;0 1 1;0 1 0;0 1 1;0 1 0]';
patch(x,y,z,'r','edgecolor','k');
3 D G R A P H I C S | 219

220 | C H A P T E
In addition to the fixed arguments, you can supply additional property-value pairs at
the end of the command to further control how the patch is created. (Note that these
same pairs are also applicable to the mesh, meshz, and surf functions.)

In the previous table, the Facecolor and Edgecolor properties can take on one of
several values as defined in the next table:

The shading function can serve as a shorthand for setting Facecolor and Edgecolor
for existing plots in an axes object:

• shading interp sets Facecolor to 'interp' and Edgecolor to 'none'.

TABLE 9-15: PROPERTY-VALUE PAIRS FOR PATCHES AND SURFACES

PROPERTY VALUE DEFAULT DESCRIPTION

Clim 2-element vector Tells which data values to map
to the first and last colors in
the colormap

Colormap String of the type
'jet(256)' or a
matrix with 3
columns

The colormap for the patch.
Either a string to be evaluated,
or a matrix with one row for
each color and one column
for red, green, and blue values

Edgecolor none | flat |
interp |
colorspec

none Indicates how to color the
edges between each element
in the patch

Facecolor none | flat |
interp |
colorspec

interp Indicates how to color the
interior of each element in the
patch

Parent Axes handle gca Determines which axes object
gets the patch

TABLE 9-16: DESCRIPTION OF FACECOLOR AND EDGECOLOR VALUES

VALUE DESCRIPTION

none Either the elements are not be filled or their edges are not drawn.
facecolor and none can, for example, create a wireframe plot

flat or
interp

How to interpolate the color using the vertex colors. flat
means the entire element gets the same color; interp means
color in the interior of the element is created by interpolation
from the values at the vertices

colorspec A string or an RGB triplet specifying the color of the entire patch.
If a string, it is one of the letters r, g, b, c, m, y, or k, meaning red,
green, blue, cyan, magenta, yellow, and black respectively
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

• shading flat sets Facecolor to 'flat' and Edgecolor to 'none'.

• shading faceted sets Facecolor to 'flat' and Edgecolor to 'k'.

Patch and Surface Properties

As with line objects, the get and set functions work with handles to patch and surface
objects to read and modify the following properties:

TABLE 9-17: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

Colorbar On | Off Indicates if a colorbar is displayed with a
plot

Colormap string
representing
colormap

The colormap for the plot

Edgecolor colorspec How to color the edges between elements

Facealpha scalar between 0
and 1

The tranparency of the patch or surface; 1
means no transparency, and 0 means full
transparency

Facecolor colorspec How to color the interior of the elements

Faces n-by-3 matrix or
n-by-4 matrix

A matrix with indices into vertices. Each
row corresponds to an element of the patch
or surface

Facevertexcdata nv-by-3 matrix RGB values for the colors at the vertices of
the elements (nv is the number of vertices)

Hold On | Off Indicates if the patch / surface should be
kept when new plots are added to the same
axes object

Parent Axes handle The handle to the axes object that holds the
line

Tag string A tag that can help retrieve the line later on

Type string The value 'patch' or 'surface'
indicating that it is a patch or surface object

Vertices nv-by-2 matrix Coordinates along the line. Faces contains
indices into this matrix to form each
element (nv is the number of vertices)

Visible On | Off Indicates if the patch or surface is visible

Xdata 3-by-n matrix or
4-by-n matrix

The x-coordinates of the patch or surface
3 D G R A P H I C S | 221

222 | C H A P T E
Lights and Materials

It is possible to add lights and materials to create plots with visual highlights and to
make them more attractive. In the plots, you can turn on a headlight, which is
positioned at the camera and directed toward the target., and scene light, which
radiates from a distance. COMSOL Script provides four kinds of scene lights:

• Ambient light—seems to come from all directions.

• Directional light—shines in a certain direction from infinity.

• Point light—shines equally in all directions from a certain position.

• Spotlight—an attenuated source that shines in a certain direction from a certain
position. A spread angle and a concentration specify how quickly the light attenuates
for directions close to the specified direction.

To create one of these sources, take the light function and pass the following
property values:

Ydata 3-by-n matrix or
4-by-n matrix

The y-coordinates of the patch or surface

Zdata 3-by-n matrix or
4-by-n matrix

The z-coordinates of the patch or surface

TABLE 9-18: PROPERTY/VALUE PAIRS TO USE WHEN CREATING A LIGHT

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec w A string or an RGB triplet
specifying the light’s color. If
a string, it is one of the
letters r, g, b, c, m, y, or k,
meaning red, green, blue,
cyan, magenta, yellow, and
black, respectively

concentration Real value between
0 and 128

0 The concentration for a
spotlight

direction A 3-element array [0 0 1] The direction for a
directional light and a spot
light

parent Axes handle gca Indicates the axes object that
gets the light

TABLE 9-17: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

To turn scene light on, either call lighting('phong') or click the Scene Light button
on the toolbar in the figure window. You can also activate a headlight, which is
“mounted” on the camera and looking in the same direction as the camera, by clicking
the Headlight button on the toolbar.

This example creates a surface plot and adds some lights:

x1=linspace(-2,2,100);
y1=linspace(-2,2,100);
[x,y]=meshgrid(x1,y1);
z=sin(x).*sin(y).*exp(-x.^2-y.^2);
surf(x,y,z);
light('style','point','position',[-2 -2 1],'color','g');
light('style','directional','direction',[0 0 -1],'color','r');
lighting phong;

position A 3-element array [0 0 0] The position for a point light
or a spotlight

style ambient |

directional |

point | spot

point The type of light to create

spread Real number
between 0 and pi

pi The spread angle for a
spotlight

TABLE 9-18: PROPERTY/VALUE PAIRS TO USE WHEN CREATING A LIGHT

PROPERTY VALUE DEFAULT DESCRIPTION
3 D G R A P H I C S | 223

224 | C H A P T E
Another way to influence the appearance of a surface or patch is to select a material and
thereby control how the graphic objects reflect light. To apply a material to all surfaces
and patches in an axes object, use the material function, and then pass appropriate
values to control the material’s properties.

TABLE 9-19: PROPERTY VALUE PAIRS FOR CREATING A MATERIAL

PROPERTY VALUE DESCRIPTION

Ambient colorspec Specifies the ambient color (the color
reflected from the surface due to ambient
light). A string or an RGB triplet specifies
the color of the light. If a string, it is one of
the letters r, g, b, c, m, y, or k, meaning
red, green, blue, cyan, magenta, yellow, and
black, respectively

Diffusive colorspec Specifies the diffusive color

Emissive colorspec Specifies the emissive color, the color of
the light that the surface or patch emits
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Compare the same plot with four different types of material applied to it.

x1=linspace(-2,2,100);
y1=linspace(-2,2,100);
[x,y]=meshgrid(x1,y1);
z=exp(cos(x).*sin(y));
subplot(2,2,1);
surf(x,y,z);
lighting phong;
material('shininess',10);
subplot(2,2,2);
surf(x,y,z);
lighting phong;
material('specular',[0 1 0],'shininess',100);
subplot(2,2,3);
surf(x,y,z);
lighting phong;
material('diffusive',[1 0 0],'shininess',100);
subplot(2,2,4);
surf(x,y,z);
lighting phong;

Specular colorspec Specifies the specular color, which is the
highlight color on the surface or patch

Shininess Real number > 0
and <128.

Specifies the shininess

TABLE 9-19: PROPERTY VALUE PAIRS FOR CREATING A MATERIAL

PROPERTY VALUE DESCRIPTION
3 D G R A P H I C S | 225

226 | C H A P T E
material('emissive','g','shininess',100);

Figure 9-1: Surface plots using four different settings for how the material reflects light.

3D Plots and Lines

The plot3 function is similar to the plot function in 2D except for an argument that
accounts for the z-coordinate. In addition, you can use the line function with a third
argument for the z-coordinate to create a line in 3D. You can set the color and line
width for 3D lines, but line styles and markers are not available.

This code snippet plots a spiral in 3D:

t=0:0.05:30;
x=cos(t);
y=sin(t);
z=sqrt(t);
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

plot3(x,y,z,'b','linewidth',2);

Specifying the View

To specify the viewpoint for a plot, choose the view function (for 3D plots only). The
command view(3) positions the camera in a default 3D view, while view(2) produces
a default 2D view. Other options include view('xy'), view('yz'), and view('zy')
to examine a plot in a certain plane.

Further, view(azimuth,elev) positions the camera at a certain azimuth and
elevation for a 3D plot.

Another option for 3D plots is to move the cursor to position the camera. Hold down
a mouse button and then move the mouse over the axes object. On a 3-button mouse
button, the buttons have the following effects on the camera:

• left—orbit the camera around the plot

• middle—zoom in and out in the plot

• right—pan the camera in the current view plane
3 D G R A P H I C S | 227

228 | C H A P T E
Camera View Angle, Target, Position, and Up Vector

To specify and retrieve the exact view angle, position, target, and up vector for the
camera in a 3D plot, use the functions camva, campos, camtarget, and camup,
respectively.

Use camva to set the camera view angle in degrees for the current axes. Increasing and
decreasing the camera view angle correspond to zooming out and zooming in,
respectively. For example, type

camva(camva-2)

to zoom in by decreasing the camera view angle by two degrees.

The camera target is a vector of coordinates for the location in the plot that the camera
points to, regardless of the camera’s position. Query and set the camera target using
camtarget. Use campos to do the same with the camera position. For example,

campos(campos+[0 0.1 0]);
camtarget(camtarget+[0 0.1 0]);

moves both the camera position and the target position a distance of 0.1 in the y
direction.

The camera up vector is a vector or coordinates that defines the direction in the plot
that is oriented upward. Use the camup function to get or specify the camera up vector.
For example,

up = camup;

stores the current camera up vector in the variable up.
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Work i n g W i t h Imag e s and Mov i e s

Image and Movie Functions and Formats

This section describes how you can use COMSOL Script to read and display images,
save images, and create movies.

Table 9-20 provides an overview of the functions for images and movies:

I M A G E F O R M A T S

The imread, imwrite, and saveimage functions can read and write images on the
following formats:

• BMP (Windows Bitmap) using extension .bmp

• JPEG (Joint Photographic Experts Group) using extension .jpg or .jpeg

• PNG (Portable Network Graphics) using extension .png

• TIFF (Tagged Image File Format) using extension .tif or .tiff

• EPS (Encapsulated PostScript) using extension .eps (only supported by the
saveimage function)

The BMP and TIFF formats are only available on 32-bit Windows, Linux, Solaris, and
Macintosh.

I M A G E D A T A S T R U C T U R E

COMSOL Script stores image data as a height-by-width-by-3 matrix with RGB values
for each pixel in the image. When you read an image from file using imread, a matrix
of the uint8 data type represents the RGB data as values between 0 and 255. The RGB

TABLE 9-20: IMAGE AND MOVIE FUNCTIONS

FUNCTION
NAME

DESCRIPTION

image Show an image

imagesc Show an image using scaled mapping

imread Read an image from file

imshow Show an image

imwrite Write an image to file

movie Create a movie

saveimage Save a plot as an image
W O R K I N G W I T H I M A G E S A N D M O V I E S | 229

230 | C H A P T E
values can also be a matrix of doubles (the default floating-point data type) between 0
and 1.

For information about movie formats and movie objects, see “Generating Movies” on
page 234.

Reading and Displaying Images

Use imread to read images from file. The input to the function is the file name,
including extension, and the output is a COMSOL Script variable that stores the
images data. For example,

Img = imread('plasma_discharge.jpg');

reads the image data from the file plasma_discharge.jpg, which contains a JPEG
image.

To display such an image, use the imshow function:

imshow(Img);

This brings up an Image Preview window:
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

For showing smaller images you can also use image and imagesc, where the latter uses
a scaled mapping when mapping the data values to the colormap.

Saving Images

There are two functions that you can use to save an image to file: imwrite, which
writes image data to a file, and saveimage, which saves the contents of a plot as an
image.

To determine the image format, use the extension of the file name that you pass to
imwrite. For example,

imwrite(Img,'picture1.tif')

writes the image stored in the variable Img to the file picture1.tif using the TIFF
format.

S A V I N G P L O T S A S I M A G E S

The saveimage function stores the contents of a figure window as an image. The
following table contains some of the property-value pairs that you can use to control
how the image is generated.

For instance, to save a 1024x768 TIFF image lineplot.tiff in the current working
directory of the line plot created with plot below, use this code:

x=linspace(0,10,100);
y=sin(x);
plot(x,y);
saveimage(‘lineplot’,’type’,’tiff’,’width’,1024,’height’,768);

To save a 600x800 JPEG image of the plot in the current figure window, use this code:

saveimage(‘currentplot’);

TABLE 9-21: PARTIAL LIST OF PROPERTY/VALUE PAIRS FOR THE SAVEIMAGE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

figure handle current
figure

The handle of the figure
window that contains the
image of interest

height Positive integer 600 The image height

type bmp | jpeg |
png | tiff |
eps

jpeg The type of image to create

width Positive integer 800 The image width
W O R K I N G W I T H I M A G E S A N D M O V I E S | 231

232 | C H A P T E
E X P O R T I N G I M A G E S

You can also save an image by clicking the Export Image button on the toolbar at the
top of the figure window. Doing so brings up a dialog box in which you specify a file
name and type as well as the desired width and height for the image. Using the Export

Image dialog box, you can control font sizes, line widths, and what to include in the
image you export. To speed up the image-generation process, a preview feature and
image rendering information are available.

Figure 9-2: The Export Image dialog box.

S E T T I N G S I N T H E E X P O R T I M A G E D I A L O G B O X

Output Format
In the Output format area, click the Bitmap graphics button to export an image using a
bitmap-based formats such as TIFF and JPEG. You select the format after clicking the
Export button. Click the Vector graphics button to save the image as an EPS file
(Encapsulated PostScript).

Image Size
In the Image size area, you can specify the size of the image. Select the unit from the
Units list: inches, centimeters, or pixels (pixels are available for bitmap graphics only).

When using inches or centimeters, you can set the size using the Width, Height, and
Resolution (dpi) edit fields. When you use pixels as the unit, the Resolution (dpi) edit
field is not available
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

Scaling
The settings in the Font scale and Line scale areas affect the scaling between the plot’s
size on the screen and the size in the image (size = number of pixels):

• Click Auto to use the global scale (you see its value in the Image rendering information
area; also see “The Global Scale” on page 234) if you specify the size in pixels (the
software scales text, lines, and other graphics equally). If you specify the size in
centimeters or inches, the automatic scale is based on the resolution that you. The
font size and line width that you specify when creating the plot should be preserved
if you export an image using a certain resolution in dpi (dots per inch) and import
it to a document as an image using the same dpi number (a text with a certain size
in the plot will look like a text with the same size in the document).

• Click Relative scale to use a total font scale that is the automatic scale times the
relative scale that you specify.

• Click Absolute scale to use a total font scale that is equal to the absolute scale that
you specify.

R E N D E R I N G O P T I O N S

The following settings are available in the Rendering options area:

Antialiasing
Select the Antialiasing check box to reduces stairstep-like lines (jaggies) and makes lines
and edges look smooth

Include Only Plot
Select the Include Only Plot check box to include only the graphics objects in the
drawing area, excluding colorbars, axes, tick marks, titles, and labels.

Include Colorbars and Legends
Select the Include Colorbars and Legends check box to include colorbars and legends, if
present.

Automatic Axis Tick Marks
Select the Automatic axis tick marks check box to take advantage of a new feature that
can hide axis tick marks if they overlap. Clear this check box if you want make sure that
the image has the same axis tick marks as you see on the screen.

Rendering Thin Grid Lines
Select the Thin grid lines check box to render thin grid lines compared to other lines in
the image. Use this option if you think that the grid is too dominating in the image.
W O R K I N G W I T H I M A G E S A N D M O V I E S | 233

234 | C H A P T E
Including the 3D Axis
Select the Include 3D axis check box to include the grid and coordinate system in the
image.

T H E G L O B A L S C A L E

The global scale, which you find in the Image rendering information area, is the scale
between the size of the plot on screen and the size of the image (size = number of
pixels).

Generating Movies

COMSOL Script generates movies in either AVI or QuickTime format.

The command m = movie(...) creates a movie-generation object. You can then add
frames to the movie from plots in figure windows. The properties width and height
specify a desired width and height for the movie; if left unspecified, the movie size
becomes the default size of 640x480 pixels.

You can interact with a movie-generation object with these methods:

The following example generates an AVI movie at 800x600 pixels. It employs the axis
command to set fixed limits and a view for all the frames:

TABLE 9-22: METHODS FOR MOVIE-GENERATION OBJECTS

METHOD DESCRIPTION

m.addFrame Adds the plot in the current figure window as a
frame in the movie

m.addFrame(h) Adds the plot in the figure window with handle h
as a frame in the movie

m.setFrameRate(rate) Sets the frame rate when generating the movie

m.setQuality(qual) Sets the quality when generating the movie;
qual is a real number between 0 and 1, where 1
is the best quality

m.setFileType(type) Sets which type of movie to generate; type can
be 'avi' or 'quicktime'

m.listEncodings Displays a list of available encoding formats

m.setEncoding(encoding) Sets which encoding format to use

m.generate(filename) Generates a movie with the name filename
from the frames that have been added to the
movie
R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

x1=linspace(-5,5,100);
y1=linspace(-5,5,100);
[x,y]=meshgrid(x1,y1);
r=sqrt(x.^2+y.^2);
z=sqrt(6-r).*sin(r);
h=surf(x,y,z);
axis([-5 5 -5 5 -1 2]);
m=movie('width',800,'height',600);
for i=1:20,
 delete(h);
 h=surface(x,y,z*(1-i/10));
 m.addFrame;
end
m.generate('movie.avi');
W O R K I N G W I T H I M A G E S A N D M O V I E S | 235

236 | C H A P T E
 R 9 : P L O T T I N G A N D V I S U A L I Z I N G D A T A

 10
S o l v i n g D i f f e r e n t i a l E q u a t i o n s
Ordinary differential equations (ODEs) appear when using the method-of-lines to
solve time-dependent partial differential equations in COMSOL Multiphysics.
There are many other cases where ODEs and differential-algebraic equations
(DAEs) provide good mathematical models of dynamic systems. This chapter
describes the tools for solving ODEs and DAEs using COMSOL Script. For partial
differential equations (PDEs), see the COMSOL Multiphysics documentation.
 237

238 | C H A P T E
ODE s and DAE s

Introduction

ODEs are ordinary differential equations, that is, differential equations that only
depend on one independent variable. Often ODEs describe dynamic processes, and
the derivatives are with respect to time. When you also supply an initial condition, this
forms an initial-value problem. A DAE is an extension of ODEs, where some
equations are algebraic (no derivatives of the dependent variables appear). DAEs occur,
for example, when solving the time-dependent Navier-Stokes equations using the
method of lines.

Using the DASPK Solver

COMSOL Script includes the DAE solver DASPK created by Linda Petzold at
University of California, Santa Barbara (see Ref. 1 and Ref. 2). The solver is an implicit
time-stepping scheme, which means that it must solve a possibly nonlinear system of
equations at each time step. It is well suited for solving stiff and nonstiff initial-value
problems, including nonlinear problems. Use the daspk function to solve ODEs and
DAEs for initial-values problems on the following form:

with initial conditions y(t0) = y0. The mass matrix M is the unit matrix by default. For
DAEs, M is typically singular. y represents the dependent variables and is a vector for
a system of ODEs. To solve higher-order ODEs, rewrite them into a system of
first-order ODEs.

The syntax of daspk is:

[t, y] = daspk(f, tlist, y0)

where f is the name of a function that implements the right-hand side f. tlist
contains a set of times for which you want the solution data (as a row vector). If you
provide a vector with two entries, they are define the interval on which daspk solves
the ODE or DAE. In that case, t contains all the internal time steps.

Using an additional input argument, you can provide various solver options in a
structure variable. See “Setting and Retrieving ODE Solver Options” on page 239 for
more information about the options structure.

M t y,()y· f t y,()=
R 1 0 : S O L V I N G D I F F E R E N T I A L E Q U A T I O N S

The syntax for the function that implements f is the following:

function ydot = myode(t,y)

Notice that the function takes the input arguments t and y, even if the equations may
not include t explicitly.

The input t is the independent variable and is a scalar.

The input y is a column vector of the same length as the number of dependent
variables.

You can also have a function f that takes additional input arguments that can be, for
example, parameters in the ODE or DAE. You then supply those as additional input
arguments to daspk. See “Solving the van der Pol Equation” on page 243 for an
example.

Setting and Retrieving ODE Solver Options

The options structure that you can provide as an input to daspk contains the following
fields:

• AbsTol: The absolute tolerance—a scalar value or a vector with one value for each
dependent variable in y. The default value is 1e-6.

• Complex: If you set this to True, daspk assumes that the solution is complex even
if the initial value is real.

• IntialStep: Initial step size (a positive scalar value). By default, daspk computes
this value automatically.

• Jacobian: A matrix or name of function that describes the Jacobian .

• Mass: Matrix or name of function that computes the mass matrix M(t, y). If you do
not provide a mass matrix, daspk uses the unit matrix.

• MaxOrder: The maximum order of the backward differentiation formula (BDF),
which must be an integer between 1 and 5. The default value is 5.

• MaxStep: Maximum step size (a positive scalar value). By default, the maximum step
size is one tenth of the interval in tlist.

• OutputFcn: The name of a callback function that daspk invokes after each step.

• RelTol: The relative tolerance——a scalar positive value. It can also be a vector with
one value for each dependent variable in y that daspk interprets as weights for a

y∂
∂f
O D E S A N D D A E S | 239

240 | C H A P T E
single scalar relative tolerance value.The default value is 1e-3 (or 0.01% relative
tolerance).

• Stats: Display statistics for the computational effort after computing the solution.
Set it to on to display the statistics. The default value is off.

To set these values, provide them as pairs of option names (field names) and option
values using the odeset function. The fields for options that you do not specify
contain the empty matrix and daspk then uses the default value:

opts = odeset('abstol',1e-2,'maxstep',0.1,'stats','on')

opts =

 AbsTol: [0.010000]
 Complex: []
 InitialStep: []
 Jacobian: []
 Mass: []
 MaxOrder: []
 MaxStep: [0.100000]
 OutputFcn: []
 OutputSel: []
 RelTol: []
 Stats: 'on'

The input for the option names (field names) in not case sensitive. To update only
certain options, pass the existing options structure as the first input argument:

newopts = odeset(opts,'abstol',5e-2);

To check the value of an ODE option in the options structure, use the odeget
function:

atol = odeget(opts,'abstol');

Solving the Lotka-Volterra Equations

As a first example, consider the Lotka-Volterra equations, which describe population
fluctuations in predators and preys that interact. This results in two coupled nonlinear
ODEs for the prey populations (y1) and the predator population (y2). Four parameters
control the dynamics: the growth rate of prey (R1), the rate at which predators kill prey
(R2), the death rate of predators (R3), and the rate of increase in predator population
due to prey consumption (R4):
R 1 0 : S O L V I N G D I F F E R E N T I A L E Q U A T I O N S

To simplify the equations, set all four parameters to 1. Then the function that describes
f, the right-hand side in the equations above:

function ydot = lotkavolterra(t,y)
ydot = zeros(2,1);
ydot(1) = y(1)-y(1).*y(2);
ydot(2) = -y(2)+y(1).*y(2);

Notice that you need to use pointwise multiplication (.*), because y is a vector.

If you save this as lotkavolterra.m in a directory that is on the M-file path, you can
call daspk to compute the solution from 0 to 10, using a starting value of 2 for the prey
population and 1 for the predator population:

[t,y] = daspk('lotkavolterra',[0 10], [2; 1]);
plot(t,y)
title('Solution to the Lotka-Volterra equations')

y·1 R1y1 R2y1y2–=

y·2 R3y2– R4y1y2+=⎝
⎜
⎜
⎛

O D E S A N D D A E S | 241

242 | C H A P T E
This gives the following plot:

Figure 10-1: Prey population (blue) and predator population (green).

To plot a phase curve (y2 as a function of y1), type:

plot(y(:,2),y(:,1))
R 1 0 : S O L V I N G D I F F E R E N T I A L E Q U A T I O N S

Figure 10-2: The phase curve for a solution to the Lotka-Volterra equations.

Solving the van der Pol Equation

The van der Pol equation is the following second-order PDE:

It describes self-sustaining oscillations. The parameter µ has a great impact on the
solution: A high value of µ makes the ODE “stiff,” and it exhibits faster changes in the
solution. In the special case of µ = 0, it is the equation for a simple harmonic motion.

For this example, you must rewrite the second-order ODE into a system of two
first-order PDEs:

where y2 is y in the original equation, and y1 is the time-derivative of y.

y·· µ 1 y2
–()y· y+=

y·1 µ 1 y2
2

–()y1 y2–=

y·2 y1=
O D E S A N D D A E S | 243

244 | C H A P T E
In this case, it is also interesting to vary the parameter µ. It is therefore an extra input
argument to the function vanderpol.m that implements the right-hand side:

function ydot = vanderpol(t,y,mu)
ydot = zeros(2,1);
ydot(1) = mu*(1-y(2).^2).*y(1)-y(2);
ydot(2) = y(1);

It is also of interest to get some statistics for the computational cost. Therefore, turn
on the statistics option:

opts = odeset('stats','on');

Call daspk with a time interval of 0 to 100, a small initial value for y, and µ = 0.1:

[t,y] = daspk('vanderpol',[0 100], [0;0.0001],opts,0.1);
277 time steps taken
314 residual evaluations
6 Jacobian evaluations
302 linear system solutions
R 1 0 : S O L V I N G D I F F E R E N T I A L E Q U A T I O N S

The solver reports the number of time steps, the number of residual evaluations, the
number of Jacobian evaluations, and the number of linear system solutions.
Figure 10-3 contains a plot of the solution.

Figure 10-3: The solution to the van der Pol equation with µ = 0.1.
O D E S A N D D A E S | 245

246 | C H A P T E
In Figure 10-4 you can see the phase curve for this solution:

Figure 10-4: Phase curve for the solution to the van der Pol equation with µ = 0.1.

If you increase µ to 1, the call is:

[t,y] = daspk('vanderpol',[0 100],[0;0.0001],opts,1);
1095 time steps taken
4069 residual evaluations
864 Jacobian evaluations
3113 linear system solutions
R 1 0 : S O L V I N G D I F F E R E N T I A L E Q U A T I O N S

As you can see from the statistics information, the computational cost increases.
Figure 10-5 shows the solution:

Figure 10-5: The solution to the van der Pol equation with µ = 1.

Finally, increasing the value of µ to 100 makes the ODE much more stiff, and the
dynamics change so that you get an abrupt change in the solution after some time. This
To see this, increase the solution interval to 1000 and plot only y2. You also have to
use stricter tolerances than the default values:

opts = odeset(opts,'abstol',1e-9,'reltol',1e-9);
[t,y] = daspk('vanderpol',[0 1000],[0;0.0001],opts,100);
13041 time steps taken
31585 residual evaluations
5121 Jacobian evaluations
26166 linear system solutions
plot(t,y(:,2))
O D E S A N D D A E S | 247

248 | C H A P T E
Figure 10-6 shows how the solution behaves in this case:

Figure 10-6: The solution to the van der Pol equation with µ = 100.

References

1. .Brown, P. N., Hindmarsh, A. C., and Petzold, L. R., “Using Krylov Methods in
the Solution of Large-Scale Differential-Algebraic Systems,” SIAM J. Sci. Comput.,
vol. 15, pp. 1467–1488, 1994.

2. http://www.netlib.org/ode
R 1 0 : S O L V I N G D I F F E R E N T I A L E Q U A T I O N S

 11
C r e a t i n g U s e r I n t e r f a c e s
The COMSOL Script environment includes Java-based tools for creating
customized graphical user interfaces (GUIs) that can make calls to other COMSOL
Script functions as well as to functions within COMSOL Multiphysics. In this way
you can build sophisticated scripts or mathematical models and place a user
interface around them that provides access only to those parameters that might
need changing or that automatically present results in a very specific way.
Introducing you to these tools, this chapter contains an overview of the various
components and functions as well as an example of building a small user interface
using COMSOL Script.
 249

250 | C H A P T E
F r ame s and D i a l o g Box e s

A frame is the main window for an application. You supply the text to display on the
title bar as the first argument to the frame function.

You can add menus to a frame, which also acts as a panel to which you can add user
interface components. A dialog box has a frame as its parent but otherwise behaves the
same as a frame. Use the Size property to specify the desired size of a frame or dialog
box. If you give no size, COMSOL Script makes it the smallest size that fits all the
components you have added to it. Frames and dialog boxes are invisible while you are
adding components to them; call the show method to display the frame or dialog box
when you have added all the desired components.

Menus

The menu function creates main menus, which appear at the top of a frame or dialog
box. You pass the string to display on the menu as an argument. To create individual
menu items that drop down from the main menu use the menuitem function. Here
you pass the string to display as the first argument plus the name of the function to
execute when the menu item is selected as the second argument.

As an exercise, create a small application that has a several menus and items:

f=frame('My Application','size',[300 150]);
m1=menu('File');
m1.add(menuitem('New','newaction'));
m1.add(menuitem('Exit','exitaction'));
m2=menu('Help');
m2.add(menuitem('Help','helpaction'));
m2.addSeparator;
m2.add(menuitem('About','aboutaction'));
f.addMenu(m1);
f.addMenu(m2);
f.setAlignment('center');
f.add(label('tag','label'));
f.show;

Create this script in a text editor and save it as an M-file somewhere on your M-file
path.

Next you must add the code for the functions these menu items call. Define the
functions newaction, exitaction, helpaction, and aboutaction as follows:
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

function newaction(event)
frame=event.parent;
frame.get('label').setText('New');

function exitaction(event)
frame=event.parent;
frame.close;

function helpaction(event)
frame=event.parent;
frame.get('label').setText('Help');

function aboutaction(event)
frame=event.parent;
dlg=dialog('About','parent',frame);
dlg.add(label('About My Application.'),1,1);
dlg.setAlignment('center');
dlg.add(button('OK'),2,1);
dlg.show;

Save each of these functions in separate M-files: newaction.m, exitaction.m,
helpaction.m, and aboutaction.m on the M-file path.

The menu is now complete. Choosing the New and Help menu items updates the text
on the label in the main area. The Exit menu item closes the frame, and the About menu
item opens a new smaller dialog box (this code does not define an action for the OK
button in the About My Application dialog box; see“Event Handling” on page 269 for
information about how to associate an action with events such as mouse clicks).

Storing Application Data

When you write an application you usually have some kind of data structure that you
want to access from different event handlers in the user interface. Use the storedata
and getdata functions to accomplish this.

storedata(f,data)

stores the variable data in f, which can be a frame or a dialog box. Retrieve the variable
later on using
F R A M E S A N D D I A L O G B O X E S | 251

252 | C H A P T E
getdata(f)

data can be any of the data types supported by COMSOL Script, but it is usually best
to let it be a structure.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

U s e r I n t e r f a c e Componen t s

Introduction

To make a dialog box or panel useful, you must populate it with components that
accept operator instructions and display results. The GUI component library in
COMSOL Script supplies functions for creating most of the user-interface
components that are available in Java. These functions return a Java object that
contains the corresponding Java Swing component. You can then interact with the
objects by calling methods on them using the Java interface in COMSOL Script.

Swing is the standard GUI component library that is included in Java. Details about
Java and Swing are available at http://java.sun.com.

The available components are:

TABLE 11-1: GUI COMPONENT FUNCTIONS

FUNCTION NAME DESCRIPTION

axes An axes object into which you plot arbitrary graphics (see “Axes”
on page 193)

button A button

buttongroup A button group that synchronizes the selection state for option
(radio) buttons and toggle buttons

checkbox A check box

combobox A combo box

dialog A dialog box

frame A user-interface window

label Displays text and images

listbox A list box

menu A main menu or submenu added to a dialog or a frame

menuitem A menu item that executes some action

panel A panel into which you add components or other panels

radiobutton An option (radio) button

scrollpane Adds scroll bars around a component

table A table

tabbedpane Add panels to a tabbedpane to create different tabs.

textarea A multiple-line area for entering text
U S E R I N T E R F A C E C O M P O N E N T S | 253

254 | C H A P T E
To learn how to position components on a panel or frame, see “Panels and Layout
Management” on page 262. For now, though, examine the various components that
are at your disposal.

Labels and Image Icons

Labels display text or images (in the form of an image icon) at an arbitrary location on
a frame or panel. To create a label, take the text you wish to display and supply it as an
argument to the label function:

l=label('Enter name:');

An image icon is an image that is displayed on a label, button, check box, radio button,
or toggle button. Create it by giving the name of a GIF, JPEG, or PNG file as an
argument to the imageicon function:

im=imageicon('myimage.jpeg');

The label function also accepts the optional properties Text and Image with which
you can directly specify either or both text and an image. For instance,

im=imageicon('myimage.jpeg');
l=label('text','Number of data points:','image',im);

Buttons and Toggle Buttons

Buttons, check boxes, option (radio) buttons, and toggle buttons are all similar in that
you create any of them by supplying a first argument that is the string to display with
the component. As with labels, with these components you can also use the properties
Text and Image to specify a text and/or an image to display on the component.

b=button('OK');
c=checkbox('Show grid');
r=radiobutton('On');
t=togglebutton('More>>');

Use buttongroup to synchronize the selection state for option buttons and toggle
buttons so that selecting one option button in the group deselects all other option
buttons. First create a button group, then add the components that should be
synchronized to that group.

textfield A single-line area for entering text

togglebutton A button that a user can select or deselect

TABLE 11-1: GUI COMPONENT FUNCTIONS

FUNCTION NAME DESCRIPTION
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

f=frame('Buttons');
p1=panel;
bg=buttongroup;
r1=radiobutton('On');
r2=radiobutton('Off');
bg.add(r1);
bg.add(r2);
p1.add(r1,1,1);
p1.add(r2,2,1);
c1=checkbox('Red');
c2=checkbox('Green');
p2=panel;
p2.add(c1,1,1);
p2.add(c2,2,1);
b1=button('OK');
t1=togglebutton('Toggle');
f.add(p1,1,1);
f.add(p2,1,2);
f.add(b1,2,1);
f.add(t1,2,2);

r1.setValue('on');
c2.setSelected(true);
t1.setSelected(true);

f.show;

Use the getValue method to determine if a button is selected by reading the resulting
string 'on' or 'off', and use the setValue method set the button’s state to one of
those strings. The methods getSelected and setSelected are similar but use true
and false to indicate if the button is selected or not.

Text Fields and Text Areas

To enter a single line of text use a text field; in contrast, a text area holds multiple lines
of text. You define the size of a text field as the number of characters it should hold,
and define the size of a text area as the number of rows and columns of text it should
hold.

t1=textfield(12);
t2=textarea(5,20);
U S E R I N T E R F A C E C O M P O N E N T S | 255

256 | C H A P T E
The optional property Text can set an initial string that should appear in the text field
or text area. After you have created the component, read its text with the getValue
method and modify the text with setValue(text).

Combo Boxes and List Boxes

Combo boxes and list boxes display multiple descriptive strings and for each also store
a corresponding value string. Specify the descriptive strings with the Descr property,
and specify the corresponding values with the Items property. You can also use the
Items property alone—in that case, the specified strings serve as both values and
descriptions. Use both Items and Descr to let the strings in Items be the value of
some property and the strings in Descr be the corresponding descriptions.

f=frame('Lists');
cb=combobox('items',{'interp','flat','none'}, ...
 'descr',{'Interpolated','Flat','None'});
lb=listbox('items',{'r','g','b','c','m'}, ...
 'descr',{'Red','Green','Blue','Cyan','Magenta'}, ...
 'size',[100 140]);
f.add(lb,1,1,2,1);
f.add(cb,1,2);
f.packColumn(2,2);
f.show;

Combo boxes and list boxes have almost the same methods for getting and setting the
selection and the values to display. The list box has a few more methods, however,
because it allows users to select multiple items.

TABLE 11-2: METHODS FOR MANIPULATING COMBO BOX AND LIST BOX OBJECTS.

METHOD DESCRIPTION

addListSelectionListener(name) Specifies that the function with the given name
should run when the selection in the list box
changes.

getSelectedIndex Returns an index to the currently selected
item in the combobox/listbox.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

Tabbed Panes and Scroll Panes

COMSOL Script supports two types of the pane object. The first is the tabbedpane,
which is the page that appears when you click one of multiple tabs across the top of a
tabbed dialog box; the second is the scrollpane, which places scroll bars around a
given component on a dialog box. The following example show how to use pane
objects to create a tabbed dialog box.

To create a dialog box with multiple tabs, first call the tabbedpane function; then call
the addTab method, and pass to it the text to display on the tab as well as the name of
the page to display when the tab is clicked. Consider this example:

f=frame('Tabs','size',[300 200]);
f.setFill('both');
tp=tabbedpane;
p1=panel;
p2=panel;
p3=panel;
p1.add(label('This text is displayed on the first tab'));
p2.add(label('This text is displayed on the second tab'));
p3.add(label('This text is displayed on the third tab'));
tp.addTab('First',p1);
tp.addTab('Second',p2);
tp.addTab('Third',p3);
f.add(tp);

getSelectedIndices Returns an array with indices to the selected
items in the listbox.

getValue Returns a string corresponding to the current
selected item in the combobox/listbox.

setItems(items) Sets the items to display in the combobox/
listbox by passing a cell array of strings.

setItems(items,descr) Sets the descriptions to display in the
combobox/listbox and their corresponding
values by passing two cell arrays of strings.

setSelectedIndex(ind) Selects the item with the specified index in
the combobox/listbox.

setSelectedIndices(ind) Selects the items in the listbox corresponding
to the indices in the vector ind.

setValue(value) Selects the item with the specified value in the
combobox/listbox.

TABLE 11-2: METHODS FOR MANIPULATING COMBO BOX AND LIST BOX OBJECTS.

METHOD DESCRIPTION
U S E R I N T E R F A C E C O M P O N E N T S | 257

258 | C H A P T E
f.show;

While tabbedpane works with an entire page in a dialog box, scrollpane works with
an individual component—it adds scroll bars around a component that is too large to
display in an existing dialog box, panel or frame. When working with the scrollpane
function, as the first argument pass the name of the component that gets the scroll
bars, then use the Size property to specify the desired size of the scroll pane. Take care
in this regard because if you do not specify a size, the scroll pane becomes very small.
For an example of a scroll pane, see the result of the code snippet in the next section
on tables.

Tables

Call the table function to create a table. Use the following property-value pairs to
specify the number of rows and columns, column headers, and other appropriate
parameters.

TABLE 11-3: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

autoadd On | Off off Determines whether rows should
automatically be added to the end of the
table as needed when the user enters
values.

cols integer 2 The number of columns in the table.

editablecols integer
array

all Indices to the columns that should be
editable.

rows integer 10 The number of rows in the table.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

As an exercise, create a table and display some material names in it. To the table add a
scroll pane so the table’s size can exceed that of the frame.

f=frame('Table');
t=table('rows',20,'cols',6,'width',[80 100 100 70 70 70], ...
 'titles',{'Material','Density','Conductivity','','',''});
scroll=scrollpane(t,'size',[400 200]);
f.add(scroll,1,1,'both');
f.show;

material{1,1}='Aluminum';
material{2,1}='Copper';
material{3,1}='Iron';
material{4,1}='Magnesium';
material{5,1}='Silicon';
settabledata(t,material);

data=[2700 3.774e7;8700 5.998e7;7870 1.12e7;
 1770 1.087e7;2330 163];
t.setValue(1:5,2:3,data);

Use the getValue and setValue methods on a table to read and modify numerical
values. In addition, some corresponding methods take index vectors to rows and
columns so that you can get and set values only in certain parts of a table. Table cells

titles cell array
of strings

The headings for each column.

width integer
array

The desired width of the columns. It is
either a scalar specifying the same width
for all columns, or a vector of the same
length as the number of columns. If you
supply no value, each column is given a
suitable width to fit its title.

TABLE 11-3: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
U S E R I N T E R F A C E C O M P O N E N T S | 259

260 | C H A P T E
that are empty or that cannot be converted to numerical values return NaN in the
corresponding positions in the output matrix.

The functions settabledata and gettabledata read and modify values from cell
matrices of strings. This functionality is useful if you wish to format numerical values
before setting them or to get and set non-numerical values such as strings.

Axes

The axes object is one of the most useful components in COMSOL Script user
interfaces. It creates a set of 2D or 3D axes into which a COMSOL Script program
then plots data in the form of lines or surfaces. See “2D Graphics” on page 205 and
“3D Graphics” on page 215 for more information about 2D plots and 3D plots.

An axes object is the same component we use in the plotting windows built into
COMSOL Script. You create an instance of this object using the axes function, then
retrieve a handle to it with the getHandle method. This handle then serves as the
Parent property for plotting functions such as plot, line, surf, and patch. The
handle can also control properties such as axis limits, tick marks, labels, and titles.

As a default, an axes component has a very small size. Thus it is best to specify a fill
style of 'both' and use a large weight for the grid cell when adding it to a panel (see
the section in this chapter, “Panels and Layout Management” on page 262). These
steps make sure that the axes component stretches to fill all extra space not needed by
other components on a panel.

As an example, create a simple figure window by adding an axes object to a frame and
then plot some data in it.

f1=frame('My Figure','size',[600 500]);
ax=axes;
p=panel;
p.add(label('x values:'),1,1);
p.add(textfield(20,'text','linspace(0,10,100)'),1,2);
p.addHSeparator(40,1,3);
p.add(label('Function to plot:'),1,4);
p.add(textfield(20,'text','exp(-sqrt(x)).*cos(3*x)'),1,5);
p.packRow(1,6);
p.add(button('Plot'),1,7);
f1.setWeight(1e6,1e6);
f1.add(ax,1,1,'both');
f1.resetWeight;
f1.add(p,2,1,'horizontal');
f1.show;
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

x=linspace(0,10,100);
y=exp(-sqrt(x)).*cos(3*x);
parent=ax.getHandle;
plot(x,y,'parent',parent);
set(parent,'title','exp(-sqrt(x)).*cos(3*x)');

The code that plots the function would normally be in an actionListener method
for the Plot button. It could use eval calls to get x and y vectors from the text strings
in the text fields and then plot that data in the axes object.
U S E R I N T E R F A C E C O M P O N E N T S | 261

262 | C H A P T E
Pan e l s a nd L a y ou t Manag emen t

A panel is an area within a larger object such as a frame or dialog box, often
distinguished from the rest of a dialog box with a ruled line, in which you add
components or even other panels. To create a panel in COMSOL Script, you work
with a layout manager that is based on the Java GridBagLayout class. This means that
you divide a panel into a grid and then add components to different cells in the grid.
Each component has a preferred size that defines the size of each cell. The cells, in
turn, define the size of the entire panel. Thus there is no need to manually account for
different font sizes on different computing platforms and so on when laying out
components in a dialog box.

Adding Components

When adding a GUI component to a cell in the panel grid, you can specify how it
should be aligned within the cell and if it should fill out the cell in the horizontal and
vertical directions. With various add methods you specify the cell to which you want
to add a component. You can also specify that a component should span several cells.
There is no need to specify the grid size; the software determines it automatically from
the maximum row and column numbers.

TABLE 11-4: METHODS FOR ADDING COMPONENTS TO A PANEL.

METHOD DESCRIPTION

add(comp,row,col) Adds a component to the cell at the
given row and column.

add(comp,row,col,nrows,ncols) Adds a component to the cell at the
given row and column. The component
spans the specified number of rows and
columns.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

As an exercise, create a frame with buttons that have different fill styles and alignments:

f=frame('Fill and Alignment','size',[400 200]);
f.add(button('COMSOL'),1,1,2,1,'both');
f.add(button('Script'),1,2,'vertical');
f.add(button('Plot'),1,3,'horizontal');
f.setAlignment('south');
f.add(button('Show'),2,2);
f.setAlignment('east');
f.add(button('Hide'),2,3);
f.show;

This code snippet divides the frame into a 2-by-3 grid. The COMSOL button in the first
column is specified to span two rows and to fill the space in the cells in which it lies.
The Script button fills its cell only vertically, and the width needed to display the Script
string determines this component’s width. The Plot button fills its cell horizontally,
and its height is determined by that needed to display the text on it. The Show and Hide
buttons have sizes determined by the strings they display, and they are aligned to the
south and east in their cells, respectively.

add(comp,row,col,fill) Adds a component and specifies how it
should fill the cell to which it is assigned.
Fill is a string that tells the component
to stretch to fill the cell in certain
directions. It can have one of the values
'both', 'horizontal', or
'vertical'.

add(comp,row,col,nrwos,ncols,fill) The same as
add(comp,row,col,fill) but also
allows you to specify the number of
rows and columns the component
should span.

TABLE 11-4: METHODS FOR ADDING COMPONENTS TO A PANEL.

METHOD DESCRIPTION
P A N E L S A N D L A Y O U T M A N A G E M E N T | 263

264 | C H A P T E
The next example shows how to create a frame and on it place two panels with labels,
text fields, buttons, and combo boxes.

f=frame('Layout');
p1=panel;
p1.add(label('Name:'),1,1);
p1.add(textfield(12),1,2);
p1.add(textfield(12),1,3);
p1.add(label('Address:'),2,1);
p1.add(textfield(30),2,2,1,2);
p1.add(label('Country:'),3,1);
countries={'France','Germany','Sweden','USA'};
p1.add(combobox('items',countries),3,2);
bp1=panel;
bp1.add(button('OK'),1,1);
bp1.add(button('Cancel'),1,2);
bp1.add(button('Apply'),1,3);
p1.addVSeparator(4,4,1);
p1.add(bp1,5,1,1,3);
p1.addBorder('First');

p2=panel;
p2.add(label('Name:'),1,1);
p2.add(textfield(12),1,2,'horizontal');
p2.setAlignment('east');
p2.add(textfield(12),1,3);
p2.setAlignment('west');
p2.add(label('Address:'),2,1);
p2.add(textfield(30),2,2,1,2);
p2.add(label('Country:'),3,1);
p2.add(combobox('items',countries),3,2,'horizontal');
bp2=panel;
bp2.add(button('OK'),1,1);
bp2.add(button('Cancel'),1,2);
bp2.add(button('Apply'),1,3);
p2.addVSeparator(4,4,1);
p2.setAlignment('east');
p2.add(bp2,5,1,1,3);
p2.addBorder('Second');

f.add(p1,1,1);
f.add(p2,2,1);

f.show;
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

The panels are similar and are each divided into a 5-by-3 grid. The first column holds
the labels. The Address text field spans both Columns 2 and 3. Because it is more than
twice as wide as the Name text fields, extra gray space is available in Columns 2 and 3
after the Name text fields. In the upper panel, the width of the Country combo box is
determined by the length of the longest pull-down description in that combo box,
whereas the lower panel specifies that the Country combo box and the Name text field
should fill their cells horizontally—a requirement that results in a nice alignment
between them. A vertical separator is added above the panels that hold the buttons,
and in the lower panel its alignment is set to 'east'.

Distributing Extra Space

If a panel is larger than required by its components, the extra space is distributed
between the grid cells according to their relative weights. By default, each cell has a
weight of 1 in both the x and y directions. You can set higher weight values for certain
cells if you want them to get more of the extra space.

You can also use the packRow and packColumn methods to specify that all components
in a row or a column should be moved away as much as possible from a certain cell.

TABLE 11-5: METHODS FOR CONTROLLING HOW EXTRA SPACE IS DISTRIBUTED.

METHOD DESCRIPTION

pack Packs (shifts) components on the panel towards the
upper left corner. Can, for example, be used before
adding a panel to a tabbedpane to make sure the
components on each tab stretch to fill the tab.

packColumn(row,col) Packs (shifts) components in a column away from the
specified row and column.
P A N E L S A N D L A Y O U T M A N A G E M E N T | 265

266 | C H A P T E
Consider this example:

f=frame('Extra Space','size',[400 200]);
f.setFill('both');
p1=panel;
p1.setFill('both');
p1.add(button('1'),1,1);
p1.setWeightY(1e6);
p1.add(button('2'),2,1);
p1.resetWeight;
p1.add(button('3'),3,1);
p2=panel;
p2.setFill('both');
p2.add(button('4'),1,1);
p2.add(button('5'),2,1);
p2.add(button('6'),3,1);
p2.packColumn(4,1);
p3=panel;
p3.setFill('both');
p3.add(button('7'),1,1);
p3.add(button('8'),2,1);
p3.add(button('9'),3,1);
f.add(p1,1,1);
f.add(p2,1,2);
f.setWeightX(1e6);
f.add(p3,1,3);
f.resetWeight;
f.show;

packRow(row,col) Packs (shifts) components in a row away from the
specified row and column.

resetWeight Resets the weights to their default values, which is 1 in
both the x and y directions.

setWeight(x,y) Sets the weight in the x and y directions for any
components added after you make this call. The
components’ relative values of the weights determine
how extra space within the panel should be distributed
if the panel is larger than needed by the preferred size of
its components.

setWeightX(x) Set the weight only in the x direction.

setWeightY(y) Set the weight only in the y direction.

TABLE 11-5: METHODS FOR CONTROLLING HOW EXTRA SPACE IS DISTRIBUTED.

METHOD DESCRIPTION
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

This example adds panels in three columns. In the first column, you set a large weight
in the y direction before adding the 2 button. In this way that cell gets all the extra
vertical space, and because you add the button with a fill style of 'both', it stretches
to fill the cell. For the panel in the second column, a packColumn call moves the
components away from Row 4 on that panel. Before the panel in the third column is
added, you set the weight in the x direction to a large value for that cell. In this way
the third column gets all the extra horizontal space.

Adding Empty Space

To give a cell a certain width or height without adding a component to it, use the
addHSeparator and addVSeparator methods, which create extra space between
components. You can also use these methods in cells where you have already added
another component to force that cell to reach a certain minimum width or height.

f=frame('Separators');
f.setFill('both');
f.add(button('1'),1,1);
f.add(button('2'),2,1);
f.addVSeparator(20,3,1);
f.add(button('3'),4,1);
f.addHSeparator(30,1,2);
f.add(button('4'),1,3);
f.add(button('5'),2,3);
f.addVSeparator(60,2,3);
f.addHSeparator(120,2,3);
f.add(button('6'),4,3);
f.add(button('7'),1,4);
f.add(button('8'),2,4);
f.add(button('9'),4,4);
P A N E L S A N D L A Y O U T M A N A G E M E N T | 267

268 | C H A P T E
f.show;

Here the buttons are laid out on a 4-by-4 grid where there are no buttons on Row 3.
This code snippet adds a horizontal separator with a width of 30 pixels in Column 2
and adds a vertical separator with a height of 20 pixels in Row 3. It also adds a
horizontal separator and a vertical separator in the same cell as the 5 button to make
that cell larger than required by the button itself.

Accessing Components

To specify a tag when creating a component, use the Tag property. With it you can later
access that component by calling the get method on a panel, dialog, or frame. For
instance, examine this code:

f=frame('Tags');
f.add(label('Width:'),1,1);
f.add(textfield(10,'tag','width'),1,2);
f.add(label('Height:'),2,1);
f.add(textfield(10,'tag','height'),2,2);
f.show;
t1=f.get('width');
t2=f.get('height');
t1.setValue('400');
t2.setValue('300');

The two text fields are created without assigning them to a specific variable. Instead
they are given a tag when created. This tag is then used with the get method on frame
to access the text fields and set the text in them.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

Ev en t Hand l i n g

With GUI components selected and placed on a panel, it is now time to assign actions
to them. You can specify that GUI events such as the click of a button, mouse
movements, or the change of the selection in a list box should run a certain M-file.
Simply specify the name of the function to run as an argument to the appropriate
method. For instance, to specify that the function okaction should run when the user
clicks the OK button, write these two lines of code:

b=button('OK');
b.addActionListener('okaction');

The following table lists the methods that add event handlers to certain types of
components.

When calling an event-handling function, you supply one argument that is a structure
containing information about the event. The event structure always has the following
fields:

• parent—The dialog box or frame in which the source component for the event lies

TABLE 11-6: METHODS FOR ADDING EVENT HANDLERS

METHOD COMPONENTS DESCRIPTION

addActionListener button,
checkbox,
combobox,
radiobutton,
togglebutton

Run a function when a button
is clicked or the selection of
the component changes.

addActionListenerThread button Run a function in a separate
thread when a button is
clicked. This can be used for
operations that execute for a
long time and need to update
graphics while running.

addFocusListener all Run a function when a
component gains or loses
focus.

addListSelectionListener listbox Run a function when the
selection in a listbox changes.

addMouseListener all Run a function when the
cursor is moved or clicked
over a component.
E V E N T H A N D L I N G | 269

270 | C H A P T E
• source—The component that is the source of the event

• type—A string specifying the type of event

Generally you use the parent field to identify the frame or dialog box in which the
component causing the event is situated. Then, to access other components in the
frame and their values, call the get method along with tags to the components.

The third field in the event structure, the type field, can have a number of values as
indicated in the following table:

In this list of values, note that for mouse events used on an axes component, the event
structure also contains the fields x and y that give the coordinates where the mouse
event occurred.

TABLE 11-7: VALUE OF THE TYPE FIELD FOR DIFFERENT TYPES OF EVENTS.

VALUES OF TYPE FIELD TYPE OF EVENT

'action' An action event has occurred.

'focusgained' A component has gained focus.

'focuslost' A component has lost focus.

'list' The selection in a list box has changed.

'mouseentered' The mouse was moved on top of a component.

'mouseexited' The mouse was moved away from a component.

'mouseclicked' A mouse button was clicked on top of a component.

'mousepressed' A mouse button was pressed on top of a component.

'mousereleased' A mouse button was released on top of a component.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

Ex amp l e U s e r I n t e r f a c e

This example shows how to create a simple GUI. It includes a table in which you can
enter coordinates for data points. You then specify an interpolation method to
interpolate between this data. It creates a plot with the data points as markers and the
interpolated values as a line with a given color, line style, and line width.

Note: The files for this example are available in the demos directory in the
installation.

Start by writing the code that draws the GUI and specifies which functions to use as
event listeners:

f=frame('Interpolation');
p1=panel;

dp=panel;
dp.setFill('horizontal');
t1=table('rows',30,'cols',2,'titles',{'X','Y'},
'width',[90 90],'tag','data');
sc=scrollpane(t1,'size',[200 280],'horizontal','never');

dp.add(sc,1,1,1,2);
dp.add(label('Interpolation method:'),2,1);
dp.add(combobox('items',{'nearest','linear','cubic'}, ...
 'descr',{'Nearest','Linear','Cubic'}, ...
 'tag','method'),2,2);
E X A M P L E U S E R I N T E R F A C E | 271

272 | C H A P T E
dp.addBorder('Data');

lp=panel;
lp.setFill('horizontal');
lp.add(label('Line style:'),1,1);
lp.add(combobox('items',{'-','--',':','-.'}, ...
 'descr',{'Solid','Dashed','Dotted','Dash-dot'}, ...
 'tag','linestyle'),1,2);

lp.add(label('Line color:'),2,1);
lp.add(combobox('items',{'r','g','b'}, ...
 'descr',{'Red','Green','Blue'}, ...
 'tag','linecolor'),2,2);

lp.add(label('Line width:'),3,1);
lp.add(textfield(10,'text','1','tag','linewidth'),3,2);
lp.addBorder('Line settings');

mp=panel;
mp.setFill('horizontal');
mp.add(label('Marker:'),5,1);
mp.add(combobox('items',{'+','*','o','s'}, ...
 'descr',{'Plus','Star','Circle','Square'}, ...
 'tag','marker'),5,2);

mp.add(label('Marker color:'),6,1);
mp.add(combobox('items',{'r','g','b'}, ...
 'descr',{'Red','Green','Blue'}, ...
 'tag','markercolor'),6,2);

mp.addBorder('Marker settings');

p1.add(dp,1,1,'horizontal');
p1.add(lp,2,1,'horizontal');
p1.add(mp,3,1,'horizontal');
p1.setAlignment('east');
p1.addVSeparator(4,4,1);
p1.add(button('Plot','tag','plot'),5,1);

f.add(p1,1,1);
f.setWeight(1e6,1e6);
f.add(axes('tag','axes','size',[600 600]),1,2,'both');
f.resetWeight;

f.get('plot').addActionListener('interpaction');
f.get('axes').addMouseListener('interpmouse');
f.show;
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

Note the following:

• The combo boxes use descriptive values and corresponding property names that
they pass to the interp1 and plot functions.

• On the top level, the frame is divided into two panels: one to the left, and the axes
object to the right.

• You add the panels to the left panel with the 'horizontal' fill style to align the
borders. You also specify the panels as having 'horizontal' fill for the components
you add to them. This means that the combo boxes and text fields line up even if
the maximum lengths of the strings in the combo boxes differ.

• You add the table to a scroll pane with only a vertical scroll bar; specify the width of
the columns explicitly to fit into the scrolling viewport.

• You set a high weight before adding the axes object, which has a fill style of 'both'.

• You assign tags to the components so it is possible to access them in the event
listeners.

• You specify interpaction as the function to run when the user clicks the Plot
button.

• You specify interpmouse as the function to run when the user moves the mouse
and clicks over the axes object.

The function interpaction uses the parent field in the event structure to get the
frame, and it then calls the get method on the frame to get the components and their
values. It calls the getHandle method on the axes object to obtain a handle to that
object; that handle then serves as the Parent property to the Plot function.

function interpaction(event)

% Get parent frame of event source
frame=event.parent;

% Get value from components using their tags
method=frame.get('method').getValue;
linestyle=frame.get('linestyle').getValue;
linecolor=frame.get('linecolor').getValue;
linewidth=str2num(frame.get('linewidth').getValue);
marker=frame.get('marker').getValue;
markercolor=frame.get('markercolor').getValue;

% Get data from table and interpolate
data=frame.get('data').getValue;
data=data(~isnan(data(:,1)),:); % Remove NaNs from empty rows.
E X A M P L E U S E R I N T E R F A C E | 273

274 | C H A P T E
xi=data(:,1)';
yi=data(:,2)';
[xi,ind]=sort(xi);
yi=yi(ind);
x=linspace(min(xi),max(xi),100);
y=interp1(xi,yi,x,method);

% Get handle to axes and clear before plotting into it
parent=frame.get('axes').getHandle;
cla(parent);
h=plot(x,y,'color',linecolor,'linewidth',linewidth, ...
 'linestyle',linestyle,'parent',parent);
set(h,'hold','on');
plot(xi,yi,'linestyle','none','marker',marker, ...
 'color',markercolor,'parent',parent);

The example also adds a mouse listener to the axes object; it lets the user click positions
for the data points instead of entering them in the table. The function finds the first
empty row in the data table and enters the clicked coordinate in that row. Note also
that it checks that the event type is 'mouseclicked', because the function also runs
when the user moves, presses, or releases the mouse.

function interpmouse(event)
if (strcmp(event.type,'mouseclicked'))
 x=event.x;
 y=event.y;
 frame=event.parent;
 table=frame.get('data');
 data=table.getValue;
 first=find(isnan(data(:,1)));
 if ~isempty(first)
 table.setValue(first(1),1:2,[x y]);
 parent=event.source.getHandle;
 line(x,y,'linestyle','none','marker','*','parent',parent);
 end
end

The x and y fields in the event structure get the coordinate in the axes object for the
mouse click. The routine then draws a marker at that position in the axes object.
R 1 1 : C R E A T I N G U S E R I N T E R F A C E S

 12
U s e r - D e f i n e d C l a s s e s
Using COMSOL Script it is possible to define new data types, classes, and to
create objects that are instances of these classes. A class is an aggregate of fields and
methods.

The class model used is inspired by Java’s class system.
 275

276 | C H A P T E
I n t r o du c t o r y E x amp l e : R e c t a n g l e

The file Rectangle.csl defines the class Rectangle:

class Rectangle
%A class for rectangles.

public x0 x1 % x0<x1
public y0 y1 % y0<y1

function Rectangle(varargin)
%RECTANGLE(X0, Y0, X1, Y1) creates a rectangle with vertices
%in (x0,y0) and (x1,y1).
switch nargin
case 4
 in = varargin;
 [x0 x1] = deal(min(in{1}, in{3}), max(in{1}, in{3}));
 [y0 y1] = deal(min(in{2}, in{4}), max(in{2}, in{4}));
case 1
 r = varargin{1};
 [x0 x1] = [r.x0 r.x1];
 [y0 y1] = [r.y0 r.y1];
otherwise
 error('Usage: Rectangle(x0, y0, x1, y1)');
end

public function out = area
%AREA returns the area of the rectangle.
out = (x1-x0)*(y1-y0);

public static function out = overlap(r1, r2)
%OVERLAP(R1, R2) returns the area of the overlap between the
%two rectangles R1 and R2.
out = max(min(r1.x1, r2.x1)-max(r1.x0, r2.x0), 0)*...
 max(min(r1.y1, r2.y1)-max(r1.y0, r2.y0), 0);

This defines a Rectangle class with the four fields x0, y0, x1, and y1, a constructor,
and the two methods area and overlap. To create a Rectangle object, use the same
syntax as for a function call:

r = Rectangle(1, 3, 2, 9)
r =
Rectangle object
 x0: [1]
 x1: [2]
 y0: [3]
 y1: [9]
R 1 2 : U S E R - D E F I N E D C L A S S E S

r.area

ans =
6

The call Rectangle(1, 3, 2, 9) returns a rectangle with vertices in (1, 3) and (2, 9).
The variable r is of the type Rectangle; it is an instance of the Rectangle class. There
can only be one definition of a class, but there can be many instances of it. By default,
the fields of an object are displayed in the same way as if it were a structure.

The call r.area invokes the area method of the object r. The syntax for invoking a
method without arguments is the same as for accessing a field of a structure.

The class contains three methods: the constructor Rectangle, the accessor area, and
the static function overlap. The method declarations look like declarations of local
functions in a function M-file, but unlike local functions, they can be accessed outside
the class.

overlap is an example of a static method: it is invoked when overlap is invoked with
arguments where at least one is a Rectangle:

r = Rectangle(1, 5, 6, 8);
s = Rectangle(3, 2, 5, 7);
overlap(r, s)

ans =
4

The overlap method is not visible if none of the arguments is a Rectangle: for
example, overlap(1,2) gives an error.
I N T R O D U C T O R Y E X A M P L E : R E C T A N G L E | 277

278 | C H A P T E
T h e S t r u c t u r e o f t h e C l a s s F i l e

A class is defined by a .csl-file on the path that has the following contents:

• Class header

• Precedence declarations

• Field declarations

• Method declarations

Only the class header is mandatory. Below you find brief descriptions of the contents
of each part of the file. The next section contains a more detailed description.

Class Header

The class header declares the name of the class, its copy semantics, and its superclass,
if any. The most basic form is a value class with no superclass:

class Rectangle

The name of the class, here Rectangle, must coincide with the filename, here
Rectangle.csl. That the class is a value class means that a copy is made whenever an
instance of the class is used as argument to a function, or is used in an assignment. All
other data types except for Java objects have value semantics. The opposite is a
reference class, declared with the reference modifier:

reference class Rectangle

Reference semantics means that a true copy of the object is never made, only references
to the same object. This is the semantics that Java objects have.

The superclass of a class is declared using the extends keyword:

class Rectangle extends Shape

The superclass must be defined by a .csl-file on the path.

Precedence Declarations

This optional section contains the classes that have higher or lower precedence than
the class being declared. It contains zero or more lines of the form

superiorto <classname>

or
R 1 2 : U S E R - D E F I N E D C L A S S E S

inferiorto <classname>

Field Declarations

This optional section contains zero or more field declarations of the forms

<access modifiers> <name> = <expression

or

<access modifiers> <name1> [<name2> ...]

The fields declared are like the fields of a structure, with the difference that a class
always contains the same fields. The access modifiers control where the field is visible.
You must specify one of public, protected, and private, and you can optionally use
static and transient.

The first syntax allows for initial values to be supplied:

public version = 1;

This declares the field version with the default value 1. This means that the version
field is assigned to 1 when an instance of the class is created. Fields without initial
values are assigned to [].

Method Declarations

This optional section contains zero or more method declarations of the form

[<access modifiers>] <function declaration>

You can specify one of the access modifiers public, protected, and private, as well
as static. The method is considered public unless you specify protected or
private.

Except for the optional access modifiers, the syntax of a function declaration is the
same as for a local function declaration in an M-file.
T H E S T R U C T U R E O F T H E C L A S S F I L E | 279

280 | C H A P T E
A c c e s s Mod i f i e r s

You can assign access modifiers to the fields and methods of a class. There are three
types of modifiers:

• Visibility modifiers: public, protected, and private. They specify where the
member is visible: public means that the member is visible everywhere, protected
that it is visible in the class and classes inheriting from it, and private that it is
visible only in the class where it was declared.

• Static modifier: static. A static member is one that is associated with the class, not
with an instance of the class. The opposite is an instance member (the default).

• Transient modifier: transient. COMSOL Script does not save a field marked as
transient when you run the command save. You can use this to avoid saving
temporary data that is easy to recompute.

Each member field must have a visibility modifier specified. For methods this is not
necessary; if omitted, the default visibility is public.

A class where all fields are public behaves a lot like a structure: It is possible to read
and assign values to all fields using the var.field syntax. Restricting the visibility can
be useful for hiding class internals that are inconsequential for the user of the class.
R 1 2 : U S E R - D E F I N E D C L A S S E S

Membe r F i e l d s

A class can be viewed as a structure with a predefined set of fields, the instance
(nonstatic) fields. Static fields have semantics similar to global or persistent
variables.

Instance Fields

Fields not declared as static are instance fields: They belong to an instance of the class,
like fields in a structure. The fields of the Rectangle class are examples of instance
fields:

class Rectangle

public x0 x1 % x0<x1
public y0 y1 % y0<y1

Outside of the class, you can use these fields like the fields of a structure:

r = Rectangle(2, 3, 6, 7);
r.x1

ans =
6

This is only possible for public fields; you cannot access protected and private
fields this way. It is also possible to modify public fields like fields of a structure:

r = Rectangle(2, 3, 6, 7);
r.y1 = 10

r =
Rectangle object
 x0: [2]
 x1: [6]
 y0: [3]
 y1: [10]

When a nonstatic method of a class is run, you can access its instance fields like local
variables:

public function out = area
%AREA returns the area of the rectangle.
out = (x1-x0)*(y1-y0);
M E M B E R F I E L D S | 281

282 | C H A P T E
The values of x0, x1, y0, and y1 are taken from the instance fields, and any assignments
to them would result in the instance fields being changed.

Static Fields

Fields declared static belong to the class, not any instance of it. As an example,
consider the class MathConst:

class MathConst

% The golden ratio
public static golden = (sqrt(5)+1)/2;
% Perfect numbers less than 10^11
public static perfect = [6 28 496 8128 33550336 8589869056];

The two fields golden and perfect are static. Their values are set using initializers,
(see the next section for an explanation of this). To access them, access the class like a
structure:

MathConst.golden

ans =
1.6180

MathConst.perfect(2:3)

ans =
28 496

It is also possible to change their values:

MathConst.golden = -17

Initialization of Fields

The MathConst class illustrates initialization:

public static golden = (sqrt(5)+1)/2;

The above means that when the class is loaded, the static field golden is assigned the
expression in the right-hand side. For instance fields, initializers provide initial values
when the object is created. As an example, consider the point class:

class Point

public x = 2;
public y = 5;
R 1 2 : U S E R - D E F I N E D C L A S S E S

The default placement of the point is at coordinates (2, 5):

p = Point

p =
Point object
 x: [2]
 y: [5]

If a field is not given an initializer, it is assigned to []. More specifically: When an object
is created, all instance fields are initialized to []. Then initializers, if any, are evaluated
in the order the fields are declared. This means that

public x;
public y = {x 5};
public z = length(y);

is equivalent to

public x = [];
public y = {[] 5};
public z = 2;
M E M B E R F I E L D S | 283

284 | C H A P T E
Membe r Me t h od s

Constructor

The constructor is a function with the same name as the class and is called when an
instance of the class is created. The purpose of the constructor is to set up a valid
object, possibly using input arguments. It cannot be static and must not return
anything. As an example, consider the constructor of the Rectangle class:

function Rectangle(varargin)
%RECTANGLE(X0, Y0, X1, X1) creates a rectangle with vertices
%in (x0,y0) and (x1,y1).
switch nargin
case 4
 in = varargin;
 [x0 x1] = deal(min(in{1}, in{3}), max(in{1}, in{3}));
 [y0 y1] = deal(min(in{2}, in{4}), max(in{2}, in{4}));
...

The constructor is called whenever a Rectangle is created: When

r = Rectangle(1, 3, 2, 9)

is executed, an empty Rectangle object is created. At this point, the four instance
fields x0, x1, y0, and y1 have been initialized with []. Then the constructor is invoked
for the new object. The constructor is an instance method and can therefore modify
the instance fields: The assignments to, for example, x0 modify the field x0 of the
instance. The methods of a class differ from local functions in this respect: A local
function Rectangle with the above contents would assign values to x0 in its own
workspace, but when leaving the function, these values would be lost.

A class does not need a constructor: If there is no constructor, the fields are assigned
default values if provided, otherwise [].

Instance Methods

An instance method is a method that is not declared static. It operates on an instance
of a class and has access to the instance fields. The area method in the Rectangle class
is an example of an instance method:

public function out = area
%AREA returns the area of the rectangle.
out = (x1-x0)*(y1-y0);
R 1 2 : U S E R - D E F I N E D C L A S S E S

An instance method can read or write the instance fields like local variables, just like
the constructor. area uses the coordinates of the rectangle to compute its area.

Static Methods

A static method has access to the static fields of the class but not to any instance fields
as it cannot be run for any instance of the class. The overlap method of the
Rectangle class is static:

public static function out = overlap(r1, r2)
%OVERLAP(R1, R2) returns the area of the overlap between the
%two rectangles R1 and R2.
out = max(min(r1.x1, r2.x1)-max(r1.x0, r2.x0), 0)*...
 max(min(r1.y1, r2.y1)-max(r1.y0, r2.y0), 0);

There are two way to invoke a static method:

• Calling it like a function with one or more objects as arguments:

r = Rectangle(1, 5, 6, 8);
s = Rectangle(3, 2, 5, 7);
overlap(r, s)

ans =
4

• Specifying it explicitly:

Rectangle.overlap(r, s)

ans =
4

The first syntax works because at least one of the arguments to overlap is an object,
here of the class Rectangle, and the class Rectangle has a visible static method called
overlap.
M E M B E R M E T H O D S | 285

286 | C H A P T E
I n h e r i t a n c e

Sometimes a class is a specialization or extension of another class. You can specify this
relation in the class header using the extends keyword:

class Rectangle extends Shape

A rectangle is a specialization of the shape concept, and it therefore makes sense to let
the class Rectangle inherit from the class Shape, which then becomes the superclass
of Rectangle, the derived class. The members and methods of the superclass are
visible in the derived class. Suppose that the Shape and Rectangle classes contain the
following fields:

class Shape
public name
...

class Rectangle extends Shape
public x0 x1
public y0 y1
...

The Rectangle class contains five fields: The four fields declared in Rectangle, and
the field declared in the superclass, Shape. For a user of the class, there is no distinction
between the two types of fields:

r = Rectangle(1, 3, 2, 9);
r.name = 'COMSOL';
r.name

ans =
 COMSOL
R 1 2 : U S E R - D E F I N E D C L A S S E S

Re f e r e n c e and V a l u e C l a s s e s

Differences

When you make an assignment a = b, COMSOL Script normally assigns a copy of b
to a. This is the case for all data types except for Java objects and instances of reference
classes: For these data types, only a reference is copied. Consider the class RefClass
defined as follows:

reference class RefClass
public x = 5;

The software only copies a reference when an assignment is made:

r = RefClass;
s = r;
r.x = 10;
s.x

ans =
10

Consider on the other hand the class ValueClass, defined as follows:

class ValueClass
public x = 5;

For a value class, the assignment makes a true copy:

v = ValueClass;
s = v;
v.x = 10;
s.x

ans =
5

The same rules apply when passing arguments to functions: For an instance of a value
class, a copy of the value is passed; for an instance of a reference class, a reference to
the value is passed.
R E F E R E N C E A N D V A L U E C L A S S E S | 287

288 | C H A P T E
Choosing Class Type

The main factor determining the class type is how you view the class:

• If you think of the class as a structure augmented with methods, declare it as a value
class.

• If you think of the class as a lightweight Java class, declare it as a reference class.

A reference class cannot inherit from a value class, or vice versa. Thus the choice of class
type for a base class affects the entire class hierarchy.

If you define several different classes, try to use the same class type for all of them.
Mixing class types can easily lead to bugs as the difference in semantics is subtle.
R 1 2 : U S E R - D E F I N E D C L A S S E S

Bu i l t - I n Ob j e c t F un c t i o n s

Functions That You Can Only Use for Objects

T H E T H I S F U N C T I O N

Inside an instance method, this returns the instance for which the method is run.

T H E S U P E R F U N C T I O N

When a constructor is run in a derived class, you can use super to run the constructor
of the superclass. Suppose Rectangle inherits from Shape:

class Rectangle extends Shape

...

function Rectangle(varargin)
super(varargin);
...

The call super(varargin) runs the constructor of the Shape class.

It is also possible to use super as a structure to access or modify visible fields or
methods from the superclass: super.a = 17; sets the field a in the superclass to 17.
This can be useful if a member in the superclass has been shadowed by a member with
the same name in the derived class.

super can be used to resolve name conflicts between methods in a class and .M-file
functions: Suppose that the class Potential contains a method called gradient.
Then the .M-file function gradient is shadowed by the method gradient: Calling
gradient from the Potential class invokes the method gradient, not the function
gradient. By instead calling super.gradient, the function gradient is called unless
there is a method gradient in a superclass of Potential. That is, the .M-file functions
are implicit members of a common base class of all user-defined classes.

T H E C L O N E F U N C T I O N

The clone function creates a true copy of an object. For a value object, this has no
effect, but for a reference object it is necessary in order to copy the contents, not only
a reference to the object. The class RefClass was above defined as

reference class RefClass
public x = 5;
B U I L T - I N O B J E C T F U N C T I O N S | 289

290 | C H A P T E
Use the clone function to create a true copy of a RefClass object:

r = RefClass;
s = clone(r);
r.x = 10;
s.x

ans =
5

Without clone, only a reference would be copied.

Functions with Special Semantics for Objects

C L E A R C L A S S E S

clear classes removes all variables, just like clear does, but it also tries to remove
all class definitions. This is necessary if the definition of a class changes: Unless you
perform clear classes, COMSOL Script uses the old class definition even if the
class file on disk changes.

clear classes can only remove the definitions of classes of which there are no
instances. This means that sometimes not all classes are removed: If clear classes
is called from a function and there still are instances of some class in the root
workspace, then that class cannot be cleared. The same thing can happen if you store
objects in global or persistent variables.

H E L P F O R A C L A S S

help for a class displays the comment block following the class header as well as the
comment blocks following each public nonstatic method:

help Rectangle

A class for rectangles.

RECTANGLE(X0, Y0, X1, Y1) creates a rectangle with vertices
in (x0,y0) and (x1,y1).

AREA returns the area of the rectangle.

OVERLAP(R1, R2) returns the area of the overlap between the
two rectangles R1 and R2.

You can also retrieve the help text for a method:

help Rectangle.overlap
R 1 2 : U S E R - D E F I N E D C L A S S E S

OVERLAP(R1, R2) returns the area of the overlap between the
two rectangles R1 and R2.

If you have a variable which is an instance of a class you can get help for its class or a
method of the class using a variation of the above syntax:

r = Rectangle(2, 3, 6, 7);
help r

A class for rectangles.

RECTANGLE(X0, Y0, X1, Y1) creates a rectangle with vertices
...

help r.overlap

OVERLAP(R1, R2) returns the area of the overlap between the
two rectangles R1 and R2.

This notation is more compact and has the advantage that you do not even have to
know class r belongs to, something which is useful if you are working with a hierarchy
of classes.

T H E F I E L D N A M E S F U N C T I O N

For an object, fieldnames returns the names of the instance fields that are visible from
the workspace where fieldnames is called:

r = Rectangle(2, 3, 6, 7);
fieldnames(r)

ans =
 'x0'
 'x1'
 'y0'
 'y1'

All the fields of the Rectangle class are public, and fieldnames therefore returns
them. private and protected members are only returned by fieldnames when
invoked from a method of the class.

T H E M E T H O D S F U N C T I O N

methods displays the methods declared by a class:

methods('Rectangle')

class Rectangle
 public function Rectangle
 public function area
B U I L T - I N O B J E C T F U N C T I O N S | 291

292 | C H A P T E
By default, methods only displays public nonstatic methods. It is possible to select
methods to display based on access modifiers:

methods('Rectangle', 'static')

class Rectangle
 public static function overlap

The second argument to methods is a string or cell array of strings that lists all access
modifiers to include.

When requesting output, methods returns a cell array:

c = methods('Rectangle', 'static')

c =
{'overlap'}

T H E S T R U C T F U N C T I O N

When invoked for an object, struct returns a structure containing the fields of the
object that are visible in the workspace where struct is called:

r = Rectangle(1, 3, 2, 9);
struct(r)

ans =
 x0: [1]
 x1: [2]
 y0: [3]
 y1: [9]
R 1 2 : U S E R - D E F I N E D C L A S S E S

Ove r l o a d i n g

Overloading Operators

You can overload all unary and binary arithmetic, relational, and logical operators, as
well as the concatenation operators [,] and [;]. To overload an operator, create a
public static function that defines the semantics of the overloaded function. As an
example, consider a class Rational that represents rational numbers:

class Rational
%RATIONAL is a class for exact representation of a rational number
%as a ratio between integers.

private a % Numerator
private b % Denominator, always > 0

...

static function out = plus(r1, r2)
%PLUS Sum.
% OUT = PLUS(R1, R2) returns the sum of R1 and R2.
r1 = Rational(r1);
r2 = Rational(r2);
out = Rational(r1.a*r2.b+r1.b*r2.a, r1.b*r2.b);

...

The static function plus provides an overload for the + operator:

Rational(1,3)+Rational(1/4) % 1/3+1/4 = 7/12
 7 / 12
Rational(pi)+1 % uses 355/113 as approximation of pi
 468/113

A demonstration example in this release includes the complete definition of the
Rational class. Run help Rational or type Rational to see its contents.

Each operator has a corresponding function that the software invokes when at least one
of the operands is an object. This is the function that the class must provide for it to
define an overloaded operator. The example above includes overloading of the +
O V E R L O A D I N G | 293

294 | C H A P T E
operator by defining the plus member method. Table 12-1 contains the complete
map between operators and functions:

TABLE 12-1: OPERATORS AND THEIR CORRESPONDING FUNCTIONS

OPERATOR FUNCTION

+ (unary, +a) uplus

+ (binary, a+b) plus

- (unary, -a) uminus

- (binary, a-b) minus

* mtimes

.* times

/ mrdivide

./ rdivide

\ mldivide

.\ ldivide

^ mpower

.^ power

== eq

~= ne

>= ge

> gt

<= lt

< le

& and

| or

~ not

[, ,] horzcat

[; ;] vertcat

: colon

' ctranspose

.' transpose
R 1 2 : U S E R - D E F I N E D C L A S S E S

Overloading Assignment and Indexing

F I E L D R E A D / W R I T E

If a class has an instance method called fieldread, then COMSOL Script calls that
function when it reads a field of an object using the var.field syntax. The fieldread
method must take one input argument and return one output:

function out = fieldread(field)

The field argument is the string that follows the . (dot) in var.field. By
overloading fieldread it is possible to let a class behave as if it has fields that it does
not have. You can use this overloading for making the representation of the data
independent of the interface to the class.

Similarly, if a class has an instance function called fieldwrite, then that function is
called when a field of an object is written using the var.field = val syntax. It must
take two input arguments and not return anything:

function fieldwrite(field, val)

The field parameter is the string that followed the . in var.field and the val
parameter is the value to which the field was assigned. You can use fieldwrite when
the fields of the class have dependencies: Changing the value of one field can force the
recalculation of others.

A R R A Y R E A D / W R I T E

An object can only be indexed using parentheses if it has an instance method called
arrayread: If c is an object, then c(args) is interpreted as c.arrayread(args),
where arrayread is invoked for the arguments (one or more) and is expected to
return one value:

function out = arrayread(args)

Overloading arrayread can be useful for classes where the parentheses denote
evaluation, for instance in a class representing a mathematical function of one or more
variables.

Similarly, array assignment using the syntax c(args) = val is interpreted as
c.arraywrite(args, val).

C E L L A R R A Y R E A D / W R I T E

It is only possible to index an object using curly brackets if it has an instance method
called cellread: If c is an object, then c{args} is interpreted as c.cellread(args)
O V E R L O A D I N G | 295

296 | C H A P T E
where cellread is invoked for the arguments (one or more) and is expected to return
one value:

function out = cellread(args)

Similarly, cell array assignment using the syntax c{args} = val is interpreted as
c.cellwrite(args, val).

O V E R L O A D I N G E N D

When indexing into an object that has an instance method called end, then the value
of end is resolved by calling this method with two arguments: The index where end
occurs and the total number of indices. E.g. a(1:end, 5) would be equivalent to
a(1:a.end(1, 2)) if a belongs to a class with an overloaded end method. If the class
has no overloaded end method but instead has an overloaded size method, then the
standard semantics of end are used with the size evaluated using the size method.

Overloading Save and Load

When an object is saved to file using save, the default behavior is to save all
nontransient instance fields. It is possible to override this behavior by a class providing
a writeobject method. This method must have the interface

public function out = writeobject

COMSOL Script writes the output from writeobject to file when the object is saved.

If the class has an overloaded writeobject method it usually also has to provide an
overloaded readobject method: This method is called when a object is loaded from
file using load. It must have the interface

public function readobject(data)

When the software loads an object, it first creates an empty instance of its class. Then
the readobject method is invoked, and the data argument is the output from
writeobject when the object was saved.

You can overload readobject but not writeobject. In this case, the input to
readobject is the default representation of the object: As a cell array with one column
for each level of the class hierarchy. Consider the Rectangle class inheriting from
Shape:

class Shape
public name
...
R 1 2 : U S E R - D E F I N E D C L A S S E S

class Rectangle extends Shape
public x0 x1
public y0 y1

A Rectangle object with vertices in (2, 3) and (5, 7) and the name 'MyRect' would
be saved as the cell array

{'Shape' 'Rectangle'
 struct('name','MyRect') struct('x0',2,'x1',5,'y0',3, y1',7}

This would be the argument to an overloaded readobject in Rectangle if no
overloaded writeobject was present. There is one column for each level of the class
hierarchy. The first row contains the name class names, and the second row contains a
structure with one field for each nontransient field on that level of the hierarchy.

Overloading Display

The default way to display an object is to display its public fields like the fields of a
structure:

r = Rectangle(1, 3, 2, 9)

r =
Rectangle object
 x0: [1]
 x1: [2]
 y0: [3]
 y1: [9]

If the class has a public nonstatic function called display, COMSOL Script invokes it
when it displays an object of the class. You can extend the Rectangle class with such
a method:

public function display
sprintf('Rectangle with corners (%.2f,%.2f) and (%.2f,%.2f).', ...
 x0, y0, x1, y1)

This results in the following output:

r = Rectangle(1, 3, 2, 9)

ans =
Rectangle with corners (1.00, 3.00) and (2.00, 9.00).
O V E R L O A D I N G | 297

298 | C H A P T E
P r e c e d en c e

Precedence Between Functions and Methods

Methods in different classes can have the same name, and method names can also
coincide with names of functions, both built-in functions and M-files. COMSOL
Script resolves a function invocation of the form func(arg1, ...) by considering
possible interpretations in the following order:

1 As an array index expression, if there is a variable called func in the workspace.

2 As the invocation of the static method func of the class of any object in the
argument list.

3 As a call to the built-in function func.

4 As a call to the method func in the class where execution currently takes place.

5 As a call to the user-defined function func.

6 Interpretations 3–5 tried using case-insensitive name matching.

The Rectangle class contains a static method called overlap. Suppose that there also
is an M-file, overlap.m. By rule 2 above,

overlap(Rectangle(1,2,3,4), Rectangle(5,6,7,8))

invokes the overlap method of the Rectangle class, but

overlap(5, 7)

instead calls overlap.m.

Precedence Between Methods from Different Classes

When a function call contains several object arguments, COMSOL Script normally
considers classes in the order they appear in the argument list: Suppose that the classes
Rectangle and Circle both have a static overlap method. Then

overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

is interpreted as

Rectangle.overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

The overlap method of the Circle class would only be run if there were no overlap
method in Rectangle.
R 1 2 : U S E R - D E F I N E D C L A S S E S

In the example above, the two classes Rectangle and Circle have equal precedence.
You can specify the precedence between classes using superiorto and inferiorto in
the class file. The classes listed in a superiorto declaration have lower priority than
the current class, those listed in an inferiorto declaration have higher priority.

The Circle class can be modified as follows:

class Circle

superiorto Rectangle

With this change, the methods of the Circle class are always given priority over
methods in the Rectangle class when the argument list contains Circle and
Rectangle objects. Then

overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

is interpreted as

Circle.overlap(Rectangle(2, 3, 4, 5), Circle(1, 2, 3))

It is possible to combine several superiorto and inferiorto declarations in the same
class:

class Circle

superiorto Rectangle Square
inferiorto Hexagon

Note: Excessive use of superiorto and inferiorto makes the program flow hard
to follow.
P R E C E D E N C E | 299

300 | C H A P T E
U s i n g C l a s s e s a s Pa c k a g e s

You can use classes to bundle groups of functions together: A class without instance
fields where all methods are public and static can serve as a container for a set of
related functions. As an example, consider the following class:

class MyMaths

static function y = sinc(x)
%SINC(X) returns SIN(X)/X if X is nonzero, otherwise 1.
y = ones(size(x));
ix = find(x~=0);
y(ix) = sin(x(ix))./x(ix);

static function y = smhs(x, scale)
%SMHS(x) approximates the step function Y=(X>0) by smoothing the
%transition within the interval -SCALE < X < SCALE.
x=x./scale;
y=(x>-1 & x<1).*(0.5+x.*(0.75-0.25*x.*x))+(x>=1);

You can view MyMaths as a package that contains the two functions sinc and smhs:

MyMaths.sinc(0:3)

ans =
 1 0.8415 0.4546 0.0470

By creating a class containing a group of related functions, preferably small, it becomes
easier to maintain the functions, as only one file is ever changed. Sharing code between
functions also becomes easier.
R 1 2 : U S E R - D E F I N E D C L A S S E S

 13
J a v a I n t e r f a c e
Java is a powerful programming language with a large library of built-in classes.
COMSOL Script provides support for creating and manipulating Java objects. This
makes it possible to connect COMSOL Script with existing Java programs and to
create scripts where the COMSOL Script and Java languages are mixed.
 301

302 | C H A P T E
De c l a r a t i o n o f J a v a Me t h od s

For COMSOL Script to be able to invoke a Java method, it needs its declaration. You
supply declarations using the javaDeclare command:

javaDeclare('my.decls')

The argument to javaDeclare is the name of a file containing Java declarations of all
methods and constructors that you want to be able to call. A sample declaration file
can have the following contents:

// Sample declaration file my.decls

// Constructor and methods taken from java.lang.String
java.lang.String(byte[]);
static java.lang.String java.lang.String.valueOf(double);
java.lang.String java.lang.String.substring(int, int);

/* Another class */
java.lang.Double(double);

Conventions and restrictions:

• public visibility is assumed if no visibility is specified. Only public methods can be
called through the Java interface.

• Abbreviated class names are not accepted. For example, String is not expanded
into java.lang.String.

• For overloaded methods, the number of arguments must differ. It is not possible to
declare two methods in a class that have the same name and number of arguments.
R 1 3 : J A V A I N T E R F A C E

C r e a t i n g and U s i n g J a v a Ob j e c t s

Creating Java Objects and Invoking Methods

To create a Java object, use any Java class constructor:

s = java.lang.String('Multiphysics')
s =
Multiphysics

d = java.lang.Double(17)
d =
17.0

This code snippet creates both a java.lang.String object s with the value
'Multiphysics' and a java.lang.Double object d with the value 17.

To invoke public fields or member methods, use the same notation as for structs:

s.toUpperCase
ans =
MULTIPHYSICS

s.substring(5)
ans =
physics

d.isInfinite
ans =
false

To create a Java object with a constructor without arguments, omit the argument list:

s = java.lang.String;

A similar notation is used when accessing static class members:

java.lang.Double.MAX_VAL
ans =
1.798e+308

Creating and Using Java Arrays

You cannot use the constructor syntax to create an array of Java objects. It is, however,
possible to do so using the javaArray function:

s = javaArray('java.lang.String',3)
s =
C R E A T I N G A N D U S I N G J A V A O B J E C T S | 303

304 | C H A P T E
 null
 null
 null

This command creates a 3x1 array of java.lang.String objects. The elements of the
array are not initialized during creation, hence all elements of the array are null. To
access or modify the array, use the same syntax as for all other data types:

s(2) = java.lang.String('COMSOL')
s =
 null
 COMSOL
 null

COMSOL Script supports only 1D Java array objects.

Functions for Creating and Using Java Objects

The standard way to create a Java object is to use the constructor as described earlier.
It requires that you know the class name, thus you cannot use a class constructor when
the class name is stored in a variable. In this case, turn to the javaObject function:

cl = 'java.lang.String';
s = javaObject(cl, 'Multiphysics')

This is equivalent to the explicit creation method using the java.lang.String
constructor syntax.

The same problem can arise when accessing a static method, and for this purpose use
the javaMethod function:

javaMethod('parseDouble', 'java.lang.Double', '3.14')
ans =
3.140000

This is equivalent to java.lang.Double.parseDouble('3.14').

Passing Java Objects as Arguments to Functions

Like all other data types, Java objects can be sent as arguments to functions. Parameter
passing does not work in the same way for Java objects as it does for the other data
types. In Java, when an object serves as an argument to a method, the software sends
a reference. COMSOL Script uses the same semantics for Java objects, and this means
that if a function modifies an input argument that is a Java object, then the
corresponding object in the caller’s workspace is modified. Similarly, when the code
contains assignments between Java variables, only the reference is copied.
R 1 3 : J A V A I N T E R F A C E

As an example, consider the following function, which returns the reversal of a
java.util.ArrayList object:

function out = revlist(list)
out = list;
for i=0:(out.size-1)/2
 j = out.size-i-1;
 tmp = out.get(i);
 out.set(i, out.get(j));
 out.set(j, tmp);
end

The returned list is indeed the reversal of the input argument, but running this code
modifies the input in the process:

list = java.util.ArrayList;
list.add(2);
list.add(3);
list.add(5);
list2 = revlist(list)
list2 =
[5.0, 3.0, 2.0]
list
list =
[5.0, 3.0, 2.0]

Note that the assignment out = list; in revlist does not solve the problem
because this command only copies a reference to the Java object. A better solution is
to replace this assignment with out = list.clone;, which creates a new object
instead of a copy.
C R E A T I N G A N D U S I N G J A V A O B J E C T S | 305

306 | C H A P T E
T y p e Conv e r s i o n s

Conversion of Arguments to Java Methods

For most types, the conversion of a value from COMSOL Script is straightforward.
When converting from a COMSOL Script array to a Java array, it converts
element-by-element, possibly using rounding or truncation if the range of the Java
type is smaller than the range of the COMSOL Script type.

A special case is the conversion of the empty matrix, []. When mapped to
java.lang.Object, it is converted to the null reference.

Return Values From Java Methods

When converting return values from Java methods, COMSOL Script uses the
following type map:

COMSOL Script preserves the number of dimensions during the return-value
conversion; it converts a Java double[][][] array into a 3D double matrix in
COMSOL Script.

The Char and Double Conversions

C H A R

The char function can convert Java objects to character matrices:

TABLE 13-1: TYPE MAP FROM JAVA TO COMSOL SCRIPTS

JAVA TYPES SCRIPT TYPE

char, java.lang.Character character

logicalboolean, java.lang.Boolean

byte, java.lang.Byte,short,
java.lang.Short, int,
java.lang.Integer, long,
java.lang.Long, float,
java.lang.Float, double,
java.lang.Double

double

null []

java.Object Java object of the same type
R 1 3 : J A V A I N T E R F A C E

s = java.lang.String('COMSOL');
t = char(s);
ischar(t)
ans =
true

For a java.lang.String object, char returns a character row vector containing the
characters of the string. For a java.lang.String[], it returns a character matrix
where each row corresponds to one element of the array.

char can convert other Java types only if they contain a public toChar method that
returns a java.lang.String. If so, char invokes the toChar method and then
proceeds to convert the returned java.lang.String.

D O U B L E

The double function can similarly convert Java objects to double matrices:

n = java.lang.Integer(8192);
d = double(n)
d =
8192

For java.lang.Number objects or arrays, double returns a double matrix that
contains the result of converting each element to a double.

double can convert other Java types only if they contain a public toDouble method
that returns a double.
TY P E C O N V E R S I O N S | 307

308 | C H A P T E
 R 1 3 : J A V A I N T E R F A C E

 14
E x t e r n a l A P I
COMSOL Script is a powerful environment, but sometimes you might want to
interface it to code written in a low-level language. This chapter describes an API
used for connecting Script with C code.
 309

310 | C H A P T E
I n t r o du c t o r y E x amp l e s

This section contains two small examples that illustrate how to proceed when
interfacing to external code. The files for the examples are available in the script/
demos directory in the installation.

Compiling and Executing a Simple Function

Consider the expression sum(sin(A(:))). It is very compact and usually fast enough,
but the price you pay for the compactness is that it needs more memory and is slower
than the corresponding C code. It is therefore a good candidate for implementation as
an external function. An external function has an .M-file that describes its interface and
contains its help text (if any). So, as a quick exercise, follow the steps to create
sinsum.m:

function s = sinsum{'sinsum', 'work'}(A)
%SINSUM(A)
% S = SINSUM(A) returns sum(sin(A(:))) where A is full real.

The syntax {'sinsum', 'work'} means that the function work in the shared library
sinsum implements the function.

The source file sinsum.c contains the implementation of the algorithm:

#include <math.h>
#include "scriptext.h"

CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
 int nIn, clData *in[]) {
 int i;
 size_t nElems;
 double sum = 0;
 double *ptr;
 if ((nOut!=1) || (nIn!=1) || (clGetType(in[0])!=CL_REAL))
 clError(env, "Bad arguments.", 1);
 nElems = clGetNElems(in[0]);
 ptr = clGetRealPtr(in[0]);
 for (i=0; i<nElems; i++)
 sum += sin(ptr[i]);
 out[0] = clNewReal(env, sum);
}

R 1 4 : E X T E R N A L A P I

This small file illustrates many parts of the API:

• The header file scriptext.h contains the declaration of the API.

• The interface of the library entry point, here the function work, always has the same
format as in this example. The parameters have the following interpretations:

- env is the script environment. Many API functions take it as an argument.

- nOut is the number of outputs expected from the function.

- out is a vector through which Script retrieves the outputs when the function
completes successfully.

- nIn is the number of input arguments.

- in is a vector of input arguments.

• External code must perform complete argument tests because incorrect
assumptions typically result in crashes. The function clError is used for abnormal
termination of the external function.

• The contents of matrices are available through raw C pointers, here illustrated with
the call to clGetRealPtr. All full matrices are stored in column-major order.

To compile the code, enter the following at the Script prompt:

compile -O sinsum.c

COMSOL Script might not be able to determine which compiler to use, especially if
you are running Windows. See the section “Compilation” for more advice on this
aspect. The -O option enables optimization; it can be omitted.

If the compilation was successful you can call sinsum:

sinsum(1:5)
ans =
 0.1762

You can also verify that it is faster than the corresponding .M-code:

A = rand(2000)-0.5;
tic, sum(sin(A(:))), toc
ans =
-495.4401
Elapsed time: 0.437 s
tic, sinsum(A), toc
ans =
-495.4401
Elapsed time: 0.281 s
I N T R O D U C T O R Y E X A M P L E S | 311

312 | C H A P T E
The C version is almost twice as fast and uses less memory, but it is more specialized
and requires much more code. This example is somewhat contrived, but there are cases
where rewriting a tight loop in C code gives a large performance improvement.

Working with Sparse Matrices

You can retrieve the elements of full matrices by indexing in an array. For sparse
matrices the representation is space-efficient but more complex. The topic of this
example is a function that computes the Euclidean norms of the rows of a sparse
matrix A. This can be computed as sqrt(sum(A.^2, 2)), but the more compact
solution is slower and needs more memory.

The interface to the external function is defined as follows in rownorm.m:

function d = rownorm{'rownorm', 'work'}(A)
%ROWNORM(A)
% D = ROWNORM(A) returns a vector D such that D(N) is the Euclidean
% norm of the Nth row of the sparse matrix A. This is equivalent to
% sqrt(sum(A.^2, 2)).

The source file rownorm.c contains the implementation of the algorithm:

#include <math.h>
#include "scriptext.h"

CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
 int nIn, clData *in[]) {
 int i, j;
 int nRows, nCols;
 int row, col;
 double *outPtr;
 size_t *colPtr;
 size_t *rowPtr;
 double *dataPtr;
 if ((nOut!=1) || (nIn!=1) || (clGetType(in[0])!=CL_REAL_SPARSE))
 clError(env, "Bad arguments.", 1);
 nRows = clGetSize(in[0], 0);
 nCols = clGetSize(in[0], 1);
 out[0] = clNewFull2D(env, CL_REAL, nRows, 1);
 outPtr = clGetRealPtr(out[0]);
 for (i=0; i<nRows; i++)
 outPtr[0] = 0.0;
 /* Retrieve sparse representation of in[0]. */
 colPtr = clGetSparseColPtr(in[0]);
 rowPtr = clGetSparseRowPtr(in[0]);
R 1 4 : E X T E R N A L A P I

 dataPtr = clGetSparseRealPtr(in[0]);
 for (col=0; col<nCols; col++) {
 /* Iterate over nonzero elements in column col. */
 for (i=colPtr[col]; i<colPtr[col+1]; i++) {
 double val = dataPtr[i];
 outPtr[rowPtr[i]] += val*val;
 }
 }
 for (i=0; i<nRows; i++)
 outPtr[i] = sqrt(outPtr[i]);
}

The entry point and error-handling code are similar to the previous example, but there
are several new features:

• The return value, a real nRows × 1 vector, is allocated using clNewFull2D. A pointer
to the data is obtained using clGetRealPtr.

• The sparse input argument, in[0], is represented as a triplet of vectors:

- A vector colPtr such that colPtr[n] is the number of nonzero entries in
columns less than n

- A vector rowPtr containing the nonzero elements’ row numbers

- A vector dataPtr containing the nonzero elements’ values

• The loop iterating over the nonzero elements is typical for how this should be done.
It iterates over the columns of in[0], and for each column it deals with its nonzero
elements. You should always iterate over the columns and not the rows of a sparse
matrices because this leads to simpler and faster code.

Compiling and running the code is done as earlier:

compile -O rownorm.c
rownorm(sprand(3, 10, 0.1))

ans =
 0.3692
 0.3435
 0.0386
I N T R O D U C T O R Y E X A M P L E S | 313

314 | C H A P T E
U s i n g t h e AP I

M-File Interface

A function with an external implementation has a function header but no function
body except for possibly a comment block. The function header has the following
structure:

function outargs = func{lib name, entry point}(inargs)

lib name is the name of the shared library (a .dll or .so file depending on the operating
system) containing the implementation, and entry point is the name of the entry
point to use when invoking the function. The library name and entry point are both
strings, such as in the earlier example:

function s = sinsum{'sinsum', 'work'}(A)

The library and entry point names can, but need not, coincide.

The function’s input and output arguments, inargs and outargs, respectively, are
specified in the same way as for normal functions.

Entry Point

The entry point was discussed in the examples in the previous section. It always has the
same signature:

CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
 int nIn, clData *in[]);

The nIn elements of the in vector are the inputs to the function, the nOut elements
of the out vector should contain the outputs from the function if it returns successfully.
The CL_EXPORT tag is necessary for the function to get the proper linkage.

A library can provide implementations of several functions by having one entry point
for each function.

Memory Management

Externally invoked code can allocate memory in two ways:

• Using the standard C allocation functions malloc, calloc, and realloc

• Using the API wrapper functions clMalloc, clCalloc, and clRealloc
R 1 4 : E X T E R N A L A P I

The second alternative has the advantage that memory leaks are no longer possible;
when execution returns to COMSOL Script from the external function, all allocated
but not freed blocks are freed automatically.

The code invoking the external function assumes that it is a pure function in the sense
that it does not maintain an internal state by storing items—for example, pointers to
clData—in static variables.

Error Handling

The API functions communicate errors to the caller in their return values. For instance,
a number of functions return NULL in case of a error. Always check the return values
and do not make any unjustified assumptions about the data types of input arguments
to the external function or else your code will crash.
U S I N G T H E A P I | 315

316 | C H A P T E
AP I R e f e r e n c e

Data Types

C L E N V

Represents the execution environment in which external functions run.

C L D A T A

Represents a matrix of any type and size. Each matrix type corresponds to a symbolic
constants defined in scriptext.h:

• CL_INVALID: Illegal matrix type

• CL_REAL: Full real

• CL_COMPLEX: Full complex

• CL_LOGICAL: Full logical

• CL_CHAR: Full character

• CL_UINT8: Full uint8

• CL_REAL_SPARSE: Sparse real

• CL_COMPLEX_SPARSE: Sparse complex

All values except for CL_INVALID can be returned by the function clGetType.
CL_INVALID can be used as a sentinel value that is guaranteed not to collide with any
existing matrix type.

C L L O G I C A L

Represents a logical scalar, implemented as an unsigned char.

C L C H A R

Represents a character scalar, implemented as an unsigned short.

C L U I N T 8

Represents a uint8 scalar, implemented as an unsigned char.

C L C O M P L E X

Represents a complex element in a sparse matrix, implemented as a struct containing
a real and an imaginary part.
R 1 4 : E X T E R N A L A P I

C L F U N C T I O N

The function pointer type of an entry point to a library. Usually this type need not be
referred to explicitly.

Functions

Most functions in this API are accessors for data stored in matrices, but some perform
more complex tasks. A rough categorization of the functions is as follows:

TABLE 14-1: TYPE ACCESSOR

FUNCTION NAME DESCRIPTION

clGetType Matrix type

TABLE 14-2: SIZE ACCESSORS

FUNCTION NAME DESCRIPTION

clGetNDims Number of dimensions

clGetSize Size of a dimension

clGetNElems Number of elements

TABLE 14-3: FULL MATRIX ACCESSORS

FUNCTION NAME DESCRIPTION

clGetRealPtr Pointer to real data

clGetImagPtr Pointer to imaginary data

clGetCharPtr Pointer to character data

clGetUint8Ptr Pointer to uint8 data

clGetLogicalPtr Pointer to logical data

TABLE 14-4: SPARSE MATRIX ACCESSORS

FUNCTION NAME DESCRIPTION

clGetSparseColPtr Pointer to column pointers

clGetSparseRowPtr Pointer to row indices

clGetSparseRealPtr Pointer to nonzero data of real sparse matrix

clGetSparseComplexPtr Pointer to nonzero data of complex sparse matrix
A P I R E F E R E N C E | 317

318 | C H A P T E
clGetNzmax Allocation of nonzero elements

clGetNnz Number of nonzero elements

TABLE 14-5: MATRIX CREATORS

FUNCTION NAME DESCRIPTION

clNewFull Create full matrix

clNewFull2D Create full 2D matrix

clNewReal Create real scalar

clNewComplex Create complex scalar

clNewChar Create character string

clNewSparse Create sparse matrix

clNewCopy Make copy of matrix

TABLE 14-6: MEMORY MANAGEMENTS

FUNCTION NAME DESCRIPTION

clMalloc Allocate memory with malloc

clCalloc Allocate memory with calloc

clRealloc Reallocate memory with realloc

clFree Free allocated matrix or memory

TABLE 14-7: NUMERIC UTILITIES

FUNCTION NAME DESCRIPTION

clGetEps Get eps

clGetInf Get infinity

clGetNaN Get not-a-number

TABLE 14-8: ERROR HANDLING

FUNCTION NAME DESCRIPTION

clGetLastError Get last error message

clClearError Clear error message

TABLE 14-4: SPARSE MATRIX ACCESSORS

FUNCTION NAME DESCRIPTION
R 1 4 : E X T E R N A L A P I

C L C A L L O C

void * clCalloc(clEnv *env, size_t nmemb, size_t size)

Allocates and clears memory using the standard C function calloc. The memory
block is deallocated when the external function returns unless it has already been
deallocated. Returns NULL if memory allocation fails or if size is 0.

Inputs:

• env is the script environment.

• nmemb is the number of elements to allocate.

• size is the size of each element in bytes.

C L C L E A R E R R O R

void clClearError(clEnv *env)

Clears the error message previously set either using clError or as a result of failures
in the callback functions clEvalExpr and clEvalFunc.

Input: env is the script environment.

C L E R R O R

void clError(clEnv *env, const char *msg, int returnNow)

Sets the error message to msg. If an error message is set when the external function
returns, then it is passed to the script that is running. Calling with an empty msg is
equivalent to calling clClearError.

Inputs:

• env is the script environment.

clError Set error message

clWarning Emit warning

TABLE 14-9: CALLBACKS

FUNCTION NAME DESCRIPTION

clEvalExpr Evaluate expression or statement

clEvalFunc Call function

TABLE 14-8: ERROR HANDLING

FUNCTION NAME DESCRIPTION
A P I R E F E R E N C E | 319

320 | C H A P T E
• msg is the error message.

• returnNow is a flag that controls whether execution of the external function should
stop immediately. Use this feature only when running C code; it is implemented
using longjmp, and using it in C++ code almost never works because destructors
are not run and exception handling could fail.

C L E V A L E X P R

clData * clEvalExpr(clEnv *env, const char *expr, int getRes)

Evaluates an expression using Script. If evaluation fails, the error message is stored and
can be retrieved using clGetLastError.

Inputs:

• env is the script environment.

• expr is the expression to evaluate.

• getRes is a flag to set if you want the results of the expression: If nonzero it is
returned, otherwise it is ignored.

Example: a = clEvalExpr(env, 'sin(1)', 1) assigns to a the value of sin(1).

C L E V A L F U N C

void clEvalFunc(clEnv *env, const char *func, int nOut,
 clData *out[], int nIn, clData *in[])

Evaluates a function using Script. If evaluation fails, the error message is stored and can
be retrieved using clGetLastError.

Inputs:

• env is the script environment.

• func is the function to call.

• nOut is the number of output arguments expected.

• out is a vector in which outputs are placed if the evaluation succeeds.

• nIn is the number of input arguments.

• in is a vector of input arguments.

Example:

clData *grid[2]; evalFunc(env, 'meshgrid', 2, grid, xrange, yrange)
computes a 2D grid using meshgrid of xrange and yrange and places the grid’s
x-coordinates in grid[0] and its y-coordinates in grid[1].
R 1 4 : E X T E R N A L A P I

C L F R E E

void clFree(clEnv *env, void *ptr)

Deallocates a matrix or memory block.

Inputs:

• env is the script environment.

• ptr is either a matrix created using the one of the clNew functions or a memory
block allocated using either the standard C allocation functions (malloc, calloc,
and realloc) or their counterparts in this API (clMalloc, clCalloc, and
clRealloc).

C L G E T C H A R P T R

clChar * clGetCharPtr(clData *data)

Returns a pointer to the first element of a nonempty character matrix. For any other
matrix type it returns NULL. The matrix elements are stored in column-major order.

Input: data is a nonempty character matrix.

C L G E T E P S

double clGetEps(clEnv *env)

Returns the smallest real number ε such that 1+ε is greater than 1.

Input: env is the script environment.

C L G E T I M A G P T R

double * clGetImagPtr(clData *data)

Returns a pointer to the first element of the imaginary part of a nonempty full complex
matrix. For any other matrix type it returns NULL. The matrix elements are stored in
column-major order.

Input: data is a nonempty full complex matrix.

C L G E T I N F

double clGetInf(clEnv *env)

Returns infinity.

Input: env is the script environment.
A P I R E F E R E N C E | 321

322 | C H A P T E
C L G E T L A S T E R R O R

const char * clGetLastError(const clEnv *env)

Returns the most recently set error message; returns NULL if there were none. Error
messages are set when the callback functions clEvalExpr and clEvalFunc fail, or by
the external function itself using clError. The pointer returned is only valid until the
next time any function in the API is called.

Input: env is the script environment.

C L G E T L O G I C A L P T R

clLogical * clGetLogicalPtr(clData *data)

Returns a pointer to the first element of a nonempty logical matrix. For any other
matrix type it returns NULL. The matrix elements are stored in column-major order.

Input: data is a nonempty logical matrix.

C L G E T N A N

double clGetNaN(clEnv *env)

Returns the not-a-number value, that is, the result of undefined operations such that
0/0.

Input: env is the script environment.

C L G E T N D I M S

int clGetNDims(const clData *data)

Returns the number of dimensions of data. All matrices have at least two dimensions;
trailing unit dimensions beyond dimension two are ignored.

Input: data is a matrix.

C L G E T N E L E M S

size_t clGetNElems(const clData *data)

Returns the total number of elements in a matrix, that is, the product of the size vector.

Input: data is a matrix.

C L G E T N N Z

size_t clGetNnz(const clData *data)
R 1 4 : E X T E R N A L A P I

Returns the number of nonzero elements in a matrix.

Input: data is a matrix.

C L G E T N Z M A X

size_t clGetNzmax(const clData *data)

Returns the allocation of nonzero elements. For a full matrix this is always the product
of the size vector, but for a sparse matrix it can be anything from 0 to the product of
the size vector. It is always greater than or equal to clGetNnz.

Input: data is a matrix.

C L G E T R E A L P T R

double * clGetRealPtr(clData *data)

Returns a pointer to the first element of the real part of a nonempty full real matrix.
For any other matrix type it returns NULL. The matrix elements are stored in
column-major order.

Input: data is a nonempty full real or complex matrix.

C L G E T S I Z E

size_t clGetSize(const clData *data, int dim)

Returns the size of the dimth dimension. The dimensions start from 1, so you can use
clGetSize(data, 1) and clGetSize(data, 2) to retrieve the number of rows and
columns, respectively, of data. If dim is less than 1 or larger than the number of
dimensions of data, it returns 1.

Inputs:

• data is a matrix.

• dim is the dimension whose size is returned.

C L G E T S P A R S E C O L P T R

size_t * clGetSparseColPtr(clData *data)
A P I R E F E R E N C E | 323

324 | C H A P T E
Returns a pointer to the sparse matrix column pointers if data is sparse and NULL if
data is full. The returned pointer col has the following properties:

• col[n] is the number of nonzero elements in the first n columns of data for any n
between 0 and nCols inclusive, where nCols is the number of columns of data.

• The nonzero elements in column n have indices col[n-1]...col[n]-1 in the
blocks returned by clGetSparseComplexPtr, clGetSparseRealPtr, and
clGetSparseRowPtr.

Note: Any changes made to the vector must respect these properties when the external
function returns.

Input: data is a sparse matrix.

C L G E T S P A R S E C O M P L E X P T R

clComplex * clGetSparseComplexPtr(clData *data)

Returns the vector containing the values of the nonzero elements of the complex
sparse matrix data. The length of the vector is clGetNzmax(). It returns NULL if data
is full or real.

See clGetSparseColPtr for how the flat vector of values is mapped to matrix
elements.

Input: data is a sparse complex matrix.

C L G E T S P A R S E R E A L P T R

double * clGetSparseRealPtr(clData *data)

Returns the vector containing the values of the nonzero elements of the real sparse
matrix data. The length of the vector is clGetNzmax(). it returns NULL if data is full
or complex.

See clGetSparseColPtr for how the flat vector of values is mapped to matrix
elements.

Input: data is a sparse real matrix.

C L G E T S P A R S E R O W P T R

size_t * clGetSparseRowPtr(clData *data)

Returns the vector containing the row numbers of the nonzero elements of data if
data is sparse, otherwise it returns NULL. The length of the vector is clGetNzmax()
and the row numbers are zero-based.
R 1 4 : E X T E R N A L A P I

See clGetSparseColPtr for how the flat vector of row numbers is mapped to matrix
elements.

Input: data is a sparse matrix.

C L G E T TY P E

int clGetType(const clData *data)

Returns the type of a matrix. Possible values are the following constants, all declared
in scriptext.h:

• CL_REAL: Returned if data is full real

• CL_COMPLEX: Returned if data is full complex

• CL_LOGICAL: Returned if data is full logical

• CL_CHAR: Returned if data is full character

• CL_UINT8: Returned if data is full uint8

• CL_REAL_SPARSE: Returned if data is sparse real

• CL_COMPLEX_SPARSE: Returned if data is sparse complex

Input: data is a matrix.

C L G E T U I N T 8 P T R

clUint8 * clGetUint8Ptr(clData *data)

Returns a pointer to the first element of a nonempty uint8 matrix. For any other matrix
type it returns NULL. The matrix elements are stored in column-major order.

Input: data is a nonempty uint8 matrix.

C L M A L L O C

void * clMalloc(clEnv *env, size_t size)

Allocates memory using the standard C function malloc. The memory block is
deallocated when the external function returns unless it has already been deallocated.
Returns NULL if memory allocation fails or if size is 0.

Inputs:

• env is the script environment.

• size is the number of bytes to allocate.
A P I R E F E R E N C E | 325

326 | C H A P T E
C L N E W C H A R

clData * clNewChar(clEnv *env, const char *str)

Creates and returns a character row vector. The returned matrix is 0 × 0 if str is empty,
otherwise 1 × n where n is the length of str.

Inputs:

• env is the script environment.

• str is a null-terminated string.

C L N E W C O M P L E X

clData * clNewComplex(clEnv *env, double real, double imag)

Creates a complex 1× 1 matrix.

Inputs:

• env is the script environment.

• real is the real part.

• imag is the imaginary part.

C L N E W C O P Y

clData * clNewCopy(const clData *orig)

Makes a copy of a matrix. The contents of the two matrices are not shared, so changing
the copy does not affect orig.

Input: orig is a matrix.

C L N E W F U L L

clData * clNewFull(clEnv *env, int type, int nDims,
const size_t *dims)

Creates and returns a new full matrix. It returns NULL if the creation failed. The
returned matrix always has at least two dimensions; if 0 or 1 dimensions are supplied,
trailing unit dimensions are added to make the matrix 2D.

Inputs:

• env is the script environment.

• type is the matrix type, must be one of CL_REAL, CL_COMPLEX, CL_LOGICAL,
CL_CHAR, or CL_UINT8.
R 1 4 : E X T E R N A L A P I

• nDims is the number of dimensions.

• dims contains the dimensions of the matrix.

C L N E W F U L L 2 D

clData * clNewFull2D(clEnv *env, int type, size_t nRows,
size_t nCols)

Creates and returns a new full 2D matrix. It returns NULL if the creation failed.

Inputs:

• env is the script environment.

• nRows is the number of rows.

• nCols is the number of columns.

C L N E W R E A L

clData * clNewReal(clEnv *env, double val)

Creates and returns a real 1× 1 matrix.

Inputs:

• env is the script environment.

• val is the value.

C L N E W S P A R S E

clData * clNewSparse(clEnv *env, int type, size_t nRows,
size_t nCols, size_t nzMax)

Creates and returns a sparse matrix. It returns NULL if the creation failed.

Inputs:

• env is the script environment.

• type is the matrix type, must be CL_REAL_SPARSE or CL_COMPLEX_SPARSE.

• nRows is the number of rows.

• nCols is the number of columns.

• nzMax is the allocation of nonzero elements. This is an upper bound on the number
of nonzero elements with which the matrix can be populated.
A P I R E F E R E N C E | 327

328 | C H A P T E
C L R E A L L O C

void * clRealloc(clEnv *env, void *ptr, size_t size)

Reallocates memory using the standard C function realloc. The memory block is
deallocated when the external function returns unless it has already been deallocated.
It returns NULL if memory allocation fails or if size is 0.

Inputs:

• env is the script environment.

• ptr is the memory block to reallocate, originally allocated using either the standard
C allocation functions (malloc, calloc, and realloc) or their counterparts in this
API (clMalloc, clCalloc, and clRealloc).

• size is the new size of the block (in bytes) after reallocation.

C L WA R N I N G

void clWarning(clEnv *env, const char *msg, const char *id)

Emits a warning when the external function returns. Calling this function has the same
effect as running warning(msg,id) in a script.

Inputs:

• env is the script environment.

• msg is the warning message.

• id is the warning category.
R 1 4 : E X T E R N A L A P I

Comp i l a t i o n

Compiling from Within COMSOL Script

The compile function is used when compiling from within COMSOL Script. It takes
as its argument one or more C source files. The default behavior is to compile the files
and link them into a shared library.

Configuration Files

A configuration file is used to define the characteristics of a platform/compiler
combination. If this combination is not explicitly set with the -f argument to compile
(see below), it uses a default configuration. The default files are located in COMSOLDIR/
bin where COMSOLDIR is the directory where COMSOL Script was installed.

The configuration file contains specifications of the compiler, paths, and options
described using the format of Unix shell files: A line of the form VAR=VALUE assigns
the value VALUE to the variable VAR. The following variables can be used:

TABLE 14-10: CONFIGURATION FILE NAMES

PLATFORM COMPILER

PC/Windows (32-bit) compileopts_win32

PC/Windows (64-bit) compileopts_win64

PC/Linux (32-bit) compileopts_glnx86

PC/Linux (64-bit) compileopts_glnxa64

Itanium/Linux compileopts_glnxi64

Sun/Solaris (32-bit) compileopts_sol2

Sun/Solaris (64-bit) compileopts_sol2

Mac OS X compileopts_macosx

Intel Mac compileopts_maci32

TABLE 14-11: CONFIGURATION FILE VARIABLES

VARIABLE INTERPRETATION

BINPATH Search path for compiler, linker, and SETUPCMD (see
below)

CC C compiler

CFLAGS Default compiler flags
C O M P I L A T I O N | 329

330 | C H A P T E
The easiest way to create a configuration file is to copy the default configuration file
from the platform at hand and make the necessary modifications.

Compilation Options

The following options are accepted by the compile function:

DEBUGFLAGS Extra compiler flags that makes the C compiler
generate debug information

INCLUDEPATHFLAG Compiler flag used to set the include path

LD Linker

LDFLAGS Linker flags

LDLIBS Linker flag used to set the library path

LINKFLAG Linker flag that precedes a library linked against

OBJEXT File extension of object files

OPTFLAGS Extra compiler flags that makes the C compiler
generated optimized object code

SETUPCMD Command executed before compilation starts

TABLE 14-12: COMPILATION OPTIONS

OPTION FUNCTION

-c The source code files are compiled but not linked

-DSYMBOL Defines the preprocessor macro SYMBOL when compiling.
Equivalent to inserting #define SYMBOL in the source
code files

-DSYMBOL=VALUE Assigns the value VALUE to the preprocessor macro
SYMBOL. Equivalent to inserting #define SYMBOL VALUE
in the source code files

-fFILE Compilation options are read from FILE

-g Debug information is generated by the compiler

-h, -help Displays a help text

-IDIR Adds the directory DIR to the include file path

-LDIR Adds the directory DIR to the link directory path

-lLIB Adds the library LIB to the list of libraries to link against

-oOUTLIB Sets the name of the generated shared library to OUTLIB

-O Enables optimization

TABLE 14-11: CONFIGURATION FILE VARIABLES

VARIABLE INTERPRETATION
R 1 4 : E X T E R N A L A P I

Compiling from Within a Project or Makefile

The shared library containing the implementation of the external function need not be
compiled from within COMSOL Script. For a library containing several source-code
files a project or makefile is typically used. The following changes to the compilation
environment are necessary for compiling external code:

• The directory COMSOLDIR/script/external must be added to the include path.

• The directory COMSOLDIR/lib/PLATFORM must be added to the link path, and the
library flscriptext must be linked against. Here COMSOLDIR is the directory
where COMSOL Script was installed, and PLATFORM is one of the platform
abbreviations listed in Table 14-10, for example, win32 or glnx86.
C O M P I L A T I O N | 331

332 | C H A P T E
O th e r L anguag e s

Fortran

Fortran code can be interfaced by writing a small C wrapper on top of the Fortran
code. The wrapper declares an entry point, converts function arguments, and calls a
function written in the Fortran library.

C++

C++ code can be interfaced without a C wrapper as long as the entry point is declared
as extern "C":

extern "C"
CL_EXPORT void work(clEnv *env, int nOut, clData *out[],
 int nIn, clData *in[]);

C++ functions not tagged with extern "C" cannot be called because name mangling
and calling conventions differ between C and C++.

A potential problem when interfacing C++ code is symbol collisions between libraries
needed by the external code and libraries needed by COMSOL Script. This can happen
if the external code and COMSOL’s code are compiled with different compilers. The
following compiler versions were used to compile COMSOL’s code:

TABLE 14-13: C++ COMPILERS USED BY COMSOL

PLATFORM COMPILER

PC/Windows (32-bit) Visual Studio 2005

PC/Windows (64-bit) Visual Studio 2005

PC/Linux (32-bit) Intel 9.1 with GCC 3.4.4

PC/Linux (64-bit) Intel 9.1 with GCC 3.4.4

Itanium/Linux Intel 9.1 with GCC 3.4.4

Sun/Solaris (32-bit) Sun Studio 8.0

Sun/Solaris (64-bit) Sun Studio 11.0

Mac OS X GCC 3.3

Intel Mac GCC 4.0.1
R 1 4 : E X T E R N A L A P I

 I N D E X

% (comments) 120

& (logical and) 53

&& (scalar logical and) 53

() (dynamic field names) 82

(:) 37

. (field in structure) 79, 80

.* (pointwise multiplication) 44

... (continuation) 12

./ (pointwise division) 45

.\ (pointwise division) 45

.^ (pointwise power) 45

.’ (nonconjugate transpose) 40

/ (right division) 44, 99

: (colon) 24, 37

; 12

< (less than) 50

<= (less than or equal) 50

= (assignment) 51

== (equal) 50

> (greater than) 50

>= greater than or equal 50

[...] (array building) 12

[] (empty matrix) 27

\ (left division) 44, 99, 109

^ (power) 45

{:} (comma-separated list) 74

{} (empty cell array) 73

| (logical or) 53

|| (scalar logical or) 53

~ (not) 53

~= (not equal) 50

’ (Hermitian transpose) 40

’ (string delimiter) 62

2D graphics 205

3D graphics 215

A A1 notation, for data from Excel 177

abs function 47, 64

absolute tolerance 239

accumulated products 143

accumulated sums 143

acos function 48

acosh function 48

acot function 48

acoth function 48

acsc function 48

acsch function 48

adaptive quadrature 174

add method 262

addition 42

addpath function 121

airy function 49

Airy functions 49

alignment of GUI components 263

all function 55

ambient light 222

angle function 47

annotations 198

ans function 13

antialiasing 233

any function 55

apostrophes

in strings 63

application data

storing and retrieving 251

arithmetic operators 15

function-based form of 46

precedence of 16

using parentheses with 16

arithmetics 15–17

arrays

repeating in a pattern 56
I N D E X | 333

334 | I N D E X
special functions for modifying 56

ASCII code

converting to strings 65

ASCII format

saving data in 176

asec function 48

asech function 48

asin function 48

asinh function 48

assignin function 89

assigning values

to variables in other workspaces 89

assignment operator 13, 51

assignments

overloading for classes 295

atan function 48

atan2 function 48

atanh function 48

AVI movie format 234

axes function 253, 260

axes limits 193, 194

axes objects 188, 193, 260

creating and modifying 193

properties for 202

using multiple 196

axis function 193

azimuth 227

B band matrix 29

bandwidth 29

bar function 147

bar graphs 147

barycentric coordinates 168

base-10 logarithm 47

base2dec function 64, 67

batch mode 125

bessel function 49

Bessel functions 49

besselh function 49

besseli function 49

besselj function 49

besselk function 49

bessely function 49

beta function 49

betainc function 49

betaln function 49

bin2dec function 64, 67

bitand function 54

bitcmp function 54

bitget function 54

bitmap graphics 232

bitmax function 54

bitor function 54

bitset function 54

bitshift function 54

bitwise logical operators 54

bitxor function 54

blanks function 63

blkdiag function 56

BMP image format 229

bottlenecks, finding 94

box function 193

break statement 86

breakpoints

removing 101

setting 100

where errors occur 101

builtin function 122

built-in functions 122

button function 253

buttongroup function 253, 254

buttons 254

C C++ 332

call stack, when debugging 101

camera

controlling position of 227

history of settings 190

position of 228

target location for 228

up vector 228

campos function 228

camtarget function 228

camup function 228

camva function 228

cart2pol function 49

cart2sph function 49

case sensitivity 14

case statement 87

cat function 38

catch statement 91

catching errors 91

ceil function 47

cell array of strings 62

branching using 88

cell arrays 72

applying functions to 75, 81

as lists of variables 74

creating 72

empty 73

in branches 87

modifying 73, 80

nested 73

referencing 73, 80

cell function 73, 76

cell2mat function 76

cell2struct function 76, 82

cellfun function 75, 76

cellstr function 63, 72, 76

changing directory 18

char data type 62

char function 64, 306

character arrays 62

character codes for formatting 68

check boxes 254

checkbox function 253

chol function 116

Cholesky factorization 110

circshift function 56

cla function 193

class function 23

class types 287

choosing 288

classes

displaying methods for 291

using as packages 300

clc function 12

clear function 14, 134

for classes 290

clearing command window 12

clf function 189

clock function 184, 185

clone function 289

colon operator 24, 37

color scale 217

colorbar function 217

colormap function 215, 217

colormaps 217

colors

of faces and edges 220

combo boxes 256

methods for 256

combobox function 253

Command Reference 19

command window 8

commands

running at startup 19

commands, entering 12

comma-separated lists 65, 74

comments in M-files 120

common errors 98

common identifiers 136

comparing arrays 52

compilation 329
I N D E X | 335

336 | I N D E X
complex arrays 27

in plots 208

complex conjugate 40

complex function 28, 47

complex numbers 16

complex Schur form 113

computer function 17

computer, checking type of 17

COMSOL Multiphysics 10, 28, 237, 249

starting from COMSOL Script 10

COMSOL Reaction Engineering Lab 10

COMSOL Script

documentation set 2

environment 8

exiting 11

starting 8

COMSOL Script Command Reference

19

COMSOL Script data types 22

COMSOL Script Help Desk 19

concatenating arrays and matrices 38

cond function 107, 108

condeig function 107, 108

condition numbers 107

2-norm 107

for an inversion 107

for eigenvalues 107

conditional branching 84

configuration files 329

conj function 40, 47

conjugate transpose 40

constructors 276

continuation of current line 12

continue statement 86

contour labels 213

contour plots 213

conv function 162, 170

conv2 function 170

conversion characters

in sprintf function 68

convn function 170

convolution 162

copy of plots 190

corrcoef function 146

correlation coefficients 142

cos function 48

cot function 48

cov function 146

covar function 142

covariance matrix 142

creating arrays

special functions for 25

creating variables 12

cross function 43, 49

csc function 48

csch function 48

cumprod function 143, 146

cumsum function 143, 146

cumtrapz function 175

current directory 18

D DAEs 238

DASPK 238

retrieving settings for 240

setting options for 240

statistics from 240

syntax for inputs 239

daspk function 238

data

converting to strings 66

saving to files 176

data analysis 138

plots for 147

data input/output 176

data types 22

double arrays 24

identifying 23

date function 184, 185

date, getting current 184

dbclear function 101, 102

dbcont function 100, 102

dbdown function 101, 102

dbquit function 102

dbstack function 102

dbstatus function 102

dbstep function 102

dbstop function 100, 102

dbtype function 102

dbup function 101, 102

deal function 74, 76

deblank function 64

debug call stack 101

debug commands 99

debugging 98

dec2base function 64, 67

dec2bin function 64

dec2hex function 64, 67

deconv function 162, 170

deconvolution 162

del2 function 173, 175

Delaunay elements 168

delaunay function 166, 170

Delaunay triangulation 166

interpolation on 168

delaunay3 function 166, 170

delete function 182

delimited data, reading from text files

177

density

of sparse matrices 29

derivative

approximation of 172

desktop environment 8

det function 105, 108

determinant 105

determinant of a matrix 105

diag function 56

dialog boxes 250

with multiple tabs 257

dialog function 253

diary function 11

dictionary sort 144

diff function 172, 175

difference

of an array 172

difference equation

direct form II transposed 156

differential algebraic equations 238

differentiation 172

digital filter 156

dir function 18

direct form II transposed difference

equation 156

directional light 222

directory

changing 18

contents of current 18

current 18

discrete Laplacian 173

disp function 63

division operators 99

dlmread function 177, 182

dlmwrite function 177, 182

dlsim function 159

documentation set 2

dolly in/out 190

dot function 43, 49

dot product 43

double arrays

creating 24

double function 28, 34, 307

drawnow function 189

dynamic field names 81
I N D E X | 337

338 | I N D E X
E early exit from functions 86

echo function 121

editing plots 191, 210

eig function 112, 116

eigenvalues

computing 112

of a matrix 112

eigenvectors

of a matrix 112

scaling of 112

eigs function 29, 112, 116

elapsed time 185

elementary math functions 47

element-by-element division 45

element-by-element multiplication 44

elementwise logical operators 53

elevation 227

ellipsis 12

else statement 84

elseif statement 85

empty matrices 27

converting to Java 306

encrypt function 123

encrypting M-files 123

end function 36, 84

end of array 36

entering commands 12

eps function 15

EPS image format 229

equality operator 51

equation system

creating sparse matrix for 30

solving using sparse matrices for 32

equation systems

solving 109

erf function 49

erfc function 49

erfcx function 49

erfinv function 49

error bars 148

error function 91

error handling 91

error message

retrieving latest 92

setting 92

errorbar function 148

errors

throwing 91

etime function 185

Euclidean norm 106

of eigenvectors 112

eval function 69, 71

evalc function 70, 71

evalin function 70, 71

evaluating

functions 135

strings 69

event handlers 269

Excel, interfacing with 179

exist function 122

exit function 20

exiting the program 19

exp function 47

exp2 function 47

expm function 114, 116

exponential

of a matrix 114

external API 309

compilation 329

M-file interface 314

extrapolation 161

F factor function 49

factorial function 49

factorials 143

false function 34

fast Fourier transform 155

fclose function 178, 182

feof function 182

ferror function 182

feval function 71

FFT algorithm 155

fft function 155, 159

fft2 function 155, 159

fftn function 155, 159

fftshift function 159

fgetl function 182

Fibonacci number 128

fieldnames function 82

for objects 291

fields

adding 81

default value of 79

deleting 81

in structures 78

modifying value of 80

syntax for adding and accessing 79

figure function 189

figure windows 188

example of creating 260

functions for 189

toolbar in 189

fileparts function 182

files

closing 178

opening 178

writing formatted data to 178

filesep function 182

filled contour plots 213

fill-in 29

filter function 156, 159

find function 51

find function with sparse matrices 33

findobj function 211

findstr function 64

first-order step response 157

fitting a polynomial 163

fix function 47

flipdim function 56

fliplr function 56

flipud function 56

floating-point arithmetic 15

floor function 47

flow control 84–88

fonts, sizes of 262

fopen function 178, 182

for loops 85

looping over elements in cell arrays 86

for statement 85

format function 17

format strings in plot commands 206

formatted data

reading and writing 178

formatted strings 67, 199

formula function 136

Fortran 332

Fourier transform 155

fprintf function 67, 178, 182

frame function 253

frames 250

example of creating 264

fread function 182

freqspace function 56

frewind function 182

Frobenius norm 106

fscanf function 178, 182

fseek function 182

ftell function 182

full function 29

fullfile function 182

function arguments 131

function definition 127

function workspace 127
I N D E X | 339

340 | I N D E X
function-based forms of operators 46

functions 120, 127

alternative call syntax for 130

calling syntax for 130

evaluating 135

for statistical analysis 146

help text for 128

inline 135

locking 134

recursive calls of 129

refreshing path to 122

syntax for 127

updating 134

funm function 116

fwrite function 178, 182

G gamma function 49

gammainc function 49

gammaln function 49

gca function 189, 193, 194

gcd function 49

gcf function 189

generalized eigenvalue problem 112

genpath function 121

get function 210

getdata function 251

getfield function 82

gettabledata function 260

global statement 96

global variables 96

effects of using 97

gradient function 173, 175

graphics

2D 205

3D 215

Greek characters 200

greek symbols 200

grid function 193

griddata function 167, 170

griddata3 function 167, 170

griddatan function 167, 170

grids, equally-spaced 57

GUI components library 253

GUI components. See user interface

components

GUIs 249

example of 271

H handle

to current axes object 189, 194

to current figure window 189

headlights 190, 222

help

Help Desk 19

online 19

help function 19

for classes 290

help text for functions 128

Hermite interpolation 160, 164

Hermitian transpose 40

hess function 110, 116

Hessenberg form 110

hex2dec function 67

hex2num function 64, 67

hidden function 215

higher-order ODEs 238

hist function 149, 154

histc function 146, 150

histogram counts 149

histograms 149

hold function 193, 196

horizontal concatenation 38

horzcat function 38

HTML formatting 199

HTML tags 199

hyperbolic functions 48

I i 16

I/O functions 176, 182

identifying data types 23

identity matrix 26

sparse 30

IEEE floating-point arithmetic 15

if statement 84

if statements 84

ifft function 155, 159

ifft2 function 155, 159

ifftn function 155, 159

ifftshift function 159

imag function 28, 47

image export 232

image icons 254

imageicon function 254

images

data structure for 229

displaying 230

formats for 229

reading 230

saving 231

size of 232

storing plots as 231

imaginary unit 16

ind2sub function 36, 51

indexing 35

in cell arrays 72

overloading for classes 295

using multiple subscripting 37

inf function 16

inferiorto declaration 299

infinity 16

infinity norm 106

initial-value problems 238

inline function 135

inline functions 135

precedence for 122

inner product 43

input arguments 14

checking names of variables in 134

checking the number of 131

handling of 14

variable number of 132

input function 90

input variables

passing by value 130

inputname function 134

int2str function 64, 66

integration 172

interp1 function 160, 171

interp2 function 160, 171

interp3 function 160, 171

interpolation 160

linear 160

methods for 160

on Delaunay triangulation 168

using splines 164

intersect function 76

inv function 41, 108

inverse hyperbolic functions 48

inverse of a matrix 41

ipermute function 58

isa function 23

iscell function 76

iscellstr function 64, 76

ischar function 64

isclass function 75

isdir field 18

isempty function 27, 39

isequal function 52

isequalwithequalnans function 52

isfield function 82

isfinite function 52

isglobal function 96

ishold function 193

isinf function 52

iskeyword function 89
I N D E X | 341

342 | I N D E X
isletter function 64

islogical function 33

ismember function 76

isnan function 52

ispc function 18

isprime function 49

isreal function 28, 47

isscalar function 27, 39

issparse function 29

isstr function 64

isstruct function 82

isunix function 18

isvarname function 89

isvector function 39

iswhite function 64

J j 16

Jacobian 239

Java arrays

creating 303

Java class constructors 303

Java GridBagLayout class 262

Java interface 301

Java methods

converting return values from 306

Java objects

arrays of 303

creating 303

functions for 304

invoking methods 303

passing as arguments 304

javaArray function 303

javaMethod function 304

javaObject function 304

JPEG image format 229

K keyboard function 101

kron function 115, 116

Kronecker tensor product 115

L label function 253, 254

labels 254

LAPACK 109

DGEQRF and ZGEQRF functions 111

DPOTRF and ZPOTRF functions 110

Laplacian 173

largest singular value 106

last element in an array 36

lasterr function 92

lasterror function 92

layout manager 262

lcm function 49

least squares polynomial fit 163

left associativity 16

left division 99, 109

left matrix divide 44

legend function 193, 198

legends 198

length function 27, 39

light function 215

lighting 215, 222

lighting function 215

lights 222

line continuation 12

line function 205, 226, 260

line objects 210

properties of 212

line plots

in 3D 226

line styles 207

linear algebra algorithms 109

linear congruential generator 97

linear equation systems 109

solvers for 44

linear indexing 51

linear interpolation 160

linear-index vector 36

linear-system sensitivity 107

linspace function 25

list boxes 256

methods for 256

listbox function 253

lists of variables 74

load function 20, 176, 182

loading

data from files 176

data from MAT-files 179

Lobatto quadrature 174

local functions 129

locking functions 134

log function 47

log10 function 47

logarithmic scales in plots 205, 209

logarithms

base-10 47

natural 47

of matrices 114

logging inputs and outputs 11

logical arrays 33, 50

converting to double arrays 34

logical complement 53

logical function 34

logical indexing 37

logical operators 53

bitwise 54

elementwise 53

loglog function 205

logm function 114, 116

logspace function 25

loop variables 86

looping 84

loops

breaking out of 86

using pointwise operators instead of

93

Lotka-Volterra equations 240

lower function 64

low-level graphics objects 210

ls function 19

LU decomposition 109

lu function 109, 116

M markers 207

mat2cell function 72, 76

mat2str function 64, 66

material function 215

materials 222

reflections from 224

MAT-files 179

math symbols 201

mathematical constants 16

matrices

as input to plots 207

matrix analysis 104

matrix dimension 98

matrix exponential 114

matrix factorization 110

matrix functions 108

matrix functions, adding 115

matrix logarithm 114

matrix multiplication 43

matrix norms 106

matrix power 45

matrix-division operators 44

matrix-vector products 43

max function 139, 146

maximum norms 106

maximum values 139

MC-files 123

mean function 141, 146

mean values 141

median function 141, 146

median values. 141

menu function 250, 253

menu items 250
I N D E X | 343

344 | I N D E X
menuitem function 250, 253

menus 250

mesh function 215, 216, 220

mesh plots 167

meshgrid function 56, 57

meshz function 215, 216, 220

methods 276

invoking for Java objects 303

methods function 291

M-file interface 314

M-file path 120, 121

mfilename function 123

M-files

creating 120

displaying contents of 121

echoing the lines of 121

maximum length of file name 120

retrieve name of running 123

running 11

Microsoft Excel, interfacing with 179

min function 139, 146

minimum norms 106

minimum values 139

mislocked function 135

missing data 145

mkpp function 165, 171

mldivide function 116

mlock function 134

mod function 47

modifying arrays

special functions for 56

modulus of arrays 47

mouse listener 274

mouse movements 269

movie function 234

movies

example of generating 234

formats for 234

generating 234

methods for creating 234

mrdivide function 116

multidimensional arrays 57

special functions for 58

multidimensional indexing 36

multidisciplinary modeling 5

munlock function 135

N namelengthmax function 120

nan function 16

NaNs 16

and relational operators 51

handling in data 145

nargchk function 131, 134

nargin function 131, 134

nargout function 131, 134

nargoutchk function 132, 134

natural logarithm 47

ndgrid function 58

ndims function 39

nearest neighbor interpolation 160

nested cell arrays 73

nested control flows 84

nested structures 79

newplot function 193, 194

nnz function 29

nonconjugate transpose 40

nonsingular matrix 105

norm function 105, 108

normally distributed random numbers 26

norms 105

not function 53

not-a-number 16

null function 111, 116

null space of a matrix 111

num2cell function 72, 76

num2hex function 64, 67

num2str function 64, 66

number of bits, for sound data 181

number of dimensions

in an array 39

number of elements

in an array 39

numel function 38, 39

numerical integration 174, 175

nzmax function 30

O objects 276

odeget function 240

ODEs 238

examples of solving 240, 243

setting options for 240

syntax for specifying 239

systems of 238

odeset function 240

ones function 25

online help 19

operating system commands 18

operating system, checking type of 17

operators

corresponding functions for 294

overloading 293

option buttons 254

ordinary differential equations 238

ordschur function 114, 116

orth function 111, 116

orthogonal factorization 111

orthographic projection 190

orthonormal bases 111

otherwise statement 87

outer products 43

output arguments 14

checking the number of 131

variable number of 132

output formats 17

overloading 293–297

assignments 295

indexing 295

of operators 293

save and load commands 296

the display of an object 297

P packages 300

pane objects 257

panel function 253

panels 250

layout of 262

panning 190

parentheses 16

partial differential equations 237

patch function 215, 218, 260

patch plots 215

patches

example of plot using 218

properties of 221

path

adding directories to 121

for M-files 121

path function 121

pathsep function 182

pchip function 171

PDEs 237

performance considerations 93–95

permute function 58

persistent statement 97

persistent variable 97

perspective projection 190

phase curve 242, 246

pi 16

pi function 16

piecewise polynomial

for spline interpolant 164

pinv function 41, 108

plot function 205, 260

plot3 function 215, 226

plots
I N D E X | 345

346 | I N D E X
3D plot types 215

adding to existing plot 195

copying 190

editing 190, 191

examples of 124, 198, 205, 208, 209,

210, 211, 216, 217, 219, 223, 225,

226, 260

exporting 189

printing 189

stairstep 150

stem 152

PNG image format 229

P-norms 106

point light 222

pointwise division 45

pointwise multiplication 44

pol2cart function 49

poly function 171

polyder function 162, 171

polyfit function 163, 171

polyint function 162, 171

polynomials 161

division of 162

evaluating 162

fitting to data 163

integrating and differentiating 162

multiplication of 162

roots of 162

polyval function 162, 171

power operator 45

ppval function 164, 171

precedence 298

precedence order

of functions 122

predator-prey model 240

primes function 49

principal logarithm 114

printing plots 189

prod function 143, 146

prodofsize function 75

products 143

profiling the code 94

projection 190

prompt, when debugging 100

pseudoinverse 41

psi function 50

pwd function 18

Q QR factorization 111

qr function 116

quad function 174, 175

quadl function 174, 175

quadrature 174

QuickTime

movie format 234

quit function 20

R radio buttons 254

radiobutton function 253

radius of convergence 115

rand function 26

randn function 26

random numbers 26

as sparse matrices 30

rank 41

rank function 41, 104, 108

rank of a matrix 104

rat function 50

rational fraction approximation 50

rats function 50

real function 47

real Schur form 113

reallog function 47

realpow function 47

realsqrt function 47

recursive function calls 129

reference classes 287

reflecting lights 224

refreshing the path view 121

rehash function 121

relational operators 50

relative tolerance

in ODE/DAE solver 239

in quadrature formulas 175

rem function 47

repmat function 56

reserved words 89

reshape function 56

reshaping an array 56

resolution, of images 232

resuming normal execution 100

return statement 86

RGB triplet 208, 212

RGB values 217

right division 99

right matrix divide 44

rmfield function 82

rmpath function 121

roots function 162, 171

rot90 function 56

round function 47

rounding

functions for 47

row-and-column index 51

run function 125

running M-files 11

S sample rates, for sound data 181

save function 19, 176, 182

saveimage function 231

saving

data to MAT-files 179

workspace data to files 19, 176

scalar AND and OR operators 53

scalar expansion 51

scalar product 43

scalars 27

expanding to constant matrices 98

scaling

of images 233

scene lights 190, 222

Schur decomposition 113

reordering of 114

Schur forms 113

schur function 113, 116

script files 120

scripts

creating 124

running 124

running at startup 19

running in batch mode 125

scroll bars 257

scrollpanel function 253

sec function 48

semicolon

to prevent display of output 12

semilogx function 205

semilogy function 205

sensitivity of linear system 107

set function 210

set functions 76

setdiff function 76

setfield function 82

setxor function 76

shading function 215, 220

shiftdim function 56

shininess 225

shortcut keys 11

sign function 47

signal processing 155

signum function 47

Simpson’s rule, 174

sin function 48

singular matrix 41

singular value
I N D E X | 347

348 | I N D E X
in matrix norm 106

singular value decomposition 113

singular values 113

sinh function 48

size function 38, 39

sizes of arrays 38

sort function 144, 146

sorting data 144

sortrows function 144, 146

sound function 181, 182

sounds

playing 181

reading from files 180

soundsc function 181, 182

sparse eigenvalue problems 112

sparse function 30

sparse matrices 28

creating 30

creating equation system matrix using

30

functions for 29

in external API 312

output from operations with 33

solving equation system using 32

sparsity pattern, displaying 32

spdiags function 30

special math functions 49

specular color 225

speye function 30

sph2cart function 50

spline function 164, 171

spline interpolation 160, 164

spones function 30

spotlights 222

sprand function 30

sprandn function 30

sprandsym function 30

sprintf function 64, 67

spy function 32

sqrt function 47

sqrtm function 46

square root 47

square roots 46

squeeze function 58, 59

sscanf function 64

stairs function 150

stairstep plots 150

standard deviation 141

startup.m script 19

state-space models 158

statistical analysis

functions for 146

statistics 138

from ODE solver 240

std function 141, 146

stem function 152

stem plots 152

stem3 function 152

step response 157

step sizes 239

stiff ODEs 247

stiff problems 238

storedata function 251

str2num function 64

straight quotes

in strings 63

straight single quote

as transpose operator 40

strcat function 64

strcmp function 64

strcmpi function 64

strfind function 64

strings 62

apostrophes in 63

branching using 88

displaying 63

evaluating 69

single quotes in 63

strjust function 64

strmatch function 64

strncmp function 64

strncmpi function 65

strread function 182

strrep function 65

strtok function 65

strtrim function 65

struct function 78, 82

for objects 292

struct2cell function 72, 76, 82

structure arrays 78

accessing field names dynamically 81

creating 78

modifying 80

nested 79

referencing 80

structures 78

strvcat function 65

sub2ind function 36, 51

subfunctions 129

subplot function 193, 196

subscripting 35

subset of arrays

indexing into 37

subspace function 146

subtraction 42

sum function 143, 146

sums 143

super function 289

superiorto declaration 299

surf function 215, 216, 220, 260

surface function 215, 216

surface plots 215

example of 216

surface properties 221

svd function 113, 116

switch statement 87

symvar function 65, 135

T tabbedpane function 253, 257

table function 253, 258

tables 258

tabs 257

tan function 48

Taylor series 115

tempdir function 182

tempname function 182

tensor product 115

tensor products 59

text fields 255

text file

reading data from 176

reading delimited data from 177

text function 193, 198

text symbols 201

textarea function 253

textfield function 254

textread function 182

this function 289

tic function 185

TIFF image format 229

time

elapsed 185

getting current 184

tinterp function 168, 171

title function 193, 198

toc function 185

toggle buttons 254

togglebutton function 254

tolerances

absolute 239

relative 239

toolbar 188

in figure windows 189
I N D E X | 349

350 | I N D E X
tprod function 59

trace function 104, 108

trace of a matrix 104

transfer functions 156

transparency 190

transpose

of complex-valued matrix 40

of matrix 40

transpose operator 40

trapezoidal numerical integration 175

trapz function 175

triangulation 166

trigonometric functions 48

unit for angles 48

tril function 56

trimesh function 167, 171

trisurf function 167, 171

triu function 56

true function 34

try statement 91

tsearch function 168, 171

tsearchn function 168, 171

type conversions

for chars 306

for doubles 306

type function 121

typographical conventions 4

U uint8 function 15

unary minus 46

unary plus 46

unicode 201

uniformly distributed random numbers

26

union function 76

unique function 76

unmkpp function 166, 171

unsigned integers 15

unwrap function 47

updating functions 134

upper function 65

upper Hessenberg form 110

user inputs 90

user interface components 253

accessing 268

adding 262

alignment of 263

axes objects 260

buttons 254

check boxes 254

combo boxes 256

event handling for 269

list boxes 256

spacing between 265

tables 258

text fields 255

toggle buttons 254

user interfaces 249

components in 253

example of 271

V value classes 287

van der Pol equation 243

Vandermonde matrix 163

var function 142, 146

varargin function 74, 134

varargout function 74, 134

variable number of function arguments

132

variables

creating 12

listing 13

names of in input arguments 134

variance 141

vector cross products 43

vector gradient 173

vector graphics 232

vector norms 106

vectorization 93

vectorize function 136

vectorizing

expressions in strings 136

vectors 27

creating 24

duplicating 56

of equally spaced numbers 25

of logarithmically spaced numbers 25

vertcat function 38

vertical concatenation 38

view angle 228

view function 215, 227

viewpoint 227

W warning function 92

warning messages

displaying 92

wave sound files 180

wavread function 181, 182

wavwrite function 181, 182

which function 122

while loops 85

while statement 85

white spaces 64

who function 13

whos function 13, 23

width and precision fields

in sprintf function 68

wireframe plots 215

workspace

clearing 14

contents of 13

variables in 13

workspaces

assigning values to variables in 89

for functions 127

X xlabel function 193, 198

xlim function 193

xlsread function 180, 183

xlswrite function 180, 183

xor function 53

Y ylabel function 193, 198

ylim function 193

Z zaxis function 198

zeros function 25

zlabel function 193

zlim function 193

zoom 190
I N D E X | 351

352 | I N D E X

	CONTENTS
	Chapter 1: Introduction
	The Documentation Set 2
	About COMSOL Script 5

	Chapter 2: COMSOL Script Basics
	Using COMSOL Script 8

	Chapter 3: Vectors, Matrices, and Arrays
	The COMSOL Script Data Types 22
	Creating Vectors, Matrices, and Double Arrays 24
	Working with Matrices and Arrays 35

	Chapter 4: Data Types for Non-Numeric Values: Strings, Cell Arrays, Structures
	Strings and Character Arrays 62
	Cell Arrays 72
	Structures 78

	Chapter 5: The Programming Language
	Flow Control 84
	Working with Variables 89
	Error Handling 91
	Performance Considerations 93
	Global and Persistent Variables 96
	Debugging 98

	Chapter 6: Linear Algebra and Matrix Functions
	Matrix Functions and Matrix Analysis 104
	Linear-Algebra Algorithms 109

	Chapter 7: Scripts, Functions, and M-files
	Overview of M-Files 120
	Scripts 124
	Functions 127

	Chapter 8: Data Analysis, Statistics, and I/O
	Data-Analysis Overview 138
	Statistical Analysis 139
	Data Analysis Plots 147
	Signal-Processing Tools 155
	Interpolation and Polynomials 160
	Differentiation and Integration 172
	Data Input/Output 176
	Date and Time Functions 184

	Chapter 9: Plotting and Visualizing Data
	Introduction to Graphics Objects 188
	The Figure Window 189
	Axes 193
	2D Graphics 205
	3D Graphics 215
	Working With Images and Movies 229

	Chapter 10: Solving Differential Equations
	ODEs and DAEs 238

	Chapter 11: Creating User Interfaces
	Frames and Dialog Boxes 250
	User Interface Components 253
	Panels and Layout Management 262
	Event Handling 269
	Example User Interface 271

	Chapter 12: User-Defined Classes
	Introductory Example: Rectangle 276
	The Structure of the Class File 278
	Access Modifiers 280
	Member Fields 281
	Member Methods 284
	Inheritance 286
	Reference and Value Classes 287
	Built-In Object Functions 289
	Overloading 293
	Precedence 298
	Using Classes as Packages 300

	Chapter 13: Java Interface
	Declaration of Java Methods 302
	Creating and Using Java Objects 303
	Type Conversions 306

	Chapter 14: External API
	Introductory Examples 310
	Using the API 314
	API Reference 316
	Compilation 329
	Other Languages 332

	Introduction
	The Documentation Set
	Typographical Conventions

	About COMSOL Script

	COMSOL Script Basics
	Using COMSOL Script
	Starting COMSOL Script
	The COMSOL Script Environment
	Using Commands and Creating Variables
	Numbers and Arithmetics
	Checking the Computer and Operating System
	Running General Operating System Commands
	Displaying and Changing Directory
	Running Commands at Startup
	Getting Help
	Saving the Workspace and Exiting the Program

	Vectors, Matrices, and Arrays
	The COMSOL Script Data Types
	Overview of Data Types
	Identifying Data Types

	Creating Vectors, Matrices, and Double Arrays
	Creating Double Arrays
	Array Sizes and Empty Matrices
	Sparse Matrices
	Logical Arrays

	Working with Matrices and Arrays
	Indexing and Subscripting
	Building Arrays From Other Arrays
	General Functions for Array Sizes
	Matrix Transposition
	Matrix Inversion
	Elementary and Special Math Functions
	Relational and Logical Operators and Functions
	Special Functions for Modifying Arrays
	Creating and Using Multidimensional Arrays
	Tensor Products and Contractions

	Data Types for Non-Numeric Values: Strings, Cell Arrays, Structures
	Strings and Character Arrays
	Creating and Modifying Strings
	Summary of Functions for Converting and Modifying Strings
	Using String Functions-Some Examples
	Evaluating Strings

	Cell Arrays
	Creating Cell Arrays
	Working With Cell Arrays
	Set Functions

	Structures
	Creating Structures
	Working With Structures
	Summary of Functions Related to Structure Arrays

	The Programming Language
	Flow Control
	IF Statements
	WHILE Loops
	FOR Loops
	BREAK, CONTINUE, and RETURN Statements
	The SWITCH Statement

	Working with Variables
	Naming Variables
	Assigning a Value to a Variables in Other Workspaces
	Getting User Input

	Error Handling
	The TRY and CATCH Statements
	Throwing Errors and Displaying Warnings

	Performance Considerations
	Using Built-in Functions Instead of FOR
	Using Logical Operators Instead of IF
	Using Pointwise Operators Instead of Loops
	Profiling to Find Bottlenecks

	Global and Persistent Variables
	Global Variables
	Persistent Variables

	Debugging
	Common Errors
	Debug Commands

	Linear Algebra and Matrix Functions
	Matrix Functions and Matrix Analysis
	Elementary Matrix Functions
	Matrix Analysis
	Summary of Matrix Functions

	Linear-Algebra Algorithms
	LU Decomposition and Solving Linear Equation Systems
	Matrix Factorization-Cholesky and QR
	Orthonormal Bases for Null Spaces and Ranges
	Eigenvalues and Eigenvectors of a Matrix
	Singular Value Decomposition and Schur Decomposition
	The Matrix Exponential
	The Matrix Logarithm
	Evaluating Other Matrix Functions
	The Kronecker Tensor Product
	Summary of Linear-Algebra Functions
	References

	Scripts, Functions, and M-files
	Overview of M-Files
	Creating an M-file
	The M-file Path
	Precedence Order For M-files, Functions, and Variables
	Retrieving the Name of the Running M-File
	Encrypting M-files

	Scripts
	Creating and Running Scripts
	Running Scripts in Batch Mode

	Functions
	Syntax for Function M-Files
	A Short Example-Fibonacci Numbers
	Local Functions (Subfunctions)
	Calling Functions
	Working With Function Arguments
	Updating and Locking Functions
	Evaluating Functions
	Inline Functions

	Data Analysis, Statistics, and I/O
	Data-Analysis Overview
	Statistical Analysis
	Computing Minimum and Maximum Values
	Computing Mean and Median Values
	Computing Standard Deviations, Variances, and Correlations
	Computing Sums and Products
	Sorting Data
	Handling NaNs and Missing Data
	Summary of Functions for Statistical Analysis

	Data Analysis Plots
	Bar Graphs
	Error Bars
	Histograms
	Stairstep Plots
	Stem Plots
	Summary of Functions for Data Analysis Plots

	Signal-Processing Tools
	Using the FFT Functions
	Using the Digital Filter Function
	Simulating Discrete-Time State-Space Models
	Summary of Signal-Processing Functions

	Interpolation and Polynomials
	Interpolating Data
	Working With Polynomials
	Data Gridding and Triangulation of Point Data
	Summary of Interpolation and Polynomial Functions

	Differentiation and Integration
	Difference, Gradients, and Laplacian Computations
	Numerical Integration
	Summary of Differentiation and Integration Functions
	Reference

	Data Input/Output
	Saving and Loading Data To and From a File
	Reading and Writing Formatted Data To a File
	Saving and Loading MAT-Files
	Interfacing With Microsoft Excel Spreadsheets
	Reading and Writing Sound Files and Playing Sounds
	Summary of Input/Output Functions

	Date and Time Functions
	Getting the Current Date and Time
	Measuring Elapsed Time
	Summary of Functions for Date and Time

	Plotting and Visualizing Data
	Introduction to Graphics Objects
	The Figure Window
	Figure Window Functions
	Figure Window Toolbar
	The Edit Plot Dialog Box

	Axes
	Overview of Axes Functions
	Getting an Axes Object for Plotting
	Controlling Axes Limits
	Adding Plots to an Existing Plot
	Using Multiple Axes Objects
	Adding Annotations
	Axes Properties

	2D Graphics
	Overview of 2D Graphics Functions
	The Plot Command
	Plotting Complex Data
	Plotting Logarithmic Data
	Low-Level Graphics
	Editing Plots
	Contour Plots

	3D Graphics
	Overview of 3D Graphics Functions
	Surf and Mesh Commands
	Colormaps and Color Bars
	Patches
	Patch and Surface Properties
	Lights and Materials
	3D Plots and Lines
	Specifying the View
	Camera View Angle, Target, Position, and Up Vector

	Working With Images and Movies
	Image and Movie Functions and Formats
	Reading and Displaying Images
	Saving Images
	Generating Movies

	Solving Differential Equations
	ODEs and DAEs
	Introduction
	Using the DASPK Solver
	Setting and Retrieving ODE Solver Options
	Solving the Lotka-Volterra Equations
	Solving the van der Pol Equation
	References

	Creating User Interfaces
	Frames and Dialog Boxes
	Menus
	Storing Application Data

	User Interface Components
	Introduction
	Labels and Image Icons
	Buttons and Toggle Buttons
	Text Fields and Text Areas
	Combo Boxes and List Boxes
	Tabbed Panes and Scroll Panes
	Tables
	Axes

	Panels and Layout Management
	Adding Components
	Distributing Extra Space
	Adding Empty Space
	Accessing Components

	Event Handling
	Example User Interface

	User-Defined Classes
	Introductory Example: Rectangle
	The Structure of the Class File
	Class Header
	Precedence Declarations
	Field Declarations
	Method Declarations

	Access Modifiers
	Member Fields
	Instance Fields
	Static Fields
	Initialization of Fields

	Member Methods
	Constructor
	Instance Methods
	Static Methods

	Inheritance
	Reference and Value Classes
	Differences
	Choosing Class Type

	Built-In Object Functions
	Functions That You Can Only Use for Objects
	Functions with Special Semantics for Objects

	Overloading
	Overloading Operators
	Overloading Assignment and Indexing
	Overloading Save and Load
	Overloading Display

	Precedence
	Precedence Between Functions and Methods
	Precedence Between Methods from Different Classes

	Using Classes as Packages

	Java Interface
	Declaration of Java Methods
	Creating and Using Java Objects
	Creating Java Objects and Invoking Methods
	Creating and Using Java Arrays
	Functions for Creating and Using Java Objects
	Passing Java Objects as Arguments to Functions

	Type Conversions
	Conversion of Arguments to Java Methods
	Return Values From Java Methods
	The Char and Double Conversions

	External API
	Introductory Examples
	Compiling and Executing a Simple Function
	Working with Sparse Matrices

	Using the API
	M-File Interface
	Entry Point
	Memory Management
	Error Handling

	API Reference
	Data Types
	Functions

	Compilation
	Compiling from Within COMSOL Script
	Configuration Files
	Compilation Options
	Compiling from Within a Project or Makefile

	Other Languages
	Fortran
	C++

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

