COMSOL
SCRIPT

(o)
(e)
=
=<
]
)
(|
>
rm
-™
rm
==
|
=
(o)
rm

VERSION 1.2

0 COMSOL

How to contact COMSOL:

Benelux

COMSOL BV

Réntgenlaan 19

2719 DX Zoetermeer

The Netherlands

Phone: +31 (0) 79 363 4230
Fax: +31 (0) 79 361 4212
info@femlab.nl
www.femlab.nl

Denmark

COMSOL A/S
Diplomvej 376

2800 Kgs. Lyngby
Phone: +45 88 70 82 00
Fax: +45 88 70 80 90
info@comsol.dk
www.comsol.dk

Finland

COMSOL OY
Arabianranta 6
FIN-00560 Helsinki
Phone: +358 9 2510 400
Fax: +358 9 2510 4010
info@comsol.fi
www.comsol.fi

France

COMSOL France

WTC, 5 pl. Robert Schuman
F-38000 Grenoble

Phone: +33 (0)4 76 46 49 0l
Fax: +33 (0)4 76 46 07 42
info@comsol.fr
www.comsol.fr

Germany

FEMLAB GmbH

Berliner Str. 4

D-37073 Goéttingen
Phone: +49-551-99721-0
Fax: +49-551-99721-29
info@femlab.de
www.femlab.de

Italy

COMSOL S.r.l.

Via Vittorio Emanuele Il, 22
25122 Brescia

Phone: +39-030-3793800
Fax: +39-030-3793899
info.it@comsol.com
www.it.comsol.com

Norway

COMSOL AS

Sgndre gate 7
NO-7485 Trondheim
Phone: +47 73 84 24 00
Fax: +47 73 84 24 01
info@comsol.no
www.comsol.no

Sweden

COMSOL AB
Tegnérgatan 23

SE-111 40 Stockholm
Phone: +46 8 412 95 00
Fax: +46 8 41295 10
info@comsol.se
www.comsol.se

Switzerland

FEMLAB GmbH
Technoparkstrasse |
CH-8005 Ziirich

Phone: +41 (0)44 445 2140
Fax: +41 (0)44 445 2141
info@femlab.ch
www.femlab.ch

COMSOL Script Refevence Guide
© COPYRIGHT 1994-2007 by COMSOL AB. All rights reserved

Patent pending

United Kingdom

COMSOL Ltd.

UH Innovation Centre
College Lane

Hatfield

Hertfordshire AL10 9AB
Phone:+44-(0)-1707 284747
Fax: +44-(0)-1707 284746
info.uk@comsol.com
www.uk.comsol.com

United States

COMSOL, Inc.

| New England Executive Park
Suite 350

Burlington, MA 01803

Phone: +1-781-273-3322

Fax: +1-781-273-6603

COMSOL, Inc.

10850 Wilshire Boulevard
Suite 800

Los Angeles, CA 90024
Phone: +1-310-441-4800
Fax: +1-310-441-0868

COMSOL, Inc.

744 Cowper Street

Palo Alto, CA 94301
Phone: +1-650-324-9935
Fax: +1-650-324-9936

info@comsol.com
www.comsol.com

For a complete list of international
representatives, visit
www.comsol.com/contact

Company home page
www.comsol.com

COMSOL user forums
www.comsol.com/support/forums

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or

reproduced in any form without prior written consent from COMSOL AB.

COMSOL, COMSOL Multiphysics, COMSOL Reaction Engineering Lab, and FEMLAB are registered
trademarks of COMSOL AB. COMSOL Script is a trademark of COMSOL AB.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Version: October 2007

COMSOL 3.4

CONTENTS

Chapter |: COMSOL Script Command Reference

Summary of Commands 2
Elementary functions16
addpath00 0.8
airy L L L L L s s s
all o 20
and L L L L e e e s 21
ANS . . . e e e e e e e e .2
any ..o oo e s s 23
argnames. e e e e s 24
assignin L L ... Lo ... 25
atan2 .. . L L L oo oo e e 26
AXES. . . e e e e e e e e e e e 27
axiS e e e e oo oo 28
bar L oL LoD
base2dec.30
bessel, besselh, besseli, besselj, besselk, bessely 3l
beta.33
betainc. L L L. . L. L., 34
betaln35
bin2dec L. 36
bitand, bitor, bitxor. o37
bitemp. o 38
bitget L Lo oL Lo 39
bitmax.4
bitset L. . L4
bitshife. A2
blankso ..o Lo oL 43
blkdiag. 44
bone L L L.45
box. L L L Lo Lo 46
builtin L L L Lo 4T
button.48

CONTENTS |i

buttongroup
campos
camtarget
camup .
camva .
cart2pol .
cart2sph .
cat .
caxis

cd

cell .

cell2mat .

cell2struct .

cellfun .
cellstr .
char.
checkbox.
chol .
circshift .
cla .
clabel .
class.

cle .
clear

clf

clock .
clone .
close
colon .

colormap.

combobox .

compile

complex .

component .

computer.
cond
condeig

contour .

ii | CONTENTS

. 49
. 50
. 51
. 52
. 53
. 54
. 55
. 56
. 57
. 58
. 59
. 60
. 6l
. 62
. 63
. 64
. 65
. 66
. 67
. 68
. 69
. 70
.71
.72
.73
. 74
. 75
. 76
.77
. 78
.79
. 8l
. 82
. 83
. 84
. 85
. 86
. 87

contour3 .
contourc .
contourf .
conv
conv2 .
convn .
cool.
corrcoef .
cov .
cputime .

Cross

ctranspose .

cumprod .
cumsum .
cumtrapz .
daspk .
date.
dbclear
dbcont.
dbdown .
dbquit .
dbstack
dbstatus .
dbstep .
dbstop .
dbtype .
dbup

deal .
deblank
dec2base .
dec2bin
dec2hex .
deconv.
del2.
delaunay .
delaunay3.
delete .

det .

. 88
. 89
. 90
.91
.92
.93
. 94
.95
. 96
.97
. 98
.99

100
101
102
103
104
105
106
107
108
109
110
1
12
113
114
115
116
17
118
119
120
121
122
124
125
126

CONTENTS

diag .
dialog .
diary
diff .
dir .
disp .
display .

dimread .

dimwrite .

dlsim
dos .
dot . .
double.

drawnow .

echo
eig .
eigs .
encrypt
eps .
€q

erf .
erfc .
erfcx
erfinv .

error .

errorbar .

etime .
eval .
evalc
evalin .
exist
exit .
expm .
eye .

factor .

factorial .

false.

fclose .

iv| CONTENTS

127
128
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

feof .
ferror .
feval.
fft.

fft2 .
ffen . .
ffeshift .
fgetl.
fgets.
fieldnames
figure .
fileparts
filesep .
filter
find .
findobj .
findstr .
flipdim .
fliplr.
flipud .

fminsearch .

fopen .
format.
formula
fprintf .
frame .
fread
freqspace.
frewind
fscanf .
fseek
feell .
full .
fullfile .
funm
fwrite .
fzero

gamma.

167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
189
191

192
193
194
195
198
199
200
201

202
203
204
205
207
208
209

CONTENTS

v

gammainc.

gammaln .

gca .
ged .
gef .
ge . .
genpath
get .
getdata.
getfield.

gradient .

gray .

grayprint .

grid .

griddata .
griddata3 .
griddatan .

gt. .
help.

hess.

hex2dec .

hex2num .

hidden .
hist .
histc.
horzcat
hold.
hot .
hsv .
[
ifft .
ifft2 .
ifftn .
ifftshift .
imag.
image .
imageicon

imagesc

Vi| CONTENTS

210
211
212
213
214
215
216
217
218
219
220
222
223
224
225
227
229
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

imread.
imshow
imwrite
ind2sub
inf

inline
input
inputname

int2str .

int8, intl 6, int32, int64.

interpl.
interp2.
interp3.
intersect .
intmax, intmin .
inv .

isa

iscell
iscellstr
ischar .
isdir.
isempty
isequal .
isequalwithequalnans
isfield .
isfinite .
isglobal
ishandle .
ishold .
isinf .
isjava
iskeyword
isletter.
islogical
ismember.
isnan
isnumeric.

isobject

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

CONTENTS

vii

ispc .
isprime
isreal
isscalar.
isspace.
issparse
isstr.
isstruct
isunix .
isvarname
isvector .
i
javaArray .
javaDeclare .
javaMethod .
javaObject .
jet . . .
keyboard .
kron
label.
lasterr .
lasterror .
lem . .
Idivide .
le. . .
legend .
length .
light.
lighting.
line .
linspace
listbox .
load.

log . .
logl0 .
log2.
logical .

loglog .

Viii | CONTENTS

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
323
324
325
326
327
328

logm
logspace .
lookfor

lower .

mat2cell .
mat2str
material .
max .
mean
median.
menu .
menuitem
mesh
meshgrid .
meshz .
methods .
mfilename
min .
minus .
mislocked
mkdir .
mkpp .
mldivide .
mlock .
mod.
movie .
mpower .
mrdivide .
mtimes
munlock .
namelengthmax
nan . .
nargchk
nargin .

nargout

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

CONTENTS

ix

nargoutchk oo 367
ndgrid 368
ndims L. ..o Lo 369
neo s s s 370
newploto 00000000 3T
Nz32
norm 373
noto, 374
310 ¥ £
num2cell o 0L 000000000 o o .. 376
num2hex. 3TT
num2str 378
numelo oL L0 0oL oo oo 3T9
NZMaxX o.o.o.o.o. 380
odeget.o 38l
odeset. Lo 382
ONeSo oo oo o383
Lo P 1
ordschur. 38
orth. 386
5 T P 174
patch oL ... 3%
path. Lo oL 392
pathsep L 393
pause oo oo oo 39
pchipo ..., 3%
permute, ipermute 39
5T 74
pink. oo oo 398
PiNV. . . Lo L s s 399
plot. L. 400
plot3 Lo oL oL 40l
plus.o oL 402
point 403
pol2cart L L. 404
poly. L 405
polydero oo ... 406
polyfit oL L ..o 407

X|CONTENTS

polyint.
polyval.
pow2 .
power .
ppval
primes .
prod
profile .
psi .
pwd.
qr .
quad
quad|
quit .
radiobutton .
rand.
randperm.
rank.
rat .
rats .
rdivide .

real .

realmin, realmax .

realpow .
rehash .
rem .
repmat.
reshape
rethrow .
rmdir .
rmfield.
rmpath.
roots .
rot90 .
run .
save.
saveimage

schur .

408
409
410
411
412
413
414
415
416
417
418
419
420
41
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

CONTENTS

Xi

scrollpane L L Lo L L Lo oL Lo Lo 446
semilogx L L L L L0 L0 Lo A4
semilogy oL L. oL 448
set L L oo A
seediff . . . L . 0 o0 000000000000, 450
setfield.o 000 45l
SEIXOr oo oo 452
shading oo oo oo .. 45
shiftedm o L0 000000 0oL 454
single oL 45
172 51
SOFt. oo 4sT
SOMtrOWS 458
sound,soundsc ... 45
SPArseo e e e oo 460
spdiags. L L. L. L. oL 4el
SPEYE e e e e e e 462
sph2cart L L L. oL L. Lo 463
splineo L oL 464
SPONES. oo oo 465
sprand. L L L L L L L Lo oo 466
sprandn L L L L L L L L Lo s 467
sprandsym 468
sprintf L. . o L. Lo Lo 469
1532
SQrt. o o o e AN
SQrtm oo oo oL 4T3
SQUEEZE e e e e e 474
sscanf L L. oL oL L L. . 475
stairs . . . L L L . L L Lo oo 4T
£« Y44
stem L ..o 478
stem3 L. L L L L Lo L4
storedata. 48
str2num L L L L L L L Lo oo 48l
Strecat o ..o o e s 482
Stremp.o oo ... 483
strempi L L L. Lo oo, 484

Xii | CONTENTS

strfind .
strjust .
strmatch .
strncmp .

strncmpi .

strread, textread .

strrep .
strrep .
strtok .
strtrim.
struct .
struct2cell
strvcat .
sub2ind
subplot
subspace .
sum.
super .
surf .
surface.
svd .
symvar.
system.
tabbedpane .
table
tempdir .
tempname
text .
textarea .
textfield .
this .

tic, toc.
times .
tinterp .
title .
togglebutton
tprod .

trace

485
486
487
488
489
490
493
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
516
517
518
519
520
521
523
524
526
528

CONTENTS

xiii

transpose.
trapz

tril, triu
trimesh
trisurf .
true.
tsearch
tsearchn .
type. e
uint8, uintl 6, uint32, uinté4.
uminus.
union .
unique .
unix .
unmkpp .
unwrap
uplus
upper .
var .
varargin
varargout.
vectorize .
version
vertcat.
view.
warning
wavemap .
wavread .
wavwrite .
which .
who.
whos
xlim, ylim, zlim.
xlabel .
xIsread.
xIswrite .
ylabel .

Xor .

Xiv| CONTENTS

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
565
566
567

ZEFOS e e e e e e e e e e e oo, 568
zlabel 569

INDEX 571

CONTENTS | xXv

XVi| CONTENTS

COMSOL Script Command Reference

Summary of Commands

addpath on page 18
airy on page 19

all on page 20

and on page 21

ans on page 22

any on page 23
argnames on page 24
assignin on page 25
atan2 on page 26
axes on page 27

bar on page 29
base2dec on page 30
bessel, besselh, besseli, besselj, besselk, bessely on page 3|
beta on page 33
betainc on page 34
betaln on page 35
bin2dec on page 36
bitand, bitor, bitxor on page 37
bitcmp on page 38
bitget on page 39
bitmax on page 40
bitset on page 41
bitshift on page 42
blanks on page 43
blkdiag on page 44
bone on page 45

box on page 46
builtin on page 47
button on page 48
buttongroup on page 49
campos on page 50
camtarget on page 51
camup on page 52
camva on page 53
cart2pol on page 54

2 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

cart2sph on page 55
cat on page 56

cd on page 58

cell on page 59
cell2mat on page 60
cell2struct on page 61
cellfun on page 62
cellstr on page 63
char on page 64
checkbox on page 65
chol on page 66
circshift on page 67
cla on page 68
clabel on page 69
class on page 70
clc on page 71
clear on page 72
Clf on page 73
clock on page 74
clone on page 75
close on page 76
colon on page 77
combobox on page 79
complex on page 82
computer on page 84
cond on page 85
condeig on page 86
contour on page 87
contourf on page 90
contour3 on page 88
contourc on page 89
conv on page 91
conv2 on page 92
convn on page 93
€001 on page 94
corrcoef on page 95
COV on page 96
cputime on page 97

SUMMARY OF COMMANDS

3

Cross on page 98
ctranspose on page 99
cumprod on page 100
cumsum on page 101
cumtrapz on page 102
daspk on page 103
date on page 104
dbclear on page 105
dbcont on page 106
dbdown on page 107
dbquit on page 108
dbstack on page 109
dbstatus on page |10
dbstep on page |11
dbstop on page |12
dbtype on page |13
dbup on page | 14
deal on page |15
deblank on page |16
dec2base on page |17
dec2bin on page |18
dec2hex on page |19
deconv on page 120
del2 on page 121
delaunay on page 122
delaunay3 on page 124
delete on page 125
det on page 126

diag on page 127
dialog on page 128
diary on page 130
diff on page 131

dir on page 132

disp on page 133
display on page |34
dlmread on page 135
dlmwrite on page 136
dlsim on page 137

4 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

dos on page 138

dot on page 139
double on page 140
drawnow on page 141
echo on page 142
eig on page 143
eigs on page 144

Elementary functions on page 16 (abs, acos, acosh, acot, acoth, acsc, acsch, angle, asec,

asech, asin, asinh, atan, atanh, ceil, conj, cos, cosh, cot, coth, csc, csch, exp, fix, floor, imag, log,

logl0, real, reallog, realsqrt, round, sec, sech, sign, sin, sinh, sqrt, tan, tanh)
encrypt on page 146
eps on page 147

€q on page 148

erf on page 149

erfc on page 150
erfcx on page 151
erfinv on page 152
error on page 153
errorbar on page 154
etime on page 155
eval on page 156
evalc on page 157
evalin on page 158
exist on page 159
exit on page 160
expm on page 161

eye on page 162
factor on page 163
factorial on page 164
false on page 165
fclose on page 166
feof on page 167
ferror on page 168
feval on page 169
fft on page 170

fft2 on page 171
fftn on page 172
fftshift on page 173

SUMMARY OF COMMANDS

5

fgetl on page 174
fgets on page 175
fieldnames on page 176
figure on page 177
fileparts on page 178
filesep on page 179
filter on page 180
find on page 181
findobj on page 182
findstr on page 183
flipdim on page 184
fliplr on page 185
flipud on page 186
fminsearch on page 187
fopen on page 189
format on page 191
formula on page 192
fprintf on page 193
fread on page 195
freqspace on page 198
frewind on page 199
fscanf on page 200
fseek on page 201
ftell on page 202
full on page 203
fullfile on page 204
funm on page 205
fwrite on page 207
fzero on page 208
gamma on page 209
gammainc on page 210
gammaln on page 21|
gca on page 212

gcd on page 213

gcT on page 214

ge on page 215
genpath on page 216
get on page 217

6 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

getdata on page 218
gradient on page 220
gray on page 222
grayprint on page 223
grid on page 224
griddata on page 225
griddata3 on page 227
griddatan on page 229
gt on page 231

help on page 232

hess on page 233
hex2dec on page 234
hex2num on page 235
hidden on page 236
hist on page 237
histc on page 238
horzcat on page 239
hold on page 240

hot on page 241

hsv on page 242

1 on page 243

ifft on page 244
1ifft2 on page 245
ifftn on page 246
ifftshift on page 247
imag on page 248
image on page 249
imageicon on page 250
imagesc on page 251
imread on page 252
imshow on page 253
imwrite on page 254
ind2sub on page 255
inf on page 256
inline on page 257
input on page 258
inputname on page 259
int2str on page 260

SUMMARY OF COMMANDS

7

int8, int16, int32, int64 on page 26l
interp1 on page 262
interp2 on page 263
interp3 on page 264
intersect on page 265
intmax, intmin on page 266
inv on page 267

isa on page 268
iscell on page 269
iscellstr on page 270
ischar on page 271
isdir on page 272
isempty on page 273
isequal on page 274
isequalwithequalnans on page 275
isfield on page 276
isfinite on page 277
isglobal on page 278
ishandle on page 279
isinf on page 281
isjava on page 282
iskeyword on page 283
isletter on page 284
ismember on page 286
isnan on page 287
isnumeric on page 288
isobject on page 289
ispc on page 290
isprime on page 291
isreal on page 292
isscalar on page 293
isspace on page 294
issparse on page 295
isstr on page 296
isstruct on page 297
isunix on page 298
isvarname on page 299
isvector on page 300

8 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

j on page 301
javaArray on page 302

javaDeclare on page 303
javaMethod on page 304
javaObject on page 305

jet on page 306
keyboard on page 307
kron on page 308
label on page 309
lasterr on page 310
lasterror on page 311
1cm on page 312
ldivide on page 313
le on page 314
legend on page 315
length on page 316
light on page 317
lighting on page 318
line on page 319
linspace on page 320
listbox on page 321
load on page 323

1og on page 324
1og10 on page 325
1og2 on page 326
logical on page 327
loglog on page 328
logm on page 329
logspace on page 330
lookfor on page 331
lower on page 332

1s on page 333

1t on page 334

1u on page 335
mat2cell on page 336
mat2str on page 337
max on page 339

mean on page 340

SUMMARY OF COMMANDS

9

median on page 34|
menu on page 342
menuitem on page 343
mesh on page 344
meshgrid on page 345
meshz on page 346
methods on page 347
mfilename on page 348
min on page 349

minus on page 350
mislocked on page 351
mkdir on page 352
mkpp on page 353
mldivide on page 354
mlock on page 355

mod on page 356

movie on page 357
mpower on page 358
mrdivide on page 359
mtimes on page 360
munlock on page 361
namelengthmax on page 362
nan on page 363
nargchk on page 364
nargin on page 365
nargout on page 366
nargoutchk on page 367
ndgrid on page 368
ndims on page 369

ne on page 370
newplot on page 371
NNz on page 372

norm on page 373

not on page 374

null on page 375
num2cell on page 376
num2hex on page 377
num2str on page 378

10 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

numel on page 379
nzmax on page 380
odeget on page 38l
odeset on page 382
ones on page 383

or on page 384
ordschur on page 385
orth on page 386
panel on page 387
patch on page 390
path on page 392
pathsep on page 393
pause on page 394
pchip on page 395

permute, ipermute on page 396

pi on page 397

pink on page 398
pinv on page 399
plot on page 400
plot3 on page 401
plus on page 402
point on page 403
pol2cart on page 404
poly on page 405
polyder on page 406
polyfit on page 407
polyint on page 408
polyval on page 409
pow2 on page 410
power on page 41 |
ppval on page 412
primes on page 413
prod on page 414
profile on page 415
psi on page 416

pwd on page 417

qr on page 418

quad on page 419

SUMMARY OF COMMANDS

quadl on page 420

quit on page 421
radiobutton on page 422
rand on page 423
randperm on page 424
rank on page 425

rat on page 426

rats on page 427
rdivide on page 428
real on page 429
realmin, realmax on page 430
realpow on page 431
rehash on page 432

rem on page 433

repmat on page 434
reshape on page 435
rethrow on page 436
rmdir on page 437
rmfield on page 438
roots on page 440

run on page 442

save on page 443
saveimage on page 444
schur on page 445
scrollpane on page 446
semilogx on page 447
semilogy on page 448
setdiff on page 450
setfield on page 451
setxor on page 452
shading on page 453
size on page 456

sort on page 457
sortrows on page 458
sound, soundsc on page 459
sparse on page 460
spdiags on page 461
speye on page 462

12 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

sph2cart on page 463
spline on page 464
sSpones on page 465
sprand on page 466
sprandn on page 467
sprandsym on page 468
sprintf on page 469
SpY on page 47|

sqrt on page 472
sqrtm on page 473
squeeze on page 474
sscanf on page 475
stairs on page 476
std on page 477

stem on page 478
stem3 on page 479
storedata on page 480
str2num on page 48|
strcat on page 482
strcmp on page 483
strcmpi on page 484
strfind on page 485
strjust on page 486
strmatch on page 487
strncmp on page 488
strncmpi on page 489

strread, textread on page 490

strrep on page 493
strtok on page 494
strtrim on page 495
struct on page 496

struct2cell on page 497

strvcat on page 498
sub2ind on page 499
subplot on page 500
subspace on page 501
sum on page 502
super on page 503

SUMMARY OF COMMANDS

13

surf on page 504
surface on page 505
svd on page 506

symvar on page 507
system on page 508
tabbedpane on page 509
table on page 510
tempdir on page 511
tempname on page 512
text onpage 513
textarea on page 516
textfield on page 517
this on page 518

tic, toc onpage5I9
times on page 520
tinterp on page 521
title on page 523
togglebutton on page 524
tprod on page 526
trace on page 528
transpose on page 529
trapz on page 530
tril, triuon page 53l
trimesh on page 532
trisurf on page 533
true on page 534
tsearch on page 535
tsearchn on page 536
type on page 537
uint8, uint16, uint32, uint64 on page 538
uminus on page 539
union on page 540
unique on page 54|
unix on page 542
unmkpp on page 543
unwrap on page 544
uplus on page 545
upper on page 546

14 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

var on page 547
varargin on page 548
varargout on page 549
vectorize on page 550
version on page 551
vertcat on page 552
view on page 553
warning on page 554
wavemap on page 555
wavread on page 556
wavwrite on page 557
which on page 558

who on page 559

whos on page 560
xlabel on page 562
x1lim, ylim, z1im on page 56l
x1lsread on page 563
xlswrite on page 565
ylabel on page 566
Zeros on page 568
zlabel on page 569

SUMMARY OF COMMANDS

15

Elementary functions

Purpose Evaluate an elementary function.
Synopsis abs(a)
and the same format for other elementary functions

Description <elementary function>(a) computes the elementary function of the matrix a

pointwise. The following elementary functions are available:

FUNCTION WHAT IT COMPUTES

abs Absolute value

acos Inverse cosine

acosh Inverse hyperbolic cosine

acot Inverse cotangent

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant

acsch Inverse hyperbolic cosecant

angle Polar angle of complex number

asec Inverse secant

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atanh Inverse hyperbolic tangent

ceil Floating-point number rounded to the next integer
towards infinity

conj Complex conjugate

cos Cosine

cosh Hyperbolic cosine

cot Cotangent

coth Hyperbolic cotangent

csc Cosecant

csch Hyperbolic cosecant

exp Exponential

fix Floating-point number rounded to the next integer
toward 0

16 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

Elementary functions

FUNCTION WHAT IT COMPUTES

floor Floating-point number rounded to the next integer
toward negative infinity

imag Imaginary part of complex number

log Natural logarithm

log10 Base-10 logarithm

real Real part of complex number

reallog Natural logarithm of nonnegative real number

realsqrt Square root of nonnegative real number

round Floating-point number rounded to nearest integer

sec Secant

sech Hyperbolic secant

sign Sign of argument: +1 if positive, 0 if 0, —I if negative

sin Sine

sinh Hyperbolic sine

sqrt Square root

tan Tangent

tanh Hyperbolic tangent

addpath

Purpose Add one or more directories to the COMSOL Script search path.

Synopsis addpath(dirt, ...)
addpath(dirt, ..., '-begin')
addpath(dirt, ..., '-end')

Description addpath(dir1, ...) and addpath(dirt, ..., '-begin') prepend directories
to the COMSOL Script search path.
addpath(dirt, ..., '-end') appends directories to the COMSOL Script search
path.

See also path

18 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

airy

Purpose Airy functions
Synopsis w = airy(z)
w = airy(k,z)
Description airy computes the Airy functions Ai(z), Bi(z) or their derivatives depending on the

flag k, as indicated below. The default is zero.

TABLE I-1: AIRY FUNCTION FLAG VALUES

FUNCTION
Ai(z)

| A (z)

2 Bi(z)

3 Bi'(z)

airy can give the following errors:

TABLE [-2: AIRY FUNCTION ERROR CODES

ERROR CODE DESCRIPTION

| lllegal input
2 Overflow
3 Loss of significance by

argument reduction

4 Complete loss of accuracy in
argument reduction

5 No convergence

See also bessel, besselh, besseli, besselj, besselk, bessely

all

20 |

Purpose

Synopsis

Description

Example

See also

Determine if all the elements along a dimension are nonzero.

y = all(x)
y = all(x,dim)

y = all(x) testsif all elements along a specific dimension are nonzero.

When x is a vector, all(x) returns true if all the elements of x are nonzero, and
false otherwise. When x is a matrix, y is a row vector where each element is true or
false depending on whether or not all the elements of corresponding column of x
are nonzero. When x is an n-dimensional array, all(x) tests for nonzero elements
along the first nonsingleton dimension of x.

y = all(x,dim) tests x for nonzero elements along the dimension dim.
all(eye(10),2)

any

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

and

Purpose
Synopsis

Description

Examples

See also

Compute the logical AND of two matrices pointwise.

d

and(a, b)

d = and(a, b) computes the pointwise logical AND of the two matrices a and b.
For each dimension, a and b must have the same size or either of them must have

size 1. In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

and(a, b) isequivalenttoa & b.

[0O0O1 1] & [0 10 1]
[01] & O

[0 1] & [1 ; O]

not, or, xor

21

ans

Purpose Get the result of the last operation.
Synopsis a = ans
Description a-=

ans returns the result of the last operation that produced a result that was not
assigned to any variable.

22 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

any

Purpose

Synopsis

Description

Example

See also

Determine if any element along a dimension is nonzero.

y = any(x)
\ any(x,dim)

y = any(x) tests if any element along a specific dimension is nonzero.

When x is a vector, any (x) returns true if any element of x is nonzero, and false
otherwise. When x is a matrix, y is a row vector where each element is true or false
depending on whether or not any elements of corresponding column of x is
nonzero. When x is an n-dimensional array, any (x) tests for nonzero elements

along the first nonsingleton dimension of x.

y = any(x,dim) tests x for nonzero elements along the dimension dim.
any(eye(10),2)

all

23

argnames

24

CHAPTER |I:

Purpose
Synopsis

Description

See also

Get the argument names for an inline function.

names =

names =

cell array.

inline

argnames (f)

argnames (f) returns the argument names for the inline function f in a

COMSOL SCRIPT COMMAND REFERENCE

assignin

Purpose
Synopsis

Description

See also

Assign a value to a variable in another workspace.
assignin(ws, var, val)

assignin(ws, var, val) assigns the value val to the variable var in the
workspace ws. Possible values for ws are 'caller' (the workspace owning the

current workspace through a function call) and 'base' (the root workspace).

evalin

25

atan2

Purpose Compute binary atan.
Synopsis v = atan2(y, x)
Description v = atan2(y, x) computes the pointwise atan of the two matrices x and y. For

scalars, atan2(y, x) is the angle v such that tan(v) = y/x.

The sizes of x and y must be identical unless one of them is a scalar; in that case, the
scalar is expanded to a matrix of the correct size.

See also Elementary functions

26 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

axes

Purpose
Synopsis

Description

See also

Create axes for use in a GUI.

ax = axes

ax = axes creates an axes component that can be added to a frame ora dialog in

a built graphical user interface.

The function returns an axes object that can then be manipulated further using the

methods in the following table:

TABLE [-3: METHODS FOR MANIPULATING A AXES OBJECT.

METHOD DESCRIPTION

getHandle Returns a handle to the axes. This handle
can then be used as any other axes
handle. It can for example be used as
parent in plotting command or to set and
get axes properties such as axis limits.

addMouselListener (name) Specifies that the function with the given
name should be run the mouse is moved
or clicked over the axes.

dialog, frame, panel

27

axis

28 |

Purpose

Synopsis

Description

Control axis limits and properties.

axis(limits)

axis('auto')

axis('equal')

axis('manual')

axis('normal')

axis('on')

axis('off"')

axis('tight')

axis(ax,...)

axis(limits) sets the limits of the current axis to the limits given by the vector
limits. In 2D it has the values [xmin xmax ymin ymax] and in 3D it has the values

[xmin xmax ymin ymax zmin zmax] .

axis('auto') dictates that axis limits should automatically be recomputed to fit

graphics that are added to the axes.

axis('equal') sets the aspect ratio so that distances in different directions are

equal in size on the screen.

axis('manual') sets axis limits in Manual mode, which means the axis limits are

kept and not automatically updated when new graphics are plotted into the axes.

axis('normal') is the opposite of axis ('equal'). It allows distances in different

directions to have different lengths on the screen.

axis('on') displays the axis labeling, tick marks, and the box. This has an effect
only in 3D.

axis('off') turns off the display of axis labeling, tick marks and the box. This has
an effect only in 3D.

axis('tight') makes the axis limits tight around the plotted data.

axis(ax,...) can be used with all the different syntaxes just given to affect the

axes ax instead of the current axes.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

bar

Purpose

Synopsis

Description

See also

Create a bar graph.

bar
bar
bar
bar

X,Y)

y)
X,y,width)
y,width)

—_~ e~~~

bar(x,y) draws a bar graph. x is a vector and y is an m-by-n matrix or a vector. If y
is a vector it has the same length as x and length(x) bars are produced. If'y is a matrix

x must have length(m) and m groups of n bars will be created.
bar(y) uses x=1:m.

bar(...,width) can be used to specify the relative width of the bars. The default

value is 0.8 and a value of 1 means that the bars will touch each other.
bar(...,'grouped') draws multiple bars within each group.
bar(...,'stacked') stacks the bars vertically within each group.

The bars are normally colored using colors from the colormap in the figure plotted

into.

bar(...,'linecolor') where 'linecolor"' is one of the color strings listed in

PLOT can be used to color all bars using the same color.

plot

29

base2dec

30 |

Purpose
Synopsis

Description

Example

See also

Convert strings in a specific base to decimal integers.

d base2dec(str,b)

d

decimal integer. str can also be a string matrix, in which case base2dec converts

base2dec(str,b) converts a string str representing a number in base b to a

each row, or a cell array of strings, in which case base2dec converts each element.
b must be an integer between 2 and 36, inclusive.

base2dec('21',5) converts 21 in base 5 to 11 in base 10.

bin2dec, hex2dec, hex2num, dec2base, dec2bin, dec2hex, num2hex

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

bessel, besselh, besseli, besselj, besselk, bessely

Purpose

Synopsis

Description

Compute a Bessel function.

bessel(n, z)
besselh(n, z
besselh(n, m
besseli(n, z
z
z
z

z)

besselj(n,
besselk(n,
= bessely(n,

O o oTCoTOoTOTOCT
—_——— — w ~—

b = bessel(n,z)—see b = besselj(n, z) below.

b = besselh(n,z) computes the Bessel function of the third kind with m set to 1.

b = besselh(n,m,z) computes Hn(m), the Bessel function of the third kind, also
called the Hankel function, of order n, defined as

H Y = J (x)+iY,(x)

H® = J (x)-iY,(x)

where J,,(x) is the Bessel function of the first kind, and Y,,(x) is the Bessel function
of the second kind.

b = besseli(n,z) computes the modified Bessel function of the first kind of

order n, defined as
_ 1 r @/2)¢+1/t),-n-1
I(2) = z—m.&fae £ e

b = besselj(n,z) and b = bessel(n,z) compute the Bessel function of the first
kind of order n, defined as

1 /2)(t-1/t) ,-n-1
Jn(Z) = %§€(Z A)t " dt

b = besselk(n,z) computes the modified Bessel function of the second kind of
order n, defined as

I, (x)-1,(x)
_T-n n
K,(z) = 2 sin(nn)
b = bessely(n,z) computes the Bessel function of the second kind of order n,
defined as:

3

bessel, besselh, besseli, besselj, besselk, bessely

J,(2)cos(nm)-J_,(2)
sin(nm)

Y,(2) =

The sizes of z and n must be identical unless one of them is a scalar; in that case, the

scalar is expanded to a matrix of the correct size.

See also airy

32 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

beta

Purpose
Synopsis

Description

See also

Beta function.

b = beta(x,y)
b = beta(x,y) computes the beta function of x and y, defined as
1
Bley) = [-0y ar = I
0

where I'(x) is the gamma function. x and y must be real arrays of the same size, or

either can be a scalar.

betainc, betaln, gamma

33

betainc

Purpose
Synopsis

Description

See also

Incomplete beta function.
IX = betainc(x,a,b)
IX = betainc(x,a,b) computes the incomplete beta function (sometimes called

the regularized incomplete beta function) defined as

1

1 a-1 b-
Ix(a,b) =m~jt (l—t) dt
0

where B(a, b) is the beta function. x, a and b must be real arrays of the same size,
or any can be a scalar. x must be in the interval [0, 1], inclusive. a and b must be
nonnegative.

beta, betaln, gammainc

34 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

betaln

Purpose

Synopsis

Description

Example

See also

Logarithm of the beta function.

b betaln(x,y)

b

without computing the actual beta function. x and y must be real arrays of the same

betaln(x,y) computes the natural logarithm of the beta function of x and y

size, or either can be a scalar.

betaln(600,600) computes the logarithm of the beta function where
log(beta(600,600)) would underflow.

beta, betainc, gamma, gammaln

35

bin2dec

36 |

Purpose
Synopsis

Description

Example

See also

Convert binary strings to decimal integers.
d = bin2dec(str)

d = bin2dec(str) converts a string str representing a binary number to a decimal
integer. str can also be a string matrix, in which case bin2dec converts each row,

or a cell array of strings, in which case bin2dec converts each element.
bin2dec('1100"') converts binary number 1100 to its decimal equivalent, 12.

base2dec, hex2dec, hex2num, dec2base, dec2bin, dec2hex, num2hex

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

bitand, bitor, bitxor

Purpose

Synopsis

Description

Examples

See also

Compute bitwise function of two matrices pointwise.

d = bitand(a, b)

d = bitor(a, b)

d = bitxor(a, b)

d = bitand(a, b) computes the pointwise bitwise AND of the two matrices a
and b.

d = bitor(a, b) computes the pointwise bitwise OR of the two matrices a and b.

d = bitxor(a, b) computes the pointwise bitwise XOR of the two matrices a
and b.

For each dimension, a and b must have the same size or either of them must have
size 1. In the latter case, the unit dimension is expanded to the size of the nonunit

dimension.

bitand (20, 4)

bitand([16 32 64], [15 31 63])
bitor (15, 16)

bitor([8 16 32], 8)

bitxor (15, 31)

bitxor([0 1], [0 ; 1])

bitcmp, bitget, bitmax, bitset, bitshift

37

bitcmp

Purpose Create the bitwise complement.
Synopsis d = bitcmp(a, ndig)
d = bitcmp(u)
Description d = bitcmp(a, ndig) returns the bitwise complement of the matrix a when

treated as a matrix of binary numbers with ndig digits.

The sizes of a and ndig must be identical unless one of them is a scalar; in that case,
the scalar is expanded to a matrix of the correct size. All entries of a must be
nonnegative integers less than bitmax, and all entries of ndig must be integers
between 1 and 53.

d = bitcmp(u) returns the bitwise complement of the uint8 matrix u.

See also bitand, bitor, bitxor,bitget, bitmax, bitset, bitshift

38 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

bitget

Purpose
Synopsis

Description

See also

Extract bit values from a matrix.

d = bitget(a, pos)

d = bitget(a, pos) returns the values of bits pos in the matrix a.The least

significant bit has position 1, and the most significant bit has position 53.

The sizes of a and pos must be identical unless one of them is a scalar; in that case,
the scalar is expanded to a matrix of the correct size. All entries of a must be
nonnegative integers less than bitmax, and all entries of pos must be integers
between 1 and 53.

bitand, bitor, bitxor, bitcmp, bitmax, bitset, bitshift

39

bitmax

Purpose The largest integer that can be used as an argument to bitwise functions.
Synopsis d = bitmax
Description d =

bitmax returns the largest integer that can be used as an argument to bitwise
functions, specifically 293 1.

See also bitand, bitor, bitxor, bitcmp, bitget, bitset, bitshift

40 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

bitset

Purpose

Synopsis

Description

See also

Set bit values in matrix.

d = bitset(a, pos)
d bitset(a, pos, val)

d = bitset(a, pos) returns a with the bit(s) in position pos set to 1. The least

significant bit has position 1, and the most significant bit has position 53.

d = bitset(a, pos, val) returns a with the bit(s) in position pos set to val,
which must be 0 or 1.The least significant bit has position 1, the most significant bit

has position 53.

The sizes of a and pos must be identical unless one of them is a scalar; in that case,
the scalar is expanded to a matrix of the correct size. All elements of a must be
nonnegative integers less than bitmax, and all elements of pos must be integers
between 1 and 53.

bitand, bitor, bitxor, bitcmp, bitget, bitmax, bitshift

41

bitshift

42 |

Purpose

Synopsis

Description

See also

Shift bit values in a matrix.

d = bitshift(a, shift)
d = bitshift(a, shift, ndig)

d = bitshift(a, shift) returns a with the bits shifted by shift steps. Positive
values of shift are multiplications by powers of 2, and negative values of shift

correspond to divisions by powers of 2.

d = bitshift(a, shift, ndig) first performs the shift as does bitshift(a,
shift) but afterwards it zeroes out all bits with positions larger than ndig. It thus

converts the returned matrix to binary numbers with ndig digits.

The sizes of a, shift, and ndig must be identical unless one of them is a scalar; in
that case, the scalar is expanded to a matrix of the correct size. All entries of a must
be nonnegative integers less than bitmax, all entries of shift must be integers, and
all entries of shift and ndig must be integers between 1 and 53.

bitand, bitor, bitxor, bitcmp, bitget, bitmax, bitset

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

blanks

Purpose
Synopsis
Description

See also

Generate a string of blanks.

s = blanks(n)
s = blanks(n) generates a string s of n blanks.
deblank

43

blkdiag

Purpose Create a block-diagonal matrix or cell array.
Synopsis b = blkdiag(al, a2, ...)
Description b = blkdiag(atl, a2, ...) returns a block-diagonal matrix with a1, a2 and so

forth on the block diagonal. All other elements are assigned the default value for the

output type (0 for matrices, [] for cell arrays).

All inputs must be 2D.

See also diag, horzcat, vertcat

44 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

bone

Purpose
Synopsis

Description

See also

Create a colormap with gray scales and a touch of blue.

bone(n)

bone (n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are gray scales and a

touch of blue.

colormap, cool, gray, grayprint, jet, hot, hsv, pink, wavemap

45

box

Purpose Add a box to 3D axes.
Synopsis box('on")
box ('off"')
box
box(ax, ...)
Description box ('on') turns on a box in the current 3D axes.

box ('off') turns off the box in the current 3D axes.
box toggles the box on or off.

box(ax,...) adds a box to the axes ax instead of to the current axes.

See also grid

46 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

builtin

Purpose
Synopsis

Description

Evaluate a built-in function.
builtin(name, argl, ...)

builtin(name, argil, ...) evaluates the built-in function name with arguments
arg1, ... and returns the result (if any). This overrides any other definition of name

as a variable in the current workspace.

47

button

48

Purpose

Synopsis

Description

See also

Create a button.

b = button(text,...)
b = button(...)

b = button(text) creates a button with the specified text.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the list to further control how the button is created:

TABLE 1-4: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
image iconimage An image to display on the button.
text string A text to display on the button.

The function returns a button object that can then be manipulated further using the

methods in the following table.

TABLE 1-5: METHODS FOR MANIPULATING A BUTTON OBJECT.

METHOD DESCRIPTION

addActionListener (name) Specifies that the function with the given
name should be run when the button is
clicked.

addActionListenerThread(name) Specifies that the function with the given
name should be run when the button is
clicked. The function will be runina
separate thread. This can be used for
operations that run for a long time and
need to update graphics while running.

getText Returns the text on the button.

setText (text) Sets the text on the button.

See also the reference entry for component to get details on property-value pairs and

methods that are valid for all components.

component, checkbox, radiobutton, togglebutton

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

buttongroup

Purpose
Synopsis

Description

See also

Create a button group

bg buttongroup

bg buttongroup creates a button group.

A button group is used to get the desired effect for multiple radio buttons or toggle
buttons. When one of the buttons in the group is selected, the others are

automatically be deselected.

Use bg.add (button) after the button group has been created to add radio buttons

or toggle buttons whose selection state should be synchronized.

radiobutton, togglebutton

49

campos

Purpose Control the camera position.
Synopsis pos = campos;
campos (pos)
campos(aX,...)
Description pos = campos returns the camera position for the current axes.

campos (pos) where pos is a 3 element vector sets the camera position for the
current axes.

campos(ax, . ..) uses the axes ax instead of the current axes.

See also camtarget, camup, camva

50 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

camtarget

Purpose

Synopsis

Description

See also

Control the camera target.

target = camtarget;
camtarget(target)
camtarget(ax,...)

target = camtarget returns the camera target for the current axes.

camtarget (target) where target is a 3 element vector sets the camera target for

the current axes.

camtarget(ax,...) uses the axes ax instead of the current axes.

campos, camup, camva

5

camup

Purpose Control the camera up vector.
Synopsis up = camup;
camup (up)
camup(ax,...)
Description up= camup returns the camera up vector for the current axes.

camup (up) where up is a 3 element vector sets the camera up vector for the current

axes.
camup (ax, - . .) uses the axes ax instead of the current axes.
See also campos, camtarget, camva

52 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

camva

Purpose

Synopsis

Description

See also

Control the camera view angle.

angle = camva;
camva(angle)
camva(axX,...)

angle = camva returns the camera view angle for the current axes.

camva(angle) where angle is an angle in degrees sets the camera view angle for

the current axes.

camva(ax, ...) uses the axes ax instead of the current axes.

campos, camtarget, camup

53

cart2pol

Purpose Transform from Cartesian to polar coordinates.

Synopsis [theta,r] = cart2pol(x,y)
[theta,r,z] = cart2pol(x,y,z)

Description [theta,r] = cart2pol(x,y) transforms Cartesian 2D coordinates in the arrays
x and y into polar coordinates, where theta is the counterclockwise angle in radians
from the x-axis, and r is the radius. x and y must be the same size or either one can
be a scalar.

[theta,r,z] = cart2pol(x,y,z) transforms Cartesian 3D coordinates into
cylindrical coordinates, where theta is the counterclockwise angle in radians from
the x-axis, r is the radius and z the height. x, y and z must be the same size or a
scalar.

Example [t,r,z] = cart2pol([0 1 0 0],[0 O 1 0],[0 O O 1]) returns the cylindrical
coordinates for the points (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in the Cartesian 3D
plane, that is points (0,0,0), (0,1,0), (pi/2,1,0) and (0,0,1), respectively.

See also pol2cart, cart2sph, sph2cart

54 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cart2sph

Purpose
Synopsis

Description

Example

See also

Transform from Cartesian to spherical coordinates.
[theta,phi,r] = cart2sph(x,y,z)

[theta,phi,r] = cart2sph(x,y,z) transforms Cartesian 3D coordinates into
spherical coordinates, where theta is the azimuth, phi the elevation, and r the

radius. theta and phi are in radians. x, y, and z must be the same size or a scalar.

[t,p,r] = cart2sph([0 1 0 0],[0 O 1 0],[0 O O 1]) returns the spherical
coordinates for the points (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in the Cartesian 3D
plane, that is points (0,0,0), (0,0,1), (pi/2,0,1) and (0,pi/2,1), respectively.

sph2cart, cart2pol, pol2cart

55

cat

Purpose Concatenate matrices or cell arrays.
Synopsis b = cat(dim, a1, ...)
Description b = cat(dim, a1, ...) concatenates its input arguments along the

dimension dim. The arguments need not be of the same type; if they differ, the

result is the common base type of all the arguments.

cat(1, atl, ...)andcat(2, a1, ...) are equivalent to
[al ; ...]and [a1l , ...] respectively.
See also horzcat, vertcat

56 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

caxis

Purpose

Synopsis

Description

See also

Control mapping of data values to a colormap range.

lim = caxis
caxis(lim)
caxis('auto')
caxis('manual')

lim = caxis returns the data values that map to the minimum and maximum color

in the colormap.

caxis(1lim) sets the data values that should map to the minimum and maximum

colors in the colormap.

caxis('auto') sets that the color range should automatically be calculated to be
the minimum and maximum of the plotted data.

caxis('manual') sets that the color range is manually given and should not be
updated automatically.

caxis(ax) controls the axes ax instead of the current axes.

colormap

57

cd

Purpose Change or retrieve current directory.
Synopsis dir = cd

cd(dir)
Description dir = cd returns the current directory.

cd(dir) changes the current directory to dir.

See also pwd

58 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cell

Purpose

Synopsis

Description

See also

Create empty cell array.

O 0O o000

cell(n)

cell(sz)

cell(sz1, sz2, ...)
cell(javaobj)

cell(n), for an integer n, returns an empty n x n cell array.
cell(sz), for a vector sz, returns an empty cell array of size sz.
cell(sz1, sz2, ...) returns an empty cell array of size (sz1, sz2, ...).

cell(javaobj), for a Java object javaobj, returns a cell array with the same

size as javaobj where each cell contains one element of javaobj.

struct, deal

59

cell2Zmat

Purpose Convert cell array to a matrix.
Synopsis m = cell2mat(c)
Description m = cell2mat(c) returns a matrix formed by the concatenation of the elements of

the cell array c. This is possible only if the cell-array elements are of compatible types
and the sizes match; all elements with the same i™® index must have the same size

along dimension i.
Example cell2mat({[1 2 ; 3 4], [5 ; 6]})is[1 2 5 ; 3 4 6].

See also mat2cell

60 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cell2struct

Purpose
Synopsis

Description

See also

Convert a cell array to a structure.

7]
1]

cell2struct(c, fields, dim)

s = cell2struct(c, fields, dim) returns the structure where the
dimension dim of ¢ has been replaced by structure fields and all other dimensions
of ¢ are transferred to s: size(s) == [csize(1:dim-1) csize(dim+1:end)]

where csize = size(c).

fields must be a character array or cell array of character arrays containing

size(c, dim) elements. These strings are used as fields names in s.

struct2cell, fieldnames

6l

cellfun

62 |

Purpose

Synopsis

Description

Apply a function to the elements of a cell array.

r = cellfun('prodofsize', c)
r cellfun('isclass', c, cla)
r cellfun(func, c, ...)

r is a double matrix the same size as ¢ where each element is the result of the
application of a function to the corresponding element of c.

r = cellfun('prodofsize', c) resultsinr(i) = prod(size(c{i})) forall i.

r = cellfun('isclass', ¢, cla) resultsin r(i) = 1ifc{i} is of the class cla,
otherwise r(i) = 0.

r = cellfun(func, ¢, ...)resultsinr(i) = eval(func, c{i}, ...) where
func must be a function that returns a scalar numerical value for any input.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cellstr

Purpose Convert a character matrix to a cell array of strings.
Synopsis c = cellstr(s)
Description ¢ = cellstr(s) puts each row of the character matrix s in a separate cell in the

cell array c.

See also char, iscellstr

63

char

64

Purpose

Synopsis

Description

See also

Convert a value to a character matrix.

s = char(c)

s = char(m)

s = char(jobj)

s = char(s1, s2, ...)

s = char(c), where c is a cell array of strings, returns a character matrix where the

ith rowis c{i}.

s = char(m), where mis a full matrix, returns a character matrix of the same size

as m where each element of m has been converted to a character.

s = char(jobj), where jobj isa java.lang.String or an array of

java.lang.String, returns a matrix where the rows equal the elements of jobj.

s = char(jobj),where jobj is any other Java object, returns the result of invoking
the toChar () method on the object. It generates an error if there is no such

method.

s = char(s1, s2, ...) converts s1, s2, and so on to character matrices and
returns a character matrix where the rows of s1, s2, and so on are concatenated
vertically; the first size(s1, 1) rows of s are the rows of s1, the next size(s2,

1) rows of s are the rows of s2, and so on.

cellstr, ischar

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

checkbox

Purpose

Synopsis

Description

See also

Create a check box.

¢ = checkbox(text,...)
checkbox(...)

(9]
1l

¢ = checkbox(text) creates a check box with the specified text.

A checkbox behaves exactly like a togglebutton except that it is rendered as a
check box. See the reference entry for togglebutton for available property values
and methods.

togglebutton

65

chol

66 |

Purpose

Synopsis

Description

Cholesky factorization.

¢ = chol(x)

[c,p] = chol(x)

¢ = chol(x) returns the Cholesky factorization of x using LAPACK’s DPOTRF
and ZPOTREF functions. ¢ is an upper triangular matrix such that x = ¢'*c.

x is assumed to be symmetric or Hermitian, hence the part below the main diagonal

is not used. x must be positive definite.

[c,p] = chol(x) does not require X to be positive definite, but if that is the case,
then c is the same as above and p is 0. Otherwise, p is a positive integer and c is a

matrix of order p-1 such that ¢'*c = x(1:p-1,1:p-1).

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

circshift

Purpose Shift the indices of a matrix circularly.
Synopsis b = circshift(a, shift)
Description b = circshift(a, shift) where ais a matrix and shift is an integer vector

returns a matrix with the same size and type as a where the i index has been shifted

circularly with shift(1i).

See also shiftdim

67

cla

Purpose Clear all contents in the current axes.

Synopsis cla

Description cla removes all graphics objects from the current axes.
See also clf, hold

68 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

clabel

Purpose
Synopsis
Description

See also

Example

See also

Add labels to a contour plot.

clabel(c)

clabel(c)

clabel(c) adds labels to the contour lines specified by the contour matrix c. See
contourc for description of the contour matrix ¢. A marker and a text with the

contour level value is placed on each line.

Additional property values pairs can be added at the end of the command to further
control the label. Use the 'parent' property to specify what axes to add the labels to

and the property values from text can to control color, size and font for the labels.

[x,y]=meshgrid(linspace(-3,3,50));
Z=(X."2+y."2) . *exp(-X."2-y."2)+cos(y)+sin(X);
c=contour(x,y,z);

clabel(c);

contour, contour3, contourc

69

class

Purpose Get the class of an object.
Synopsis ¢ = class(m)
Description c =

class(m) returns a string containing the class name of m.

70 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

clc

Purpose
Synopsis

Description

Clear the contents in the command window.

clc

clc clears the contents in the command window and moves the cursor to the upper

left corner.

71

clear

72 |

Purpose

Synopsis

Description

See also

Remove variables or functions from the workspace.

clear

clear('all')
clear('variables')
clear('functions')

clear(vart, ...)
clear('global', vart, ...)
clear('classes')
clear('classes', cl1, ...)

clear,clear('all'),and clear('variables') remove all variables from the

workspace.
clear('functions') removes all user-defined functions from memory.

clear(vari, ...) removes the variables with names var1, ... from the workspace.
The variable names may contain the wildcard character *, which matches any

character sequence.

clear('global', vari, ...) removes the variables with names var1, ... from

the global workspace.

clear('classes') removes all variables from the workspace and also removes all

class definitions for classes that there are no instances of in some other workspace.

clear('classes', cl1, ...) only removes the definitions of the classes c11, ...

mlock, munlock

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

clf

Purpose
Synopsis
Description

See also

Clear all the contents in the current figure.

clf

clf removes all the graphics objects from the current figure.

cla, hold

73

clock

Purpose Current time.
Synopsis c = clock
Description ¢ = clock returns the current time as a vector of six elements representing, in order:

year, month, day, hour, minute, and seconds. All but the seconds field are integers.

See also etime, date

74 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

clone

Purpose Create a copy of an instance of a user-defined class.
Synopsis copy = clone(obj)
copy = clone
Description copy = clone(obj) returns a copy of obj, which must be an instance of a

user-defined class.

copy = clone, when called from an instance method of a class, returns a copy of
the instance object.

See also this

75

close

76 |

Purpose

Synopsis

Description

See also

Close a figure window.

close

close(h)

close('all')

close closes the current figure window.

close(h) closes the figure window with handle h.

close('all"') closes all open figure windows.

delete

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

colon

Purpose

Synopsis

Description

See also

Compute range.

d = colon(a, b)
d = colon(a, b, c)
d = colon(a, b) returns the vector [a a+1 a+2 ... a+k] where k is the largest

integer for which a <= a+k <= c. a and b must be scalars.

d = colon(a, b, c) returns the vector [a a+b a+2b ... a+kb] where k is the

largest integer for which a <= a+kb <= b. a, b, and ¢ must be scalars.

colon(a, b) isequivalentto a:b and colon(a, b, c) isequivalentto a:b:c.

linspace, linspace

77

colormap

Purpose Assign a colormap to plots and figure windows.

Synopsis colormap(map)
colormap(h,map)

Description colormap(map) sets the colormap of the current figure and all plots in the current
figure to map.

colormap(h,map) sets the colormap of the graphics object h to map. h can be a

handle to a figure window or to an individual plot.

See also caxis

78 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

combobox

Purpose
Synopsis

Description

Create a combo box.

(9]
1]

combobox(...)

¢ = combobox(...) creates a combo box. The values and descriptions for the

values in the combo box are specified using the properties in the following table

TABLE |-6: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

descr cell array of strings ~ The strings to display in the combobox. If not
given the strings specified as items will be
displayed in the combobox.

items cell array of strings String representing the value corresponding
to each entry in the combobox. Can then be
used to easily set and get the value of the
combobox using strings instead of indices.

The function returns a combobox object that can then be further manipulated using

the methods in the following table.

TABLE |-7: METHODS FOR MANIPULATING A COMBOBOX OBJECT.

METHOD DESCRIPTION

addActionListener (name) Specifies that the function with the given
name should be run when the selection
in the combobox changes.

getSelectedIndex Returns an index to the currently
selected item in the combobox.

getValue Returns a string corresponding to the
currently selected item in the combobox.

setItems(items) Sets the items to display in the
combobox by passing a cell array of
strings.

setItems(items,descr) Sets the descriptions to display in the

combobox and their corresponding
values by passing two cell arrays of
strings.

setSelectedIndex(ind) Selects the item with the specified index
in the combobox.

setValue(value) Selects the item with the specified value
in the combobox.

79

combobox

See also the reference entry for component to get details on property-value pairs and

methods that are valid for all components.

See also component, 1istbox

80 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

compile

Purpose Compile C code into a shared library that can be called from COMSOL Script.
Synopsis status = compile(options, ...)
Description status = compile(options, ...) compiles one or more C source files and by

default links them into a shared library. All options must be strings; any option that
ends with . ¢ is assumed to be a C source code file. The return value is 0 if

compilation succeeded and nonzero if it failed.

The following options can be supplied:

TABLE 1-8: COMPILATION OPTIONS

OPTION FUNCTION

-C The source code files are compiled but not linked.

-DSYMBOL Defines the preprocessor macro SYMBOL when compiling.
Equivalent to inserting #define SYMBOL in the source
code files.

-DSYMBOL=VALUE Assigns the value VALUE to the preprocessor macro
SYMBOL . Equivalent to inserting #define SYMBOL VALUE
in the source code files.

-fFILE Compilation options are read from FILE.

-g Debug information is generated by the compiler.

-h, -help Displays a help text.

-IDIR Adds the directory DIR to the include file path.

-LDIR Adds the directory DIR to the link directory path.

-1L1IB Adds the library LIB to the list of libraries to link against.
-o0UTLIB Sets the name of the generated shared library to OUTLIB.
-0 Enables optimization.

Any unrecognized compiler options are passed as arguments to the linker if linking
is done.

Example To compile and link the source code file myfftlib.c with optimization enabled:

compile -0 myfftlib.c

8l

complex

Purpose Create a complex matrix.

Synopsis c = complex(a)
c = complex(re, im)

Description

o
1}

complex(a) returns the matrix a converted to a complex matrix.

¢ = complex(re, im) returns a complex matrix with real part re and imaginary

part im. The sizes of re and im must be identical unless one of them is a scalar; in

that case, the scalar is expanded to a matrix of the correct size.

See also imag, real

82 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

component

Purpose

The following property values can be used when creating all types of components:

TABLE 1-9: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

size 2 element vector The preferred width and height for the
component. Not needed for most
components but can be useful for giving a size
to frames, list boxes and scrollpanes.

tag string The tag to assign to the component. Can be
used to access it later on.

tooltip string The tooltip to display with the component.

The following methods can be used to interact with all types of components after

they have been created:

TABLE [-10: METHODS FOR MANIPULATING ALL TYPES OF COMPONENTS.

METHOD

DESCRIPTION

addFocusListener (name)

addMouseListener (name)

getEnabled

getMinimumSize
getMaximumSize
getPreferredSize
getTag

getVisible
setEnabled(enab)
setMinimumSize (w,h)
setMaximumSize (w,h)
setPreferredSize(w,h)

setTag(tag)

setVisible(vis)

Specifies that the function with the given
name should be run when the
component gains or looses focus.

Specifies that the function with the given
name should be run when the mouse is
moved or clicked over the component.

Returns a logical telling if the component
is enabled or not.

Returns the minimum, maximum or
preferred size of the component as a 2
element vector with width and height.

Returns the tag of the component.

Returns a logical telling if the component
is visible or not.

Sets if the component is enabled using a
logical.

Sets the minimum, maximum or
preferred size of the component by
specifying the width and height.

Sets the tag of the component to the
specified string.

Sets the visibility of the component using
a logical.

83

computer

84

Purpose

Synopsis

Description

See also

Get the machine type.

type = computer
[type, maxsize] = computer
[type, maxsize, endian] = computer

type = computer returns the machine type. Possible values are

TABLE I-11: TYPE CODES FOR MACHINE TYPES

TYPE INTERPRETATION

GLNX86 Linux on x86

GLNXI64 Linux on Itanium

GLNXA64 Linux on AMDé64

soL2 32-bit Sun

SOL64 64-bit Sun

MAC PowerPC Macintosh running Mac OS X
MACI Intel Macintosh running Mac OS X
PCWIN 32-bit Windows

WIN64 64-bit Windows

[type, maxsize] = computer also returns the maximum number of bytes a

matrix can occupy.

[type, maxsize, endian] = computer also returns the endianness: 'B"' for
big-endian, and 'L" for little-endian.

ispc, isunix

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cond

Purpose

Synopsis

Description

See also

The condition number for inversion.

o

= cond(x)
= cond(x,p)

o

¢ = cond(x) returns the 2-norm condition number of x.

¢ = cond(x,p) returns the p-norm condition number of x with respect to
inversion. That is, the ratio of the largest singular value of x to the smallest. (For

information about possible values for p, see norm)

condeig, svd

85

condeig

Purpose The condition number for eigenvalues.

Synopsis c = condeig(A)
[X,LAMBDA,c] = condeig(A)

Description ¢ = condeig(A) returnsa column vector containing the condition numbers for the
cigenvalues of A.

[X,LAMBDA,c] = condeig(A) also returns [X,LAMBDA] = eig(A). (See eig for
further information.)

See also cond, eig

86 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

contour

Purpose

Synopsis

Description

Example

See also

Create a contour plot.

contour(2)
contour(X,Y,Z)
contour(X,Y,Z,lev)

contour(X,Y,Z) creates a contour plot for a function defined on a grid. X, Y, and
Z are matrices of the same size. The function has value Z (1) in the grid point
(X(1),Y(i)). By default 7 contour lines between the minimum and maximum

values of Z are created.

contour(X,Y,Z,lev) creates lev contour lines if 1ev is a scalar. If 1ev is a vector

it creates contour lines at the values specified in lev.

contour(x,y,Z,...) when x and y are vectors can also be used. In that case X and

Y will be created using [X,Y] = meshgrid(x,y).
contour(Z,...) usesx = 1:size(Z,2) andy = 1:size(Z,1).

[c,h] = contour(...) returns the contour matrix, ¢, and a handle, h, to the

plotted lines. See contourc for details about the contour matrix.

Normally contours gets colors from the colormap of the figure plotted into or from

a colormap passed to contour using the 'colormap' property.

contour(...,'lincolor'), where 'lincolor' is one of the color strings listed
in plot, can be used to color all lines using the same color. You can give additional
property values from line at the end of the command to control color, linewidth,

and the axes into which to plot.

[x,y] = meshgrid(linspace(-3,3,50));
z = (X."2+y."2).*exp(-x."2-y."2)+cos(y)+sin(x);
contour(x,y,z);

clabel, contour3, contourc, contourf

87

contour3

Purpose Create a 3D contour plot.

Synopsis contour3(2)
contour3(X,Y,Z)
contour3(X,Y,Z,lev)

Description contour3 supports the same syntaxes as contour. The difference is that contour3
draws the contour lines at a Z-coordinate corresponding to the value of the contour
level.

See also clabel, contour, contourc

88 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

contourc

Purpose

Synopsis

Description

See also

Calculate a contour data matrix.

c = contourc(2)
c contourc(X,Y,Z)
c contourc(X,Y,Z,lev)

c=contourc(...) calculates the contour data matrix. The same syntaxes as for
contour is supported. The contour data matrix, ¢, has two rows with blocks of data
for the contour lines. Each block starts with a column with information about that
block. The first row in the information column is value for that contour level and
the second row is the number of following columns that contains x- and
y-coordinates for that contour line. The x- and y-coordinates are ordered within
each segment so that lines can be drawn directly between them to form the contour

lines.
This means that the contour matrix ¢ looks as follows:

c = [levell x11 x12 ... x1n1 level2 x21 x22 ... x2n2 ;
ni y11 y12 ... y1in1 n2 y21 y22 ... y2n2];

clabel, contour, contour3

89

contourf

90 |

Purpose

Synopsis

Description

Example

See also

Create a filled contour plot.

contourf(Z)
contourf(X,Y,Z)
contourf(X,Y,Z,lev)

contourf(X,Y,Z) creates a filled contour plot for a function defined on a grid. X,
Y, and Z are matrices of the same size. The function has value Z (1) in the grid point
(X(1),Y(1i)). By default 7 contour lines between the minimum and maximum

values of Z are created.

contourf(X,Y,Z,lev) creates lev contour lines and 1ev+1 bands if 1ev is a scalar.

If 1ev is a vector it creates contour lines at the values specified in lev.

contourf(x,y,Z,...) where x and y are vectors can also be used. In that case X
and Y are created using [X,Y] = meshgrid(x,y).
contourf(Z,...) usesx = 1:size(Z,2) andy = 1:size(Z,1).

[c,h] = contourf(...) returns the contour matrix, ¢, and a handle to the plotted

lines. See contourc for details about the contour matrix.

Filled contours get their colors from the colormap of the figure plotted into or from

a colormap passed to contourf using the 'colormap' property.

You can give the additional property parent at the end of the command to control

the axes into which to plot.

[x,y] = meshgrid(linspace(-3,3,50));
z = (X."2+y."2).*exp(-Xx."2-y."2)+cos(y)+sin(x);
contourf(x,y,z);

contour, contour3, contourc

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

conv

Purpose
Synopsis

Description

See also

Compute the convolution of two vectors.

c = conv(a, b)

¢ = conv(a, b) returns the convolution of a and b, which must be real or complex
vectors. This can be used to multiply polynomials in this way: If a and b contain the

coefficients of two polynomials, then ¢ contains the coefficients of their product.

conv2, convn, deconv

91

conv2

Purpose Compute the 2D convolution of two matrices.
Synopsis out = conv2(a, b)
out = conv2(a, b, c)
out = conv2(..., 'full')
out = conv2(..., 'same')
out = conv2(..., 'valid')
Description ¢ = conv2(a, b) returns the 2D convolution of a and b, which must be real or

complex matrices.

¢ = conv2(a, b, c) first convolutes the rows of ¢ with a, then it convolutes the
rows of the result with b.

See convn for an interpretation of the optional shape argument ' full', 'same’,
and 'valid'.

See also conv2, convn

92 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

convn

Purpose Compute the nD convolution of two matrices.
Synopsis out = convn(a, b)
out = convn(..., 'full')
out = convn(..., 'same')
out = convn(..., 'valid')
Description ¢ = convn(a, b) returns the nD convolution of a and b, which must be real or

complex matrices.

The optional shape argument dictates the size of the output matrix. It has the
following effect:

TABLE [-12: SHAPE ARGUMENT INTERPRETATION

SHAPE INTERPRETATION

'full' (default) The whole output matrix is returned.

'same’ The output matrix has the same size as a. Itisa
centered submatrix of the result returned for
“full'.

'valid' The output matrix only contains the entries that

can be computed without assuming that b is
extended with zeros when indexed out of
bounds. The size of the output is
max(size(a)-size(b)+1, 0).

See also conv, conv2

93

cool

Purpose Create a colormap with different shades of cyan and magenta.
Synopsis cool(n)
Description cool(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns

with RGB values for the colors in the colormap. The colors are different shades of

cyan and magenta.

See also colormap, bone, gray, grayprint, jet, hot, hsv, pink, wavemap

94 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

corrcoef

Purpose

Synopsis

Description

Examples

See also

Correlation coefficients.

R = corrcoef(x,...)
R = corrcoef(X,y,...)
[R,P] = corrcoef(...)

[R,P,L,U] = corrcoef(...)

R = corrcoef(x) returns the of correlation coefficients of x. x is a matrix where

cach row is an observati(()jn and each column a variable. R is a matrix such that each
()

NC(E,0) - CGLJ)

element R(i,j) = , where C is the covariance matrix of x (see

cov).
corrcoef (x,y) is equivalent to corrcoef ([x(:),y(:)]1).

[R,P] = corrcoef(...) also returns the matrix P where cach element is the
p-value representing the probability of getting a correlation as large as the observed
value, given that the null hypothesis is true. Hence, a small p-value means that the

corresponding correlation is significant. corrcoef computes P using Student's

t-test on the statistic ¢ = R - [2= 22 , where n is the number of samples.
1-R
[R,P,L,U] = corrcoef(...) also returns lower (L) and upper (U) bounds for a

confidence interval specified by the alpha property (see below). Default is 95%.

In addition to the fixed arguments, property-value pairs can be given at the end of

the argument list:

TABLE |-13: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

alpha A real value 0.05 Specifies the confidence level of
between 0 100%(1-alpha)%. Hence default gives 95%
and | confidence intervals.

rows string ‘all’ A string with the value 'all' (all rowsare

used), 'complete’, (rows containing
NaN are ignored) or 'pairwise’ (rows
with no NaN values in column i or j are
used to compute R(1,7))

a = randn(5);

a(1,2) = NaN; a(3,5)=NaN;
r_all=corrcoef(a)
r_comp=corrcoef(a, 'row', 'complete’)
r_row=corrcoef(a, 'row', 'pairwise’)

cov

95

cov

Purpose Covariance matrix.
Synopsis c = cov(x)
C = cov(X,Y)
C = COV(...,Nn)
Description ¢ = cov(x) and cov(x,0) return the covariance matrix of x using normalization

by m-1, where m is the number of observations. x is a matrix where each row is an
observation and each column a variable. The diagonal of ¢ contains the variance of

cach column of x. If x is a vector, cov (x) is the variance of x.

c = cov(x,y)andc = cov(x,y,0) return the covariance matrix of x and y using

normalization by m-1. This is equivalent to cov ([x(:),y(:)]).

¢ = cov(...,1) returns the covariance matrix using normalization by m.

cov removes the mean from each column before calculation.

Example a=1[011;23 4;1 2 3];
c = cov(a);
v = diag(c)'

)

c)
vl = var(a); %Identical to v

See also var, corrcoef

96 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cputime

Purpose
Synopsis
Description

See also

CPU time used.

c = cputime
¢ = cputime returns the amount of CPU time used in seconds.
tic, toc

97

Cross

Purpose Cross product.
Synopsis c = cross(u,v)
c = cross(u,v,dim)

Description ¢ = cross(u,v) computes the cross product of the arrays u and v, both of which

must be either vectors with three elements or n-dimensional arrays of equal size with
at least one dimension of length three. The cross product is computed along the first

such dimension.

c = cross(u,v,dim) returns the cross product along the dimension dim.

Example x = [1 -1 3];y=[4 3 2];cross(x,y) gives the cross product of x and y, that is
[-11 10 7]

See also dot

98 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ctranspose

Purpose Compute the complex conjugate transpose of a matrix.
Synopsis d = ctranspose(a)
Description d = ctranspose(a) computes the complex conjugate transpose of the matrix a.

ctranspose(a) is equivalentto a'.

See also transpose

99

cumprod

100 |

Purpose

Synopsis

Description

Examples

See also

Computes the cumulative product of array elements.

y = cumprod(x)

y = cumprod(x,dim)

y = cumprod(x) computes the cumulative product of x. y is the same size as x and
contains the cumulative product of the elements along the first nonsingleton

dimension of x.
y = cumprod(x,dim) computes the cumulative product of the elements along the

dimension dim of x.

x = [0 2 3;-313;2 4 5];
cumprod(x) returns [0, 2, 3 ; 0, 2, 9 ; 0, 8, 45]
cumprod(x,2) returns [0, O, O ; -3, -3, -9 ; 2, 8, 40]

prod, sum, cumsum

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

cumsum

Purpose

Synopsis

Description

Examples

See also

Computes the cumulative sum of an array.

y = cumsum(Xx)
\ cumsum(x,dim)

y = cumsum(x) computes the cumulative sum of x. y is the same size as x and

contains the cumulative sum along the first nonsingleton dimension of x.

y = cumsum(x,dim) computes the cumulative sum of the elements along the
dimension dim of x.

x =[02 3;-313;240];

cumsum(x) returns [0, 2, 3 ; -3, 3, 6 ; -1, 7, 6].

cumsum(x,?2) returns [0, 2, 5 ; -3, -2, 1 ; 2, 6, 6].

sum, prod, cumprod

101

cumtrapz

102 |

Purpose

Synopsis

Description

Examples

See also

Cumulative trapezoidal numerical integration.

cumtrapz(y)

= cumtrapz(x,y)

= cumtrapz(y,dim)

= cumtrapz(x,y,dim)

N N N N

z = cumtrapz(y) computes the cumulative integral of y using the trapezoidal
method with unit spacing. (To compute the integral for different spacing, multiply
z by the spacing increment.) z is the same size as y and contains the cumulative

integral along the first nonsingleton dimension of'y.

z = cumtrapz(x,y) computes the cumulative integral of y with respect to x. x
must be a vector with the same length as the first nonsingleton dimension of'y.

Alternatively, both x and y must be vectors of equal length.

z = cumtrapz(y,dim) or z = cumtrapz(x,y,dim) integrates across dimension
dim of'y. If given, x must be a vector with the same length as y along the dimension
dim.

y = reshape(0:11,3,4);

cumtrapz(y) returns [0 0 0 0;0.5 3.5 6.5 9.5;2 8 14 20]

cumtrapz(y,2) returns [0 1.5 6 13.5;0 2.5 8 16.5;0 3.5 10 19.5]

trapz

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

daspk

Purpose

Synopsis

Description

Examples

See also

Solve a stiff ordinary differential equation.

[t, y] = daspk(f, tlist, yO0)
[t, vI daspk(f, tlist, y0, options, ...)

[t, y] = daspk(f, tlist, yO0) solves ODEs and DAEs of the form M(t,y)y' =
ft,y), in both cases with the initial value y(¢(1)) = yg. is the name of a function
such that f(t, y) returns a vector when t is a scalar and y is a column vector. If
tlist has alength two, then it is the interval over which the ODE is to be solved,
otherwise it gives the times at which the solution is requested. t1ist must be strictly
increasing or decreasing. On return, t is a column vector containing the times, and

y is a matrix where the rows contain the corresponding solutions.

[t, y] = daspk(f, tlist, y0, options) allows for supplying options to the
ODE solver. options is a structure returned by odeset. Ifit is empty, default
options are used.

[t, y] = daspk(f, tlist, y0, options, fargl, ...) resultsin f being
invoked with f(t, y, fargl, ...).

dy . .
To solve == = y + sint with y(0) = 5:

dt
f = inline('y+sin(t)’, 't', 'y');
[t y] = daspk(f, [0 2], 5);

To solve the Lotka-Volterra equation, first create a function 1v.m that defines the
equation:

function ydot = 1lv(t, y)

ydot = [y(1)-y(1).*y(2) ; -y(2)+y(1).*y(2)];
and then solve the ODE with

[t y] = daspk('lv', [0 101, [2 ; 1]);

odeget, odeset

103

date

Purpose Current date.

Synopsis d = date

Description d = date returns the current date as a string in the format dd-mmm-yyyy.
See also clock, etime

104 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dbclear

Purpose

Synopsis

Description

See also

Remove breakpoints.

dbclear

dbclear('all')

dbclear(line)

dbclear(func)

dbclear(func, line)
dbclear('if', 'error')
dbclear('if', 'caught', 'error')

dbclear or dbclear('all') removes all breakpoints.

dbclear(line) removes the breakpoint set on line 1ine of the function currently
being debugged. This syntax can be used only in Debug mode.

dbclear(func) removes all breakpoints from the function called func.

dbclear(func, line) removes the breakpoint on line line in the function
called func.

dbclear('if', 'error') removes the breakpoint set on any uncaught error that
occurs.
dbclear('if', 'caught', 'error') removes the breakpoint set on any error

that occurs.

dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup

105

dbcont

Purpose Resume execution when in debug mode.
Synopsis dbcont
Description dbcont resumes execution from the point where a breakpoint triggered and Debug

mode was entered. This command has no effect outside Debug mode.

See also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup

106 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dbdown

Purpose Move down in debug call stack.
Synopsis dbdown
dbdown (steps)
Description dbdown changes the debug workspace to the child of the current debug workspace,

i.e., the workspace created from the current workspace.
dbdown (steps) is equivalent to steps calls to dbdown without arguments.

This function can only be used in Debug mode.

See also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup

107

dbquit

Purpose Terminate the script being executed and leave Debug mode.

Synopsis dbquit

Description dbquit terminates the script being executed and leaves Debug mode.

See also dbclear, dbdown, dbcont, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup

108 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dbstack

Purpose Display the function-call stack.
Synopsis dbstack
Description dbstack displays the function-call stack with the most recently entered function

displayed first. dbstack can be used only in Debug mode.

See also dbclear, dbdown, dbcont, dbquit, dbstatus, dbstep, dbstop, dbtype,dbup

109

dbstatus

Purpose Display all breakpoints that are set.
Synopsis dbstatus
Description dbstatus displays all breakpoints and other conditions where execution of a

function should be stopped and Debug mode entered.

See also dbclear, dbdown, dbcont, dbquit, dbstack, dbstep, dbstop, dbtype,dbup

110 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dbstep

Purpose

Synopsis

Description

See also

Step to the next line of source code.

dbstep
dbstep('in')
dbstep('out')

dbstep resumes execution at the current breakpoint and steps to the line of source
code in the current function.

dbstep('in') resumes execution at the current breakpoint and steps to the next
line of source code in the current function or a function being called.

dbstep('out') resumes execution at the current breakpoint and steps until the
function currently being executed has returned.

This function can be used only in Debug mode.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype,dbup

dbstop

12 |

Purpose

Synopsis

Description

See also

Set a breakpoint.

dbstop(func)

dbstop(func, line)

dbstop(line)

dbstop('if', 'error')

dbstop('if', 'caught', ‘'error')

dbstop(func) sets a breakpoint at the entry of the function called func.
dbstop(func, line) setsa breakpoint on line 1ine of the function called func.

dbstop(line) sets a breakpoint on line 1ine of the function currently being
debugged.

dbstop('if', 'error') setsa breakpoint on any uncaught error that occurs.

dbstop('if', 'caught', 'error') setsa breakpoint on any caught error that
occurs, i.¢., any error that occurs within one or more try-catch blocks.

Debug mode is entered when the conditions for a breakpoint are triggered.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype,dbup

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

dbtype

Purpose

Synopsis

Description

See also

Display source code of a function.

dbtype

dbtype(range)

dbtype(func)

dbtype(func, range)

dbtype displays the source code around the breakpoint of the function currently

being debugged. This can only be done in Debug mode.

dbtype (range), where range is a string containing a line number or a range of line
numbers such as '11:47", displays a line number range of the source code of the

function currently being debugged. This can only be done in debug mode.
dbtype (func) displays the source code of the function called func.

dbtype (func, range) displays a range of line numbers for the source code of the
function called func.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
type

13

dbup

Purpose Move up in debug call stack.
Synopsis dbup
dbup (steps)
Description dbup changes the debug workspace to the parent of the current debug workspace,

i.e., the workspace from which the current workspace was created.
dbup (steps) is equivalent to steps calls to dbup without arguments.

This function can only be used in Debug mode.

See also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype

114 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

deal

Purpose Distribute function inputs to several output variables.
Synopsis [outl, out2, ...] = deal(in)
[outl, out2, ...] = deal(in1, in2, ...)
Description [outl, out2, ...] = deal(in) assigns in to out1, out2, and so on.

[out1, out2, ...] = deal(in1, in2, ...) assignsini toout1, in2 to out2,
and so on. The number of inputs and outputs must be identical.

Example deal is most commonly used together with cell arrays such as in this example:
d = {23 5}; [abc]=deal(d{:});,whichassigns2to a, 3 tob,and 5 to d.

15

deblank

Purpose Remove trailing blanks.

Synopsis

w
1]

deblank(s)

Description s = deblank(s) removes all trailing blanks from s, which can be a either a string
(in which case deblank removes all trailing blanks from s) or a cell array of strings

(in which case deblank removes all trailing blanks from each element of's).

Example c = {'blue ','green';'red ', yellow'};
deblank(c) returns {'blue', ‘'green' ; 'red', ' yellow'}
See also blanks

I16 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dec2base

Purpose

Synopsis

Description

Example

See also

Convert decimal integers to strings in a specific base.

s = dec2base(d,b)
dec2base(d,b,n)

(%]
1l

s = dec2base(d,b) converts an array of nonnegative integers to string
representations in base b, where b must be an integer between 2 and 36, inclusive.

s is a character matrix where each row represents one number.

s = dec2base(d,b,n) converts d into strings with at least n characters by padding

with zeros.

dec2base(210,5,9) converts 210 in base 10 to 1320 (represented by the string
000001320 ") in base 5.

base2dec, bin2dec, hex2dec, hex2num, dec2bin, dec2hex, num2hex

17

dec2bin

s |

Purpose

Synopsis

Description

Example

See also

Convert decimal integers to binary strings.

s = dec2bin(d)
dec2bin(d,n)

(7]
1l

s = dec2bin(d) converts an array of nonnegative integers to binary string

representations. s is a character matrix where each row represents one number.

s = dec2bin(d,n) converts d into strings with at least n characters by padding with

ZCros.

dec2bin(210,9) converts 210 to its binary equivalent 11010010 (represented by
the string '011010010").

base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2hex, num2hex

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

dec2hex

Purpose

Synopsis

Description

Example

See also

Convert decimal integers to hexadecimal strings.

s = dec2hex(d)
dec2hex(d,n)

(%]
1l

s = dec2hex(d) converts an array of nonnegative integers to hexadecimal string

representations. s is a character matrix where each row represents one number.

s = dec2hex(d,n) converts d into strings with at least n characters by padding with

ZCros.

dec2hex (44562) converts 44562 to its hexadecimal equivalent AE12 (represented
by the string 'AE12").

base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2bin, num2hex

19

deconv

Purpose

Synopsis

Description

See also

Compute the deconvolution of two vectors.

g = deconv(a, b)
[g, r] = deconv(a, b)

g = deconv(a, b) returns the deconvolution of a and b, which must be real or
complex vectors. This can be used to divide polynomials in this way: If a and b
contain the coefficients of two polynomials, then q contains the coefficients of their
product. This interpretation holds if the coefficients are listed in decreasing degree,

that is., a(end) is the constant term and a (1) is the highest coefficient.

[g, r] = deconv(a, b) also returns the remainder in the polynomial division.

deconv

120 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

del2

Purpose

Synopsis

Description

See also

Discrete Laplacian.

del2
del2
del2
del2

u)

u,h)

u,hx,hy)
u,hx,hy,hz,...)

[=
o

—_~ e~~~

1 = del2(u) computes the discrete Laplacian of u. When u is a matrix, 1 is a discrete

approximation of

4 4 dx2 dy2

2 2
Viu l(d u d u]
1 is the same size as u, with each element equal to the difference between
corresponding element of u and the average of its four neighbors. When u is an nD

array, 1 is an approximation of

Viu
2n

where n is the number of dimensions of u.

1 = del2(u,h) computes the discrete Laplacian of u using spacing h, where h is a

scalar.

1 = del2(u,hx,hy) computes the discrete Laplacian of u using the spacing given
by hx and hy. u must be 2D, while hx and hy must be either scalars (in which case
they specify spacing between points in the x and y direction, respectively) or vectors
(in which case they specify the coordinates of the points in their respective

directions). If either hx or hy is a vector, its length must match the corresponding

dimension of u.

1 = del2(u,hx,hy,hz,...) computes the discrete Laplacian of u when u is an

n-dimensional array, and uses the spacing given by hx, hy, hz, and so on.

diff, gradient

121

delaunay

Purpose

Synopsis

Description

Example

122 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

Delaunay triangulation.

~+ +
non

t

delaunay(x,y)
delaunay(x,y,bnd)

delaunay(x,y) returns a Delaunay triangulation of the points in the vectors

x and y, that is, a set of triangles such that no points are contained in any triangle's

circumcircle. t is a matrix where each row contains the indices in x and y that define

one triangle.

t = delaunay(x,y,bnd) also uses boundary element information contained in

bnd, a 4xn matrix, where n is the number of elements. The first two rows contain

the indices of boundary element corners and rows three and four contain up and

down subdomains, respectively.

X

y
t =

[0 0 3 3];
[0101];
delaunay(x,y);
trimesh(t,x,y)

Coordinates that define two intersecting ellipses and a rectangle (in no particular

order):

p1

p2

p3

p = [p1,p2,p3];

0
[7
10
[4
6

Boundary information:

b1 =

b2 =

b3

[

WN bW

—_

n
ANON N =N

g

N
A NOO N—=pN N WO W

“NDNON =2 Dp Db

N A ©oN

14
10

»

0= =2 O WHHro

-
WA N OO

21
12

N 0o OO,

N OO 00N O

N =
—_ 0N =

oW AN OO

-
wWwh pO O

== N

10

12

18

10 10 16 16 26;
8 10 -10 10 0];
23 23 0 -4 -4;
-7 7 -4 -2 31;
17 14 13;
5 2 71;
1 16;
16 2;
2 2;
1o
6 6;
8 11;
6 8;
8 1];
23;
13;
1
81;

delaunay

bnd = [b1,b2,b3];

t = delaunay(p(1,:),p(2,:));
tbnd = delaunay(p(1,:),p(2,:), bnd);

h = gca;

set(h, 'xlim',[-30 59])

set(h, 'ylim',[-20 20])
trimesh(t,p(1,:),p(2,:), 'parent',h);

figure

h = gca;

set(h, 'x1im',[-30 59])

set(h,'ylim',[-20 20])
trimesh(tbnd,p(1,:),p(2,:), 'parent',h);

See also delaunay3, trimesh

123

delaunay3

124 |

Purpose

Synopsis

Description

Example

See also

3D Delaunay triangulation.

t = delaunay3(x,y,z)
delaunay3(x,y,z,bnd)

~+
1l

delaunay3(x,Yy,z) returns a 3D Delaunay triangulation of the points in the

t
vectors X, Yy, and z, that is, a set of tetrahedrons such that no points are contained in
any tetrahedron’s circumsphere. t is a matrix where each row contains the indices

in X, y, and z that define one tetrahedron.

t = delaunay3(x,y,z,bnd) also uses boundary element information contained
in bnd, a 5-by-n matrix, where n is the number of elements. The first three rows
contain the indices of boundary element corners and rows three and four contain

up and down subdomains, respectively.

x=1[0,1,0,1,0,1,0,1];
y = [0, 0, 2, 2, 0, 0, 2, 2];
z = 1[0, 0, 0, 0, 3, 3, 3, 31;
t = delaunay3(x,y,z);

For an example using boundary information, see the 2D example under delaunay.

delaunay, trimesh

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

delete

Purpose Delete files or graphics objects.

Synopsis delete(h)
delete(filename)

Description delete(h) deletes all graphics objects in the array of handles h. For entries that are

handles to a figure window, the corresponding window is closed.

delete(filename) deletes the file filename.

125

det

126 |

Purpose
Synopsis

Description

Example

See also

Determinant of a square matrix.
det(A)
det(A) returns the determinant of a square matrix A.

To test for singular matrices, use cond instead of det.
det([2 -3 1; 4 -2 2;1 1 3]) returns 20.

cond

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

diag

Purpose

Synopsis

Description

See also

Extract diagonal from a matrix or create a diagonal matrix.

d = diag(v)
d = diag(v, k)
v = diag(m)
v = diag(m, k)

d = diag(v), for a vector v, returns a matrix with v on the diagonal

d = diag(v, k), foravector v, returns a matrix with v on the kth diagonal. k=0
is the diagonal, k = 1 is the superdiagonal, and so on.

v = diag(m), for a matrix m, returns a vector containing the elements on the
diagonal of m.

v = diag(m, k), for a matrix m, returns a vector containing the elements on the
kth diagonal of m.

tril, triu

127

dialog

Purpose Create a dialog box.

Synopsis d dialog(title,...)

Description d

dialog(title) creates a dialog box with the specified title.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the function to further control how the dialog box is created:

TABLE I-14: VALID PROPERTY/VALUE PAIRS

DESCRIPTION

PROPERTY VALUE
modal string
parent frame
position 2-element vector
size 2-element vector

A string with the value 'on' or 'off' telling
if a modal dialog box should be created. The
default is to create a nonmodal dialog box.

The frame that is the parent to this dialog
box.

The position on the screen for the upper left
corner of the dialog box.

The size of the dialog box. If not given the
dialog box will be packed to fit the size of the
components that have been added to it.

The function returns a dialog object that can be manipulated further using the

methods in the following table:

TABLE 1-15: METHODS FOR MANIPULATING A DIALOG BOX.

METHOD

DESCRIPTION

addMenu (menu)

close

getParent

getSize

setSize(width,height)

show

Adds the specified menu at the end of the
main menu bar of the dialog box.

Closes the dialog box.

Returns the frame that is the parent of
this dialog box.

Returns the size of the dialog box as a
2-element vector with width and height.

Sets the size of the dialog box.

While the dialog box is being created it is
invisible. Call the show method after
adding all components to it to show it on
screen.

The methods for panel are also available for dialog, thereby allowing you to add

panels and components to a dialog box.

128 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dialog

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

See also component, frame, panel

129

diary

Purpose Save activity on the command line to a text file.

Synopsis diary(filename)
diary('on')
diary('off')

Description diary(filename) starts saving all input and output on the command line to the
file filename.

diary('off') temporarily turns of logging and flushes the file.

diary('on') turns logging back on again.

130 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

diff

Purpose

Synopsis

Description

Examples

See also

Compute the difference of an array.

y = diff(x)
y = diff(x,n)

y = diff(x,n,dim)

y = diff(x) computes the difference between adjacent elements of x along the

first nonsingleton dimension. When x is a vector, y is the difference between
adjacent elements. When x is a matrix, y is a matrix containing the differences

between adjacent rows of x.
y = diff(x,n) computes the nth order difference of x.

y = diff(x,n,dim) computes the nth order difference of x along the dimension

a=1[1410 12;0 3 -10 20;2 -1 3 4];
diff(a) returns -1, -1, -20, 8 ; 2, -4, 13, -16].
diff(a,2,1) returns [3, -3, 33, -24]

del2, gradient

131

dir

132 |

Purpose Get a list of the files in a directory.
Synopsis dir
dir(path)
f = dir
f = dir(d)
Description dir displays the files in the current directory.

dir(path) displays the files in the path path. The path can contain the wildcard

character *, which matches any character sequence.

f = dir returns a structure array with one element for each file in the current

directory. It has the following fields:

FIELD CONTENTS
name Name.

date Creation date.

bytes Number of bytes occupied.

isdir true if directory, false otherwise.

f = dir(path) returns a struct array with one element for each file in the
path path.

See also cd, pwd

CHAPTER |:

COMSOL SCRIPT COMMAND REFERENCE

disp

Purpose
Synopsis
Description

See also

Display a value.
disp(v)
disp(v) displays the value of the variable or expression v.

display

133

display

Purpose Display a value.

Synopsis display(v)

Description display(v) displays the value of the variable or expression v.
See also disp

134 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dimread

Purpose

Synopsis

Description

See also

Read a delimited file.

out = dlmread(filename)

out = dlmread(filename, delimiter)
out = dlmread(filename, delimiter, range)
out = dlmread(filename, delimiter, row, col)

out = dlmread(filename) reads the file filename and returns a matrix where
each row contains a row of the file. The delimiter used, if any, is guessed from the
contents of the file; the default is to use whitespace as delimiter. The elements of the

matrix must be real or complex numbers.

out = dlmread(filename, delimiter) uses the character delimiter as

delimiter between elements.

out = dlmread(filename, delimiter, range) readsa part of the file. If range
is a vector of the form [R1 C1 R2 C2], then rows R1..R2 and columns C1..C2 are
read; row and column numbers are 0-based. range can also be a string in

spreadsheet notation; for example, 'C4. .H7' selects rows 4-7 and columns 3-8.

out = dlmread(filename, delimiter, row, col) ignores rows and columns
with numbers less than row and col, respectively; row and column numbers are
0-based.

dlmwrite, strread, textread

135

dimwrite

Purpose Write a delimited file.

Synopsis dlmwrite(filename, data)
dlmwrite(filename, data, delim)
dlmwrite(filename, data, delim, row, col)

dlmwrite(filename, data, ...)
dlmwrite(filename, data, '-append', ...)
Description dlmwrite(filename, data) writes the matrix data asa comma-separated text file

to filename.
dlmwrite(filename, data, delim) uses delim as delimiter.

dlmwrite(filename, data, delim, row, col) uses delim as delimiter. The

data is preceded by row empty rows; each row begins with col spaces.

dlmwrite(filename, data, ...) accepts the following property/value pairs:

TABLE I-16: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

coffset Integer Number of spaces preceding the data on each
row.

delimiter Character Element separator.

newline 'pc' or 'unix' Newline convention.

precision Integer or string Number or significant digits or format string
of the form used by fprintf and sprintf.

roffset Integer Number of empty lines preceding data.

dlmwrite(filename, data, '-append', ...) appends the data to the file
instead of over-writing it.

Example data = reshape(sin(1:9), 3, 3);
dlmwrite('TABLE', data, 'delimiter', ':', 'precision', 2)

creates a file called TABLE with the following contents:

0.84:-0.76:0.66
0.91:-0.96:0.99
0.14:-0.28:0.41

See also dlmread, fprintf, sprintf

136 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

disim

Purpose

Synopsis

Description

See also

Simulate a discrete-time state space model.

y = dlsim(A, B, C, D, U)

y = dlsim(A, B, C, D, U, x0)

[y x] = dlsim(A, B, C, D, U)

[y x] dlsim(A, B, C, D, U, x0)

[y x] = dlsim(A, B, C, D, U) simulates the state space model

x,,1 = Ax,+Bu,

¥y, = Cx,+Du,

using the input u. The input and output arguments have the following dimensions:

INPUT/OUTPUT ARGUMENT DIMENSIONS

A nx-by-nx

B nx-by-nu

C ny-by-nx

D ny-by-nu

U N-by-nu

x0 nx-by-1 (default zeros(nx, 1))
y N-by-ny

X N-by-nx

dlsim(..., x0) uses xO as initial state.

filter

137

dos

Purpose

Synopsis

Description

See also

Run a DOS command.

status = dos(cmd)
[status output] = dos(cmd)

status = dos(cmd) runs the DOS command cmd in the operating system and
returns the exit code, which is 0 if the execution was successful and nonzero

otherwise.

[status output] = dos(cmd) runs the DOS command cmd and returns any
output to the standard output stream in output.

dos(cmd) is equivalent to system(['cmd.exe /C ' cmd]).

system, unix

138 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

dot

Purpose

Synopsis

Description

Example

See also

Dot product.

¢ = dot(u,v)
¢ = dot(u,v,dim)

¢ = dot(u,v) returns the scalar product of the arrays u and v. Both arrays must be
vectors with the same length or n-dimensional arrays of equal size, in which case the

scalar product is computed along the first nonsingleton dimension of u and v.

¢ = dot(u,v,dim) returns the scalar product along the dimension dim.
x = [1 -1 3];y=[4 3 2];dot(x,y) gives the dot product of x and vy, that is 7.

cross

139

double

Purpose Convert a value to a real or complex matrix.
Synopsis d = double(v)
Description d = double(v) returns a matrix the same size as v where each element has been

converted to a real or complex number.

If v is a Java object but not a subclass of java.lang.Number, then v.toDouble is

invoked to do the conversion. It generates an error if no such method exists.

140 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

drawnow

Purpose Flush drawing to the screen.
Synopsis drawnow
Description When you draw several plots in a row in a script, the screen is not automatically

repainted after each of them.

A flush happens when control returns to the prompt after running a script or when

calling getFrame on a movie-generation object.

You can also force a flush in a script to achieve repaints while the script is running

by calling the drawnow function.

141

echo

142 |

Purpose

Synopsis

Description

Enable /disable echoing of lines executed in functions and scripts.

echo('on")
echo('off")

echo(func)
echo(func, 'on')
echo(func, 'off'")

echo('on', 'all'")
echo('off', 'all')

echo('on') and echo('off"') enable and disable, respectively, echoing of all lines
executed in user-defined scripts.

echo(func, 'on') and echo(func, 'off') enable and disable, respectively,
echoing of all lines executed in the function called func.

echo(func) toggles echoing of all lines executed in the function called func.

echo('on', 'all') and echo('off', 'all') enable and disable, respectively,
echoing of all lines executed in scripts and functions.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

eig

Purpose

Synopsis

Description

See also

Compute eigenvalues and eigenvectors.

eig(A)
[X,LAMBDA]=eig(A)
eig(A,B)
[X,LAMBDA]=eig(A,B)

eig(A) computes the eigenvalues of the square matrix A.

[X,LAMBDA]=eig(A) computes the right eigenvectors X and eigenvalues of the
square matrix A, so that A*X=X*LAMBDA. LAMBDA is a diagonal matrix with the

cigenvalues on the diagonal.
eig(A,B) computes the generalized eigenvalues of A and B.

[X,LAMBDA]=eig(A,B) computes the right eigenvectors X and eigenvalues of the
generalized eigenvalues of A and B so that A*X=B*X*LAMBDA. LAMBDA is a diagonal

matrix with the eigenvalues on the diagonal.

condeig, eigs

143

eigs

144 |

Purpose

Synopsis

Description

Compute a few eigenvalues and eigenvectors for a sparse matrix.

D = eigs(A)
[V D] = eigs(A)

D = eigs(A, k)
[V D] = eigs(A, k)

D = eigs(A, k, sigma)
[V D] = eigs(A, k, sigma)

D = eigs(A, B)
[V D] = eigs(A, B)

D = eigs(A, B, k)
[V D] = eigs(A, B, k)

D = eigs(A, B, k, sigma)
[V D] = eigs(A, B, k, sigma)

D = eigs(..., opts)
[V D] = eigs(..., opts)

D = eigs(A) computes the six eigenvalues of largest magnitude of the square sparse
matrix A.

[V D] = eigs(A) computes the six eigenvalues of largest magnitude and the
corresponding eigenvalues for the sparse matrix A. V is a size (A, 1)-by-6-matrix
where the columns are the eigenvectors, and D is a 6-by-6-matrix with the

cigenvalues on the diagonal. The matrices satisfy the relation AV = VD.

D = eigs(A, k) computes k eigenvalues.

[V D] = eigs(A, k) computes k eigenvectors and eigenvalues.

D = eigs(A, k, sigma) computes k eigenvalues in the vicinity of sigma, which
can be a real or scalar constant or a string. String arguments decide what eigenvalues
to search for. The following values are allowed:

SIGMA INTERPRETATION
"1m' Largest magnitude.
"sm' Smallest magnitude.
"1r! Largest real part.
"sr' Smallest real part.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

eigs

Algorithm

See also

SIGMA INTERPRETATION
'1i! Largest imaginary part.
'si! Smallest imaginary part.

D = eigs(A, B) returns six eigenvalues for the generalized eigenvalue problem AV
= BVD.

[V D] = eigs(A, B) returns six eigenvectors and corresponding eigenvalues for

the generalized eigenvalue problem AV = BVD.

D = eigs(A, B, k) and [V D] = eigs(A, B, k) return k eigenvalues and

eigenvectors for the generalized eigenvalue problem AV = BVD.

D = eigs(A, B, k, sigma) and [V D] = eigs(A, B, k, sigma) return Kk
cigenvalues and eigenvectors close to sigma for the generalized eigenvalue problem

AV = BVD. Possible values for sigma are listed above.

D = eigs(..., opts)and [V D] = eigs(..., opts) solve eigenvalue problems

with options taken from the structure opts. The following fields of opts are used:

FIELD INTERPRETATION

"tol’ Convergence tolerance.

'maxit’ Maximum number of Arnoldi iterations.
'p! Dimension of Krylov subspace.

The function uses the ARPACK package. For generalized problems and problems
where you specify a numerical value for sigma, eigs uses the shift-invert mode
(ARPACK mode 3), otherwise it uses the standard mode (ARPACK mode 1). The
shift-invert mode can be numerically more stable also for standard problems; setting
sigma=0 forces eigs to use it.

condeig, eig

145

encrypt

Purpose Encrypt .M-files and .CSL-files.
Synopsis encrypt(filel, ...)
encrypt(..., '-inplace')
Description encrypt(filetl, ...) creates encrypted versions of file1, ... The input file(s)

must exist and be valid .M- or .CSL-files. For each input file, an .MC- or .CSLC-file
is created in the current directory. When executed, it is equivalent to the original

file, but its contents have been scrambled to make it unreadable.

encrypt(..., '-inplace') creates each encrypted file in the directory where the
corresponding file was found.

146 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

eps

Purpose

Synopsis

Description

Retrieve the difference between a number and the next larger number.

eps

eps(v)

= eps('double')
= eps('single')

® ® ® @
U}

e = eps returns the smallest e such that 1 and 1+e are different floating-point
numbers.

e = eps(v) returns the difference between v and the next-larger floating-point
number.

e = eps('double') is equivalentto e = eps.

e = eps('single') returns what eps would be if 32-bit floating-point numbers

were used instead of 64-bit floating-point numbers.

147

eq

Purpose Compare matrices pointwise.
Synopsis d = eq(a, b)
Description d = eq(a, b) testsif the elements of the two matrices a and b are equal pointwise.

For each dimension, a and b must have the same size or either of them must have

size 1. In the latter case, the unit dimension is expanded to the size of the nonunit

dimension.
eq(a, b) isequivalenttoa == b.
Examples [2 3 5] == [0 3 6]

[10 20 30] == 30
[0 1] == [0 ; 1]

See also ge, gt, le, 1t, ne

148 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

erf

Purpose Error function

Synopsis y = erf(x)

Description y = erf(x) computes the error function of the elements of x, where x must be a
real array.

The error function is defined as:

X

erf(x) = ljeftzdt
T

See also erfc, erfcx, erfinv

149

erfc

Purpose Complementary error function

Synopsis y erfc(x)

Description y = erfc(x) computes the complementary error function of the elements of x,

where x must be a real array.

The complementary error function is defined as:

2 ¢ -t
erfc(x) = 1 +erf(x)= —je dt
Jn
X

See also erferfcx, erfinv

I50 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

erfex

Purpose Scaled complementary error function.
Synopsis y = erfcx(x)
Description y = erfcx(x) computes the scaled complementary error function of the elements

of x, where x must be a real array.

The scaled complementary error function is defined as:
erfex(x) = ¢* erfe(x)

See also erf,erfc,erfinv

151

erfinv

Purpose Inverse error function.
Synopsis y = erfinv(x)
Description y = erfinv(x) computes the inverse error function of x such that

erf(erfinv(x)) = x, where each element of x must satisfy -1 <= x <= 1. For

any other values, corresponding elements of y are NaN.
Example erf(erfinv([-0.5 0 0.3])) returns [-0.5 0 0.3].

See also erf, erfc, erfcx

152 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

error

Purpose Throw an error exception.
Synopsis error(msg)
error(s)
Description error(msg), where msg is a nonempty string, throws an error exception containing

msg. Note that error('') does nothing.
error(s), where s is a structure, is equivalent to error(s.message).

See also warning

153

errorbar

Purpose Throw an error exception.

Synopsis errorbar(x,y,1,u)
errorbar(x,y,e)
h=errorbar(...)

Description errorbar(x,y,1,u) plots y versus x and adds error bars according to 1 and u. 1
and u are the lower and upper error ranges for each point in y. If the inputs are

matrices one line with error bars is drawn for each column.
errorbar(x,y,e) uses e as both 1 and u.

errorbar('linespec') can be used to control line color and line style. See plot

for allowed values.
h=errorbar(...) returns handles to the drawn lines.

The property values for 1ine can be passed at the end of the command to further
control the plot.

See also hist

I54 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

etime

Purpose
Synopsis

Description

Example

See also

Determine elapsed time.

t

etime(t2,t1)

t etime(t2,t1) computes the time difference in seconds between t2 and t1.

t2 and t1 must be vectors of the form returned by clock, that is, vectors with six
elements representing, in order, year, month, day, hour, minute, and seconds. (See
clock for further information.)

A = rand(500);

t1 = clock;
B=svd(A);

t = etime(clock,t1)

clock, date

155

eval

156 |

Purpose

Synopsis

Description

See also

Evaluate an expression or a sequence of statements.

a = eval(expr)

a eval(expri, expr2)
eval(stmts)
eval(stmts1, stmts2)

a = eval(expr) evaluates the expression string expr and returns the result(s). It

is possible for the evaluation to return more than one value.

a = eval(expr1, expr2) behaveslike a = eval(expri1) except when this

evaluation results in an error; in that case, a = eval(expr2) is performed.

eval(stmts) evaluates the statement string stmts.

eval(stmts1, stmts2) behaves like eval(stmtsi1) except when this evaluation

results in an error; in that case, eval(stmts2) is performed.

evalc, evalin

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

evalc

Purpose Evaluate an expression or a sequence of statements and retrieve any output made in

the process.

Synopsis [out, a] = evalc(expr)
[out, a] = evalc(expri, expr2)
out = evalc(stmts)
out = evalc(stmts1, stmts2)

Description The string out that is returned contains any text output to the prompt during the
evaluation of the expression or statements. This is the only difference between
evalc and eval.

See also eval, evalin

157

evalin

158 |

Purpose

Synopsis

Description

See also

Evaluate an expression or a sequence of statements in a specific workspace.

a = evalin(ws, expr)

a evalin(ws, expri, expr2)
evalin(ws, stmts)

evalin(ws, stmts1, stmts2)

The string ws specifies in which workspace the evaluation is performed: 'base’ is
the root workspace, and ' caller'is the parent workspace in the function-call stack.
This is the only difference between evalin and eval.

eval, evalc

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

exist

Purpose

Synopsis

Description

See also

Test whether or not a named object exists.

e = exist(name, 'var')

e = exist(name, 'file')

e = exist(name, 'builtin')
e = exist(name, 'dir')

e = exist(name, 'class')

e = exist(name)

exist(name, 'var') returns 1 if there is a variable called name, otherwise 0.

exist(name, 'file') returns 2 ifthere isa file called name, 7 if there is a directory
called name, otherwise 0.

exist(name, 'builtin') returns 5 if there is a built-in function called name,

otherwise 0.
exist(name, 'dir') returns 7 if there is a directory called name, otherwise 0.
exist(name, 'class') returns 8 if there is a Java class called name, otherwise 0.

exist(name) tests name against all the above criteria and uses the same return-value

conventions.

which

159

exit

Purpose Close the command window.
Synopsis exit

Description exit closes the command window.
See also quit

160 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

expm

Purpose
Synopsis
Description

Example

See also

Matrix exponential.

o
1]

expm(a)

o
1l

expm(a) computes the matrix exponential of the square matrix a.
a=1[12;3
em = expm(
e = exp(a)

4];
a);
;
returns em approximately [51.97 74.74;112.1 164.1] and e approximately
[2.718 7.389; 20.09 54.6].

exp, mpower

161

eye

Purpose Create a matrix with ones on the diagonal.
Synopsis e = eye(n)
e = eye(sz)
e = eye(m, n)
Description In all cases it returns a matrix with ones on the diagonal and zeros elsewhere. The

matrix size is determined as follows:
eye(n), where n is a nonnegative integer, returns an n X n-matrix.

eye(sz), where sz is a vector of length two, returns a matrix of size sz.

eye(m, n), where mand n are nonnegative integers, returns an m X n-matrix.

See also ones, repmat, zeros

162 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

factor

Purpose
Synopsis
Description
Example

See also

Prime factors.

—
1]

factor(n)

—
1l

factor(1275) returns [3, 5, 5,

isprime, primes

factor(n) computes the prime factors of n as a row vector f.

17].

163

factorial

Purpose Factorial function.
Synopsis b= factorial(a)
Description b = factorial(a) computes the factorial of all elements of a, where a is an array

of nonnegative integers.

Example factorial(5) returns 120, thatis, 1*2*3*4*5,

164 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

false

Purpose Create all-false logical matrix.
Synopsis f = false
f = false(n)
f = false(m, n, ...)
f = false(sz)
Description In all cases, it returns all-false logical matrix whose size is determined as follows:

f = false returns a scalar.

f = false(n), where n is a nonnegative integer, returns an n x n matrix.

£

m X N X...-matrix.

false(m, n, ...),wherem, n,...are nonnegative integers, returns an

f = false(sz), where sz is a vector, returns a matrix of size sz.

See also true

165

fclose

Purpose Close an open file or all open files.

Synopsis fclose(h)
fclose('all')

Description fclose (h), for aninteger h, closes the file associated with the handle h, which must
be one returned by fopen.

fclose('all') closes all open files.

See also fopen

166 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

feof

Purpose Test whether end-of-file has been reached for an open file.
Synopsis e = feof(h)
Description feof (h), for an integer h, returns true if the end-of-file has been reached for the

file associated with the handle h, otherwise it returns false. h must be a handle
returned by fopen.

See also fopen

167

ferror

Purpose Return or reset the error message for an open file.

Synopsis e = ferror(h)
ferror(h, 'clear')

Description ferror(h) returns the error message, if any, set by a previous failed file operation
on h.

ferror(h, 'clear') clear the error message for h.

h must be a handle returned by fopen.

See also fopen, fread

168 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

feval

Purpose Evaluate a function.

Synopsis [a ...] = feval(func, argl, ...)

Description feval(func, argl, ...) evaluates the function func for the arguments argi, ...
and returns the result(s). The number of inputs to and outputs from func can both
be zero.

See also builtin

169

fft

170 |

Compute the fast Fourier transform of a vector or matrix.

fft(v)

fft(v, n)
fft(v, n, dim)
fft(v, []1, dim)

fft(v) computes the FFT along the first nonunit dimension of v.

fft(v, n) computes the n-point FFT. v is padded with zeros if it is shorter

than n and truncated if it is longer.

Purpose

Synopsis f
£
£
£

Description f
£
£
£

See also

CHAPTER I:

fft(v, n, dim) computes the n-point FFT along the dimension dim.

fft(v, [], dim) computes the FFT along the dimension dim.

ifft, fft2, ifft2, fftn, ifftn

COMSOL SCRIPT COMMAND REFERENCE

fft2

Purpose Compute the 2D fast Fourier transform of a matrix.
Synopsis f = fft2(m)
f = fft2(m, rows, cols)
Description f = fft2(m) computes the 2D FFT of m.
f = fft2(m, rows, cols) computes the 2D FFT of size (rows, cols). The

input matrix is truncated or padded with zeros if necessary.

See also fft, ifft, ifft2, fftn, ifftn

171

fftn

Purpose Compute the n-dimensional fast Fourier transform of an array.
Synopsis f = fftn(m)
f = fftn(m, size)

Description f = fftn(m) computes the n-dimensional FFT of m.

f = fftn(m, size) computes the n-dimensional FFT of m of size size. The input

array is truncated or padded with zeros if necessary.

See also fft, ifft, fft2, ifft2, ifftn

172 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

fftshift

Purpose Shift a frequency spectrum computed with an FFT.

Synopsis f fftshift(m)

Description f = fftshift(m) shifts the indices in each dimension circularly so that index 1 in

m corresponds to the middle index in f.

See also circshift, fft, ifft, fft2, ifft2, fftn, ifftn, ifftshift

173

fgetl

Purpose Read a line from a file and discard the linefeed character(s).
Synopsis s = fgetl(h)
Description s = fgetl(h) reads a line from the file pointed to by h and returns the line with

the linefeed character(s) removed.

h must be a handle returned by fopen.

See also fgets, fopen

174 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

fgets

Purpose Read a line from a file.

Synopsis s = fgets(h)
s = fgets(h, n)

Description s = fgets(h) reads and returns a line from the file pointed to by h.

s = fgets(h, n) reads from the file pointed to by h until it has read n characters
or reached a linefeed character. Unlike fgetl, this functions returns linefeed

characters.

h must be a handle returned by fopen.

See also fgetl, fopen

175

fieldnames

176 |

Purpose

Synopsis

Description

See also

Get fields in structure or Java object.

= fieldnames(s)
= fieldnames(jo)
= fieldnames(obj)
= fieldnames(obj, attr)

= fieldnames(obj, attr, noattr)

—h —h —h —h —h

f = fieldnames(s), where s is a structure, returns a cell array containing the field

names of s.

f = fieldnames(jo), where jo is a Java object, returns a cell array containing the
public fields in the class to which jo belongs.
f = fieldnames(obj), where obj is an instance of a user-defined class, returns a

cell array containing the public nonstatic fields of the class of obj.

f = fieldnames(obj, attr),where obj isan instance of a user-defined class and
attr is a string or cell array of strings, returns a cell array containing the fields that
have at least one of the attributes listed in attr. Possible attributes are 'public’,
'protected’', 'private’, 'static', and 'transient’'.

f = fieldnames(obj, attr, noattr) islike f = fieldnames(obj, attr) but
excludes any field having an attribute listed in noattr, which must be a string or cell

array of strings.

methods

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

figure

Purpose Create a new figure window.
Synopsis figure
figure(h)
Description figure creates and opens a new figure window. You can retrieve the handle to the

created figure with the syntax h=figure.

figure(h) makes the figure with handle h the current figure and shows it on top

of all other windows.

See also clf, close, gcf, subplot

177

fileparts

178 |

Purpose

Synopsis

Description

Example

Split a file name into its path, name, and extension.

p = fileparts(name)
[p, n] = fileparts(name)
[p, n, e] = fileparts(name)

[p, n, e] = fileparts(name), where name is a string, returns the path of name
in p, the name in n, and the extension in e. It is possible to omit the last or the last
two output parameters.

[p, n, e] = fileparts('C:/COMSOL/license.txt"') resultsinp = ‘C:/
COMSOL’,n = ‘license’,ande = ‘.txt’

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

filesep

Purpose Get the system file separator.
Synopsis sep = filesep
Description sep = filesep returns the directory separator in file names. For Windows this is

"\'', and on all other platforms itis '/".

See also pathsep

179

filter

180 |

Purpose

Synopsis

Description

See also

1D digital filtering.

= filter(b,a,x)
filter(b,a,x,zi)
filter(b,a,x,zi,dim)
filter(b,a,x,[],dim)
y,zf] = filter(...)

y
y
y
y
[

y = filter(b,a,x) uses a filter that is a Direct Form II Transposed

implementation of the standard difference equation:
a(Dy(m) =b(Dx(n) + b(2)x(n-1) + ... + b(nb+1Dx(n-nb)
-a@)y(n-1) - ... - a(na+1)y(n-na)

where x is a data array, y is the filtered data, while a and b describe the filter. n-1 is

the filter order. Filter coefficients are normalized by a(1).

When x is a matrix, filter works along the columns of x. When x is an array,

filter works along the first nonsingleton dimension of x.

y = filter(b,a,x,zi) also includes zi, the initial conditions of the filter delays.
zi must be either a vector of length max (length(a),length(b)) -1, oran array of
the same size as x except for the leading dimension, which must be

max (length(a),length(b))-1.

[y,zf] = filter(...) also returns the final conditions of the filter delays.

filter(b,a,x,zi,dim) and filter(b,a,x,[],dim) work along the dimension
dim.

dlsim

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

find

Purpose

Synopsis

Description

Examples

See also

Find nonzero elements.

i = find(x)
[i,71 = find(x)
[i,7,y] = find(x)

i = find(x) returns the linear indices of the nonzero elements of x.

[i,j] = find(x) returns row and column indices of nonzero elements of x, where

X must be a matrix.

[i,j,v] = find(x) also returns the value of each nonzero element of x. If x is a

row vector, v will be a row vector. Otherwise, v will be a column vector.
a=1[14012; 03 -100; 2 -1 3 4];
find(a>0) returns [1; 3; 4; 5; 9; 10; 12].

[j,i,b] = find(a); returns

ind(
i=1[1;3;1;2; 3; 2; 3; 1; 3],
j = [1; 1; 2; 2; 2; 3; 3; 4; 4] and
b =1[1; 2; 4; 3; -1; -10; 3; 12; 4];
sparse

181

findobj

Purpose Find graphics objects.

Synopsis h = findobj(...)
h = findobj (parents,...)

Description h = findobj(...) finds graphics objects. The properties 'tag' and 'type' with
a following value can be used to find graphics objects of a certain type or with a

certain tag.

h = findobj (parents,...) searches only in the figure windows listed in
parents.
Example h = findobj('type', 'line') finds all graphics objects of the type 'line’.
See also gca, gcf, get, set

182 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

findstr

Purpose
Synopsis

Description

Examples

See also

Find a shorter string within a longer one.

ind findstr(stri,str2)

ind = findstr(stri,str2) finds occurrences of the shorter of the two strings

str1and str2 within the other and returns the first index of each such occurrence.

To find one string within another in a set order, use strfind.

findstr('blue yellow green red','e') and findstr('e', 'blue yellow
green red') both return 4, 7, 15, 16, 20].

strfind

183

flipdim

184 |

Purpose Flip a dimension of a matrix.

Synopsis f flipdim(m, dim)

Description f = flipdim(m, dim) returns a matrix with the same contents as m but where the

matrix indices in dimension dim have been flipped.
Example flipdim([2 3 ; 5 7], 1) returns [6 7 ; 2 3].

See also fliplr, flipud, permute, ipermute

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

fliplr

Purpose
Synopsis

Description

Example

See also

Flip a matrix horizontally.

f fliplr(m)

f
has been flipped.

fliplr(m) returns a matrix with the same contents as m but where each row

fliplr([2 3 ; 5 7])returns [3 2 ; 7 5].

flipdim, flipud, permute, ipermute

185

flipud

Purpose Flip a matrix vertically.

Synopsis f = flipud(m)

Description f = flipud(m) returns a matrix with the same contents as m but where each column
has been flipped.

Example flipud([2 3 ; 5 7])returns [5 7 ; 2 3].

See also flipdim, fliplr, permute, ipermute

I8 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

fminsearch

Purpose

Syntax

Description

Solve an unconstrained nonlinear optimization problem using the Nelder-Mead

simplex algorithm.

x = fminsearch(f,x0,...)

[x,f] = fminsearch(f,x0,...)

[x,f,exitflag] = fminsearch(f,x0,...)
[x,f,exitflag,infostruct] = fminsearch(f,x0,...)

fminsearch(f,x0,options)

x = fminsearch(f,x0) solves the unconstrained nonlinear optimization problem
min flx), where f is a function and x0 the initial guess. (Functions can be either

strings, denoting the function name, or inline functions.)

Aside from x, fminsearch can return f, the value of the objective function at x,
exitflag, indicating the exit condition (0, if fminsearch reached the maximum
number of iterations or function evaluations, 1 for successful completion) and a
struct infostruct containing information about number ofiterations and function

evaluations.

fminsearch (f,x0,options) also includes an options structure, which can have

the following fields (N is the number of variables):

TABLE |-17: VALID PROPERTIES FOR THE FMINSEARCH FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

Display ‘off'| 'iter' "off' "iter' displays the result at
each iteration and whether
fminsearch performs a
reflection, expansion, inner or
outer contraction, or a shrinking

step.

MaxFunEvals integer 200*N Limit on number of function
evaluations.

MaxIter integer 200*N Iterations limit.

LengthScale numeric 1 Length scale used when creating

the initial simplex, which is
defined by the starting guess x0
and n more points

x0 + LengthScale*eye(n).

187

fminsearch

TABLE I-17: VALID PROPERTIES FOR THE FMINSEARCH FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

Param any empty Allows additional arguments to
be passed along to the callback
function. Use a cell array to pass
along more than one argument.
Note that the cell array will be
unpacked in the function call,
hence setting Paramto {a1,a2}
will result in function being called
with userfun(x,at,a2).

TolFun numeric 1le-4 Absolute termination tolerance

on the function precision

TolX numeric 1e-4 Absolute termination tolerance
on the largest diameter of the
simplex, using infinity norm

Examples function f = exnm_obj(x)
f =x(1)"4 + x(2)%4 - x(1)*x(2) + 1;
[x,f] = fminsearch('exnm_obj',[1 1]);
% With inline function
[x,f] = fminsearch(inline('x(1)"4 + x(2)"4 - x(1)*x(2) + 1'),
[111);

Algorithm fminsearch uses the Nelder-Mead simplex algorithm, as defined in “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions” (Jeftrey C.
Lagarias, James A. Reeds, Margaret H. Wright, Paul E. Wright, SIAM Journal of
Optimization, 9(1) p.112-147, 1998).

188 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

fopen

Purpose

Synopsis

Description

Open a file or get information about an open file.

h = fopen(filename)
h fopen(filename, mode)
h fopen(filename, mode, endian)

[name, mode, endian] = fopen(h)

h = fopen(filename) opens the file filename for reading and returns a handle
to the open file.

h = fopen(filename, mode) opens the file filename in the mode mode. The
following modes can be used:

TABLE |-18: FOPEN MODES

MODE INTERPRETATION

‘r' Open for reading.

‘w' Open for writing.

'a' Open for writing, position the file pointer at the
end of the file.

d of the fil

‘r+! Open for reading and writing.

"w! Open for reading and writing, remove the current
contents of the file.

"at+' Open for reading and writing, position the file

pointer at the end of the file.

If running Windows, you can append a 't' to the mode string. This results in the
file being opened in text mode.

h = fopen(filename, mode, endian) opens the file filename in the mode mode
and the endianness endian. The following endiannesses can be used:

TABLE 1-19: ENDIANNESSES

MODE INTERPRETATION

'n' or 'native’ Open in the native system endianness.
'b','s', 'ieee-be"', Open as big-endian.

or 'ieee-be.164'

'1','a',ieee-le',or Open as little-endian.

'ieee-le.164'

The file is open in the native endianness if no endianness is specified.

[name, mode, endian] = fopen(h) returns the filename, mode, and endianness
used when the file handle h was created using fopen. The file must be open.

189

fopen

See also fclose, fread, fwrite

190 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

format

Purpose

Synopsis

Description

Set the output format.

format('compact')
format('loose')

format('short')
format('long')
format('hex")
format('+"')

format('compact') results in output being generated with no extra vertical space.

format('loose') results in output being generated with empty lines inserted to
improve readability. This is the default.

format ('short') results in floating-point numbers being displayed with
approximately 8 significant digits. This is the default.

format('long') result in floating-point numbers being displayed with
approximately 16 significant digits.

format('hex') results in floating-point numbers being displayed as the

hexadecimal form of their IEEE-754 representation.

format('+") results in floating-point numbers being displayed as '+ if they are

positive; ' - ' if they are negative; and '

if they are zero.

191

formula

Purpose Get the formula computed by an inline function.

Synopsis form = formula(func)

Description form = formula(func), where func is an inline function, returns the string that

defines the function computed by func. This is the first argument that was given to
inline when func was created.

See also inline

192 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

fprintf

Purpose Write formatted output to a file.

Synopsis n = fprintf(h, format, ...)
n = fprintf(format, ...)

Description For the syntax and interpretation of the format string, see the manual entry for
sprintf.
n = fprintf(h, format, ...) writes formatted output to the file pointed to by

the handle h. The return value is the number of bytes written.
n = fprintf(format, ...) writes formatted output to the terminal.

See also fopen, sprintf

193

frame

Purpose
Synopsis

Description

See also

Create a window for use when creating a custom user interface.

£

frame(title,...)

£

frame(title) creates a frame with the specified title.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the function to further control how the frame is created:

TABLE 1-20: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

position 2-element vector The position on the screen for the upper left
corner of the frame.

size 2-element vector The size of the frame. If not given the frame

will be packed to fit the size of the
components that have been added to it.

The function returns a frame object that can then be further manipulated using the

methods in the following table.

TABLE I-21: METHODS FOR MANIPULATING A FRAME OBJECT.

METHOD

DESCRIPTION

addMenu (menu)

close

getSize

setSize(width,height)

show

Adds the specified menu at the end of the
main menu bar of the frame.

Closes the frame.

Returns the size of the frame as a
2-element vector with width and height.

Sets the size of the frame.

While the frame is being created it is
invisible. Call the show method after
adding all components to it to show it on
screen.

The methods for panel are also available for frame, thereby allowing you to add

panels and components to a frame.

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

component, dialog, panel

194 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

fread

Purpose

Synopsis

Description

Read binary data from a file.

d = fread(h)

d = fread(h, sz)

d = fread(h, type)

d = fread(h, sz, type)

d = fread(h) reads one character at a time from the file with the handle h until it

reaches the end of the file. The characters read are returned in a real column vector.

d = fread(h, sz), where sz is a numerical vector, reads one character at a time

from the file with the handle h until it has filled a matrix of size sz. The last element

of sz can be Inf;in that case, that dimension grows until the end of the file is

reached.

d = fread(h, type), where type is a string, reads data of type type until it

reaches the end of the file. The following type syntaxes are supported:

TABLE 1-22:

TYPE SYNTAX

INTERPRETATION

‘char'

'schar’
'signed char'
‘char*1'
‘uchar'
‘unsigned char'
'int8'
‘integer*1'
'uint8’
'int16'
‘short’
'integer*2'
'uint16’
‘ushort'
‘unsigned short'
'int32'

‘int'
'integer*4'’
'uint32'
'uint'
‘unsigned int'

Read signed 8-bit characters into double matrix.

Read unsigned 8-bit characters into double
matrix.

Read signed 8-bit integers into double matrix
Read unsigned 8-bit integers into double matrix.

Read signed 16-bit integers into double matrix.

Read unsigned |6-bit integers into double
matrix.

Read signed 32-bit integers into double matrix.

Read unsigned 32-bit integers into double
matrix.

195

fread

196 |

Examples

TABLE 1-22:

TYPE SYNTAX

INTERPRETATION

'int64'
‘long’
‘integer*8’
'uint64'’
‘unsigned long'
'ulong'’
'float'
'float32’
‘real*4’
'single’
‘double’
'float64'
‘real*8’

‘xtype’
'typel=>type2’

"block*type’

"block*typel=>type2"

Read signed 64-bit integers into double matrix.

Read unsigned 64-bit integers into double
matrix.

Read 32-bit IEEE floating-point numbers into
double matrix.

Read 64-bit IEEE floating-point numbers into
double matrix.

Read data of type fype into a matrix of the
closest type. Equivalent to only using 'type’.

Read data of type ¢typel into a matrix of the
type closest to type2.

Read block values of type fype into a double
matrix. Must be used together with a skip
parameter, see below.

Read block values of type typel into a matrix
of the type closest to type2. Must be used
together with a skip parameter, see below.

d = fread(h, sz, type) reads data of type type until it has filled a matrix of

size sz.

d = fread(h, sz, type, skip) reads data of type type until it has filled a matrix
of' size sz. After reading one or more values (depending on the type string), it reads
skip values of the same type but ignores them. This only has meaning if the type
string contains a '=>"' (see the table), and it can be used for reading entries from

records of a fixed size.

d = fread(h, [4 inf]) returns a4 x n-matrix of doubles where 7 is the largest

integer such that it is possible to read 4n characters without reaching the end of the

file.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

fread

d = fread(h, 'int32=>double') readssigned 32-bit integers until it reaches the

end of the file is reached and returns them in a column vector of doubles.

d = fread(h, 20, '5*double', 3) reads five doubles from file, skips the next

three, and so on until it has read 20 doubles.

See also fopen, fwrite

197

freqspace

198 |

Purpose

Synopsis

Description

See also

Create a frequency range.

freq = freqspace(sz)
freq freqspace(sz, 'whole')

[freql, freq2] = freqspace(sz)
[freql, freq2] = freqspace(sz, 'meshgrid')

freq = fregspace(sz), for a scalar sz, returns a vector with (sz+1)/2 uniformly
spaced values between 0 and 1.

freq = freqgspace(sz, 'whole'), for a scalar sz, returns a vector with sz
uniformly spaced values between 0 and 2(1-1/sz).

[freql, freq2] = freqgspace(sz), for a vector sz, of length 2 returns
length(sz(2)) uniformly spaced values between -1+1/sz(2)) and 1-1/s2(2) in
freq1, and it returns length(sz (1)) uniformly spaced values between -1+1/
sz(1)) and 1-1/sz(1) in freqg2.

[freql, freq2] = freqspace(sz, 'meshgrid'), for a vector of length 2,
computes [a, b] = freqgspace(sz) and returns meshgrid(a, b).

meshgrid

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

frewind

Purpose Rewind a file.
Synopsis frewind(h)
Description frewind(h), for an integer h, rewinds the file associated with the handle.

h must be a handle returned by fopen.

See also fopen

199

fscanf

Purpose Read formatted data from file.
Synopsis d = fscanf(h, format)
d = fscanf(h, format, sz)

Description d = fscanf(h, format, ...) readsformatted data from the file handle h. For

the interpretation of the format and sz argument, see sscanf. For valid format

strings, see sprintf.

h must be a handle returned by fopen.

See also sscanf, fprintf, sprintf

200 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

fseek

Purpose Move a file pointer.
Synopsis fseek(h, offset, dir)
Description fseek(h, offset, dir), for integers h and offset, moves the file pointer by a

distance offset bytes in a way defined by dir, which can have the following values:

DIR INTERPRETATION

"bof"' or -1 Move offset bytes from the
beginning of the file; of fset must be
nonnegative.

'cof' or0 Move offset bytes from the current
position in the file.

'eof ' or +1 Move offset bytes from the end of

the file; offset must be nonpositive.

h must be a handle returned by fopen.

See also fopen

201

ftell

Purpose Get the position of the file pointer.

Synopsis pos ftell(h)

Description pos = ftell(h), for an integer h, returns the offset (in bytes) of the file pointer

relative to the beginning of the file. If the handle is invalid, it returns -1.

h must be a handle returned by fopen.

See also fopen, fseek

202 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

full

Purpose Convert a matrix from sparse to full.
Synopsis f = full(sp)
Description f = full(sp), where sp is a sparse matrix, returns a full matrix with the same

contents. If sp is a full matrix, full returns sp.

See also sparse

203

fullfile

Purpose Create a file name.
Synopsis name = fullfile(diri, ..., file)
Description name = fullfile(diri, ..., file) creates a file name from one or more

directory names dir1, ...and a file name file.

See also fileparts

204 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

funm

Purpose

Synopsis

Description

Evaluate matrix function.

F = funm(A,fun)

F funm(A,fun,options)
[F,taylorflag] = funm(...)
[F,taylorflag,stat] = funm(...)
funm(A,fun,[],x1,x2,...)
funm(A,fun,options,x1,x2,...)

F = funm(A, fun) computes the matrix function fun of a square matrix A. fun must
have a Taylor series with an infinite radius of convergence and fun(x, k) should
return the k’th derivative of fun evaluated at x. fun = 'log' is a special case and

returns the matrix logarithm as described in logm.

F = funm(A,fun,options) computes the matrix function with one or more

parameters given in the structure options:

FIELDNAME VALUE{DEFAULT} DESCRIPTION

TolBlk positive scalar Tolerance for blocking Schur form.
{0.1}

TolTay positive scalar Termination tolerance for Taylor series.
{eps)

MaxTerms positive integer Maximum number of Taylor series terms.
{250}

MaxSqrt positive integer Maximum number of square roots in inverse
{100} scaling and squaring method. Only applicable

when computing logarithm.)

Ord integer vector Specific ordering of the Schur form, T. (See

{0 ordschur for more information.)

[F,taylorflag] = funm(...) returns taylorflag, which is 1 if one or more

Taylor series evaluations did not converge and 0 otherwise.

[F,taylorflag,stat] = funm(...) also returns a structure stat with the
following fields:

FIELDNAME DESCRIPTION

terms Vector containing the number of Taylor series terms used when
evaluating each block. In the case of the logarithm, it contains instead
the number of square roots evaluations.

ind Cell array that specifies the blocking, that is, the block (i,j) of the
reordered Schur matrix T is T(stat.ind{i},stat.ind{j}).

205

funm

206 |

Example

See also

FIELDNAME DESCRIPTION
ord The ordering passed to ordschur
T The reordered Schur matrix.

When the Schur form is diagonal,

stat = struct('terms',ones(n,1),'ind',{1:n})

funm(A,fun,[]1,x1,x2,...) and funm(A,fun,options,x1,x2,..
additional input arguments x1, X2, ... to be passed to fun.

function ¢ = coshm(a,k)

if mod(k,2);

¢ = sinh(a);
else

¢ = cosh(a);
end

F = funm(X, 'coshm');

expm, logm, sqrtm

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

.) allows

fwrite

Purpose Write data to a binary file.

Synopsis n = fwrite(h, mat)
n = fwrite(h, mat, type)
n = fwrite(h, mat, type, skip)
Description n = fwrite(h, mat) writes the matrix mat to the file handle h.

n = fwrite(h, mat, type) writes cach element as type type. For a listing of the
available types, see fread.

n = fwrite(h, mat, type, skip) moves the file pointer forward a distance of

skip bytes before writing each element.

The number of elements successfully written is returned.

Examples fwrite(h, pi) writes the double pi to the file.
fwrite(h, 1:100, 'int16') writes the 100 16-bit integers 1, 2, ... to file.

fwrite(h, 1:100, '5*int32', 3) skips three bytes, then writes the five 32-bit
integers 1, 2, ..., 5, then skips three more bytes, and so on, until it has written the
integers 1:100. The file pointer moves 460 bytes forwards in the process; 400 bytes
are written and 60 bytes are skipped (3 bytes each for 20 blocks).

See also fopen, fread

207

fzero

Purpose Find a zero of a function.
Synopsis x = fzero(f, x0, ...)
Description x = fzero(f, x0, ...) finds the x argument where the function f is equal to

zero. f can be an M-file, inline function, or expression. If it is an expression, the
argument has to be 'x'. All other variables in the expression have to be passed to
fzero in the same order as they appear in the expression. fzero uses the secant
method to find a zero.

Valid property-value pairs:

TABLE 1-23:
PROPERTY DESCRIPTION
'maxiter’ Maximum number of iterations before giving up.
"tol' Absolute tolerance for x.
'x1! Second point for the secant method.

All other arguments are passed to the function call.

Examples Find a zero of cosine near 1:
x0 = fzero('cos(x)',[1]1);
fzero using an inline function:

myfun=inline('exp(y).*cos(x)");
x=-5:0.05:5;
plot(x,myfun(x,2));

Find a zero of exp(2) . *cos (x) using start guess 5:
x1 = fzero(myfun,-5,2)

Find a zero of exp(2) . *cos(x) using start guess -2
x2 = fzero(myfun,-2,2);

See also inline

208 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

gamma

Purpose Gamma function.
Synopsis g = gamma(z)
Description g = gamma(z) computes the gamma function, as defined in the following equation,

of the elements of z:
I(z) = j e
0

Las

z must be a real array.

See also gammainc, gammaln, beta

209

gammainc

210 |

Purpose

Synopsis

Description

See also

Incomplete gamma function.

g = gammainc(x,a)
g = gammainc(x,a,tail)

g = gammainc(x,a) computes the incomplete gamma function (sometimes called

the regularized incomplete gamma function), as defined in the following equation:
X
1 a-1 -t
P(x,a) = F(a)..[t e dt
0
where T'(x) is the gamma function.

a and x must be nonnegative real arrays of the same size or either one can be a scalar.

g = gammainc(x,a,tail) computes the incomplete gamma function using either
the upper or lower tail, denoted by the strings 'upper' and 'lower', respectively.
The defaultis ' lower'.

gammainc(x,a, 'upper') = 1 - gammainc(x,a, 'lower').

gamma, gammaln, betainc

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

gammaln

Purpose
Synopsis

Description

Example

See also

Logarithm of the gamma function

g gammaln(z)

g = gammaln(z) computes the natural logarithm of the gamma function of z

without computing the actual gamma function. z must be a real array.

gammaln(200) computes the logarithm of the gamma function where
log (gamma (200)) would overflow.

gamma, gammainc, beta, betaln

211

gca

Purpose
Synopsis

Description

See also

Get the handle to the current axes in the current figure.
h = gca

h = gca returns the handle to the current axes in the current figure. This is the axes
object into which the plotting commands plot if the 'parent' property is not used
to explicitly specify one.

You can change the current axes with the subplot command or by clicking in the

axes. Giving a figure focus makes the current axes in that figure the current axes.

cla, gcf, subplot

212 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

ged

Purpose
Synopsis

Description

Examples

See also

Greatest common divisor

[9,x,y] = gcd(a,b)

g = gcd(a,b) computes the greatest common divisors of the corresponding
elements of arrays a and b, which must be the same size or either one can be a scalar.

[g,x,y] = gcd(a,b) also returns integers x and y such that ax + by = g.

gcd([1209 678 211 136],342) returns [3, 6, 1, 2].

[g,x,y] = gcd([120 78 111 136], [142,20,12,98]) returns
g=1[2,2,8,2],x=1[-13, -1, 1, -18]andy = [11, 4, -9, 25].

lcm

213

gcf

204 |

Purpose Get the handle to the current figure.
Synopsis h = gcf
Description h = gcf returns the handle to the current figure, which you can change by giving

a certain figure window the focus.

The plotting commands plot into the current axes of the current figure if the

‘parent’' property is not used to explicitly specify an axes object.

See also clf, figure, gca

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

Purpose Compare matrices pointwise.

Synopsis d ge(a, b)

Description d = ge(a, b) testsif the elements of the matrix a are pointwise greater than or

equal to those of the matrix b. For each dimension, a and b must have the same size
or either of them must have size 1. In the latter case, the unit dimension is expanded

to the size of the nonunit dimension.

ge(a, b)isequivalenttoa >= b.
Examples [2 3 5] >=[137]

[6 -10 20] >= 0

[1 23] >=[1; 2]

See also eq, gt, le, 1t, ne

genpath

Purpose Return path string for a directory tree.

Synopsis p = genpath(dir)

Description p = genpath(dir), where dir is a string containing a directory name, returns a

path string containing dir, its subdirectories, the subdirectories of the

subdirectories, and so on.

See also path

216 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

get

Purpose Get data from a graphics object.
Synopsis get(h,name)
get(h)
Description get(h,name) returns the value of the property name for the object to which the

graphics handle h refers.

get (h) returns the values of all properties in a structure where the property names

are the field names of the structure.

See also set

217

getdata

Purpose Return application data from a frame or a dialog box.
Synopsis data = getdata(f)
Description data = getdata(f) returns data that has been stored in f using the storedata

function. f can be a frame or a dialog box.

See also storedata

218 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

getfield

Purpose Get the value of a structure field.

Synopsis f = getfield(s, field)
f = getfield(s, index1, field, index2)

Description f = getfield(s, field), for a structure s, returns the value of' s. (field).
f = getfield(s, index1, field, index2) returns

s(index1{:}).(field) (index2{:}) where index1 and index2 are cell arrays

containing array indices.

See also setfield

219

gradient

220 |

Purpose

Synopsis

Description

Examples

Compute approximate gradient.

df gradient (f)

df = gradient(f,h)
[fx,fy] = gradient(f)
[fx,fy] = gradient(f,h)

[fx,fy] = gradient(f,hx,hy)

[fx,fy,fz,...] = gradient(f)

[fx,fy,fz,...] = gradient(f,h)

[fx,fy,fz,...]1 = gradient(f,hx,hy,hz,...)

df = gradient(f) computes the 1D gradient of a vector f using unit spacing.

df = gradient(f,h) computes the gradient using spacing h between points. h

must be a scalar.

[fx,fy]l = gradient(f) computes the gradient of a matrix f using unit spacing.
fx corresponds to ——, the differences in the column direction, and fy corresponds

to ° the differences in the row direction.
Y

[fx,fy] = gradient(f,h) computes the gradient using spacing h between points.
h must be a scalar.

[fx,fy] = gradient(f,hx,hy) computes the gradient using pacing specified by
hx and hy. f must be 2D and hx and hy must be either scalars (in which case they

specify spacing between points in the x and y directions, respectively) or vectors, in
which case they specify the coordinates of the points in their respective directions.

If either hx or hy is a vector, its length must match the corresponding dimension of
f.

[fx,fy,fz,...] = gradient(f) computes the gradient of the 3D array f. fz

corresponds to 7’ the differences in the 2z direction.
z

[fx,fy,fz] = gradient(f,h) computes the gradient using the spacing h

between points. h must be a scalar.
[fx,fy,fz]=gradient(f,hx,hy,hz) uses the spacing given by hx, hy, hz.

Similarly, when f is an n-dimensional array, gradient must have n outputs, and the
input must be in the form gradient(f,h) or gradient(f,h1,h2...hn).

gradient([1 3 5 10]) computes the 1D gradient with unit spacing and returns
[2, 2, 3.5, 5].

a=1[14012;03 -10 0;2 -1 3 4];

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

gradient

[fx,fy] = gradient(a) computes fx and fy with unit spacing.
fx = [3, -0.5, 4, 12 ; 3, -5, -1.5, 10 ; -3, 0.5, 2.5, 1] and
fy = [-1, -1, -10, -12 ; 0.5, -2.5, 1.5, -4 ; 2, -4, 13, 4].

[fx,fy] = gradient(a,0.2,0.4) computes fx and fy with spacing 0.2 in the
x direction and 0.4 in the y direction.

fx = [15 -2.5 20 60;15 -25 -7.5 50;-15 2.5 12.5 5] and

fy = [-2.5 -2.5 -25 -30;1.25 -6.25 3.75 -10;5 -10 32.5 10].

See also del2, diff

221

gray

Purpose Create a colormap with gray scales.
Synopsis gray(n)
Description gray (n) returns a colormap with n colors. It is a matrix with n rows and 3 columns

with RGB values for the colors in the colormap. The colors are gray scales.

See also colormap, bone, cool, grayprint, jet, hot, hsv, pink, wavemap

222 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

grayprint

Purpose Create a colormap with printer-friendly gray scales.
Synopsis grayprint(n)
Description grayprint(n) returns a colormap with n colors. It is a matrix with n rows and 3

columns with RGB values for the colors in the colormap. The colors are

printer-friendly gray scales.

See also colormap, bone, cool, gray, jet, hot, hsv, pink, wavemap

223

grid

Purpose Display grid lines.

Synopsis grid('on')
grid('off"')
grid

grid(ax, ...)

Description grid('on') turns the display of grid lines on.
grid('off"') turns the display of grid lines off.
grid toggles the display of grid lines on or off.

grid(ax,...) controls the display of grid lines in the axes ax instead of in the
current axes.

See also box

224 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

griddata

Purpose

Synopsis

Description

Examples

2D data gridding.

zi = griddata(x,y,z,xi,yi)
[xi,yi,zi] = griddata(x,y,z,xi,yi)
s = griddata(x,y,xi,yi)
griddata(...,method)
griddata(...,method,bnd)
griddata(...,method,bnd,strategy)

zi = griddata(x,y,z,xi,yi) performs a delaunay triangulation on x and y,
where z = f(x,y), and interpolates xi and y1i linearly to determine zi =

f(xi,yi). The points do not need to be uniformly spaced.

x and y must either be of the same size or vectors of different orientation, in which
case griddata uses [x,y] = meshgrid(x,y).z must either be the same size as x
and y or, when they are vectors of different orientation, a matrix with length(x)
rows and length(y) columns. Similarly, when xi and yi are vectors of different
orientation, griddata uses [xi,yi] = meshgrid(xi,yi). Otherwise, xi and yi

must have the same size.
[xi,yi,zi] = griddata(x,y,z,xi,yi) returns xi and yi used by griddata.

s = griddata(x,y,xi,yi) returns a struct s that contains the triangulation of x
and y and information about which delaunay element the points in xi and yi
belong to, including local coordinates. This can be used together with tinterp to
interpolate different data values using the same points and triangulation. (See

tinterp for more details.)

griddata(...,method) specifies the interpolation method, which can be either
'linear' (denoting linear interpolation) or 'nearest' (denoting nearest
neighbor interpolation). Nearest neighbor in this case signifies the closest vertex in

the nearest delaunay triangle. Default method is linear.

griddata(...,method,bnd) also includes boundary information bnd, which
griddata sends on to the internal call to delaunay (see delaunay for further
information).

griddata(...,method,bnd,strategy) allows the search strategy to be set

explicitly. strategy can be either 'boxonly' (default for linear interpolation), in
which case griddata returns NaN for all points outside the mesh, or 'closest’
(default for nearest neighbor interpolation), in which case griddata locates the

nearest element for all points.

rand('state',0);

225

griddata

X = 4*rand(1,100)-2;y = 4*rand(1,100)-2;
z=sin(x).*sin(y).*exp(-x."2-y."2);

ti = -2:.1:2;

[xi,yi] = meshgrid(ti,ti);

zi = griddata(x,y,z,xi,yi,'linear',[],'closest');

plot3(x,y,z,"'*");
hold on;
mesh(xi,yi,zi);
hold off;

g = griddata(x,y,xi,yi, 'linear',[],'closest');
zi1 = tinterp(g,z);
z2 = sin(x).*sin(y);
zi2 = tinterp(g,z2);

plot3(x,y,z,'*"');
hold on;
mesh(xi,yi,zil);
hold off;

figure;
plot3(x,y,z2,"'*");
hold on;
mesh(xi,yi,zi2);
hold off;

g is the struct:

g:

method: ‘'linear’

strategy: 'closest'
t: [182x3 double]
ind: [1681x1 double]
coord: [1681x3 double]

size: [41 41]
See also griddata3, griddatan, tinterp, tsearch, tsearchn, delaunay, delaunay3

226 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

griddata3

Purpose

Synopsis

Description

Examples

3D data gridding.

vi = griddata3(x,y,z,v,xi,yi,zi)

s = griddata3(x,y,xi,zi)
griddatan3(...,method)
griddatan3(...,method,bnd)
griddatan3(...,method,bnd,stratgy)

vi = griddata3(x,y,z,v,xi,yi,zi) performsa 3D delaunay triangulation on
the points defined by x, y and z, where v = f(x,Yy,z), and interpolates the points
defined by xi, yi and zi linearly to determine vi = f(xi,yi,zi). The points do

not need to be uniformly spaced.

s = griddata3(x,y,z,xi,yi,zi) returns a struct s containing the triangulation
of'x, y and z and information about which delaunay element each point xi, yi and
z1 belongs to, including local coordinates. This can be used together with tinterp
to interpolate different data values using the same points and triangulation. (See

tinterp for more details.)

griddata3(...,method) specifies the interpolation method, which can be either
'linear' (denoting linear interpolation) or 'nearest' (denoting nearest
neighbor interpolation). Nearest neighbor in this case signifies the closest vertex in

the nearest delaunay tetrahedron. Default method is linear.

griddata3(...,method,bnd) also includes boundary information bnd, which
griddata3 sends on to the internal call to delaunay3 (see delaunay3 for further
information).

griddata3(...,method,bnd,strategy) allows the search strategy to be set

explicitly. strategy can be either 'boxonly' (default for linear interpolation), in
which case griddata3 returns NaN for all points outside the mesh, or 'closest'
(default for nearest neighbor interpolation), in which case griddata3 locates the

nearest element for all points.

x = rand(1,13);y = rand(1,13);z = rand(1,13);

V = sin(x).*sin(x).*sin(z);

[xi,yi,zi] = meshgrid(0:.24:1);

vi = griddata3(x,y,z,v,xi,yi,zi,'linear',[],'closest');

g = griddata3(x,y,z,xi,yi,zi, 'nearest');
vil = tinterp(g,rand(1,13));
vi2 = tinterp(g,rand(1,13));

g is the struct:

g =

227

griddata3

method: 'nearest'
strategy: 'closest'
t: [28x4 double]
ind: [125x1 double]
coord: [125x4 double]
size: [5 5 5]

See also griddata, griddatan, tinterp, tsearch, tsearchn, delaunay, delaunay3

228 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

griddatan

Purpose

Synopsis

Description

Examples

nD data gridding.

yi = griddatan(pts,y,ptsi)

s = griddatan(pts,ptsi)
griddatan(...,method)
griddatan(...,method,bnd)
griddatan(...,method,bnd,strategy)

yi = griddatan(pts,y,ptsi) performs a delaunay triangulation on the points in
pts, where y = f(x1,x2,...),Xxj = pts(:,]),and interpolates the points in
ptsilinearly to determine yi = f(xi1,xi2,...),where xij = ptsi(:,j). The
points do not need to be uniformly spaced. pts and ptsi must be of size nx2 (for
2D) or nx3 (for 3D).

s = griddatan(pts,ptsi) returns a struct s containing the triangulation of pts
and information about which delaunay element each point belongs to, including
local coordinates. This can be used together with tinterp to interpolate different

data values using the same points and triangulation. (See tinterp for more details.)

griddatan(...,method) specifies the interpolation method, which can be either
'linear' (denoting linear interpolation) or 'nearest' (denoting nearest
neighbor interpolation). Nearest neighbor in this case signifies the closest vertex in

the nearest delaunay element. Default method is linear.

griddatan(...,method,bnd) also includes boundary information bnd, which
griddatan sends on to the internal delaunay call (see delaunay or delaunay3 for

further information).

griddatan(...,method,bnd,strategy) allows the search strategy to be set

explicitly. strategy can be either 'boxonly' (default for linear interpolation), in
which case griddatan returns NaN for all points outside the mesh, or 'closest'
(default for nearest neighbor interpolation), in which case griddatan locates the

nearest element for all points.

rand('state',0);

p = 4*rand(100,2)-2;
z=sin(p(:,1)).*sin(p(:,2)).*exp(-p(:,1).%2-p(:,2)."2);
ti = -2:.1:2;

[xi,yi] = meshgrid(ti,ti);

ptsi = [xi(:),yi(:)];

zi = griddatan(p,z,ptsi,'linear',[], 'closest’');

g = griddatan(p,ptsi, 'linear',[], 'closest’');
zi1l = tinterp(g,z);
z2 = sin(p(:,1)).*sin(p(:,2));

229

griddatan

zi2 = tinterp(g,z2);

g is the struct:

g:

method: ‘'linear’
strategy: 'closest'

t: [182x3 double]

ind: [1681x1 double]

coord: [1681x3 double]
size: [1681 1]

See also griddata, griddata3, tinterp, tsearch, tsearchn, delaunay, delaunay3

230 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

gt

Purpose
Synopsis

Description

Examples

See also

Compare matrices pointwise.
d = gt(a, b)

d = gt(a, b) testsif the elements of the matrix a are pointwise greater than those
of the matrix b. For each dimension, a and b must have the same size or either of
them must have size 1. In the latter case, the unit dimension is expanded to the size
of the nonunit dimension.

gt(a, b)isequivalenttoa > b.
[235] >[137]

[5 -10 20] > O
[1 23] >[1; 2]

eq, ge, le, 1t, ne

231

help

Purpose Display help text.
Synopsis help
help(topic)
help(obj)
Description help displays a brief list of available help topics.

help(topic) displays the help text for a topic, which can be the name of an M-file
or class on the path; in that case, the help text is the first contiguous block of
comment lines in the file. If no matching file is found and there is a class instance
variable topic in the current workspace, then the help for the class to which topic

belong is displayed.

help(obj) where obj is an instance of a user-defined class displays the help text for
the class to which obj belongs.

232 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

hess

Purpose

Synopsis

Description

See also

Hessenberg form.

H = hess(A)
[Q,H] = hess(A)
[H,T,Q,Z] = hess(A,B)

H = hess(A) returns a Hessenberg form of a square matrix A.

[Q,H] = hess(A) also returns a unitary matrix Q such that A = Q*H*Q"' and
Q'*q = I.
[H,T,Q,Z] = hess(A,B) returns a Hessenberg matrix H, an upper triangular matrix

T, and unitary matrices Q and Z such that @*A*Z = Hand @Q*B*Z = T.Aand B must

be square matrices, and B must be upper triangular.

schur

233

hex2dec

234 |

Purpose

Synopsis

Description

Example

See also

Convert hexadecimal strings to decimal integers.

d

hex2dec(str)

d

decimal integer. str can also be a string matrix, in which case hex2dec converts

hex2dec (str) converts a string str representing a hexadecimal number to a

each row, or a cell array of strings, in which case hex2dec converts each element.

hex2dec('AE12") converts the hexadecimal string 'AE12" to its decimal
equivalent 44562.

base2dec, bin2dec, hex2num, dec2base, dec2bin, dec2hex, num2hex

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

hex2num

Purpose
Synopsis

Description

Example

See also

Convert IEEE-754 hexadecimal strings to decimal numbers.

d hex2num(str)

d

number to a decimal floating point number d. str can also be a string matrix, in

hex2num(str) converts a string str representing an IEEE-754 hexadecimal

which case hex2num converts each row, or a cell array of strings, in which case
hex2num converts each element. If an input string is shorter than 16 characters,
hex2num automatically pads it with zeros. For strings longer than 16 characters,
hex2num ignores any beyond the first 16.

hex2num({'3ff','4034', '7ff'}) returns [1 ; 20 ; Inf].

base2dec, bin2dec, hex2dec, dec2base, dec2bin, dec2hex, num2hex

235

hidden

236

Purpose

Synopsis

Description

See also

Remove or show hidden lines for a mesh plot.

hidden('on")

hidden('off"')

hidden

hidden(ax, ...)

hidden('on') turns the removal of hidden lines in the current axes on.
hidden('off"') turns the removal of hidden lines in the current axes off.

hidden toggles hidden-line removal on or off.

hidden(ax,...) controls hidden-line removal in the axes ax instead of in the

current axes.

mesh

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

hist

Purpose

Synopsis

Description

See also

Calculate histogram data or plot histogram.

n = hist(x)

n = hist(x,ni)

n = hist(x,c)
[n,cent] = hist(...)

n = hist(x) divides the interval between the minimum and maximum value of x
into 10 intervals of equal size. It returns the number of elements of x that fall into

cach of these bins. If x is a matrix, one count is done for each of the columns.
n = hist(x,ni) divides the interval into ni intervals of equal size.

n = hist(x,c) divides the interval between minimum and maximum value of x
into intervals centered at the positions given by the vector c. It then returns the

number of elements of x that falls into each of these bins.
[n,cent] = hist(...) alsoreturns the centers for each of the subintervals in cent.

When hist is called without output arguments a histogram plot is produced from

the generated data.

histc

237

histc

238 |

Purpose

Synopsis

Description

Example

See also

Histogram count.

]
1]

histc(x,edges)
histc(x,edges,dim)
[n,bin] = histc(...)

S5
1l

n histc(x,edges) returns the number of elements of x that fall in the bins
specified by edges, which is a vector containing monotonically nondecreasing
values. Thus x (1) falls in bin k if edges (k) <= x(i) < edges(k+1). The last bin
contains the number of elements that exactly match the last element of edges. To

include all values (except NaN), put -Inf and Inf at the extremities of edges.

When x is a vector, n is the histogram count of x. When x is a matrix, n is matrix
containing the histogram count of each column of x. When x is an n-dimensional

array, n is the histogram count along the first nonsingleton dimension of x.
n = histc(x,edges,dim) returns the histogram count along the dimension dim.

[n,bin] = histc(...) also returns the index vector bin. For each element of x,

bin contains the index into which it falls, or 0 if it does not fit into any bin.
a=1:20;
histc(a,[0 5 7 12 20]) returns [4, 2, 5, 8, 1].

b=[-10.1 2 2.12 3 pi 1 1 0];
[res,ri] = histc(b,[-10,1,2,4]) returns
res = [1, 2, 4, O]Jandri = [0, 3, 3, 3, 3, 2, 2, 1].

hist

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

horzcat

Purpose Concatenate matrices or cell arrays horizontally.
Synopsis ¢ = horzcat(argl, ...)
Description ¢ = horzcat(argl, ...) returns the horizontal concatenation of its input

arguments, which need not be of the same type; if they differ, the result is the

common base type of them all.

horzcat(arg1l, ...) isequivalentto [argl , ...]orcat(2, argl, ...).

See also cat, vertcat

239

hold

Purpose Retain contents in an axes when adding new plots.
Syntax hold('on')
hold('off')
Description hold('on') specifies that the contents in the current axes should be kept when new

plots are added.

hold('off"') specifies that the current axes should be cleared automatically before
adding new plots.

See also ishold

240 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

hot

Purpose Create a colormap with colors from red and yellow to white.

Synopsis hot(n)

Description hot(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are from red and yellow
to white.

See also colormap, bone, cool, gray, grayprint, jet, hsv, pink, wavemap

241

hsv

242 |

Purpose
Synopsis

Description

See also

Create a colormap containing a HSV colormap.

hsv(n)

hsv(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The HSV colormap varies the hue
component of the hue-saturation-value color model. The colors begin with red, pass
through yellow, green, cyan, blue, magenta, and return to red. The map is

particularly useful for displaying periodic functions.

colormap, bone, cool, gray, grayprint, jet, hot, pink, wavemap

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

Purpose Get the imaginary unit.

Syntax i
Description i is the imaginary unit.
See also imag, j

243

ifft

244

Purpose

Synopsis

Description

See also

Compute the inverse fast Fourier transform of a vector or matrix.

—h —h —h —h —h

£

ifft(v)

ifft(v, n)

ifft(v, n, dim)
ifft(v, [], dim)
ifft(..., 'symmetric')

ifft(v) computes the inverse FFT along the first nonunit dimension of v.

ifft(v, n) computes the n-point inverse FFT. v is padded with zeros if it is

shorter than n and truncated if it is longer.

£

£

£

ifft(v, n, dim) computes the n-point inverse FFT along the dimension dim.
ifft(v, [], dim) computes the inverse FFT along the dimension dim.

ifft(..., 'symmetric') computes the inverse FFT under the assumption

that the input has Hermitian symmetry. As a result, the output f is always real.

fft, fft2, ifft2, fftn, ifftn

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ifft2

Purpose

Synopsis

Description

See also

Compute the inverse 2D fast Fourier transform of a matrix.

f = ifft2(m)

f = ifft2(m, rows, cols)

f = ifft2(..., 'symmetric')

f = ifft2(m) computes the inverse 2D FFT of the matrix m.

f = ifft2(m, rows, cols) computes the 2D inverse FFT of size (rows, cols).

The input matrix is truncated or padded with zeros if necessary.

f = ifft2(..., 'symmetric') computes the inverse 2D FFT under the
assumption that the input has Hermitian symmetry. As a result, the output f is

always real.

fft, ifft, fft2, fftn, ifftn

245

ifftn

246 |

Purpose

Synopsis

Description

See also

Compute the inverse n-dimensional fast Fourier transform of an array.

f = ifftn(m)
f = ifftn(m, size)
f = ifftn(..., 'symmetric')

f = ifftn(m) computes the inverse n-dimensional FFT of the n-dimensional

array m.

f = ifftn(m, size) computes the inverse n-dimensional FFT of size size. The

input array is truncated or padded with zeros if necessary.

f = ifftn(..., 'symmetric') computes the inverse n-dimensional FFT under
the assumption that the input has Hermitian symmetry. As a result, the output f is

always real.

fft, ifft, fft2, ifft2, fftn, ifftn

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ifftshift

Purpose Undo the frequency-spectrum shift performed by fftshift.
Synopsis f = ifftshift(m)
Description f = ifftshift(m) shifts the indices in each dimension circularly so that index 1 in

f corresponds to the middle index in m. ifftshift is the inverse of fftshift.

See also circshift, fft, ifft, fft2, fftshift, ifft2, fftn, ifftn

247

imag

Purpose Return imaginary part.

Synopsis b = imag(a)

Description b = imag(a) returns the imaginary part of the complex matrix a.
See also i, j,real

248 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

image

Purpose
Synopsis

Description

See also

Show an image.
image (im)

image (im) displays the matrix im as and image. im is either an m-by-n matrix or a
m-by-n-by-3 matrix. If im is an m-by-n matrix the values in im are used as direct
indices into the colormap. If im is an m-by-n-by-3 matrix it is treated as direct
specification of colors and the last index corresponds to red, green and blue color
component values respectively. The lower left corner in the image will be centered

over (1,1) in the axes and the upper left corner over (n,m).

image(x,y,im) where x and y are two element vector places the corner of the
image at (x(1),y(1)) and (x(2),y(2)) in the axes.

The property values for patch can also be given at the end of the command to

control how the image is created.

image is suitable for displaying small images. Use imshow to display larger images.

imagesc, imread, imshow, imwrite

249

imageicon

Purpose Create an image icon that can be added to buttons and labels.
Synopsis im = imageicon(name)
Description im = imageicon(name) creates an image icon using the image in the file name.

That file can be an image of the types JPEG, GIF or PNG.
You can then add the image icon to buttons or labels when creating those objects.

See also button, label

250 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

imagesc

Purpose Show an image.
Synopsis imagesc(im)
Description imagesc has the same functionality as image except that a scaled mapping is used

when mapping the data values to the color map.

imagesc is suitable for displaying small images. Use imshow to display larger

images.

See also image, imread, imshow, imwrite

251

imread

Purpose Read an image from file.
Syntax im=imread(filename)
Description im=imread(filename) reads the image from the file filename into the matrix im.

im will be a height-by-width-by-3 matrix with RGB values for each pixel in the
image. The RGB values will be between 0 and 255 and of the type uint8.

The extension of filename is used to determine the type of the image. On 32-bit
Windows, Linux, Solaris, and Macintosh, the imread function supports bmp, jpeg,
png, and tiff images. On other platforms jpeg and png images are supported.

See also image, imagesc, imshow, imwrite

252 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

imshow

Purpose Show an image.

Synopsis imshow(im)
imshow(im,colormap)

Description imshow(im) show the image matrix im in a window. The matrix has dimensions
height-by-width-3 where the last index corresponds to the RGB values for the color
at each position. If im is a uint8 matrix the RGB values ranges from 0 to 255. If it

is a double matrix it ranges from 0 to 1.

im can also be a width-by-height matrix. In that case the values of im are mapped to
a colormap to create an image. By default the jet(1024) colormap is used. If you

want to use another colormap you can pass that as the second argument to imshow.

See also image, imagesc, imread, imwrite

253

imwrite

Purpose Write an image to file.
Synopsis imwrite(im,filename)
Description imwrite(im,filename) writes the image im to the file filename. IM is a

height-by-width-by-3 matrix with RGB values for each pixel in the image. It can
cither be a uint8 matrix with RGB values between 0 and 255 or a double matrix with
RGB values between 0 and 1.

The extension of filename is used to determine the type of the image. On 32-bit
Windows, Linux, Solaris and Macintosh bmp, jpeg, png and tiff images are
supported. On other platforms jpeg and png images are supported.

See also image, imagesc, imread, imshow

254 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

ind2sub

Purpose

Synopsis

Description

Example

See also

Convert a 1D matrix index into an equivalent multidimensional index vector.

= ind2sub(sz, n)

[ix1, ...]
ind2sub(sz, n) returns the multidimensional index vector (ix1,

[ix1, ...] =
.. .) that is equivalent to the matrix index n for a matrix of size sz.

3and col = 2asM(7) and

[row, col] ind2sub([4 5], 7) resultsin row
M(3, 2) refer to the same element for a 4 x 5 matrix M.

sub2ind

255

Purpose Get an infinite value.
Synopsis inf

m = inf(n)

m = inf(sz)

m = inf(n1,n2,...)

Description inf returns an infinite floating-point value.

m = inf(n), where n is an integer, returns an nxn all-inf matrix.

m = inf(sz), where sz is a vector of integers, returns an all-inf matrix of size sz.

m = inf(n1,n2,...), where ni are integers, returns an
n1xn2x ... all-inf matrix.
See also nan

256 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

inline

Purpose

Synopsis

Description

Examples

See also

Create an in-line function.

f = inline(expr)
f = inline(expr, n)
f = inline(expr, in1, ...)

f = inline(expr) creates an in-line function that computes the expression expr.
The inputs to the function are the identifiers returned by symvar. If symvar finds

no identifiers, the inline function takes a single input, x.

f = inline(expr, n),where nisanonnegative integer, creates an in-line function

that computes the expression expr. Inputs to the function are x, P1, ..., Pn.

f = inline(expr, ini1, ...) creates an inline function that computes the

expression expr using inputs inf, ...

r = inline('sqrt(x."2+y."2)") defines an in-line function with two inputs: x
and y.

r = inline('c*a+b', 'a', 'b', 'c') defines an in-line function with three
inputs in a specified order. Compare this with r = inline('c*a+b') which would

assume that the function arguments are given in the order 'c', 'a', 'b'.

argnames, symvar

257

input

Purpose Ask for user input.

Synopsis a = input(quest)
a = input(quest,'s')

Description a = input(quest) displays the text in the string quest and waits for user input at
the prompt. When the user presses the return key, it evaluates the entered text using

the variables in the current context and returns the result in a.

a = input(quest,'s"') returns the entered text as a string in a without trying to

evaluate it.

258 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

inputname

Purpose Get the name of an input to a user-defined function.
Synopsis name = inputname(n)
Description name = inputname (n) returns the name of the variable used as the nth input to the

user-defined function currently being executed. n must be an integer between 1 and

nargin. If the nth input does not map to a variable in the calling workspace, the

command returns

See also nargin, varargin

259

int2str

Purpose Integer to string conversion.
Synopsis str = int2str(n)
Description int2str(n) converts an integer or a 2D array of integers n into a string after

rounding all noninteger values.

Example int2str([1,-10,-1.4,-1.5,1.49,1.5,Inf,NaN]) returns the string
1 -10 -1 -2 1 2 Inf NaN'.

See also num2str, sprintf

260 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

int8, intlé, int32, int64

Purpose

Synopsis

Description

See also

Convert a matrix into an integer matrix.

3 3 3 3

m

int8(a)

int16(a)
(a)
(a

)

int32
int64

int8(a) converts the real matrix a to an integer matrix by rounding each

element to the closest 8-bit integer. Elements too large or too small to be

represented using 8-bit integers are rounded to the largest and smallest 8-bit

integers, respectively.

int16, int32, and int64 instead round to 16-, 32-, and 64-bit integers,

respectively.

The maximum and minimum values of n-bit integers are:.

TABLE 1-24
FUNCTION MIN MAX

int8 -128 127

int16 -32768 32767

int32 -2147483648 2147483647

int64 -9223372036854775808 9223372036854775807

uint8, uint16, uint32, uint64

261

interpl

262 |

Purpose

Synopsis

Description

Example

See also

1D interpolation.

yi = interpi1(x,y,xi)

yi = interpi(y,xi)

yi = interpi1(...,method)

yi = interpi(...,method,extrap)

yi = interpi1(x,y,xi), where y=f(x), performs linear interpolation to determine
yi=f{xi). x must be a vector, and y must be an array whose first dimension equals the
length of x.

yi = interpi(y,xi) performs linear interpolation using the default values

x = 1...n, where n is the length of the first dimension of'y.

yi = interp1(...,method) performs interpolation using a specific method:
‘nearest' (nearest neighbor interpolation), ' linear ' (linear interpolation),
‘spline’ (cubic spline interpolation) or 'cubic' (piecewise cubic Hermite

interpolation, same as' pchip').

yi = interpi(...,method,extrap) performs interpolation using a specific
method for out-of-range values. extrap can be cither the string 'const' or
‘extrap' (denoting a constant extension or extrapolation, respectively) or a scalar,
which is then returned for any out-of-range values. The default method for linear
and nearest neighbor interpolation is to set all out of range values to NaN. The other

interpolation methods use extrapolation.

This example interpolates points from the sine curve.

x = linspace(0,2*pi,10); y = sin(X);
xi = linspace(0,2*pi,20);

yin = interpi1(x,y,Xi, 'nearest');

yil = interp1(x,y,xi, 'linear');

yis = interpi1(x,y,xi, 'spline');

interp2, interp3, spline, pchip

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

interp2

Purpose

Synopsis

Description

See also

2D interpolation.

zi = interp2(x,y,z,xi,yi)

zi = interp2(z,xi,yi)

zi = interp2(...,method)

zi = interp2(...,method,extrap)

zi = interp2(x,y,z,xi,yi), where z = f(x,y), performs linear interpolation to
determine zi = f{xi,yi). If x and y are vectors of length n and m respectively, then z
must be a matrix of size mxn. x and y can also be grid matrices as described in

meshgrid. xi and yi can be matrices or vectors of different orientations.

zi = interp2(z,xi,yi) performs linear interpolation using the default values
X =1...nandy = 1...m.

zi = interp2(...,method) performs interpolation using a specific method:

'nearest' (nearest neighbor interpolation) or 'linear'(linear interpolation).

zi = interp2(...,method,extrap) performs interpolation using a specific
method for out-of-range values. extrap can be cither the string 'const' or
‘extrap' (denoting a constant extension or extrapolation, respectively) or a scalar,
which is then returned for any out-of-range values. The default method is to set all

out-of-range values to NaN.

interp1, interp3

263

interp3

264 |

Purpose

Synopsis

Description

See also

3D interpolation.

vi = interp3(x,y,z,v,xi,yi,zi)
vi = interp3(v,xi,yi,zi)
vi = interp3(...,method)
vi = interp3(...,method,extrap)

vi = interp3(x,y,z,v,xi,yi,zi), where v = flx,y,2), performs linear
interpolation to determine vi = f{xi,yi,zi). If x, y, and z are vectors of length n, m,
and p respectively, then v must be a matrix of size mxnxp. x, y, and z can also be grid
matrices as described in meshgrid. xi, yi, and zi can be matrices or vectors of

different orientation.

vi = interp3(v,xi,yi,zi) performs linear interpolation using the default values

Xx=1...n,y =1...mjandz = 1...p

vi = interp3(...,method) performs interpolation using a specific method:
‘nearest' (nearest neighbor interpolation) or 'linear'(linear interpolation).

vi = interp3(...,method,extrap) performs interpolation using a specific
method for out-of-range values. extrap can be cither the string 'const' or
‘extrap' (denoting a constant extension or extrapolation, respectively) or a scalar,
which is then returned for any out-of-range values. The default method is to set all

out-of-range values to NaN.

interp1, interp2

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

intersect

Purpose Set intersection.
Synopsis c = intersect(a,b)
= intersect(a,b, 'rows')
[c,ai,bi] = intersect(...)
Description ¢ = intersect(a,b) returns the intersection of a and b, that is, the elements

contained in both a and b, both of which can be either arrays or cell arrays of strings.

¢ = intersect(a,b,'rows'), where a and b must be 2D matrices, returns the
row intersection, that is the rows common to both a and b, both of which must have

the same number of columns.

[c,ai,bi] = intersect(...) also returns index vectors ai and bi, which
contain the linear indices of the elements of ¢ in a and b, respectively.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command.

TABLE 1-25: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off ‘on' Controls whether or not

output should be sorted.

Examples a=[12012
b=[24570
intersect(a,b)

31;
81;

returns [0, 2]

a=[123; 231; 345;543; 435;13 3];
b=1[345;345;122; 43S5];
intersect(a,b, 'rows') returns [3, 4, 5 ; 4, 3, 5]

a = {'green','yellow', 'blue', 'green','red'};
b= {'red','green'};

[c,ai,bi] = intersect(a,b) returnsc = {'green', 'red'}
[c1,ail,bil] = intersect(a,b, 'sort','off') returns the same result
unsorted.

See also ismember, setdiff, setxor, union, unique

265

intmax, intmin

266 |

Purpose

Synopsis

Description

See also

Get the largest and smallest values that can be represented as &-bit integers.

m = intmax(type)
m = intmin(type)

m = intmax
m = intmin

m = intmax(type) andm = intmin(type) return the smallest and largest values,
respectively, that can be returned by the integer conversion function type. Possible
values for type are 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16’,
'uint32', and 'uint64'.

m = intmax and m = intmin are equivalenttom = intmax('int32') andm =

intmin('int32"'), respectively.

int8, int16, int32, int64, uint8, uint16, uint32, uint64

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

Purpose Matrix inverse.
Synopsis inv(A)
Description inv(A) computes the inverse of the matrix A.

267

Purpose Test if a value belongs to a class.

Synopsis d isa(val, classname)

Description d isa(val, classname) returns true if val belongs to the class classname,

otherwise false.

See also class

268 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

iscell

Purpose Test if a value is a cell array.
Synopsis d = iscell(c)
Description d = iscell(c) returns true if ¢ is a cell array, otherwise false.

269

iscellstr

Purpose Test if a value is a cell array of strings.

Synopsis d iscellstr(c)

[o}
1l

Description iscellstr(c) returns true if c is a cell array of strings, otherwise false.

270 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ischar

Purpose Test if a value is a character matrix.

Synopsis d ischar(c)

o
1l

Description ischar(c) returns true if ¢ is a character matrix, otherwise false.

271

isdir

Purpose Test if a directory exists.

Synopsis d isdir(name)

[o}
1l

Description isdir(name) returns true there is a readable directory called name.

272 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

isempty

Purpose Test if a value is empty.
Synopsis d = isempty(m)
Description d = isempty(m) returns true if any dimension of m has size 0, otherwise false.

273

isequal

274 |

Purpose
Synopsis

Description

Note

See also

Test if values are equal.

d = isequal(a, b, ...)

d = isequal(a, b, ...) returns true ifall inputarguments are equal, otherwise
false. For matrices and cell arrays, equality means that the sizes and all elements
are equal. For structures to be equal, they must have the same fields and the values
of the fields must be equal. In all these cases, the equality tests for elements and

fields are performed by recursively invoking isequal.

isequal(NaN, NaN) returns false. If you want to consider NaNs as being equal,
use isequalwithequalnans

isequalwithequalnans

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

isequalwithequalnans

Purpose Test if two values are equal without special semantics for NaN.
Synopsis d = isequalwithequalnans(a, b, ...)
Description d = isequalwithequalnans(a, b, ...) returns true ifall input arguments are

equal, otherwise false. For matrices and cell arrays, equality means that the sizes
and all elements are equal. For structures to be equal, they must have the same fields
and the values of the fields must be equal. In all these cases, the equality tests for

clements and fields are performed by recursively invoking isequalwithequalnans.

See also isequal

275

isfield

Purpose Test if a structure has a certain field.

Synopsis d isfield(s, name)

Description d = isfield(s, name) returns true if s is a structure that contains a field called

name, otherwise false.

See also getfield, setfield

276 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

isfinite

Purpose Test if elements of a matrix are finite.

Synopsis d isfinite(a)

Description d = isfinite(a), for a matrix a, returns a logical array of the same size as a. The
elements in d are false if the corresponding position in a is Inf, -Inf, or NaN,
otherwise true. For complex matrices, this criterion is applied to the real and

imaginary parts.

See also isinf, isnan

277

isglobal

Purpose Test if a variable is global.
Synopsis d = isglobal(name)
Description d = isglobal(name) returns true if the workspace contains a global

variable name, otherwise false.

278 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

ishandle

Purpose Test if a variable is a graphics handle.
Synopsis is = ishandle(h)
Description is = ishandle(h) returns a logical array of the same length as h with true for the

entries in h that are graphics handles.

279

ishold

Purpose Check if hold is on.
Synopsis h = ishold
h = ishold(ax)
Description h = ishold returns 1 if hold is on in the current axes and 0 otherwise. When hold

is on, graphics commands that plot into the axes add data to the existing plot instead

of replacing it.

h = ishold(ax) returns the hold state of the axes ax.

See also hold

280 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

Purpose Test if elements of a matrix are infinite.
Synopsis d = isinf(a)
Description d = isinf(a), for a matrix a, returns a logical array of the same size as a. The

elements in d are true if the corresponding position in a is Inf or -Inf, otherwise false.

For complex matrices, this criterion is applied to the real and imaginary parts.

See also isfinite, isnan

281

isjava

Purpose Test if a value is a Java object.

Synopsis d isjava(jo)

[o}
1l

Description isjava(jo) returns true if jo is a Java object, otherwise false.

282 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

iskeyword

Purpose Test if a string is a reserved word.

Synopsis iskeyword
d = iskeyword(str)

Description iskeyword returns a cell array containing all reserved words.

d = iskeyword(str) returns true if stris a reserved word, otherwise false.

283

isletter

Purpose Test for letters.
Synopsis X = isletter(str)
Description x = isletter(str), where strisa character array, returns a logical array x of the

same size as str, containing true for each character that is a letter of the alphabet

and false otherwise.
Example isletter('ab89*%') returns [true, true, false, false, false, false].

See also ischar, isspace

284 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

islogical

Purpose Test if a value is logical.
Synopsis d = islogical(a)
Description d = islogical(a) returns true if a is a logical matrix, otherwise false.

285

ismember

286 |

Purpose

Synopsis

Description

Examples

See also

Determine set members.

ismember(a, b)
c = ismember(a, b, 'rows')
[c, ai] = ismember(a, b, ...)

o
1]

c = ismember(a,b) determines which elements of a belong to set b. a and b can
be either arrays or cell arrays of strings. ¢ is an array of the same size as a, containing
logical true and false depending on whether or not corresponding element of a

belongs to b.

c = ismember(a,b, 'rows'), where a and b must be two-dimensional matrices,
determines which rows of a belong b. a and b must have the same number of

columns.

[c,ai] = ismember(...) also returns index vector ai, containing the linear

indices of the last occurrences of elements in a that are in b, or zero otherwise.

a [1201 2 3];

b=1024570 8];

[c,ai] = ismember(a,b) returnsc = [false, true, rue, false, true,
false] andai = [0, 1, 5, 0, 1, O].

a=1[123;231; 345;543; 435;13 3];
b=1[345;345;122; 4325];
ismember(a,b,'rows') returns [0 ; O ; 1 ; 0 ; 1 ; O].

a {'green','yellow', 'blue', 'green'};
b {'red', 'purple','yellow'};
ismember(a,b) returns [0, 1, 0, O].

intersect, setdiff, setxor, union, unique

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

isnan

Purpose Test if elements of a matrix are NaN.

Synopsis d isnan(a)

Description d = isnan(a), for a matrix a, returns a logical array of the same size as a. The

elements in d are true if the corresponding position in a is NaN, otherwise false. For

complex matrices, this criterion is applied to the real and imaginary parts.

See also isfinite, isinf

287

isnumeric

Purpose Test if a value is numeric.

Synopsis d = isnumeric(a)

isnumeric(a) returns true if a is a real or complex matrix, otherwise false.

o
1l

Description

288 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

isobject

Purpose Test if a value is an object.

Synopsis d = isobject(obj)

Description d = isobject(obj) returns true ifobj is a COMSOL Script object, otherwise
false.

289

ispc

Purpose Test if COMSOL Script is running on a PC.
Synopsis d = ispc
Description d = ispc returns true if COMSOL Script is running on a PC, otherwise false.

See also isunix

290 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

isprime

Purpose

Synopsis

Description

Example

See also

Test for prime numbers

y isprime(x)

y = isprime(x) tests each element of the array x for prime numbers. y is an array
of the same size as x that contains true for each element of x that is prime and

false otherwise.

isprime([3 17 19 231 86421 99823]) returns
[true, true, true, false, false, true].

factor, primes

291

isreal

Purpose Test if a value is a real matrix.
Synopsis d = isreal(a)
Description d = isreal(a) returns true if a is a double matrix, a character matrix or a logical

matrix, or a Java object, otherwise it returns false.

292 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

isscalar

Purpose Test if a value is a scalar.
Synopsis d = isscalar(a)
Description d = isscalar(a) returns true if'all dimensions of a have length 1, otherwise

false.

293

isspace

Purpose Test for white space.
Synopsis X = isspace(str)
Description x = isspace(str), where str is a character array, returns a logical array x of the

same size as str, containing true for each character that is a white-space character
and false otherwise.

White-space characters are defined as the following ASCII values: 9 (horizontal
tabulation), 10 (new line), 11 (vertical tab), 12 (form feed), 13 (carriage return),
and 32 (space).

Example isspace(['a b',char([9 10 11 12 13 32]),'/*']) returns
[false,true, false,true,true,true,true,true,true,false,false]

See also ischar, isletter

294 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

issparse

Purpose Test if a value is a sparse matrix.

Synopsis d issparse(a)

o
1l

Description issparse(a) returns true if a is a sparse matrix, otherwise false.

295

isstr

Purpose Test if a value is a character matrix.

Synopsis d = isstr(c)

Description d = isstr(c) returns true if ¢ is a character matrix, otherwise false.
Remark isstr is equivalent to ischar.

296 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

isstruct

Purpose Test if a value is a structure.

Synopsis d isstruct(s)

Description d = isstruct(s) returns true if's is a structure, otherwise false.

297

isunix

Purpose Test if COMSOL Script is running under Unix.

Synopsis d = isunix

Description d = isunix returns true if COMSOL Script is running under Unix, otherwise
false.

See also ispc

298 | CHAPTER I|: COMSOL SCRIPT COMMAND REFERENCE

isvarname

Purpose Test if a string can be used as a variable name.

Synopsis d isvarname(str)

Description d isvarname(str) returns true if stris a string that contains a valid variable
name, otherwise false. A variable name can contain only letters, digits, and

underscores, and it must start with a letter.

299

isvector

Purpose Test if a value is a vector.

Synopsis d isvector(a)

[o}
1l

Description isvector(a) returns true if a has the size (1, n) or (n, 1), otherwise false.

300 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

Purpose Get the imaginary unit.

Syntax j
Description j is the imaginary unit.
See also i, imag

301

javaArray

Purpose Create an array of Java objects.

Syntax j = javaArray(cls, dimi1, ...)

Description j = javaArray(cls, dimi, ...),where clsisa Java class name, creates an array
of'size (dim1, ...) of Java objects of class c1s.

See also javaMethod, javaDeclare,javaObject

302 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

javaDeclare

Purpose Load declarations of Java methods.

Syntax javaDeclare(file)
javaDeclare(file, replace)
javaDeclare(methods, file)

Description javaDeclare(file), where file is a file name, loads declarations of Java methods
from file. The declaration file should contain method declarations written in Java.
javaDeclare(file, replace), replaces the existing set of Java declarations with
those in file if replace is true and appends to the existing set if replace is false.

javaDeclare(methods, file), where methods is a cell array of Java class names
and file is a file name, writes the declarations of all public methods found in the

class name list to file.

Only public methods can be accessed through the Java interface. Methods with no

visibility specified are assumed to be public.

For overloaded methods and constructors, the number of arguments must differ: It
is not possible to declare two methods in a class that have the same name and

number of arguments.

Example The file my.decls has the following contents:

// The file can contain comments.

/* Both types of comments can be used. */
java.lang.String(String);

static java.lang.String.valueOf (double);

int java.lang.String.indexOf(java.lang.String);

javaDeclare('my.decls') adds the declarations of three member methods of
java.lang.String to the declaration database.

See also javaArray, javaMethod,javaObject

303

javaMethod

304 |

Purpose

Syntax

Description

See also

Invoke a Java method.

d = javaMethod(method, cls)

d = javaMethod(method, cls, argtl, ...)

d = javaMethod(method, obj)

d = javaMethod(method, obj, argt, ...)

d = javaMethod(method, cls, argl, ...),where method is a method name
and cls a class name, invokes the static method called method in the class c1s with
the arguments (arg1, ...) and returns the result.

d = javaMethod(method, obj, argl, ...),where method is a method name

and obj a Java object, invokes the member function called method in the Java object

obj with the arguments (arg1, ...) and returns the result.

javaArray, javaDeclare, javaObject

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

javaObject

Purpose Create Java object.
Syntax j = javaObject(cls, ...)
Description j = javaObject(cls, ...),where cls isa Java class name, creates a Java object

of class cls. The arguments, if any, after c1s are passed on to the constructor.

See also javaArray, javaDeclare, javaMethod

305

306 |

Purpose Create a colormap with all colors from blue to red.

Synopsis jet(n)

Description jet(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are all colors from blue
to red.

See also colormap, bone, cool, gray, grayprint, hot, hsv, pink, wavemap

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

keyboard

Purpose Manually place a breakpoint in the code.
Synopsis keyboard
Description When you place keyboard somewhere in a script or function, execution stops on

that line just as if you had placed a break point there. Ordinary debugging
commands can then be used.

307

kron

Purpose Kronecker tensor product.
Synopsis C = kron(A,B)
Description C = kron(A,B) computes the Kronecker tensor product of matrices A and B. If A is

an mxn matrix and B is a pxg matrix, then the Kronecker product of A and B is the

mpxnq block matrix.

Example kron([1 2;0 2],[2,3,4;1,1,1]) returnsa 4x6 matrix [2 3 4 4 6 8;1 1 1 2
22;,000468;000222].

308 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

label

Purpose Create a label.
Synopsis 1 = label(text,...)
1 = label(...)
Description 1 = label(text) creates a label with the specified text.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command to further control how the label is created.

PROPERTY VALUE DESCRIPTION
image iconimage An image to display on the label.
text string A text to display on the label.

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

See also component

309

lasterr

310 |

Purpose

Syntax

Description

See also

Get or set the current error message.

lasterr(msg)

lasterr(msg, id)

msg = lasterr

[msg, id] = lasterr

lasterr(msg), where msg is a string, sets the current error message to msg.

lasterr(msg, id), where msg and id are strings, sets the current error message
to msg and the current error ID to id.

msg = lasterr returns the current error message.

[msg, id] = lasterr returns the current error message and error ID.

lasterror

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

lasterror

Purpose

Syntax

Description

See also

Get or set the current error message.

lasterror(s)
s = lasterror

lasterror(s),where s is a structure, sets the current error message to s.message

and sets the current error ID to s.identifier.

s = lasterror returns a structure containing the current error message in the
ficld message, the error ID in the field identifier, and a detailed error trace in
the field details.

lasterr

311

lem

Purpose Least common multiple.
Synopsis 1 = 1lcm(a,b)
Description 1 = 1cm(a,b) computes the least common multiple of the elements of arrays a and

b. a and b must be the same size, or either one can be a scalar.
Example lem([120 3 7]1,9) returns [360, 9, 63].

See also gcd

312 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

Idivide

Purpose
Synopsis

Description

Examples

See also

Divide matrices pointwise.

d

ldivide(a, b)

d

and a. For each dimension, a and b must have the same size or either of them must

ldivide(a, b) computes the pointwise ratio between the two matrices b

have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

ldivide(a, b) isequivalent to a.\b.

[1 10 100].\[3 4 5]

10.\[2 3 5]

minus, plus, rdivide, times

313

Purpose Compare matrices pointwise.
Synopsis d = le(a, b)
Description d = le(a, b) testsifthe elements of the matrix a are pointwise less than or equal

to those of the matrix b. For each dimension, a and b must have the same size or
either of them must have size 1. In the latter case, the unit dimension is expanded
to the size of the nonunit dimension.

le(a, b) isequivalenttoa <= b.
Examples [2 3 5] <= [1 3 7]

[5 -10 20] <= 0

[1 23] <=1[1; 2]

See also eq, ge, gt, 1t, ne

314 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

legend

Purpose

Synopsis

Description

See also

Display a legend with a plot.

legend
legend
legend
legend

legi1,leg2,1eg3,...)
"show")
"hide')
axX,...)

P N

legend(legl,leg2,leg3,...) displays the strings leg1, leg2, 1leg3 and so on
as legends with the current plot.

legend('show') turns on the display of legends.
legend('hide') turns off the display of legends.

legend(ax, ...) controls legends in the axes ax instead of in the current axes.

plot

315

length

Purpose Get the largest dimension of a matrix.

Syntax 1 length(a)

Description 1 = length(a), for a nonempty matrix a, returns the maximum length of any
dimension of a, that is, max (size(a)). If a is empty, 0 is returned.

See also size

316 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

light

Purpose
Synopsis

Description

See also

Create a light.

light(...)

light(...) adds a light to a plot. Several different types of light can be created. To

control which type of light to create and what properties to give it, use the

properties in the following table.

h = light(...) also returns a handle to the created light.

TABLE 1-26: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
color colorspec w A string or an RGB triplet
specifying the color of the
light. If it is a string it is one of
the letters r, g, b, ¢, m, y or k,
meaning red, green, blue, cyan,
magenta, yellow and black
respectively.
concentra A real value 0 The concentration for a
tion between 0 and 128 spotlight.
direction A three element [0 0 1] The direction for a directional
array. light or a spot light.
parent Axes handle gca What axes to add the light to.
position A three element [0 0 0] The position for a point light
array. or a spotlight.
style ambient | point The type of light to create.
directional |
point | spot
spread A real number pi The spread angle for a

between 0 and pi.

spotlight.

lighting, material, patch, surface

317

lighting

Purpose Turn on and off scene light.

Synopsis lighting('phong"')
lighting('none')

Description lighting('phong') turns on scene lights in the current axes.

lighting('none') turns off scene lights in the current axes.

lighting(ax,...) controls scene lights in the axes AX instead of in the current
axes.
See also light, material, patch, surface

318 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

line

Purpose

Syntax

Description

See also

Create a line.

line(x,y)
line(x,y,z)

line(x,y) connects the coordinates in the vectors x and y to form a line. If x and

y are matrices, one connected line is created for each column in the matrices.

line(x,y,z) adds a line in 3D.

h = line(...) returns a handle to the created line.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command to further control how the line is created.

TABLE 1-27: VALID PROPERTY/VALUE PAIRS

PROPERTY

VALUE

DEFAULT

DESCRIPTION

color

linestyle

linewidth

marker

parent

colorspec

One of the strings

LA ")

positive scalar

'!V!+!o!*,s,p

Axes handle

k

gca

A string or an RGB triplet
specifying the color of the line.
If it is a string it is one of the
letters r, g, b, ¢, m, y or k,
meaning red, green, blue, cyan,
magenta, yellow, and black,
respectively.

String representing solid,
dotted, dash-dot, and dashed
line styles, respectively

The width of the line

The marker to show along the
line. Only available for 2D
lines.

What axes to add the line to.

plot, plot3

319

linspace

Purpose Create vector containing linearly spaced values.
Syntax v = linspace(a, b, n)
v = linspace(a, b)
Description v = linspace(a, b, n),where aand b are real or complex scalars, creates a vector

containing n elements linearly spaced between a and b, thatis, [a a+(b-a)/(n-1)
b].

v = linspace(a, b) is equivalenttov = linspace(a, b, 100).

See also logspace

320 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

listbox

Purpose
Synopsis

Description

Create a list box.

listbox(...)

(9]
1]

¢ = listbox(...) creates a list box. Values and descriptions for the values in the

list box are specified using the properties in the following table

TABLE 1-28: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

descr cell array of strings The strings to display in the list box. If not
given the strings specified as items will be
displayed in the list box.

items cell array of strings String representing the value corresponding
to each entry in the list box. Can then be used
to easily set and get the value of the list box
using strings instead of indices.

The function returns a list-box object that can then be further manipulated using

the methods in the following table.

TABLE 1-29: METHODS FOR MANIPULATING A LISTBOX OBJECT.

METHOD DESCRIPTION

addListSelectionListener(name) Specifies that the function with the given
name should be run when the selection
in the list box changes.

getSelectedIndex Returns an index to the currently
selected item in the list box.

getSelectedIndices Returns an array with indices to the
selected items in the list box.

getValue Returns a string corresponding to the
currently selected item in the list box.

setItems(items) Sets the items to display in the list box by
passing a cell array of strings.

setItems(items,descr) Sets the descriptions to display in the list
box and their corresponding values by
passing two cell arrays of strings.

setSelectedIndex(ind) Selects the item with the specified index
in the list box.

setSelectedIndices(ind) Selects the items corresponding to the
indices in the vector ind.

setValue(value) Selects the item with the specified value
in the list box.

321

listbox

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

See also component, combobox

322 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

load

Purpose

Syntax

Description

See also

Load a workspace from a file.

load(filename)

load(filename, vari, ...)

s = load(filename)

s = load(filename, vart, ...)
load(..., '-mat')

s = load(..., '-mat')
load(..., '-ascii')

s = load(..., '-ascii')

load(filename), where filename is a string, loads variables and their values from

the file filename. Existing workspace variables are overwritten.

load(filename, vari, ...) loadsonly the variables vari, ... into the workspace.

* can be used as wildcard character unless ' -ascii' is given..

s = load(filename) loads variables and values into a structure. Each variable
corresponds to a field in the structure.

s = load(filename, vari, ...) loads only the variables vari, ...

load(..., '-mat') loads the file as a MATLAB workspace file. (The default

behavior is to load the file as a Comsol workspace file.)

load(..., '-ascii') reads a text representation of a real matrix from filename
into a workspace variable with a name derived from filename. Each row of the file
corresponds to one row in the matrix; hence all rows must have the same number

of columns.

s = load(..., '-ascii') reads a text representation of a real matrix and returns

the matrix.

save

323

324 |

Purpose Compute natural logarithm.
Syntax b = log(a)
Description b = log(a) returns the natural logarithm of the matrix a pointwise.

See also log10

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

logl0

Purpose

Syntax

Description

See also

Compute a base-10 logarithm.

b

b

log

logi10(a)

log10(a) returns the base-10 logarithm of the matrix a pointwise.

325

log2

Purpose Compute a base-2 logarithm.

Syntax b = log2(a)
[m, e] = log2(mat)

Description b = log2(a) returns the base-2 logarithm of the matrix a pointwise.

[m, e] = log2(a) returns the mantissa m and exponent ¢ pointwise for the

matrix a. They satisfy the relationa = m.*2."e.

See also log, log10

326 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

logical

Purpose Convert a matrix to a logical matrix.
Syntax 1 = logical(a)
Description 1 = logical(a) returns alogical matrix with the same size as a that is the result of

element-wise converting a to logical values.

327

loglog

Purpose Create a plot with log scales on both the x-axis and the y-axis.
Synopsis loglog(...)
Description loglog(...) hasthe same functionality as plot (. ..) with the addition that it uses

log scales on both the x-axis and the y-axis.

See also plot

328 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

logm

Purpose Matrix logarithm.

Syntax F = logm(A)

Description F = logm(A) returns the principal logarithm of a square matrix A.
See also expm, funm

329

logspace

330 |

Purpose

Syntax

Description

See also

Create a vector containing logarithmically spaced values.

v = logspace(a, b, n)
Y logspace(a, b)

v = logspace(a, b, n),where aand b are real or complex scalars, returns a vector
containing n elements logarithmically spaced between 10"~aand 10"b, thatis, [10"a
10" (a+(b-a)/(n-1) ... 10~ (b)]1.Ifbis pi, then 10"b is replaced with pi in

these expressions.

v = logspace(a, b) is equivalenttov = logspace(a, b, 50).

linspace

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

lookfor

Purpose Search M-files.
Synopsis lookfor(str)
Description lookfor(str) searches for string str in the first line of all .M files on the current

path and displays matches.

331

lower

Purpose Convert string to lower case
Syntax s2 = lower(s1)
Description s2 = lower(s1) converts the characters in the string s1 to lower case. s1 can also

be a cell array of strings. In that case, a new cell array is returned where each of the

strings has been converted to lower case.

See also upper

332 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

Purpose

Synopsis

Description

See also

Get a list of the files in a directory.

1s

1s(d)

f = 1s

f = 1s(d)

1s is a synonym for dir.

dir

333

Purpose Compare matrices pointwise.
Synopsis d = 1t(a, b)
Description d = 1t(a, b) testsif the elements of the matrix a are pointwise less than those of

the matrix b. For each dimension, a and b must have the same size or either of them
must have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

lt(a, b) isequivalenttoa < b.

Examples [2 3 5] <[137]
[5 -10 20] < O
[1 23] <[1; 2]

See also eq, ge, gt, le, ne

334 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

Purpose

Synopsis

Description

Compute the LU factorization of matrix.

1u(A)
[L,U] = lu(A)
[L,U,P] = 1u(A)

[L,U,P,Q] = 1lu(A)

[L,U,P,Q] = 1lu(A, thresh)
[L,U,P,Q,R] = lu(A)
[L,U,P,Q,R] = lu(A, thresh)

The following syntaxes can be used for a full matrix A:

lu(A) returns a matrix containing the lower-triangular L and the upper-triangular U

above and below the diagonal, respectively. It is not guaranteed that A = L*U.

[L,U] = lu(A) returns an upper-triangular U and an L that is the product of a

lower-triangular matrix and a permutation matrix such that L*U = A.

[L,U,P] = lu(A) returns a lower-triangular L, an upper-triangular U, and a

permutation matrix P such that P*U = L*U.
The following syntaxes can be used for a sparse matrix A:

[L,U,P,Q] = 1lu(A) returns a lower-triangular L, an upper-triangular U, and

permutation matrices P and Q such that P*A*Q = L*U.

[L,U,P,Q,R] = 1lu(A) returns a lower-triangular L, an upper-triangular U,
permutation matrices P and Q, and a diagonal matrix R such that P*R*A*Q = L*U.

This syntax is more numerically stable than [L,U,P,Q] = 1lu(A).

[L,U,P,Q,...] = 1lu(A, thresh) usesa threshold thresh when pivoting. The
default threshold is 0.1. When selecting a pivot element in a column, eligible
clements are those that are at least thresh times the largest absolute value in that

column.

335

mat2cell

336 |

Purpose
Synopsis

Description

Example

See also

Create a cell array from a matrix.

mat2cell(a, parti, part2,...)

o
1]

c = mat2cell(a, parti, part2, ...) createsa cell array from the matrix a
where the first dimension of a is split into length(part1) parts of sizes part1(1),
part1(2), and so on. For the partition to be valid, sum(parti) == size(a, i)

must hold for all 7.

¢ = mat2cell(rand(5, 15), [2 3], [4 5 6]) creates a 2 x 3 cell array where

c(1,1) is the 2 x 4 submatrix in the upper-left corner of the random matrix.

cell2mat

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

mat2str

Purpose Create a string from a value.
Synopsis s = mat2str(a)
Description s = mat2str(a) returns a textual expression that evaluates to a.
Examples mat2str([1 2+3 ; 5+7 11]) returns the string [1, 5; 12, 11].
a.b = 12;
a.s = {'abc'};
mat2str(a)

returns the string struct('b', {12}, 's', {{'abc'}})

337

material

Purpose Control the material for surface reflectance.
Synopsis material(...)
Description material(...) specifies properties for the material to use for surface reflectance in

the current axes. Use property-value pairs from the following table to specify the

type of material to create.

TABLE 1-30: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

Ambient colorspec Specifies the ambient color.

A string or an RGB triplet specifying the
color of the line. If it is a string it is one of
the letters r, g, b, ¢, m, y or k, meaning
red, green, blue, cyan, magenta, yellow, and
black, respectively.

Diffusive colorspec Specifies the diffusive color.
Emissive colorspec Specifies the emissive color.
Specular colorspec Specifies the specular color.
Shininess Real number >0and Specifies the shininess.
<]28.
material(ax,...) controls the material in the axes ax instead of in the current
axes.
See also lighting, 1light, patch, surface

338 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

max

Purpose

Synopsis

Description

Examples

See also

Compute the maximum value of an array.

y = max(x)

y = max(x,[],dim)
[y,i] = max(x,...)
z = max(x,y)

y = max(x) returns the maximum of x. When x is a vector, y is the largest element
of x. When x is a matrix, y is a row vector containing the maximum of each column
of x. When x is an n-dimensional array, y is the maximum along the first

nonsingleton dimension of'y.
y = max(x,[],dim) returns the maximum of x along the dimension dim.

[y,i] = max(x) and [y,i] = max(x,[],dim) also return i, the indices in x of
the maximum elements. In the case of duplicate elements, i refers to the first

occurrence.

z = max(x,y) compares each element of x with the corresponding element in y
and returns the larger of the two. x and y must be of equal size, or cither one can

be a scalar.
When x is complex, max uses the magnitude and ignores the angle.

NaN values are considered smaller than any other value.

x = [0 2 3;-313;2 4 0];

x2 =[-341;320;-181];
y(i,0,1)=x5y (8, 1,2)=x2;

max(x,[],1) returns [2, 4, 3]

max(x,[],2) returns [3; 3; 4]

max(y,[],3) returns [0, 4, 3 ; 3, 2, 3 ; 2, 8, 1].

min, mean, median

339

mean

340 |

Purpose

Synopsis

Description

Examples

See also

Compute the mean value of an array.

y = mean(x)
y mean(x,dim)

y
of x. When x is a matrix, y is a row vector containing the mean value of each column

mean (x) returns the mean value of x. When x is a vector, y is the mean value

of x. When x is an n-dimensional array, y is the mean along the first nonsingleton

dimension of x.

y = mean(x,dim) returns the mean value of x along the dimension dim.

X = [8 33;-423;240];
x2=[-342351-197];
y(:,)=X5y (1, 1,2)=X2;

mean(x,1)returns[2, 3, 2].
mean (x2,2) returns [1; 3; 5].
mean(y,3) returns [2.5, 3.5, 2.5; -0.5, 3.5, 2; 0.5, 6.5, 3.5].

median, max, min

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

median

Purpose

Synopsis

Description

Examples

See also

Compute the median value of an array.

y = median(x)
y = median(x,dim)

median (x) returns the median value of x. When x is a vector, y is the median

y
value of x. When x is a matrix, y is a row vector containing the median value of each

column of x. When x is an n-dimensional array, y is the median value along the first

nonsingleton dimension of x.

y = median(x,dim) returns the median value of x along the dimension dim.

x =1[02 3;-313;2 4 0];

x2 = [-8341;320;-181];

y(:, 0, 1)=x5y (8, 1,2)=x2;

median(x,1) returns [0, 2, 3].

median(x2,2) returns [1;2; 1].

median(y,3) returns [-1.5, 3, 2 ; 0, 1.5, 1.5 ; 0.5, 6, 0.5].

mean, max, min

341

menu

Purpose
Synopsis

Description

See also

Create a menu.

m = menu

m = menu(text) creates a menu that displays the specified text.

The function returns a menu object that can then be further manipulated using the

methods in the following table:

TABLE I-31: METHODS FOR MANIPULATING A MENU OBJECT.

METHOD DESCRIPTION
add (menuitem) Adds a menu item to this menu.
addSeparator Adds a separator to this menu.

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

component, menuitem

342 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

menuitem

Purpose Create a menu item.

Synopsis m = menuitem(text,action)
m = menuitem(text,action,thread)

Description m = menuitem(text,action) creates a menu item that displays the specified text.
When the menu item is selected the function with the name action is called.

m = menuitem(text,action,thread) creates a menu item that displays the
specified text. When the menu item is selected the function with the name action
is called. thread is true or false to indicate if the action should be run in a

separate thread.

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

See also component, menu

343

mesh

344 |

Purpose

Syntax

Description

See also

Create a colored wireframe surface of quadrilaterals.

mesh(x,y,z,C)
mesh(x,y,z)
mesh(z,c)
mesh(z)

mesh(x,y,z,c) creates a colored wireframe surface of quadrilaterals from the given
matrices. The surface is created by placing grid points in x(i,), ¥(i,j), and 2(i,j) for
each element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix ¢ is used to color each of the grid

points by mapping the range of ¢ to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length(y) must equal the number of rows in z. The grid points
are then created as x(j), (1), and z(i, j).

mesh (x,y,z) does the same as mesh(x,y,z,c) but uses z as c.

mesh(z,c) is the same asmesh(x,y,z,c) wherex = 1:nx, y = 1:ny, [ny,nx]
= size(z).

mesh (z) does the same as mesh(z,c) but uses z as c.
h = mesh(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the

reference entry for patch for details of allowed properties and corresponding values.

The function mesh is the same as the function surf with the addition that it sets the
property 'facecolor' to 'w'.

meshz, surf

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

meshgrid

Purpose Create a 2D or 3D grid.
Synopsis [x, y] = meshgrid(xrange, yrange)
[x, vy, z] = meshgrid(xrange, yrange, zrange)
Description [x, y] = meshgrid(xrange, yrange) creates a 2D grid from vectors xrange

and yrange. The outputs x and y are matrices of size length(yrange) x
length(xrange) that can be used, for example, when plotting a function f(x, y).

[x, y, z] = meshgrid(xrange, yrange, zrange) creates a 3D grid from
vectors xrange, yrange, and zrange. The outputs X, y, and z are matrices of size
length(yrange) x length(xrange) x length(zrange).

See also ndgrid

345

meshz

346 |

Purpose

Syntax

Description

See also

Create a colored wireframe surface of quadrilaterals with a curtain around it.

meshz(x,y,z,c)
meshz(x,y,z)
meshz(z,c)
meshz(z)

meshz is the same as the function mesh except it also adds a curtain around the plot,
which consists of a series of lines extending from the surface to the lowest z value

anywhere in the plot.

meshz(x,y,z,c) creates a colored wireframe surface of quadrilaterals from the
given matrices. The surface is created by placing grid points at x(z, /), ¥(Z,7) and 2(Z,j)
for each element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix ¢ is used to color each of the grid

points by mapping the range of ¢ to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length (y) must equal the number of rows in z. The grid points

are then created at x(j), ¥(i), and z(z,).
meshz(x,y,z) does the same as mesh(x,y,z,c) but uses z as c.

meshz(z,c) is the same as mesh(x,y,z,c) wherex = 1:nx, y = 1:ny, [ny,nx]
= size(z).

meshz(z) does the same as meshz(z,c) but uses z as c.

h = meshz(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the

reference entry for patch for details of allowed properties and corresponding values.

mesh, surf

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

methods

Purpose

Synopsis

Description

See also

Get the methods provided by a user-defined class.

methods cls

c methods(cls)

¢ = methods(cls, attr)

[methods(cls, attr, noattr)

methods cls displays the public nonstatic methods in the user-defined class cls.

¢ = methods(cls) returns a cell array containing the public nonstatic methods in
the class cls.

¢ = methods(cls, attr),where attr is a string or cell array of strings, returns a
cell array containing the methods of c1s that have at least one of the attributes listed
in attr. Possible attributes are 'public', 'protected', 'private’, 'static’,
and 'transient’'.

¢ = methods(cls, attr, noattr)islikec = methods(cls, attr) butexcludes
any field having an attribute listed in noattr, which must be a string or cell array of

strings.

fieldnames

347

mfilename

Purpose Get the name of the function or script being executed.
Synopsis s = mfilename
Description s = mfilename returns the name of the function or script being executed. When

you run it from the command prompt, it returns the empty string.

348 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

Purpose

Synopsis

Description

Examples

See also

Compute the minimum value of an array.

y = min(x)
y = min(x,[],dim)
[y,i] = min(X,...)

z = min(X,y)

y = min(x) returns the minimum of x. When x is a vector, y is the smallest element
of x. When x is a matrix, y is a row vector containing the minimum of each column
of x. When x is an n-dimensional array, y is the minimum along the first

nonsingleton dimension of'y.
y = min(x,[],dim) returns the minimum of x along the dimension dim.

[y,i] = min(x) and [y,i] = min(x,[],dim) return i, the indices in x of the
minimum elements. In the case of duplicate elements, i refers to the first

occurrence.

z = min(x,y) compares each element of x with corresponding element in y and
returns the smaller of the two. x and y must be of equal size, or either one can be a

scalar.
When x is complex, min uses the magnitude and ignores the angle.

NaN values are considered larger than any other value.

x =[02 3;-313;240];

x2 =[-341;320;-181];
y(i,0,1)=x5y(:,1,2)=x2;
min(x,[],1) returns [-3,1,0].
min(x2,[],2) returns [-3; 0; -1].

min(y,[],3) returns [-3, 2, 1; -3, 1, 0; -1, 4, O0].

max, mean, median

349

minus

Purpose Subtract matrices pointwise.

Synopsis d minus(a, b)

Description d = minus(a, b) computes the pointwise difference between the two matrices a
and b. For each dimension, a and b must have the same size or either of them must
have size 1. In the latter case, the unit dimension is expanded to the size of the

nonunit dimension.

minus(a, b) is equivalenttoa - b.

Examples [10 20 30]-[2 3 4]
[5 10]-3
See also plus, ldivide, rdivide, times

350 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

mislocked

Purpose Test if a function is locked in memory.
Synopsis a = mislocked
a = mislocked(func)

Description a = mislocked, when called from a function, returns true if the function has been

locked with mlock, otherwise false.

a = mislocked(func) returns true if the function called func has been locked,
otherwise false.

See also mlock, munlock

351

mkdir

Purpose Create a directory.
Synopsis status = mkdir(name)
status = mkdir(base, name)

Description status = mkdir (name) creates a directory called name in the current directory. 1 is

returned if the operation was successful, 0 if it failed.

status = mkdir(base, name) creates a directory called name in the
directory base.

See also isdir, rmdir

352 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

mkpp

Purpose

Synopsis

Description

Example

See also

Make piecewise polynomial.

pp = mkpp(breaks, coefficients)
pp mkpp (breaks, coefficients, dim)

mkpp (breaks, coefficients) returns a structure representing the

pp
piecewise polynomial described by its breaks and coefficients. breaks must be

a vector of strictly increasing elements, representing the start and end of each
interval. coefficients must be a matrix where each row contains the coefficients

(in order from highest to lowest exponent) of the polynomial for one interval.

pp = mkpp(breaks, coefficients, dim) returns a structure representing the

piecewise polynomial where each coefficient is of an array of dimension dim.

This example creates a pp structure with three polynomial pieces 2 +1 s

xz +4x+4 and xz +6x +9 ontheintervals [1,2],[2,3] and [3,4], respectively.
b =]
c = [

—_ -

2 3 4];
211 4;1 6 9];
pp (b

,;;..

pp =

ppval, unmkpp, pchip, spline

353

mldivide

Purpose Solve a linear system of equations.

Synopsis X mldivide (A, b)

Description x = mldivide (A, b) returns the solution to the linear system of equations Ax=b.

Both A and b must be matrices with the same number of rows. If A has more rows
than columns, then x is the least-squares solution to an overdetermined system. in

this case, x is the solution to A'Ax = A'b.

mldivide (A, b) is equivalentto A \ b.

See also ldivide, mrdivide

354 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

mlock

Purpose Lock a function in memory.
Synopsis mlock(func)
Description mlock (func) locks the function called func so that it is not removed from memory

when the command clear functions is called.

See also mislocked, munlock

355

mod

Purpose Compute the modulus of matrices.
Synopsis m = mod(a, b)
Description m = mod(a, b) computes a mod b pointwise. The sizes of a and b must be identical

unless one of them is a scalar; in that case, the scalar is expanded to a matrix of the

correct size.

See also rdivide, rem

356 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

movie

Purpose
Synopsis

Description

Create a movie.

m movie(...)

m

the movie from plots in figure windows. The properties 'width' and 'height' can

movie(...) creates a movie-generation object. Frames can then be added to

be used with movie to specify a desired width and height for the movie.

You can then interact with the movie-generation object using the following

methods
METHOD VALUES DESCRIPTION
m.addFrame Adds the plot in the current

m.addFrame (h)

m.setFrameRate(rate)

m.setQuality(qual)

m.setFileType(type)

m.listEncodings

m.setEncoding(enc)

m.generate(filename)

A real number
between 0 and |,
where | is the best
quality.

avi', 'quicktime'

Any string listed by
listEncodings.

figure window as a frame in
the movie.

Adds the plot in the figure
window with handle h as a
frame in the movie.

Sets the frame rate to use
when generating the movie.

Sets the quality to use when
generating the movie.

Sets which type of movie to
generate.

Displays a list of available
encoding formats.

Sets which encoding format
to use.

Generates a movie with the
name filename from the
frames that have been added
to the movie.

357

mpower

Purpose Matrix power.

Synopsis d mpower(a, b)

Description d = mpower(a, b) raises a to the power b, where a must be a square matrix, and

b must be a positive integer.

mpower (a,b) is equivalenttoa " b.

Example a=1_[-3,2,1; -3, 1, 0; -1, 4, 0]
mpower(a,2) returns [2, O, -3; 6, -5, -3; -9, 2, -1].

See also mtimes, power

358 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

mrdivide

Purpose
Synopsis

Description

See also

Solve a linear system of equations.
X = mrdivide (A, b)

x = mrdivide (A, b) returns the solution to the linear system of equations
b'x'=A". Both A and b must be matrices with the same number of columns. If b has
more columns than rows, then x is the least-squares solution to an overdetermined

system. In this case, x is the solution to bb'x' = bA'.

mrdivide (A, b) is equivalentto A / b.

mldivide, rdivide

359

mtimes

Purpose Compute a matrix product.

Synopsis p mtimes(a, b)

Description p = mtimes(a, b) returns the matrix product of a and b, both of which must be

numerical matrices with compatible dimensions; if a is an m1 x n1-matrix and b is an
m2 x n2-matrix, then n1==m2 must hold.

mtimes(a, b) isequivalenttoa * b.

See also times

360 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

munlock

Purpose Remove a function lock.

Synopsis munlock(func)

Description munlock (func) removes the lock on the function called func that was set
with mlock.

See also mislocked, mlock

361

namelengthmax

Get the maximum length of variable or function name.

Purpose
Synopsis len = namelengthmax
Description len = namelengthmax returns the maximum length of a variable or function name.

362 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

nan

Purpose Get a not-a-number value.
Synopsis nan

m = nan(n)

m = nan(sz)

m = nan(ni,n2,...)

Description nan returns a not-a-number value. This value is returned for mathematical

operations where the result is ambiguous, for instance, 0,/0.

m = nan(n), where n is an integer, returns an nxn all-nan matrix.

m = nan(sz), where sz is a vector of integers, returns an all-nan matrix of size sz.

m = nan(ni,n2,...), where ni are integers, returns an
nixn2x . .. all-nan matrix.
See also inf

363

nargchk

364 |

Purpose
Synopsis

Description

Example

See also

Check that the number of arguments supplied to function is in a specified range.

msg nargchk (lower, upper, actual)

msg = nargchk(lower, upper, actual) returns an error message if actual falls

outside the range [lower, upper], otherwise it returns

The intended use of this function is to validate the number of input arguments to a
function, for example, by placing a nargchk (2, 5, nargin) call at the top of a

function expecting between two and five input arguments.

nargoutchk

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

nargin

Purpose

Synopsis

Description

See also

Get the number of arguments supplied to a function.

>
1]

nargin
nargin(funcname)

=}
1l

n = nargin, when invoked from inside a function, returns the number of
arguments with which the function was invoked.

n = nargin(funcname) returns the number of arguments declared in the
definition of the function called funcname.

nargout

365

nargout

Purpose Get the number of outputs expected from a function.
Synopsis n = nargout
n = nargout (funcname)

Description n = nargout, when invoked from inside a function, returns the number of output

arguments that the caller expects the function to return.

n = nargout (funcname) returns the number of outputs declared in the definition
of the function called funcname.

See also nargin

366 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

nargoutchk

Purpose
Synopsis

Description

Example

See also

Check that the number of outputs expected from a function is in a specified range.

msg = nargoutchk(lower, upper, actual)

msg nargoutchk(lower, upper, actual) returnsan error message if actual

falls outside the range [lower, upper], otherwise it returns

The intended use of this function is to validate the number of expected outputs from
a function, for example, by placing a nargoutchk (1, 4, nargout) call at the top

of a function expecting between one and four outputs.

nargchk

367

ndgrid

368 |

Purpose
Synopsis

Description

See also

Create an n-dimensional grid.

[x, ¥y, z, ...] = ndgrid(xrange, yrange, zrange, ...)

[x, ¥y, z, ...] = ndgrid(xrange, yrange, zrange, ...) createsan
n-dimensional grid from vectors xrange, yrange, zrange,

The outputs x, y, and z are matrices of size
length(xrange)-by-length(yrange)-by-length(zrange)-by-... .

meshgrid

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ndims

Purpose
Synopsis

Description

See also

Get the number of dimensions of a value.

>
1]

ndims(a)

n
ndims(a) is equivalent to length(size(a)).

length, size

ndims(a) returns the number of dimensions in a.

369

ne

Purpose Compare matrices pointwise.
Synopsis d = ne(a, b)
Description d = ne(a, b) testsif the elements of the two matrices a and b are unequal

pointwise. For each dimension, a and b must have the same size or either of them
must have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

ne(a, b) is equivalent to a~=b.

Examples [2 3 5] ~= [0 3 6]
[10 20 30] ~= 30

[0 1] ~= [0 ; 1]

See also eq, ge, gt, le, 1t

370 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

newplot

Purpose Return a fresh axes for plotting.
Synopsis h = newplot
Description h = newplot returns a fresh axes into which to plot. If a current axes does not exist,

it creates a new one. If a current axes exists, all plots that are not under control of a

hold command are cleared before a handle to the current axes is returned.

See also gca

371

nnz

Purpose Determine the number of nonzero elements in a matrix.

Synopsis n nnz(a)

S5
1l

Description nnz(a) returns the number of nonzero elements in a.

372 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

norm

Purpose

Synopsis

Description

See also

Norm of a matrix or a vector.

norm(V)
norm(V,n)
norm(A)
norm(A,n)

norm(V), for a vector, computes its Euclidian norm.
norm(V,p) computes the p-norm of the vector.

norm(V,inf) and norm(V, -inf) compute the vector’s maximum and minimum,

respectively.

norm(A) and norm(A,2), for a matrix, compute its largest singular value.
norm(A,1) computes the 1-norm of the matrix.

norm(A, 'fro') computes the Frobenius norm of the matrix.

norm(A,inf) computes the infinity norm.

cond

373

not

Purpose Compute the logical negation of a matrix.

Synopsis d not(a)

Description d = not(a) computes the logical negation of the matrix a.

not(a) is equivalent to ~a.

See also and, or, xor

374 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

Purpose Orthonormal basis of the null space of a matrix.

Synopsis null(A)
null(A,tol)

Description null(A) computes an orthonormal basis for the null space of A.

null(A,tol) uses the relative tolerance tol.

375

num2cell

376 |

Create a cell array from numerical matrix.

num2cell(a) returns a cell array with the same size as a where each cell

¢ = num2cell(a, dims) returns a cell array ¢ where size(c, 1) is1if1i is listed

in the vector dims, otherwise size(c, i) is size(a, 1i).In the former case,

clements with a different i™ index but all other indices equal are put in the same cell.

num2cell(a) is equivalent to num2cell(a, []).

57])is{2 3 ; 5 7}.
571, 1)is {[2 5] [5 7]}.
571, 2)is{[2 3] ; [5 71}

571, [12])is{[23 ; 5 7]}.

Purpose
Synopsis C = num2cell(a)
Cc = num2cell(a, dims)
Description c =
contains an element of a.
Examples num2cell([2 3 ;
num2cell([2 3 ;
num2cell([2 3 ;
num2cell([2 3 ;
See also mat2cell, cell2mat
CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

num2hex

Purpose
Synopsis

Description

Example

See also

Convert decimal numbers to IEEE-754 hexadecimal strings.

num2hex (d)

7]
1]

s = num2hex(d) converts an array of doubles to IEEE-754 hexadecimal string

representations 16 characters long. s is a character matrix where each row represents
one double.

num2hex([1 ; 20 ; Inf]) returns a character matrix:

'3ff0000000000000"
'4034000000000000'
'7ff0000000000000"

format, base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2bin, dec2hex

377

num2str

Purpose

Synopsis

Description

Example

See also

Convert a number to a string.

str = num2str(x)
str = num2str(x,precision)
str = num2str(x,format)

str = num2str(x) converts a 2D array x into a string representation with

approximately 4-digit precision.

str = num2str(x,precision) converts x using the maximum precision
precision.

str = num2str(x, format) converts x using a specific format string. The default
is '%11.49g"'. (See sprintf for possible formats).

num2str([13 0;pi NaN]) returns a character matrix:

' 13 0'
'3.141593 NaN'

int2str, mat2str, sprintf

378 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

numel

Purpose Get the number of elements in a matrix or cell array.
Synopsis n = numel(m)
Description n = numel(m) returns the number of elements in m, that is, prod(size(m)).

See also size

379

nzmax

Purpose Get the number of nonzero elements for which there has been allocated space in a
matrix.

Synopsis nz = nzmax(a)

Description nz = nzmax(a), for a dense matrix a, is numel(a). For a sparse matrix a, the

returned value is the number of nonzero elements for which space has been
allocated. In neither case need the returned value coincide with the actual number

of nonzero elements of a.

See also nnz

380 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

odeget

Purpose Get value of an ODE option.
Synopsis value = odeget(options, name)
Description value = odeget(options, name) returns the value of the property name in the

ODE options structure options.

See also daspk, odeset

381

odeset

Purpose Create an options structure for an ODE solver.
Synopsis opts = odeset

opts = odeset(name, value, ...)

opts = odeset(oldopts, name, value, ...)

Description opts = odeset creates an empty options structure.

opts = odeset(name, value, ...) createsan options structure where one or
more property/value pairs have been set.

opts = odeset(oldopts, name, value, ...) addsone or more property-value
pairs to an existing options structure.

TABLE 1-32: PROPERTY VALUES FOR ODESET

NAME

VALUE

'abstol’

‘complex'

‘consistent’

‘initialstep’
‘Jacobian'

'Mass'’

'maxorder’

‘'minorder’

‘maxstep’

'outputfcn’

‘reltol'’

'stats’

Absolute tolerance, scalar or vector.

If true, the solution is assumed to be complex even
if the initial value is real.

Consistent initialization of DAE system. If
"bweuler' (the default), a consistent initial value is
determined using the backward Euler method, if
‘off', the initial value supplied is assumed to be
consistent

Suggested length of first step.
Matrix or name of function that computes df/dy.

Matrix or name of function that computes the mass
matrix M(t, y). If omitted, the unit matrix is used.

The maximum order of the backward differentiation
formula that is used; must be an integer between |
and 5.

The minimum order of the backward differentiation
formula that is used; must be | or 2.

Maximum step size.

Callback function invoked after each step has been
taken.

Relative tolerance, scalar or vector.

Display statistics on exit.

See also daspk, odeget

382 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ones

Purpose

Synopsis

Description

See also

Create an all-one matrix.

-)

ones(n), where n is an integer, returns an n x n all-one matrix.

ones(sz), where sz is a vector of integers, returns an all-one matrix of size sz.

m = ones(n)

m = ones(sz)

m = ones(n1, n2,
m =

m =

m = ones(n1, n2,
matrix.

eye, repmat, zeros

...), where ni are integers, returns an n1 x n2-... all-one

383

or

Purpose Compute the logical OR of two matrices pointwise.
Synopsis d = or(a, b)
Description d = or(a, b) computes the pointwise logical OR of the two matrices a and b. For

cach dimension, a and b must have the same size or either of them must have size 1.
In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

or(a, b)isequivalenttoa | b.

Examples [0 1 1] | [0 10 1]
[01] 0O
[011 | [1 ; O]

See also and, not, xor

384 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

ordschur

Purpose
Synopsis

Description

Examples

See also

Reorder Schur factorization.

[U1,T1] = ordschur(U,T,select)

[U1,T1] = ordschur(U,T,select) reorders unitary matrix U and Schur matrix T
(typically returned from a call to schur) so that a selected cluster of eigenvalues
appears in the leading diagonal blocks. select is a logical vector with length (T)
clements, where true signifies a selected eigenvalue.

[U1,T1] = ordschur(U,T,order) reorders Uand T so that the cigenvalues appear
in descending order as specified by the integer vector order, where each element

corresponds to one eigenvalue.

If T is in real Schur form with complex eigenvalues (that is, complex eigenvalues are
stored in 2 x 2 block on the diagonal), then said block cannot be separated by
ordschur. If select or order contains different values for two elements in the
same block, then the block is sorted by the larger of the two.

A=[1031;2211; 005 1; 000 10];
[U,T]=schur(A);
[US,TS] = ordschur(U,T,[0 1 0 1]);

[UO,TO] = ordschur(U,T,[1 2 3 2]);

schur

385

orth

Purpose Orthonormal basis of the range of a matrix.

Synopsis orth(A)
orth(A,tol)

Description orth(A) computes an orthonormal basis for the range of A.

orth(A,tol) uses the relative tolerance tol.

386 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

panel

Purpose
Synopsis

Description

Create a panel to add GUI components to.

p panel

p = panel creates a panel into which you add GUI components.

A panel uses a layout manager called GridBagLayout from Java. With it you add
components within cells on a grid. Components can span several cells or be aligned
to different positions within a cell. You can also specify that a component should

keep its preferred size or fill the cell in which it lies.

When you have added all the desired components to the panel, COMSOL Script
automatically determines the size of the panel and each cell in the panel by asking
the components for their preferred sizes. This means that there is no need to

manually account for different font sizes on different platforms, and so on.

When you have created a panel, you can use the following methods to add more

components:

TABLE 1-33: METHODS FOR MANIPULATING PANEL OBJECTS

METHOD DESCRIPTION

add(comp,row,col) Adds a component to the cell in the given
row and column.

add(comp,row,col,nrows,ncols) Addsa component to the cell in the given
row and column. The component spans
the specified number of rows and
columns.

add(comp,row,col,fill) Adds a component and specifies how it
should fill the cell that it is assigned to. Fill
is a string that tells the component to
stretch to fill the cell in certain directions.
It can have one of the values 'both’,
'horizontal' or 'vertical'.

add (comp,row,col,nrwos,ncols, Thesameasadd(comp,row,col,fill)

fill) but also gives the possibility to specify the
number of rows and columns that the
component should span.

addBorder (text) Adds a border with the specified text
around the panel.

addHSeparator (width,row,col) Adds a horizontal separator with the
specified width in pixels to the given row
and column.

387

panel

TABLE 1-33: METHODS FOR MANIPULATING PANEL OBJECTS

METHOD

DESCRIPTION

addVSeparator(height,row,col)

get(tag)

pack

packColumn(row,col)

packRow(row,col)

resetWeight

setAlignment(align)

setFill(fill)

setWeight(x,y)

Adds a vertical separator with the
specified height in pixels to the given row
and column.

Returns the component with the specified
tag on this panel or on subpanels to this
panel.

Packs components on the panel toward
the upper left corner. Use, for example,
before adding a panel to a tabbed pane
to avoid that the components on each tab
stretch to fill the tab.

Packs components in a column away from
the specified row and column.

Packs components in a row away from the
specified row and column.

Resets the weights to their default values,
which arel in both the x and y directions.

Components added after calling this
method get a certain alignment within the
cell.

align is a string with one of the following
values: 'northwest', 'north',
‘northeast', 'west', 'center’,
'east’', 'southwest', 'south’, or
'east’.

Use to set the fill method that is used
when adding components after the call.
You can used it to avoid having to specify
a fill method explicitly in the add calls
when adding many components with the
same fill style.

Sets the weight in the x and y directions
for components that are added after this
call. The relative values of the weights of
the components are used to determine
how extra space within the panel should
be distributed if the panel is larger than
needed by the preferred size of the
components in the panel.

388 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

panel

TABLE 1-33: METHODS FOR MANIPULATING PANEL OBJECTS

METHOD DESCRIPTION
setWeightX(x) Only set the weight in the x direction.
setWeightY(y) Only set the weight in the y direction.

See Also component, dialog, frame

389

patch

Purpose Create a patch consisting of triangles or quadrilaterals.

Syntax patch(x,y,c)
patch(x,y,z,c)

Description patch(x,y,c) creates one filled triangle or quadrilateral for each column in the
matrices X and y. Both x and y must have three or four rows.

¢ is a matrix specifying the patch’s color, and it can be one of the following:

e one of the strings 'r', 'g', 'b', 'c', 'm', 'y', or 'k', specifying the color of

the entire patch directly.

* a 3-element vector with values between 0 and 1 representing an RGB triplet of a

color for the entire patch.

¢ a matrix of the same size as X, or a matrix with one row and the same number of
columns as x. If ¢ has one row, it specifies the color per triangle or quadrilateral
and flat coloring is used. If ¢ has the same size as X, it specifies the color at the
vertices and interpolated coloring is used. The colors are created by mapping the

range of ¢ to the colormap used.

patch(x,y,z,c) is the same as patch(x,y,c) but creates a 3D patch by taking
coordinates from z.

h = patch(...) returns a handle to the created patch object.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command to further control how the patch is created.

PROPERTY VALUE DEFAULT DESCRIPTION
clim 2-element vector Which data values to map to the
first and last color in the colormap.
colormap String of the type The colormap used to color the
'jet(256)',ora patch. It is either a string to be
matrix with three evaluated, or a matrix with one
columns row for each color and one
column for red, green, and blue
values.
edgecolor none | flat | none How to color the edges between
interp | each element in the patch.
colorspec

390 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

patch

See also

PROPERTY VALUE DEFAULT DESCRIPTION
facecolor none | flat | How to color the interior of each
interp | element in the patch.
colorspec
parent Axes handle gca The axes to which the patch is
added.

The interpretation of facecolor and edgecolor for the different allowed values
are as follows:

VALUE DESCRIPTION

none Either the elements is be filled, or their edges are not drawn. For
example, 'facecolor', 'none' can be used to create a
wireframe plot.

flat or How to interpolate the color using the vertex colors. If the value

interp is 'flat', the entire element gets the same color; if the value is
"interp', the color in the interior of the element is created by
interpolation from the values at the vertices.

colorspec A string or an RGB triplet specifying the color of the entire patch.
If it is a string, it is one of the letters r, g, b, ¢, m, y, or k, meaning
red, green, blue, cyan, magenta, yellow, and black, respectively.

line, surface

391

path

Purpose Get or set the M-file path.
Synopsis path

p = path

path(str)

path(str1, str2)

Description path displays the directories on the path in the order in which they are searched.

p = path returns a string containing the directories on the path separated by
pathsep.

path(str) sets the M-file path, where str must be a string containing directories
separated by pathsep.

path(stri, str2) sets the M-file path to the union of the paths in str1and str2.
Example path('C:/MyProgs', path) prepends the directory C: /MyProgs to the path.

See also filesep, pathsep

392 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

pathsep

Purpose Get the system path separator.

Synopsis sep = pathsep

Description sep = pathsep returns the separator between directories in a path list. For
Windows thisis '; ', and on all other platforms itis ': "

See also filesep

393

pause

Purpose Pause execution and wait for keypress.
Synopsis pause(t)
pause

pause('off")
pause('on')

Description pause(t) pauses execution for t seconds.
pause with no input pauses the execution and waits for the user to press any key.
pause('off') disables any pause calls in the code.

pause('on') enables the effect of pause commands again.

394 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

pchip

Purpose

Synopsis

Description

Example

See also

Piecewise cubic Hermite interpolation.

yi = pchip(x,y,xi)
pp = pchip(x,y)

yi = pchip(x,y,xi) performs piecewise cubic Hermite interpolation of y at
points x and returns an array yi corresponding to the values of the underlaying
function y at xi. x must be a vector and y must be either a vector of the same length
as x or an array whose last dimension equals the length of x. In the latter case, the

interpolation is performed along the last dimension of'y.

pp = pchip(x,y) performs piccewise cubic Hermite interpolation of y at points x

and returns the interpolant as a piecewise polynomial structure (described in

ppval).

This example interpolates points from the sine curve and shows how to reuse the

piecewise polynomial.

x = linspace(0,2*pi,10); y = sin(X);
xi = linspace(0,2*pi,20);

yi = pchip(x,y,xi);

pp pchip(x,y);

yip = ppval(pp,xi); %Identical to yi

xi1 = linspace(0,2*pi,100);
yip1 = ppval(pp,xil);

ppval, spline, mkpp, unmkpp

395

permute, ipermute

39 |

Purpose

Synopsis

Description

Examples

Permute the order of matrix dimensions.

b = permute(a, perm)
b ipermute(a, perm)

b

the matrix dimensions have been reordered using the permutation vector perm,

permute(a, perm) returns a matrix with the same elements as a but where

which must be a permutation of 1:ndims(a).

b = ipermute(a, perm) returns a matrix with the same elements as a but where
the matrix dimensions have been reordered using the inverse of the permutation

vector perm.

permute(a, [2 1]) isequivalentto a' if a is a 2D matrix.
permute(ones(2, 3, 5), [2 3 1]) is equivalent to ones(3, 5, 2).

Ifb = permute(a, perm),thena(ix(1), ix(2), ...) == b(ix(p(1)),
ix(p(2)), ...).

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

pi

Purpose Get pi.
Synopsis pi
Description pi returns the mathematical constant .

397

398 |

Purpose Create a colormap with different shades of pink.

Synopsis pink(n)

Description pink(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are different shades of
pink.

See also colormap, bone, cool, gray, grayprint, jet, hot, hsv, wavemap

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

pinv

Purpose

Synopsis

Description

Pseudoinverse.

pinv(A)
pinv(A,tol)

pinv(A) computes the pseudoinverse of A.

pinv(A,tol) uses the relative tolerance tol.

399

plot

400

Purpose

Syntax

Description

Example

See also

Create line plots of type y versus x.

plot(x,y)
plot(y)
plot(x,y,f)

plot(x,y) creates a plot of y versus x. If x and y are vectors, one plot is created. If

x and y are matrices, one plot is created for each column in the matrices.

plot(y) plotsy versus 1:1length(y) if y is a vector or versus the row indices if y is
a matrix.

plot(y), where yis complex, is the same as plot(real(y),imag(y)).

plot(x,y,f) createsa plot with colors, line styles, and markers given by the format
string f, which has one or more characters from the following table:

TABLE 1-34: STRINGS THAT CAN BE PART OF THE FORMAT STRING F

COLOR MARKER LINE STYLE
r red + plus - solid
o] green o] circle : dotted
b blue * star -. dashdot
c cyan v triangle -- dashed
m magenta s square
y yellow p pentagram
k black . dot

h = plot(...) returns a handle to the plotted lines.

plot(x1,y1,f1,x2,y2,f2,x3,y3,f3,...) can be used to create several different

plots with one command.

In addition to the fixed arguments, additional property value pairs can be given at
the end of the command to further control the plot. See the reference entry for 1ine

for details of allowed properties and corresponding values.

Plot sin(x) versus x with a dashed red curve of circular markers:
x=linspace(0,2*pi,50);
y=sin(x);
plOt(X,y,'PO--');

loglog, semilogx, semilogy, line, plot3

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

plot3

Purpose

Syntax

Description

See also

Create line plots in 3D.

plot3(x,y,z)
plot3(x,y,z,c)

plot3(x,y,z) creates a plot by connecting the coordinates in X, y and z with lines.
If x,y, and z are vectors, one plot is created. If x,y, and z are matrices, one plot

is created for each column in the matrices.

plot3(x,y,z,c) creates a plot with a color given by c, the single-letter color
specification.

h=plot3(...) returns a handle to the plotted lines.

In addition to the fixed arguments additional property value pairs can be given at
the end to further control the plot. See the reference entry for 1ine for details of

allowed properties and corresponding values.

plot, 1ine, mesh, surf

401

plus

Purpose Add matrices pointwise.
Synopsis d = plus(a, b)
Description d = plus(a, b) computes the pointwise sum of the two matrices a and b. For each

dimension, a and b must have the same size or either of them must have size 1. In

the latter case, the unit dimension is expanded to the size of the nonunit dimension.

plus(a, b) isequivalenttoa + b.

Examples [1 2 3]+[4 5 6]
[1 2 ; 3 4]+10
[1 2 3]+[10 20 30]"

See also ldivide, minus, rdivide, times

402 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

point

Purpose Create a point.

Syntax point(x,y)
point(x,y,z)

Description point(x,y) creates points at the coordinates given by the vectors x and y.
point(x,y,z) creates points in 3D.
h = point(...) returns a handle to the created points.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command to further control how the point is created.

TABLE 1-35: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec k A string or an RGB triplet
specifying the color of the
points. If it is a string it is one
of the letters r, g, b, c, m, y or
k, meaning red, green, blue,
cyan, magenta, yellow, and
black, respectively.

parent Axes handle gca What axes to add the line to.

size Positive real 6 The size of the points.

403

pol2cart

404 |

Purpose

Synopsis

Description

Example

See also

Transform from polar to Cartesian coordinates.

[x,y] = pol2cart(theta,r)

[x,y,z] = pol2cart(theta,r,z)

[x,y] = pol2cart(theta,r) transforms polar coordinates in arrays theta and r
into Cartesian 2D coordinates. theta should be the angle in radians and r the

radius. They must be the same size or either one can be scalar.

[Xx,y,z] = pol2cart(theta,r,z) transforms cylindrical coordinates into
Cartesian 3D coordinates. theta should be the angle in radians, r the radius and z

the height. They must be the same size or scalar.

[X,y,z]=pol2cart([0 0 pi/2 0],[0 1 1 0],[0 O O 1]) returns the Cartesian
coordinates for the points (0,0,0), (0,1,0),(pi/2,1,0) and (0,0,1) in cylindrical
coordinates, that is points (0,0,0), (1,0,0), (0,1,0) and (0,0,1), respectively.

cart2pol, sph2cart, cart2sph

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

poly

Purpose
Synopsis

Description

Example

See also

Polynomial with specific roots.

p = poly(a)

p = poly(a),where a is a matrix, returns a vector containing the coefficients of the
characteristic polynomial det(Al —a) . If a is an nxn matrix, p is a row vector of

length n+1.

When a is a vector, p is a vector containing the coefficients of the polynomial whose

roots are a.

a=1[125]; p=poly(a)returnsp = [1, -8, 17, -10], which represents
the polynomial x° - 8x+17x-10. Calling roots(p) returns the original roots,
1,2 and 5.

polyder, polyfit, polyint, polyval

405

polyder

406 |

Purpose

Synopsis

Description

Examples

See also

Differentiate a polynomial.

q = polyder(p)
polyder(a,b)
[n,d] = polyder(b,a)

q = polyder(p) returns the derivative of polynomial p, where p is a vector

containing the polynomial coefficients.

q = polyder(a,b) returns the derivative of the product of two polynomials,
a * b.

[n,d] = polyder(a,b) returns the numerator n and the denominator d of the

derivative of the quotient of two polynomials, a / b.

Derivative of polynomial x3——8x2+—17x—-10:
g = polyder([1,-8,17,-10])
qis [3, -16, 171, thatis 3x> - 16x + 17
Derivative of the product of polynomials x2+—10x—+2 and x + 3:
gq = polyder([1,10,2],[1,3])
qis [3, 26, 327, thatis (x”+ 10x+2) - 1+ (2x + 10) - (x + 3) = 3x> + 26x + 32

poly, polyfit, polyint, polyval

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

polyfit

Purpose Polynomial fit.

Synopsis p = polyfit(x,y,n)
[p,s] = polyfit(x,y,n)
[p,s,m] = polyfit(x,y,n)

Description p = polyfit(x,y,n) returns the coefficients of a least squares polynomial p (x) of
degree n that fits the data p(x (1)) to y(1i).

[p,s] = polyfit(x,y,n) also returns a structure s with the fields R (the Cholesky
factor of the Vandermonde matrix), df (degrees of freedom), and normr (the norm

of the residuals).

[p,s,m] = polyfit(x,y,n)usesdataz = (x - m(1)) / m(2) instead of x. m
is a vector of length two where m(1) is the mean value of x and m(2) is the standard

deviation.

See also poly, polyder, polyint, polyval

407

polyint

408 |

Purpose

Synopsis

Description

Example

See also

Integrate a polynomial.

q = polyint(p,k)
q = polyint(p)

q = polyint(p,k) returns the integral of polynomial p, where p is a vector

containing the polynomial coefficients and k is a scalar constant of integration.

q = polyint(p) returns the integral of polynomial p using the default scalar
constant of integration 0.

Integral of polynomial 8x3 — 3x2 + 6x — 10 with scalar constant 20:
q = polyint([8,-3,6,-10],20)
qis[2,-1,3,-10,20], that is 2x* — x® + 322 — 10x + 20.

poly, polyder, polyfit, polyval

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

polyval

Purpose

Synopsis

Description

Example

See also

Evaluate a polynomial.

y = polyval(p,x)

y = polyval(p,x,[],m)
[y,d] = polyval(p,x,s)
[y,d] = polyval(p,x,s,m)

y = polyval(p,x) evaluates the polynomial p at the elements of an array x. p is a

vector containing the polynomial coefficients.

y
z

polyval(p,x,[],m) evaluates the polynomial p using data

(x - m(1)) / m(2) instead of x. mis a vector of length two where m(1) is the
mean value of x and m(2) is the standard deviation, as described in polyfit.

[y,d] = polyval(p,x,s) and[y,d] = polyval(p,x,s,m) use the structure s
to generate error estimates d of y. s must be on the form returned by polyfit, that
is, a structure with the fields R (the Cholesky factor of the Vandermonde matrix), df
(degrees of freedom), and normr (the norm of the residuals). If the errors in the data
are independent normal with constant variance, polyval gives error bounds y+d
which contain at least 50% of the predictions.

Evaluating polynomial 8x3—3x2+6x—10 at 0,1 and 2, that is
y = polyval([8,-3,6,-10],[0 1 2]),returnsy = [-10,1,54].

poly, polyder, polyfit, polyint

409

pow2

Purpose Compute or multiply by power of 2.
Synopsis d = pow2(a)
d = pow2(a, exp)

o
1]

Description pow2(a) is equivalent to 2. "a.

d

a.*2."exp. The sizes of a and exp must be identical unless one of them is a scalar;

pow2(a, exp),where exp is an all-integer matrix, is a faster equivalent to

in that case, the scalar is expanded to a matrix of the correct size.

See also power

410 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

power

Purpose
Synopsis

Description

Examples

See also

Compute a matrix power pointwise.

d = power(a, b)

d

must have the same size or cither of them must have size 1. In the latter case, the

power(a, b) raises a to the power b pointwise. For each dimension, a and b

unit dimension is expanded to the size of the nonunit dimension.

power(a, b) isequivalent to a."b.

(1:5).°3
(2:6).%(3:7)

times

411

ppval

412 |

Purpose Evaluate piecewise polynomial.
Synopsis y = ppval(pp,x)
y = ppval(x,pp)

Description y = ppval(pp,x) andy = ppval(x,pp) evaluate the piecewise polynomial pp for
the points in the real array x. pp is a structure returned by for example spline or
mkpp. It should contain the following fields:

TABLE 1-36: FIELDS OF A PP STRUCT

FIELDNAME DESCRIPTION

form Indicates the function form and should contain string 'pp' (piecewise
polynomial).

breaks A vector of strictly increasing elements, representing the start and
end of each interval.

coefs A matrix where each row contains the coefficients (in order from
highest to lowest exponent) of the polynomial for one interval.

pieces A scalar indicating the number of pieces.

order The order of the polynomial.

dim A vector indicating the size of each coefficient.

See also pchip, spline, mkpp, unmkpp
CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

primes

Purpose
Synopsis

Description

Example

See also

Generate prime numbers.

p = primes(n)

p = primes(n) generates a row vector p of all primes less than or equal to n, which

must be a real scalar.
primes(20) returns [2, 3, 5, 7,

factor, isprime

11,

13,

17,

19].

413

prod

Purpose

Synopsis

Description

Examples

See also

Compute the product of array elements.

y = prod(x)
y prod(x,dim)

y = prod(x) computes the product of the elements of x along a specific dimension.
When x is a vector, y is the product of the elements of x. When x is a matrix, y is a
row vector containing the product of the elements of each column of x. When x is
an n-dimensional array, y is the product of the elements along the first nonsingleton

dimension of x.
y = prod(x,dim) returns the product of the elements of x along the dimension
dim.

X = [023;-313;245];

prod(x) returns [0,8,45].

prod(x,2) returns [0;-9;40].

cumprod, sum, cumsum

414 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

profile

Purpose Generate profiling information.
Synopsis profile('on')
profile('off")
profile('clear')
profile('report', func, ...)

Description profile('on") enables collection of profiling information for all M-file functions

and scripts.
profile('off') disables collection of profiling information.
profile('clear') removes all collected profiling information.

profile('report', func, ...) outputsa profile report for the function func.

The following options can be given:

TABLE 1-37:
OPTION MEANING
"-html’ Generate the report as hyperlinked HTML
files. The reports of the functions called by
func are generated automatically. (Default)
"-raw' Print the report as formatted text.
'-silent’ Sameas '-html' but the HTML files are

only generated, not displayed.

'-dir' followed by Specify the directory where generated
a directory name HTML files are put.

For each line of func, the number of times it has been executed and the relative
amount of time spent there is displayed. HTML reports also contain more detailed

statistics and links to reports for called functions.

Examples To generate an HTML report for gradient with HTML files put in /tmp:
profile on
gradient(rand(100));
profile report -dir /tmp gradient
To generated a report formatted as text:

profile report gradient -raw

415

psi

Purpose Psi function.
Synopsis y = psi(x)

y = psi(k,x)

y = psi(kO0:k1,x)

Description y = psi(x) computes the psi function (also called the digamma function) for x,

which must be real and nonnegative.

y = psi(k,x) computes the kth derivative of the psi function at x.

y = psi(k0:k1,x) computes the derivatives of order k0O through k1 of the psi

function at x.

See also gamma, gammaln

416 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

pwd

Purpose Print the working directory.
Synopsis pwd

Description pwd prints the working directory.
See also cd, 1s

417

qr

Purpose QR factorization.
Synopsis [q,r] = qr(a)
[g,r,p] = gr(a)
[g,r] = qr(a,0)
[g,r,p] = gr(a,0)
qr(a)
Description [Q,R] = gr(A) computes the QR factorization of the dense MxIN matrix A, so that

QR = A. Q is a MxM square unitary matrix and R is a MxIN upper triangular matrix.

[Q,R,P] = gr(A) computes the QR factorization of the dense matrix A such that
QR = AP. The absolute value of the diagonal elements of R are in decreasing order.

[Q,R] = gr(A,0) computes a reduced size factorization: For M>N, only the first
N columns of Q and the first N rows of R are computed.

[Q,R,P] = gr(A,0) computes the reduced size factorization and in addition
returns, P such that Q*R = A(:,P).

qr (A) returns the output from the LAPACK algorithms DGEQRF and ZGEQRF,

respectively.

See also 1u, chol, svd

418 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

quad

Purpose

Synopsis

Description

Example

See also

Evaluate integral numerically using adaptive Simpson quadrature.

q = quad(f,a,b)

q = quad(f,a,b,tol)

q = quad(f,a,b,tol,trace)

q = quad(f,a,b,tol,trace,x1,x2,...)
[q,fnr] = quad(f,a,b,...)

q = quad(f,a,b) approximates the integral of a function f from a to b using

adaptive Simpson quadrature with the default tolerance le-6.

g = quad(f,a,b) approximates the integral to a relative error tol.

g = quad(f,a,b,tol,trace), when trace is nonzero, displays the number of

function evaluations, a, b-a and q during the recursion.

q = quad(f,a,b,tol,trace,x1,x2,...) passes any further arguments x1,x2, ...
to the function f.

[q,fnr] = quad(f,a,b,...) also returns fnr, the number of times quad

evaluated the function f.

g = quad('myfun',-1,2,1e-8) approximates the integral of a function myfun
between -1 and 2 with relative error 1e-8.

quadl

419

quadl

420 |

Purpose

Synopsis

Description

Example

See also

Evaluate integral numerically using adaptive Lobatto quadrature.

= quadl(f,a,b)

quadl(f,a,b,tol)
quadl(f,a,b,tol,trace)
quadl(f,a,b,tol,trace,x1,x2,...)
q,fnr] = quadl(f,a,b,...)

q
q
q
q
[

q = quadl(f,a,b) approximates the integral of a function f from a to b using
adaptive Lobatto quadrature with the default tolerance le-6.

q = quadl(f,a,b) approximates the integral to a relative error tol.

q = quadl(f,a,b,tol,trace), when trace is nonzero, displays the number of

function evaluations, a, b-a and q during the recursion.

q = quadl(f,a,b,tol,trace,x1,x2,...) passes any further arguments x1,x2,
... to the function f.

[g,fnr] = quadl(f,a,b,...) also returns fnr, the number of times quad

evaluated the function f.

q = quadl('myfun',-1,2,1e-8) approximates the integral of a function myfun
between -1 and 2 with relative error 1e-8.

quad

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

quit

Purpose Close the command window.
Synopsis quit

Description quit closes the command window.
See also exit

421

radiobutton

Purpose Create a radio button.
Synopsis r = radiobutton(text,...)
r = radiobutton(...)
Description r = radiobutton(text) creates a radio button with the specified text.

A radiobutton behaves exactly as does a togglebutton except that it is rendered
as a radio button. See the reference entry for togglebutton for available property

values and methods.

See also togglebutton

422 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

rand, randn

Purpose

Synopsis

Description

Generate random numbers uniformly distributed over [0, 1].

a = rand
a = randn

a = rand(n)
a = randn(n)

a = rand(m, n, ...)
a = randn(m, n, ...)

a = rand(sz)
a = randn(sz)

a = rand('state')
a randn('state')

rand('state', n)
randn('state', n)

rand('state', vec)
randn('state', vec)

rand generates pseudorandom numbers uniformly distributed over [0, 1] while
randn generates pseudorandom numbers with the normal distribution. This is the
only difference between the two functions; in the description below, you can replace
rand by randn in all places.

a = rand returns a random number.

a = rand(n), where n is a positive integer, returns an n-by-n-matrix of random
numbers.

a = rand(m, n, ...),wherem,n,...are positive integers, returns a matrix of
random numbers of size (m, n, ...).

a = rand(sz), where sz is an integer vector, returns a matrix of random numbers
of size sz.

a = rand('state') returns the state vector of the pseudorandom number
generator.

rand('state', n), where nis an integer, resets the generator using the seed n.

rand('state', vec), where vec is a vector of doubles, sets the state of the
generator to vec.

423

randperm

Purpose Random permutation.

Synopsis p = randperm(n)

p = randperm(n), where n is an integer, returns an n-long vector that contains a
random permutation of 1:n.

Description

Example randperm(5) returns a random permutation of [1,2,3,4,5], for instance

[4,2,3,1,5] or [3,2,4,1,5].

424 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

rank

Purpose Compute the rank of a matrix.

Synopsis rank(A)
rank(A,tol)

Description rank (A) computes the rank of A.

rank (A,tol) computes the rank of A using the relative tolerance tol.

425

rat

426 |

Purpose

Synopsis

Description

Example

See also

Rational fraction approximation

[n,d] = rat(x)
[n,d] rat(x,tol)
str = rat(...)

[n,d] = rat(x) returns arrays n and d such that n. /d approximates the elements
of x within tolerance 1.e-6*norm(X(:),1).

[n,d] = rat(x,tol) approximates x within tolerance tol.

str = rat(...) returns a string representation of the continued fraction of each
clement of x.

[n,d] = rat([0.3 pi sqrt(2)]) returnsn = [3,355,577] and
d = [10,113,408].

rats

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

rats

Purpose

Synopsis

Description

Example

See also

String representation of rational fraction approximation

str = rats(x)
str rats(x,len)

str = rats(x) returns string representations of the simple rational fraction
approximations of x. (Unlike str = rat(...), which returns the continued

fraction.) An asterisk represents elements that cannot be contained within the
default string length of 13.

str = rats(x,len) returns string representations of the elements of x within the
length 1en. Note that elements are separated by a space character. Hence
rats([0.325 4.442],3) returns a string of length 8.

rats([0.3 pi sqrt(2)]) returns the string
! 3/10 355/113 577/408 b

rat

427

rdivide

Purpose Divide matrices pointwise.
Synopsis d = rdivide(a, b)
Description d = rdivide(a, b) computes the pointwise ratio between the two matrices a

and b. For each dimension, a and b must have the same size or either of them must
have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

rdivide(a, b) is equivalent to a./b.

Examples [2 3 5]./10
(2:5)./(3:6)
See also minus, plus, 1divide, times

428 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

real

Purpose Return real part.

Synopsis b = real(a)

Description b = real(a) returns the real part of the complex matrix a.
See also imag

429

realmin, realmax

Purpose Get the smallest and largest values that can be represented as floating-point values.

Synopsis realmin
realmax

Description realmin returns the smallest value that can be represented as a floating-point value,

1/271022.

realmax returns the largest value that can be represented as a floating-point value,
271024-1.

430 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

realpow

Purpose Compute power of real matrix.

Synopsis m realpow(a, b)

realpow(a, b) computes aP pointwise. The sizes of a and b must be identical
unless one of them is a scalar; in that case, the scalar is expanded to a matrix of the

Description m

correct size.

realpow can only be used when the result is real, that is, when all elements of'a. *b
are real.

See also power

431

rehash

Purpose Refreshes the view of the path.

Synopsis rehash
rehash path

Description rehash checks for each function on the path if it has been modified since it was

loaded into memory and reloads it if this is the case.

rehash path refreshes the view of all directories on the path and loads new and
modified functions.

rehash path is needed if a new function has been created that shadows an existing

function on the path.

See also path

432 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

rem

Purpose Compute a remainder.
Synopsis r = rem(a, b)
Description r = rem(a, b) computes the remainder for the pointwise division of a and b,

whose sizes must be identical unless one of them is a scalar; in that case, the scalar

is expanded to a matrix of the correct size.

See also mod, rdivide

433

repmat

434 |

Purpose

Synopsis

Description

Examples

See also

Create matrix by repeating another matrix in a pattern.

r = repmat(a, sz)
r = repmat(a, dimt1, dim2, ...)

r = repmat(a, sz) returnsa matrix created by repeating the matrix a in an
sz(1)-by-sz(2)-... pattern, which results in a matrix of size (sz(1) *size(a, 1),
sz(2)*size(a,2), ...).

r = repmat(a, dimi, dim2, ...) isequivalent to repmat(a, [dim1 dim2
.1).

repmat (pi, 5, 3) returnsa 5-by-3-matrix where all the elements are pi.

repmat(eye(2), 2, 3) returnsa 4-by-6-matrix where half the elements are ones
and the other half are zeros.

eye, ones, zeros

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

reshape

Purpose

Synopsis

Description

Examples

See also

Reshape a matrix.

r = reshape(a, sz)
reshape(a, dim1, dim2, ...)

r = reshape(a, sz) returns the matrix a reshaped into size sz, which must be an
integer vector such that prod(sz)==numel(a). The returned matrix r has the same

column-major order contents as a so that r(:) equals a(:).

r = reshape(a, dim1, dim2, ...) returns the matrix a reshaped into
size (dim1, dim2, ...).The dimensions must satisty the relation
dim1*dim2*...==numel(a). If one of the dimi is the empty matrix [], then the

size of that dimension is chosen such that the number of elements does not change.

This is possible only if the product of the supplied dimensions divides numel(a).

reshape(1:4, 2, 2) returns [1 3 ; 2 4].

reshape(1:100, 4, [], 5) returns an 4-by-5-by-5-matrix.

squeeze

435

rethrow

Purpose Rethrow an error message.
Synopsis rethrow(s)
Description rethrow(s) throws the error message in the message field of the structure s.

The typical use of rethrow is in a catch clause, where rethrow(lasterror)
throws the error caught by catch.

See also error, lasterror

436 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

rmdir

Purpose Remove a directory.
Synopsis status = rmdir(name)
status = rmdir(name, 's')

Description status = rmdir(name) removes the directory name, which must be empty. 1 is

returned if the operation was successful, 0 if it failed.

status = rmdir(name, 's') removes the directory name and its contents

recursively.

See also isdir, mkdir

437

rmfield

Purpose Remove a field from a structure.
Synopsis news = rmfield(s, field)
Description news = rmfield(s, field) returnsa copy of the structure s where the field

called field has been removed.

See also isfield, getfield, setfield

438 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

rmpath

Purpose Remove a directory from the search path.
Synopsis rmpath(dir)
Description rmpath(dir) removes the directory dir from the list of directories where

COMSOL Script looks for M-files.

See also addpath, path

439

roots

Purpose Compute polynomial roots.
Synopsis roots(P)
Description roots (P) returns the roots of the polynomial P.

440 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

rot90

Purpose Rotate a matrix counterclockwise.

Synopsis

o
1]

rot90(a)
b = rot90(a, n)

Description b = rot90(a) returns a rotated 90 degrees counterclockwise.

b = rot90(a, n) returns a rotated 90n degrees counterclockwise where n must
be an integer.

See also fliplr, flipud

441

run

Purpose Run a script.
Synopsis run(scrname)
Description run(scrname) runs the script scrname.

442 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

save

Purpose

Syntax

Description

Example

See also

Save a workspace to file.

save(filename)

save(filename, vari, var2, ...)
save(..., '-mat')

save(..., '-ascii')

save(..., '-ascii', '-tabs')

save(..., '-ascii', '-double')
save(..., '-ascii', '-double', '-tabs')

save (filename), where filename is a string, saves variables and their values to the

file filename.

save(filename, vari, var2, ...) saves only the variables vari, var2, to

file. * can be used as wildcard character unless ' -ascii' is given.

save(..., '-mat') saves the file as a MATLAB workspace file. (The default

behavior is to save it as a Comsol workspace file.)

save(..., '-ascii') saves text representations of the variables. This is possible
only for numerical 2D matrices. The variables are written in the order they were
specified. For each matrix variable, a row in the matrix corresponds to a row in the

output file.

save(...,'-ascii','-tabs"') separates the elements on each row of a matrix

using tabs instead of spaces.

save(...,'-ascii','-double") saves the variables in full precision instead of

using 8 significant digits.

save(...,'-ascii','-double','-tabs"') saves the variables tab-separated in
full precision.
Saving only the variables with names beginning with 'ab"':

a = 2;

ab = 3;

abc = 5;

save mydata ab*

load

443

saveimage

Purpose Save a plot as an image
Synopsis saveimage(filename,...)
Description saveimage(filename, .. .) saves the plot in the current figure as an image with

the name filename.

The following property-value pairs can be used to control the generated image:

TABLE 1-38: VALID PROPERTY/VALUE PAIRS

444 | CHAPTER I:

PROPERTY VALUE DEFAULT DESCRIPTION
antialias on | off on Antialiasing.
autoticks on | of f on Automatic axis tick marks.
figure handle current Handle to the figure
figure window to generate an
image from.
fontscale positive scalar 1 Relative font scale.
fontscaleabs positive scalar 1 Absolute font scale.
height positive scalar 600 The height of the image.
hideaxis3d on | off off Hide 3D axes objects.
includeall on | off on Include colorbars and
legends.
linescale positive scalar 1 Relative line scale.
linescaleabs positive scalar 1 Absolute line scale.
resolution positive integer 300 Image resolution (dpi).
thingrid on | off off Thin grid lines.
type bmp | jpeg | png| ipeg The type of image to
tiff | eps create.
unit cm|inch | pixel pixel Image size unit.
width positive scalar 800 The width of the image.

COMSOL SCRIPT COMMAND REFERENCE

schur

Purpose

Synopsis

Description

See also

Schur decomposition.

T = schur(A)
= schur(A,str)
[U,T] = schur(A,...)

—
I

—
I

schur (A) returns the Schur form of a square matrix A.

T = schur(A,str), where str can be either 'real' or 'complex', returns the
corresponding Schur form of A. The defaultis 'real’, which puts the eigenvalues
on the diagonal if they are real and in 2-by-2 block on the diagonal if they are
complex. In the latter case, the complex eigenvalues are the eigenvalues of each
block. 'complex' gives the eigenvalues on the diagonal, independent of whether
they are real or complex.

[U,T] = schur(A,...) also returns a unitary matrix U such that A = U*T*U' and
u'*u = I.

hess

445

scrollpane

Purpose Create a scroll pane.

Synopsis s = scrollpane(comp,...)

Description s = scrollpane(comp) creates a scroll pane that controls the specified
component.

The property values listed under the reference entry for component can be used to
further control how the scroll pane is created. In particular, it is important to specify

the 'size' property because the scroll pane is very small by default.

See also component, panel

446 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

semilogx

Purpose Create a plot with a log scale on the x-axis.
Synopsis semilogx(...)
Description semilogx(...) has the same functionality as plot(...) except that it uses a log

scale on the x-axis.

See also plot

447

semilogy

Purpose Create a plot with a log scale on the y-axis.
Synopsis semilogy(...)
Description semilogy (...) has the same functionality as plot(...) except that it uses a log

scale on the y-axis.

See also plot

448 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

set

Purpose Set the value of a property for a graphics object.
Synopsis set(h,name,value)
Description set(h,name,value) sets the value of property name to value for the graphics

object to which the handle h refers.

See also get

449

setdiff

450 |

Purpose

Synopsis

Description

Examples

See also

Set difference.

c = setdiff(a,b)
c setdiff(a,b, 'rows")
[c,ai] = setdiff(...)

¢ = setdiff(a,b) returns the elements of a that are not in b. Both of them can

be cither arrays or cell arrays of strings.

¢ = setdiff(a,b, 'rows'), where a and b must be 2D matrices, returns the row
set difference, that is, the rows in a that are not in b. a and b must have the same

number of columns.

[c,ai] = setdiff(...) also returns the index vector ai, which contains the

linear indices in a of the elements in c.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command.

TABLE 1-39: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort ‘on' | 'off’ ‘on Controls whether or not

output should be sorted.

a=1[120123];

b=1[245708];

[c,ai] = setdiff(a,b) returnsc = [1, 3] and ai = [4, 6].

[c1,ai1] = setdiff(a,b, 'sort', 'off') returns the same result unsorted.

a=[123;231; 345;543; 435;13 3];
b=1[345;345;122; 435];
setdiff(a,b, 'rows') returns [1, 2, 3; 1, 3, 3; 2, 3, 1; 5, 4, 3].

a {'green','yellow', 'blue', 'green'};
b = {'red', 'purple','yellow'};
setdiff(a,b) returns {'blue', 'green'}.

intersect, ismember, setxor, union, unique

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

setfield

Purpose

Synopsis

Description

See also

Set the value of a structure field.

t setfield(s, field, val)

t

setfield(s, index1, field, index2, val)

t = setfield(s, field, val), for a structure s, returns a copy of s where the
field field has been assigned the value val. This is equivalent to t = s;
t.(field) = val.

t = setfield(s, index1, field, index2, val), for a structure s, is
equivalenttot = s; t(index1{:}).(field) (index2{:}) = val where index1
and index2 are cell arrays containing array indices.

getfield

451

setxor

Purpose Set exclusive OR.

Synopsis c = setxor(a,b)
c = setxor(a,b,'rows')
[c,ai,bi] = setxor(...)

Description ¢ = setxor(a,b) returns the set exclusive or of a and b, that is, the elements that

are not in the intersection of a and b. a and b can be either arrays or cell arrays of

strings.

c = setxor(a,b, 'rows"'), where a and b must be 2D matrices, returns the row
set XOR, that is, the rows not in the intersection of a and b. a and b must have the

same number of columns.

[c,ai,bi] = setxor(...) also returns the index vectors ai and bi, where ai
contains the linear indices of the elements of ¢ that belong to a, and bi contains the

linear indices of the elements of ¢ that belong to b.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command.

TABLE 1-40: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
sort ‘on' | 'off" ‘on' Controls whether or not
output should be sorted.
Examples a=[120123];
b=1[245708];
[c,ai,bi] = setxor(a,b)

returnsc = [1, 3, 4, 5, 7, 8],ai = [4, 6],andbi = [2, 3, 4, 6].

a=[123; 231; 345;543; 435;13 3];
b=1[345;345;122; 4325];
c1 = setxor(a,b, 'rows')

returns [1, 2, 2 ; 1, 2, 3 ; 1, 3, 3 ; 2, 3, 1 ; 5, 4, 3].
c2 = setxor(a,b,'rows','sort', 'off') returns the same result unsorted.

a = {'green','yellow', 'blue', 'green'};
b = {'red', ' 'purple','yellow'};
setxor(a,b) returns {'blue', 'green', 'purple', 'red'}.

See also intersect, ismember, setdiff, union, unique

452 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

shading

Purpose

Synopsis

Description

See also

Control shading of surface and patch objects.

shading('flat')
shading('interp"')
shading('faceted')

shading('flat') sets that flat shading should be used on patch and surface
objects in the current axes. This means that a constant color picked from one of the
corners will be used in each element.

shading('interp') sets that the color within elements should be interpolated

from color values at the corner nodes.

shading('faceted') uses flat shading within the elements but also shows black
lines along the edges of each element.

shading(ax, ...) controls the axes ax instead of the current axes.

patch, surface

453

shiftdim

454 |

Purpose

Syntax

Description

Examples

See also

Shift matrix dimensions.
b = shiftdim(a, n)
[b, n] = shiftdim(a)

b = shiftdim(a, n), for a positive integer n, returns a after shifting the matrix
dimensions cyclically n steps. If n is negative, b gets the same size as a but with -n
unit dimensions prepended.

[b, n] = shiftdim(a) returns a with prefix unit dimensions removed; n is the

number of unit dimensions that were removed.

size(shiftdim(ones(2, 3, 4), 1)))is [3 4 2].

size(shiftdim(ones(2, 3, 4), -2)))is[1 1 2 3 4].

[b, n] = shiftdim(ones(1, 1, 3, 5)) resultsinb = ones(3, 5)andn = 2.

circshift

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

single

Purpose Round a matrix to single precision.
Syntax b = single(a)
Description b = single(a) returns the result of converting a to single precision pointwise. The

returned matrix b is still double precision.

See also double

455

size

Purpose Get the size of a matrix.

Syntax sz = size(a)
[rows,cols]=size(a)
szd = size(a,dim)
Description sz = size(a) returns the size of a.
[rows,cols]=size(a) returns the number of rows and columns in a.

szd = size(a,dim) returns the size of dimension dim in a.

See also length

456 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

sort

Purpose

Synopsis

Description

Examples

See also

Sort an array.

y = sort(x)

y = sort(x,dim)

[y,ind] = sort(...)

y = sort(x) sorts the elements of x in ascending order. When x is a vector, sort

sorts the elements of x. When x is a matrix, sort sorts each column of x. When x

is an n-dimensional array, sort sorts along the first nonsingleton dimension of x.
y = sort(x,dim) sorts x along the dimension dim.

[y,ind] = sort(...) also returns ind, an array of the same size as x containing

the original index of each element in y along the dimension x is sorted.
sort is stable, hence the relative order of identical elements is preserved.

Note that NaN values are sorted as larger than any other value, including Inf.

Complex values are sorted first by magnitude, then by angle.

a= [1 10032177 5];

[res,ri] = sort(a); returns

res = [0, 1, 1, 2, 3, 5, 7, 7, 10] and
ri = [3, 1, 6, 5, 4, 9, 7, 8, 2].

x = [023;-313;240];
X2 = [-341;320;-1811;

y(i,0,1)=x5y (8, 1,2)=x2;
sort(x,1) returns [-3, 1, O0; 0, 2, 3; 2, 4, 3].
sort(x2,2) returns [-3, 1, 4; 0, 2, 3; -1, 1, 8].
[z,ind] = sort(y,3) returns z and ind such that:
Z(:::’1) = ['3: 2: 1; '3; 1; 0, '1! 4: 0]
z(:,:,2) = [0, 4, 3; 3, 2, 3; 2, 8, 1]
ind(:,:,1) = [2, 1, 2; 1, 1, 2; 2, 1, 1]
ind(:,:,2) = [1, 2, 1; 2, 2, 1; 1, 2, 2].
sortrows

457

sortrows

458 |

Purpose

Synopsis

Description

Examples

See also

Sort rows.

y = sortrows(x)
y = sortrows(x,col)
[y,ind] = sortrows(x)

y = sortrows(x) sorts the rows of x in ascending order. x must be a matrix or a

column vector.

y = sortrows(x,col) sorts the rows of x according to the columns specified in
col, which must be a vector of positive integers, where each entry specifies one
column. sortrows (x,[3,2]), for example, sorts first along column three, then, for

rows with equal values in column three, along column two.

[y,ind] = sortrows(...) also returns ind, a vector containing the original index
of each row of y.

sortrows is stable, hence the relative order of identical elements is preserved.

Note that NaN values are sorted as larger than any other value, including Inf.

Complex values are sorted first by magnitude, then by angle.

x=[012;110; 010; 1
sortrows(x) returns [0, 1, O ;
sortrows(x,[2 1]) returns

(t,0,2;0,1,2;0,1,05;1,1,0;0,2, 1]

02; 021];
0 2

»1,250,2,151,0,2; 1,1, 0].

sort

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

sound, soundsc

Purpose

Synopsis

Description

Plays sound.

sound(data)
sound(data, rate)
sound(data, rate, nbits)

soundsc(data)
soundsc(data, rate)
soundsc(data, rate, nbits)

sound(data) interprets data as a pulse-code modulated signal and plays it with a
sample rate of 8192Hz using 16 bits per sample. Signal values outside [-1,1] are
clipped.

sound(data, rate) usesa sample rate of rate.

sound(data, rate, nbits) usesasample rate of rate and nbits bits per sample
(only 8 and 16 are supported).

soundsc(data, ...) scalesand translates the signal such that the minimum and

maximum amplitudes are -1 and 1 respectively when sent to the output device.

sound and soundsc is only available if the platform has support for sound.

459

sparse

Purpose Create a sparse matrix.
Synopsis sp = sparse(a)
sp = sparse(m, n)
sp = sparse(rows, cols, data)
sp = sparse(rows, cols, m, n)
Description sp = sparse(a) returns a sparse matrix with the same contents as the sparse or full
matrix a.

sp = sparse(m, n) returns an mxn all-zero real sparse matrix.

sp = sparse(rows, cols, data) returns asparse matrix with a specified sparsity
pattern: rows and cols are vectors containing row and column indices for nonzero
elements, and data is a vector containing the values of the nonzero elements. The
returned matrix has the size (max(rows), max(cols)), where rows, cols, and data
all must have the same length or be scalars; if any of them is a scalar, then it is

expanded to a constant vector.

sp = sparse(rows, cols, data, m, n) returns an m-by-n sparse matrix with
contents interpreted in the same way as for the syntax sparse(rows, cols,
data).

See also full

460 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

spdiags

Purpose

Synopsis

Description

Example

See also

Extract diagonals from a sparse matrix or create a sparse matrix from diagonals.

[C,d] = spdiags(S)

C spdiags(S,d)

S = spdiags(C,d,A)

S spdiags(C,d,m,n)

[C,d] = spdiags(S), where S isa 2D matrix, returns a matrix C, whose columns
are the nonzero diagonal of S, and a vector d specifying the indices of the diagonals.
0 indicates the diagonal, -1 the first subdiagonal, 1 the first superdiagonal and so
on. C will have min(m,n) rows, where [m,n] = size(S). Ifa column in Cis
longer than the diagonal in S it represents, elements of superdiagonals correspond

to the lower part of the column and elements of subdiagonals to the upper.
C = spdiags(S,d) returns a matrix C whose columns are the d diagonals of S.

S = spdiags(C,d,A) returns a sparse copy of a matrix A with diagonals d replaced

by the columns in C.

S = spdiags(C,d,m,n) returns a sparse matrix of size m-by-n with diagonals d

replaced by the columns in C.

A = reshape(1:16,4,4);

¢c=1-1,0;0,0;0,-12;0,-14];

S = spdiags(C,[-3,2],A);
diag

461

speye

Purpose Create a sparse matrix with ones on the diagonal.
Synopsis e = speye(n)
e = speye(m,n)
Description In all cases, a sparse matrix with ones on the main diagonal and zeros elsewhere is

returned. Its size is determined as follows:
speye(n), where n is a nonnegative integer, returns a square n-by-n-matrix.
speye(m,n), where m and n are nonnegative integers returns an m-by-n-matrix.

See also eye

462 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

sph2cart

Purpose
Synopsis

Description

Example

See also

Transform from spherical to Cartesian coordinates.

[x,y,z] = sph2cart(theta,phi,r)

[x,y,z] = sph2cart(theta,phi,r) transforms spherical coordinates into
Cartesian coordinates. theta is the azimuth, phi is the elevation, and r is the radius.

Both theta and phi must be in radians. All input must be the same size or a scalar.

[X,Y,z]=sph2cart([0 O pi/2 0],[0 O O pi/2],[0 1 1 1]) returns the
Cartesian 3D coordinates for the points (0,0,0), (0,0,1), (pi/2,0,1) and (0,pi/2,1)
in spherical coordinates, that is points (0,0,0), (1,0,0), (0,1,0) and (0,0,1),
respectively.

cart2sph, cart2pol, pol2cart

463

spline

464 |

Purpose Cubic spline interpolation.
Synopsis yi = spline(x,y,xi)
pp = spline(x,y)

Description yi

spline(x,y,xi) performs spline interpolation of y at points x and returns
an array yi corresponding to the values of the underlaying function y at xi. x must
be a vector and y must be either a vector of the same length as x or an array whose
last dimension equals the length of x. In the latter case, the interpolation is

performed along the last dimension of'y.

pp = spline(x,y) performs spline interpolation of y at points x and returns the

cubic spline interpolant as a piecewise polynomial structure (described in ppval).

Example This example interpolates points from the sine curve and shows how to reuse the

piecewise polynomial.

x = linspace(0,2*pi,10); y = sin(x);
xi = linspace(0,2*pi,20);

yi spline(x,y,xi);

pp = spline(x,y);

yip = ppval(pp,xi); %Identical to yi

xi1 = linspace(0,2*pi,100);
yip1 = ppval(pp,xil);

See also ppval, pchip, mkpp, unmkpp

CHAPTER |:

COMSOL SCRIPT COMMAND REFERENCE

spones

Purpose
Synopsis

Description

Example

See also

Sparse matrix of ones.

S = spones(A)

spones (A) returns a sparse matrix with the same sparsity structure as A but with
ones in the place of nonzero elements.

spones([0 10 2;0 0 0; Inf O 0]) returns the sparse version of the matrix

[0,1,1; 0,0,0;

nnz, spdiags

1,0,0].

465

sprand

466 |

Purpose

Synopsis

Description

See also

Sparse random matrix with uniformly distributed numbers.

S = sprand(A)
S sprand(m,n,density)

sprand (A) returns a sparse matrix with the same sparsity structure as A but with

random numbers uniformly distributed over [0, 1] in the place of nonzero elements.

sprand(m,n,density) returns a sparse matrix of size m-by-n with approximately
density*m*n random numbers uniformly distributed over [0, 1].

sprandn, sprandsym, rand

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

sprandn

Purpose

Synopsis

Description

See also

Sparse random matrix with normally distributed numbers.

S = sprandn(A)
S sprandn(m,n,density)

sprandn(A) returns a sparse matrix with the same sparsity structure as A but with
normally distributed random numbers in the place of nonzero elements.

sprandn(m,n,density) returns a sparse matrix of size m-by-n with approximately
density*m*n normally distributed random numbers.

sprand, sprandsym, rand

467

sprandsym

Purpose Symmetric sparse random matrix.
Synopsis S = sprandsym(A)
S = sprandsym(m,density)

Description sprandsym(A) returns a symmetric sparse matrix whose lower triangular part has
the same sparsity structure as A but with normally distributed random numbers in

the place of nonzero elements.

sprandsym(m,density) returns a symmetric sparse matrix of size m-by-m with

approximately density*m*m normally distributed random numbers.

See also sprand, sprandn, rand

468 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

sprintf

Purpose
Synopsis

Description

Convert data to a formatted string.
s = sprintf(format,m,...)

s = sprintf(format,m,...) returns a string representation of the input matrices
according to the C-style format string format.

The format string contains conversion specifications for the input matrices. Each
specification begins with the % character followed by optional flags, width and

precision fields and the required conversion character as described below:

TABLE |-41: FLAGS

CHARACTER DESCRIPTION EXAMPLE CODE EXAMPLE OUTPUT
'"-' (minus) Resultis left sprintf('x=%-6.2fm',10) x=10.00 m
justified

'+' (plus) Always print sign sprintf('s+d, ',[2 -2]) +2, -2,

'0' (zero) Pad with zeros sprintf('%05.1f',2.123) 002.1
instead of spaces

Flags can be combined, that is, you can have more than one flag at the same time.

TABLE [-42: CONVERSION CHARACTERS

CHARACTER DESCRIPTION

'd' (or 'i') Integer notation

e Exponential notation using lowercase e
'E' Exponential notation using uppercase E
! Fixed-point notation
‘g Exponential or fixed-point notation.

'G' Identical to 'g', but using uppercase E for
exponential notation.
's' String

'%g' uses exponential notation when the exponent is larger than or equal to the
precision, or if the exponent is less than -4. The default precision is 6. Note that
precision means number of digits to the right of the decimal point for '%f ' and the

total number of digits for '%g'. '%g' always removes insignificant zeros.

469

sprintf

Examples
EXAMPLE CODE RESULT
sprintf('A:%10.4d',12) A: 0012
sprintf('A: %-+10.2f A: +10.05 A: +1.02
',[10.045,1.02])
sprintf('gl: %.29 g2: %.3g g1: 1e+002 g2: 100
',100,100)
sprintf('%%Hello \n World%%') %sHello
Worlds%
sprintf('S%ss: %f','X',12.141) X: 12.141000
sprintf('f: %.3f g: %.39 ',pi,pi) f: 3.142 g: 3.14
sprintf('f: %-10.3f g: %-10.6g f: 100.000 g: 100
(m)',100.000,100.000) (m)
sprintf('A: %.1f B: %.3e\n’', A: 1.0 B: 1.000e+000
[1.01 1.00001,1.1],[1e4 1e-4 1]) A: 1.1 B: 1.000e+004
A: 0.0 B: 1.000e+000
See also num2str, int2str, fprintf, sscanf

470 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

spy

Purpose Show sparsity pattern in a sparse matrix.
Synopsis spy(x)
Description spy(x) plots a small dot in positions where entries in x are nonzero. This can be

used to visualize the sparsity pattern of sparse matrices.

471

sqrt

Purpose Square root.
Syntax b = sqrt(a)

Description b = sqrt(a) returns the pointwise square root of a.

See also sqrtm

472 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

sqrtm

Purpose Matrix square root

Synopsis X = sqrtm(A)
[X,r] = sqrtm(A)
[X,alpha,CX] = sqrtm(A)

Description X = sqrtm(A), where A is a square matrix, returns a matrix X such that X * X = A.

[X,r] = sgrtm(A) also returns the residual r = norm(A - X~2,'fro') /
norm(A, 'fro').

[X,alpha,CX] = sqrtm(A) returns alpha, a stability factor, and CX, an estimate
of the matrix square root condition number of X.

See also expm, funm, sqrt

473

squeeze

Purpose Remove the unit dimensions.

Synopsis m = squeeze(a)

m = squeeze(a) returns a matrix with the same contents as a but where interior
unit dimensions have been removed and the elements shifted accordingly.

Description

Example squeeze(ones(4, 1, 3, 1, 1, 5))isones(4, 3, 5).

See also reshape, shiftdim

474 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

sscanf

Purpose

Synopsis

Description

Examples

See also

Read formatted data from a string.

a = sscanf(s,format)
a sscanf(s,format,size)
[a,count,error,nextindex] = sscanf(...)

a = sscanf(s,format) converts a string s into a matrix a according to a specific

format string format. Formats are defined by a

%' character followed by the type
identifier (d,e,f,g,s). (For information about the identifiers, see sprintf.) Several
different formats can be used in the format string, either one after the other or
separated by string tokens or white-space characters. (These tokens must be
matched exactly in the base string s. A format string of '%d; ', for example, will read

integers separated by ';'.)

a = sscanf(s,format,size) reads data according to size, which can be a scalar
n, in which case sscanf reads n elements into a column vector. If nis Inf, sscanf
reads all elements. size can also be a matrix [m,n], in which case a will be an mxn

matrix filled in column order. n may be Inf, but not so m.

[a,count,error,nextindex] = sscanf(...) also returns count, the number
of successfully read elements, and nextindex, one more than the characters read in
s. error is unused.

sscanf('12 Inf -1 12 5 20 0.12 8 10 NaN', '%f',[2,3]) returns [12, -1,
5 ; Inf, 12, 20].

sscanf('12.2 13.1 0.1 ','%d%f %f') returns [12 ; 13.1 ; 0.1].

sscanf('1:13,0.1 ', '%d:%d,%f') returns [1; 13; 0.1].

fscanf, sprintf

475

stairs

476 |

Purpose

Synopsis

Description

Examples

See also

Stairstep plot

stairs(y)

stairs(x,y)
stairs(...,linespec)

h = stairs(...)
[xdata,ydata] = stairs(x,y)

stairs(x,y) plots a stairstep plot of y versus x. If the inputs are matrices, one line
of stairs is drawn for each column.

stairs(y) plots y versus default x, which is 1:length(y) if y is a vector and
1:size(y,l) if y is a matrix.

stairs(...,linespec) can be used to control line color and line style. See plot
for allowed values.

h = stairs(...) returns a handle to the drawn lines.

[xdata,ydata] = stairs(x,y) does not actually plot the stairs, but instead
returns the vectors xdata and ydata that defines it. (Use for example
plot(xdata,ydata) to actually plot the stairs.)

The property values for 1ine can be passed at the end of the command to further

control the plot.

Stairstep plot of the sine function, with red
linecolor and markers

X =1:0.5:10;

y = sin(x);

stairs(x,y,'ro');

o° o°

% Plot two functions

x =1:0.1:10;

y1 = sin(x); y2 = cos(X);
stairs([x(:),x(:)]1,[y1(:),y2(:)], " 'linewidth',2);

stem, plot

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

std

Purpose

Synopsis

Description

Examples

See also

Compute standard deviation.

y = std(x)

y = std(x,0)

y = std(x,1)

y = std(x,w)

y = std(x,dim)

y = std(x) andy = std(x,0) compute the standard deviation of x, normalizing

y by n-1, where n is the sample size.
y = std(x,1) computes the standard deviation of x, normalizing y by n.

When x is a vector, y is the standard deviation of x. When x is a matrix, y is a row
vector where each element is the standard deviation of the corresponding column
of x. When x is an n-dimensional array, y is the standard deviation along the first

nonsingleton dimension of x.

y = std(x,w) computes the standard deviation of x using the weight vector w,
which std normalizes to sum to one. w must contain only nonnegative elements and
must be of the same length as x along the dimension the standard deviation is

computed.

y = std(x,w,dim) computes the standard deviation along the dimension dim.

x =104 1;29 2;4 -1 0];
x2 =[-341;320;-181];
y(i,0,1)=x5y(:,1,2)=x2;

std(x) returns [2, 5, 1].

std(x,[1 1 3]) returns [1.6, 4, 0.8].
std(x,[],2) returns [2.0817; 4.0415 ; 2.6458].
std(y,[]1,3) returns

[2.121,0,0; 0.707,4.950,1.414; 3.536,6.364,0.707].

corrcoef, cov, var

477

stem

478 |

Purpose

Synopsis

Description

Examples

See also

Stem plot in 2D

stem(y)
stem(x,y)
stem(...,linespec)

= stem(...)

stem(x,y) plots y versus x as stems. If the inputs are matrices, one line with stems

is drawn for each column.

stem(y) plots y versus default x, which is 1:1ength(y) if'y is a vector and
1:size(y,1) if'y is a matrix.

stem(..., linespec) can be used to control line color and line style. See plot

for allowed values.
h=stem(...) returns handles to the drawn lines.

The property values for 1ine can be passed at the end of the command to further
control the plot.

o°

Plot ten red, dotted stems from the sine function
x = 1:10;

y = sin(x);
stem(x,y,'r--"');

% Plot two functions and modify the plot afterwards
x1 = 1:10; x2 = x1+0.3;

y1 = sin(x1); y2 = cos(x2);
h=stem([x1(:),x2(:)1,[y1(:),y2(:)], " 'linewidth',2);
set(h(2), 'marker','cycle')

stem3, plot

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

stem3

Purpose

Synopsis

Description

Examples

See also

Stem plot in 3D

stem3(z)
stem3(x,y,z)
stem(...,linespec)

h = stem(...)

stem3(x,y,z) plots z versus x and y as stems. The stems are created by placing grid
pointsinx(i,j),y(i,j) and z(i,j) for each element in the matrices. x and y can
also be vectors. In that case length(x), must equal the number of columns in z,
and length(y) must equal the number of rows in z. The grid points are then
created as x(j), y(i) and z(i,j).

stem3(z) plots z versus default x and y, which are 1:size(z,2) and 1:size(z,1),

respectively.

stem3(...,linespec) can be used to control line color and line style. See plot

for allowed values.
h = stem3(...) returns handles to the drawn lines.

The property values for 1ine can be passed at the end of the command to further

control the plot.

% Create a stem plot of the function x*y.
x=0:10; y=0:10;

z = X'*y;

stem3(x,y,z)

stem, plot

479

storedata

Purpose Store application data in a frame or a dialog box.
Synopsis storedata(f,data)
Description storedata(f,data) stores the data data in f. f can be a frame or a dialog box.

The data can be any of the data types available in COMSOL Script. It can be

retrieved later on using the getdata function.

See also getdata

480 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

str2num

Purpose
Synopsis

Description

Example

See also

String to number conversion.

X = str2num(str)

X = str2num(str) converts a string str to a numeric value or a matrix. str must
contain a valid expression representing a number or a matrix, but you can omit the

enclosing brackets.
str2anum('1 2;3 4') returns [1 2; 3 4]

num2str, sscanf

481

strcat

Purpose
Synopsis

Description

Example

See also

Concatenate strings.

s = strcat(st1,...)

s = strcat(s1,...) concatenates input arguments horizontally. The input can be

strings, character arrays, or cell arrays of strings.

With the exception of cell arrays, strcat ignores trailing blanks at the end of each

string. To retain these blanks in the output, use horzcat.
g put,

strcat({'one', 'two'},'abc', 'def') gives {'oneabcdef','twoabcdef'}.

strcat({'one';'two'},['abc';'def'], 'ghi') gives
{'oneabcghi'; 'twodefghi'}

strvcat, horzcat

482 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

strcmp

Purpose Compare strings.
Synopsis r = strcmp(st,s2)
Description r = strcmp(si1,s2) compares s1 and s2, both of which can be strings or cell arrays

of strings. If both are cell arrays, they must be of equal size.

When s1 and s2 are both strings, r is logical true if they are identical and false
otherwise. When one or both are cell arrays, strcmp compares corresponding
clements and returns an array r containing true for matching elements and false

otherwise.

Examples strcmp('blue',{'blue','Blue','red'}) returns [true false false].

strcmp({'blue','Blue','Red'},{'blue','Blue', 'red'}) returns
[true true false].

See also strcmpi, strncmp, strread, textread

483

strempi

Purpose Compare strings ignoring case.
Synopsis r = strcmpi(si1, s2)
Description r = strcmpi(s1, s2) compares s1and s2 ignoring case. s1 and s2 can be strings

or cell arrays of strings. If both are cell arrays, they must be of equal size.

When s1 and s2 are both strings, r is logical true if they are identical except for
case, and false otherwise. When one or both are cell arrays, strcmpi compares
corresponding elements and returns an array r containing true for elements that

match except for case, and false otherwise.

Examples strcmpi('blue’',{'blue', 'Blue', 'bluer'}) returns [true true false].

strcmpi({'blue','Blue', 'green'},{'blue','Blue', 'red'}) returns
[true true false].

See also strcmp, strncmp, strncmpi

484 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

strfind

Purpose
Synopsis

Description

Example

See also

Find one string within another.

ind strfind(s,pattern)

ind = strfind(s,pattern) returns the first index of each occurrence of a string

pattern in s. s can be either a string, in which case ind is the index array indicating
occurrences of patternin s, or a cell array of strings, in which case ind is a cell array

of index arrays.
strfind('blue yellow green red','e') returns [4, 7, 15, 16, 20].

findstr, strmatch, strcmp

485

strjust

486 |

Purpose

Synopsis

Description

Examples

Justify a character array.

r = strjust(s)
strjust(s,alignment)

=
1l

r = strjust(s) returns a right-justified copy of s, where s must be a string or a

character array.

r = strjust(s,alignment) returns a justified copy of s with a specific alignment:
'right', 'left', or 'center’.

strjust (' red ') returns ' red'.
strjust (' red ','left') returns 'red "
strjust(' red ','center') returns ' red '.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

strmatch

Purpose

Synopsis

Description

Examples

See also

Find string matches.

r = strmatch(s,strs)
r = strmatch(s,strs, 'exact')
r = strmatch(s,strs) finds strings in strs that begin with s and returns the

index of each match. strs can be a character arrray, in which case strmatch returns
row indices of the matches, or a cell array of strings, in which case strmatch returns

the linear index of each match.

r = strmatch(s,strs, 'exact') returns the exact matches of s and the strings in
strs. Note however that trailing blanks in strs are ignored.

strmatch('abc',{'abcde', 'abdde', 'bcd','abc'}) returns [1 ; 4].
strmatch('abc',{'abcde', 'abdde', 'bcd', 'abc'}, 'exact') returns 4.

strtok, strfind, findstr, strcmp

487

strncmp

488 |

Purpose
Synopsis

Description

Examples

See also

Compare a specific number of characters in two strings.
r = strncmp(si1,s2,n)

r = strncmp(s1,s2,n) compares the first n characters of s1 and s2. s1 and s2
can be strings or cell arrays of strings. If both are cell arrays, they must be of equal
size.

When s1 and s2 are both strings, r is logical true if the first n characters are
identical and false otherwise. When one or both are cell arrays, strncmp compares
corresponding elements and returns an array r containing true for elements whose
first n characters match and false otherwise.

strncmp('blue',{'black', 'Black','red'},2) returns [true false false].

strncmp({'blue','Blue', 'green'},{'black', 'Black','red'},2) returns
[true true false].

strncmpi, strcmp, strempi

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

strncmpi

Purpose
Synopsis

Description

Examples

See also

Compare a specific number of characters in two strings ignoring case.

r = strncmpi(st,s2,n)

r = strncmpi(s1,s2,n) compares the first n characters of s1 and s2 ignoring
case. s1 and s2 can be strings or cell arrays of strings. If both are cell arrays, they
must be of equal size.

When s1 and s2 are both strings, r is logical true if the first n characters are
identical except for case and false otherwise. When one or both are cell arrays,
strncmpi compares corresponding elements and returns an array r containing true

for elements whose first n characters match except for case and false otherwise.

strncmpi('blue',{'black','Black', 'red'},2) returns [true true false].

strncmpi({'blue', 'Blue','green'},{'black', 'blue','red'},3) returns
[false true false].

strncmp, strcmp, strempi

489

strread, textread

Purpose Read formatted text.
Syntax d = strread(str)
d = textread(filename)

[d1, ...]
[d1, ...]

strread(str, format,

[d1, ...]

strread(str, format, n,

-)

textread(filename, format, ...)

-)

[d1, ...] = textread(filename, format, n, ...)

Description d = strread(str) reads a numerical matrix from the string str. Each nonempty

line corresponds to one line in the output. All lines of str must contain the same

number of columns.

d = textread(filename) reads a numerical matrix from the file called filename.

Each nonempty line corresponds to one line in the output. All lines of the file must

contain the same number of columns.

[d1, ...] = strread(str, format,

.) reads data from the string str

interpreted using the format string format. Options to control how the data is read

can be given in optional parameter pairs using the syntax strread(str, format,

pari, vall, ...).

[d1, ...] = textread(filename, format, ...) rcads data from the file

called filename interpreted using the format string format. Options to control

how the data is read can be given in optional parameter pairs using the syntax

textread(filename, format, pari, valtl, ...).

[d1, ...] = strread(str, format, n,

.) uses the format string at most n

times. The default is to read to the end of the string.

[d1, ...] = textread(filename, format, n, ...) usesthe format string at

most n times. The default is to read to the end of the file.

The syntax of the format string is a subset of the syntax accepted by the function

sscanf in the C programming language. The number of '%' elements in the format

string must be identical with the number of outputs.

TABLE 1-43: STRREAD/TEXTREAD FORMAT STRING

FORMAT MATCHES

Literal string The same literal string
"%d Integer.

"% Floating-point number.

490 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

strread, textread

TABLE 1-43: STRREAD/TEXTREAD FORMAT STRING

FORMAT MATCHES

'%q "’ String quoted within “ characters.

'%s ' Sequence of characters.

T Sequence of characters from the bracketed list.

L T Sequence of characters not from the bracketed list
Log |

Matches using the above rules but does not return the
matched characters.

The tokens read using the format string are separated by white space except for

quoted strings read with '%q'; they are read until the end of the string.

For the numerical format strings '%d ' and '%f ', the output is real matrices. For the
other format strings, the output is cell arrays of strings.

The following property-value pairs can be used to set options:

TABLE |-44: STRREAD/TEXTREAD PROPERTIES AND VALUES

PROPERTY VALUE

"headerlines' Number of lines at beginning of files that are skipped.
‘delimiter’ Delimiter character.

'commentstyle’ 'matlab’ ignores text after % on each row, 'shell’

ignores text after # on each row, 'c'ignores text

between /* and */, ' c++ 'ignores text after // on each
row.

Examples Suppose the file 'elements' has the following contents:

Hydrogen 1 1.008
Oxygen 8 16.000

Then [name nr wt] = textread('elements', '%s %f %f') rcads the names
into the cell array name and the numbers and weights into the matrices nr and wt
respectively.

Suppose that the file 'magic' has the following contents:

S W o
O 0=
NN O

Thenm = textread('magic') reads from the file into a 3-by-3-matrix.

491

strread, textread

See also dlmread

492 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

strrep

Purpose

Synopsis

Description

Example

See also

Search and replace strings.

(%]
1l

strrep(str,pattern,replacement)

s = strrep(str,pattern,replacement) replaces all occurrences of pattern in
str with replacement. The input can be strings or cell arrays of strings, in any mix.
In the case of cell arrays, strrep works on corresponding elements, and s is a cell
array of the same size as the input.

strrep('abc','bc','de') returns 'ade’.
strrep({'abc','bcd'}, 'bc',{'de','ef'}) returns {'ade', 'efd'}.

strtok, strfind, findstr, strcmp

493

strtok

494 |

Purpose

Synopsis

Description

Examples

See also

Retrieve first token.

token = strtok(s)
token strtok(s,delimiter)
[token,remainder] = strtok(...)

token = strtok(s) finds the first token using white-space characters as delimiters.
(See isspace for the definition of white-space characters.) When s is a string, token
is the first token of s. When s is a cell array of strings, token is a cell array of the

first tokens of the elements of s.

token = strtok(s, delimiter) finds the first token using the delimiter characters

in delimiter, which can be a string or a cell array of strings.
Note that delimiter characters are not considered tokens.

[token, remainder] = strtok(...) also returns the remainder of s. When s is
astring, remainder is the remainder of s. When s is a cell array of string, remainder
is a cell array with the remainders of the elements of s. The remainder consists of all

characters after the token substring.

strtok('yellow green') returns 'yellow'.

[tok, rem] = strtok('123.12:44.19:12.3"',':") returns
tok = '123.12' andrem = ':44.19:12.3".

A subsequent call to strtok extracts the next token:
tok2 = strtok(rem,':")

To extract all tokens from a string:
str = '123.12: 44.19:12.3:Inf:-10 000"';
[tok,rem] = strtok(str,':");
while ~isempty(rem)
[tok,rem] = strtok(rem,':");
disp(tok)
end

strfind, findstr, strmatch, strcmp

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

strtrim

Purpose
Synopsis

Description

See also

Remove leading and trailing white-space characters.

—;
1]

strtrim(s)

r = strtrim(s) removes leading and trailing white-space characters from s. (See
isspace for the definition of white-space characters.) When s is a string, r is a copy
of s without leading and trailing white-space characters. When s is a cell array of
strings, r is a copy of s with leading and trailing white-space characters removed

from each string.

deblank

495

struct

496 |

Purpose

Syntax

Description

Examples

See also

Create a structure array.

s = struct([])
struct(obj)
struct(field, val, ...)

" n
L]

struct([]) creates an empty structure.

s = struct(obj) converts the object obj to a structure; each visible field of obj

corresponds to a field in the returned structure.

s = struct(field, val, ...) creates a structure from a list of pairs of field
names and values. The field names must be strings; the values can be of any data
type. If any value is a cell array, then the returned struct is an array with the same

size as the cell array. In this case, the sizes of all nonscalar values must be identical.

s = struct('a', 47, 'b', 11) creates a structure with the two fields a and b.
s = struct('a', {2 3}, 'b', 5) createsa 1 x 2 structure array.

s = struct('a', {{5}}) creates a structurc where the field a has the value {5}.
cell

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

struct2cell

Purpose

Syntax

Description

See also

Convert a structure array into a cell array.
¢ = struct2cell(s)

¢ = struct2cell(s) returns the structure s converted to a cell array. The
returned cell array has the size [length(fieldnames(s)) size(s)], thatis, the
field names are mapped to the first dimension of the cell array where the order of
the fields is that returned by fieldnames.

cell2struct

497

strvcat

Purpose

Synopsis

Description

Example

See also

Concatenate strings vertically.

s = strvcat(sl,...)
s = strvcat(cell)

s = strvcat(s1,...) concatenates strings or character arrays vertically. This is the
same as vertcat except that empty input arguments are ignored and nonempty

input is automatically padded with Zeros.

s = strvcat(cell) concatenates strings or character arrays contained in a cell

array.

strvcat('red', 'green','blue', 'yellow') returns the character matrix:

red
‘green
'blue
'yellow'

vertcat, strcat

498 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

sub2ind

Purpose
Synopsis

Description

Example

See also

Convert a multidimensional index vector into an equivalent 1D matrix index.
ix = sub2ind(sz, ix1, ...)

ix = sub2ind(sz, ix1, ...) returnsthe 1D matrix index that corresponds to
the multidimensional index vector (ix1, ...) a matrix of size sz.

sub2ind([3 3], 1, 2) gives 4 because M(4) and M(1, 2) refer to the same
clement in a 3-by-3 matrix M.

ind2sub

499

subplot

Purpose

Syntax

Description

Syntax

Description

Example

Creates a grid containing multiple sets of plot axes in a figure window.

subplot(rows,cols,current)

subplot(rows,cols,current) Creates a grid containing multiple sets of plot axes

in a figure window.

subplot(rows,cols,current)

subplot(rows,cols,current) creates a grid of smaller plot axes in the specified
number of rows and columns in the current figure. The axis number current is
made the current axis. The axis numbering increases along the columns of the first
row, then along the second row, and so on. If rows and cols is the same as the
current number of rows and columns in the subplot grid, then the plots are kept and
only the current axis is changed. If either the number of rows or the number of

columns is changed, a new subplot grid with an empty axis is created.

current can also be an array of numbers. In that case a smaller axes that covers

those positions in the grid will be created.

subplot (abc), where abc is a 3-digit number, is a alternative syntax where a is then
the same as rows, b is equivalent to cols, and c is equivalent to current in the

above syntax.

h = subplot(...) also returns a handle to the current axis

Create a 2-by-2 grid with some different plots.

x=linspace(0,10,100);
y=sin(x);
subplot(2,2,1);
plot(x,y);
subplot(2,2,2);
plot(x,x.*y);
subplot(2,2,3);
plot(x,x.*y-x);
subplot(2,2,4);
plot(x,sqrt(y+2));

500 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

subspace

Purpose Principal angle between subspaces.
Synopsis theta = subspace(F,G)
Description theta = subspace (F,G) returns the largest principal angle between two subspaces

spanned by the columns of matrices F and G. The cosine of a principal angle is the

canonical correlation.

501

sum

Purpose Compute the sum of an array
Synopsis y = sum(x)
y = sum(x,dim)

Description y = sum(x) adds the values of x. When x is a vector, y is the sum of x. When x is
a matrix, y is a row vector containing the sum of each column of x. When x is an

n-dimensional array, y is the sum along the first nonsingleton dimension of x.

y = sum(x,dim) returns the sum of x along the dimension dim.
Examples x =[023;-313;2 4 0];
sum(x) returns [-1,7,6].

sum(x,2) returns [5 ; 1 ; 6].

See also cumsum, prod, cumprod

502 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

super

Purpose Run superclass constructor.
Synopsis super(...)
Description super(...),when run from the constructor of a user-defined class, runs the

constructor of the superclass, if any.

See also this

503

surf

504 |

Purpose

Syntax

Description

Example

See also

Create a colored surface of quadrilaterals.

surf(x,y,z,c)
surf(x,y,z)
surf(z,c)
surf(z)

surf(x,y,z,c) creates a colored surface of quadrilaterals from the given matrices.
The surface is created by placing grid points at x(3,7), ¥(Z,j), and 2(i,j) for each
element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix ¢ is used to color each of the grid

points by mapping the range of ¢ to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length(y) must equal the number of rows in z. The grid points
are then created at x(j), ¥(i), and z(i, j).

surf(x,y,z) does the same as surf(x,y,z,c) but uses z as c.

surf(z,c) is the same as surf(x,y,z,c) wherex = 1:nx, y = 1:ny, [ny,nx]
= size(z).

surf(z) does the same as surf(z,c) but uses z as c.
h = surf(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the
reference entry for patch to get details about allowed properties and corresponding

values.

Create a surface plot of the function x-y.

x=0:10;

y=0:10;
[xx,yyl=meshgrid(x,y);
ZZ=XX.*yy;

surf (xx,yy,zz)

mesh

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

surface

Purpose

Syntax

Description

See also

Create a colored surface of quadrilaterals.

surface(x,y,z,C)

surface(x,y,z)
surface(z,c)
surface(z)

surface(x,y,z,c) creates a colored surface of quadrilaterals from the given
matrices. The surface is created by placing grid points at x(i,j), y(i,j), and 2(i,j) for
each element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix ¢ is used to color each of the grid

points by mapping the range of ¢ to the current colormap.

x and y can also be vectors. In that case, 1ength(x) must equal the number of
columns in z, and length (y) must equal the number of rows in z. The grid points

are then created at x(j), y(1), and z(i,).
surface(x,Yy,z) does the same as surface(x,y,z,c) but uses z as c.

surface(z,c) is the same as surface(x,y,z,c) where x = 1:nx, y = 1:ny,
[ny,nx] = size(z).

surface(z) does the same as surface(z,c) but uses z as c.
h = surface(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the
reference entry for patch to get details about allowed properties and corresponding

values.

surface is the same as surf except that it does not clear the axes before adding the

surface to it.

line, patch, surf

505

svd

Purpose Singular values.
Synopsis svd(A)
[U,S,V] = svd(A)

Description svd(A) computes the singular values of a matrix A.

[U,S,V] = svd(A) computes a singular value decomposition of A: the singular
value matrix S and the unitary matrices U and V such that A = U*S*V'.,

506 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

symvar

Purpose Find identifiers in an expression.
Synopsis C = symvar(expr)
Description ¢ = symvar(expr) parses the expression string expr and returns a cell array

containing the identifiers it contains. An identifier is a variable name not followed
by parentheses or brackets.

symvar ignores the following common identifiers: eps, i, inf, Inf, nan, NaN, and
pi.

See also inline

507

system

Purpose

Synopsis

Description

See also

Run a system command.

status = system(cmd)
[status output] = system(cmd)

status = system(cmd) runs the system command cmd in the operating system and
returns the exit code, which is 0 if the execution was successful and nonzero

otherwise.

[status output] = system(cmd) runs the system command cmd and returns any
output to the standard output stream in output.

dos, unix

508 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

tabbedpane

Purpose Create a tabbed pane.
Synopsis t = tabbedpane
Description t = tabbedpane creates a tabbed pane.

The methods in the following table can be used to add panels as tabs to a tabbed

pane.

TABLE [-45: METHODS FOR ADDING PANELS TO A TABBEDPANE.

METHOD DESCRIPTION

addTab(title,panel) Adds the given panel as a tab with the
specified title.

addTab(title,panel,pos) Inserts a tab with the given panel at the
specified position.

See also component, panel

509

table

510 |

Purpose Create a table.

Synopsis t

Description t

CHAPTER |:

table(...)

table creates a table.

The property value pairs in the following table can be used to control how the table

is created.

TABLE I-46: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
autoadd on|off off Should rows automatically be added
to the end of the table as needed
when the user enters values.
cols integer 2 The number of columns in the table.
editablecols integer all Indices to the columns that should be
array editable.
rows integer 10 The number of rows in the table.
titles cell array The headings for each column.
of strings
width integer The desired width of the columns.
array Either a scalar specifying the same

width for all columns or a vector of
the same length as the number of
columns. If not given each column will
be given a suitable width to fit its title.

The function returns a table object that can then be further manipulated using the

methods in the following table.

TABLE 1-47: METHODS FOR MANIPULATING A TABLE OBJECT.

METHOD

DESCRIPTION

getvValue

getValue(rows,cols)

setValue(data)

Returns a matrix with all the values in the table.

Returns a matrix with values taken from the rows
and columns given by the index vectors rows and
cols.

Sets the values of a cells in the table from a numerical
matrix.

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

COMSOL SCRIPT COMMAND REFERENCE

tempdir

Purpose Get a directory where temporary files can be created.

Synopsis d = tempdir

Description d = tempdir returns a directory where temporary files can be created.
See also tempname

511

tempname

Purpose Create a temporary file name.
Synopsis f = tempname
Description f =

tempname returns a file name suitable for a temporary file. Successive calls try
to return different file names, but no guarantee about this is made.

See also tempdir

512 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

text

Purpose

Synopsis

Description

Add text at a specified location.

text(x,y,string)
text(x,y,z,string)

text(x,y,string) adds the text string at the coordinates x and y. Both x and y

can also be vectors, and string a cell array of strings of the same length.

text(x,y,z,string) adds text in 3D.

h = text(...) returns a handle to the created text.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command to further control how the text is created.

TABLE 1-48: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE

DEFAULT DESCRIPTION

color colorspec

k A string or an RGB triplet specifying
the color of the text. If it is a string it
is one of the letters r, g, b, c,m, y or
k, meaning red, green, blue, cyan,
magenta, yellow and black
respectively.

parent Axes handle gca The axes to which to add the text.

The following HTML tags are supported in the text command string.

TABLE 1-49: VALID HTML TAGS

HTML TAG DESCRIPTION
 Enclosed text will be rendered using a bold font style.

 Line break.

<CENTER> </CENTER>
<I> </I>

<0L> </0L>
<P> </P>

<PRE> </PRE>

Centered text.
Enclosed text will be rendered using an italic font style.

List item. When the list used is , ordered list, the LI
element will be rendered with a number. When the list
used is , unordered list, the LI element will be
rendered with a bullet.

Ordered list (see also:).

Paragraph. This tag will create a line break and a space
between lines.

Enclosed text preserves spaces and line breaks. The text
will be rendered using a monospaced font.

513

text

514 |

CHAPTER |:

TABLE 1-49: VALID HTML TAGS

HTML TAG

DESCRIPTION

<STRIKE> </STRIKE>

<SuUB> </SUB>

<TT> </TT>
<U> </U>

Enclosed text will be rendered in a strike-through
appearance.

Enclosed text will be rendered in subscript, with the
enclosed text slightly lower than the surrounding text.

Enclosed text will be rendered in superscript, with the
enclosed text slightly higher than the surrounding text.

Enclosed text will be rendered using a monospaced font.
Enclosed text will be underlined.

Unordered list (see also:).

The following Greek symbol tags are supported in the text command string.

TABLE 1-50: VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL
\ALPHA A \alpha o
\BETA B \beta B
\GAMMA r \gamma Y
\DELTA A \delta B
\EPSILON E \epsilon €
\ZETA Z \zeta 4
\ETA H \eta n
\THETA (C] \theta 0
\IOTA I \iota !
\KAPPA K \kappa K
\LAMBDA A \lambda A
\MU M \mu n
\NU N \nu %
\XI o) \xi &
\OMICRON (0] \omicron o
\PI IT \pi T
\RHO P \rho p
\SIGMA z \sigma c
\TAU T \tau T
\UPSILON Y \upsilon v

COMSOL SCRIPT COMMAND REFERENCE

text

Examples

See also

TABLE 1-50: VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL
\PHI D \phi [0}
\CHI X \chi X
\PSI v \psi v
\OMEGA Q \omega 0}

The following math symbol tags are supported in the text command string.

TABLE I-51: VALID MATH SYMBOL TAGS

TAG SYMBOL TAG SYMBOL
\approx = \bullet .
\lequal < \partial d
\gequal > \nabla \Y%
\plusmin + \sqrt \
\infinity oo \integral)

In addition to the greek and math symbols above, you can specify additional
characters using Unicode numbers (see example below). Visit www.unicode.org for
more information about Unicode characters.
Create a text object with the following text: BE + xey

text (0,0, '\beta^{\xi} + x\bullety')

Create a text object by using the Unicode number 00A9 (©, the copyright

character):
text (0,0, ' \uOOA9')

xlabel, ylabel, zlabel, title

515

textarea

Purpose
Synopsis

Description

See also

Create a text area.

t = textarea(rows,cols,...)

t = textarea(rows,cols) creates a text area to hold the specified number of rows

and columns of text.

TABLE 1-52: METHODS FOR MANIPULATING A TEXTAREA OBJECT.

METHOD DESCRIPTION
getValue Returns the text in the text area.
setValue (text) Sets the text in the text area.

See also the reference entry for component for property-value pairs and methods

that are valid for all components.

component, textfield

516 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

textfield

Purpose
Synopsis

Description

See also

Create a text field.

t

textfield(width, ...)

t

textfield(width) creates a text field wide enough to hold width characters.

TABLE 1-53: METHODS FOR MANIPULATING A TEXTFIELD OBJECT.

METHOD DESCRIPTION
getValue Returns the text in the text field.
setValue(text) Sets the text in the text field.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

component, textarea

517

this

Purpose Get the instance for which an instance method is run.

this

Synopsis obj

Description obj this, when called from an instance method of a user-defined class, returns

the instance for which the method is run.

See also clone, super

518 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

tic, toc

Purpose Start or stop timer.
Synopsis tic

toc

t = toc
Description tic starts a timer.

toc displays the time elapsed since the timer was started with tic.

t = toc returns the time in seconds elapsed since the timer was started with tic.

519

times

Purpose Multiply matrices pointwise.
Synopsis d = times(a, b)
Description d = times(a, b) computes the pointwise product of the two matrices a and b. For

cach dimension, a and b must have the same size or either of them must have size 1.
In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

times(a, b) is equivalent to a.*b.

Examples [1 2 3].*[4 5 6]
[1 2 ; 3 4].*10
[1 2 3].*[10 20 30]"'

See also plus, rdivide

520 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

tinterp

Purpose
Synopsis

Description

Examples

Interpolation on delaunay triangulation.

yi = tinterp(s,y)
yi = tinterp(s,y) usesa delaunay triangulation stored in the struct s and
interpolates linearly to determine yi wheny = f(x1,x2,...).y must match the

size of the original points, used for the triangulation.

s is a struct as produced by the griddata functions and contains the following
fields:

TABLE |-54: FIELDS OF THE S STRUCT

FIELDNAME DESCRIPTION

method Interpolation method. Can be either 'linear' (denoting linear
interpolation) or 'nearest’ (denoting nearest neighbor interpolation).
Nearest neighbor in this case signifies the closest vertex in the
nearest delaunay element.

strategy Search strategy. Not actually used by tinterp, but serves to indicate
whether the indexation, s. ind was created using the 'boxonly' or
'closest' search strategy. 'boxonly' means that s.ind contains
NaN for points outside the mesh, whereas 'closest' indicates that a
nearest element was located for all points. (For further details, see

griddata.)
t 2D or 3D Delaunay triangulation of original points.
ind A column vector containing row indices into t for all search points.
coord Barycentric coordinates for each search point.
size Denotes the expected size of yi.

Note that if's was created through a call to one of the griddata functions, then the
interpolation method was also used when creating the indexation, s.ind. Though
griddata does not perform any interpolation in this case (when a struct is
requested), the different methods are slightly different insofar that 'linear'
returns NaN for points outside the mesh whereas 'nearest' locates the nearest

clement for all points.

rand('state',0);

X = 4*rand(1,100)-2;y = 4*rand(1,100)-2;

ti = -2:.1:2;

[xi,yi] = meshgrid(ti,ti);

g = griddata(x,y,xi,yi, 'linear',[],'closest');

z=sin(x).*sin(y).*exp(-x."2-y."2);
zi1l = tinterp(g,z);
z2 = sin(x).*sin(y);

521

tinterp

zi2 = tinterp(g,z2);

plot3(x,y,z,"'*");
hold on;
mesh(xi,yi,zil);
hold off;

figure;
plot3(x,y,z2,'*");
hold on;
mesh(xi,yi,zi2);
hold off;

See also griddata, griddata3, griddatan, tsearch, tsearchn, delaunay, delaunay3

522 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

title

Purpose Add a title above a plot.
Synopsis title(string)
Description title(string) sets the text string as a title above the plot in the current axes.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text, xlabel, ylabel, zlabel

523

togglebutton

524 | CHAPTER I:

Purpose

Synopsis

Description

Create a toggle button.

t = togglebutton(text,...)
= togglebutton(...)

~+
I

t

togglebutton(text) creates a toggle button with the specified text.

To make the toggle button synchronize its state with other toggle buttons, you can

add them all to the same buttongroup.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command to further control how the button is created.

TABLE 1-55: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION
image iconimage An image to display on the toggle button.
text string A text to display on the toggle button.

The function returns a togglebutton object that can then be further manipulated

using the methods in the following table.

TABLE 1-56: METHODS FOR MANIPULATING A TOGGLEBUTTON OBJECT.

METHOD DESCRIPTION

addActionListener (name) Specifies that the function with the given
name should be run when the button is
clicked.

addActionListenerThread(name) Specifies that the function with the given
name should be run when the button is
clicked. The function will be run in a
separate thread. This can be used for
operations that run for a long time and
need to update graphics while running.

getSelected Returns the selected state of the toggle
button as a logical.

getText Returns the text on the button.

getValue Returns the selected state of the toggle
button as the string 'on' or 'off'.

setSelected(sel) Sets the selected state of the toggle
button as a logical.

setText (text) Sets the text on the button.

setValue(val) Sets the selected state of the toggle

button using the string 'on"' or 'off'.

COMSOL SCRIPT COMMAND REFERENCE

togglebutton

See also the reference entry for component for property value pairs and methods

that are valid for all components.

See also checkbox, radiobutton

525

tprod

526

Purpose
Synopsis

Description

Examples

Tensor product and contraction.

C = tprod(A, B, IA, IB)

C

optionally followed by contractions and setting some indices equal. The mapping

TPROD(A, B, IA, IB) computes the tensor product of the arrays A and B,

from input indices to output indices, as well as how to contract, is described by the
vectors IA and IB.

This function is best explained by an example: Let A be a 4-dimensional array, and

B a 3-dimensional array. Then

C = TPROD(A, B, [2 -1 1 -2], [-2 2 -1])

creates a 2-dimensional array (matrix) C in the following way. First, the product
D(%-2, %-1, %1, %2) = A(%2, %-1, %1, %-2)*B(%-2, %2, %-1) is formed.
This is a 4-dimensional array D, where %-1, %-2, %1, %2 denote index variables. D is
the tensor (outer) product of A and B, followed by a permutation of the indices and
setting some indices equal. It is assumed that SIZE (A, 1)=SIZE(B,2),
SIZE(A,2)=SIZE(B,3), and SIZE(A,4)=SIZE(B,1). Secondly, we sum over the
index variables corresponding to negative numbers (%-1 and %-2): C(%1, %2) =
sum of D(%-2, %-1, %1, %2) where the indices %-1 and %-2 (independently) run

through all their possible values.
The arguments are assumed to have the following format:

* Aand B are real or complex arrays.
* IAand IB are vectors of doubles, containing nonzero integers.
* The length of IA (IB) has to be equal to the number of dimensions of A (B).

e Ais padded with singleton dimensions if the number of dimensions of A is less
than the length of IA (and similarly for B).

e The numbers in IA (IB) have to be distinct.

* Ifa number occurs both in IA and IB, it is required that the corresponding

dimensions in A and B have the same size.
* Ifanegative number occurs in A (B), it must also occur in B (A).

e Itis assumed that the union of the numbers in IA and IB together with 0 form a

contiguous sequence of integers.

C = TPROD(A, B, [1 2], [3 4]) is the tensor (outer) product of the matrices A
and B.

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

tprod

C = TPROD(A, B, [1 -1], [-1 2]) isthe ordinary matrix product of the matrices
A and B.

C = TPROD(A, 1, [2 1], [3 4]) is the transpose of the matrix A. Note that

trailing singleton dimensions are removed, so C is a matrix.

C = TPROD(A, ONES(SIZE(A)), [-1 -2], [-1 -2]) isthe sum of all entries in

the matrix A.

C = TPROD(A, EYE(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all diagonal

entries in the matrix A (the trace).

527

trace

Purpose The trace of a matrix.
Synopsis trace(A)
Description trace(A) computes the sum of the diagonal elements of A.

528 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

transpose

Purpose Transposes a matrix.
Synopsis d = transpose(a)
Description d = transpose(a) computes the transpose of the matrix a.

transpose(a) is equivalent to a. '.

See also ctranspose

529

trapz

530 |

Purpose

Synopsis

Description

Examples

See also

Trapezoidal numerical integration.

z = trapz(y)

z = trapz(x,y)

z = trapz(y,dim)

z = trapz(x,y,dim)

z = trapz(y) computes the integral of y using the trapezoidal method with unit

spacing. (To compute the integral for different spacing, multiply z by the spacing
increment.) When vy is a vector, z is the integral of y. When y is a matrix, z is a row
vector containing the integral over each column of y. When vy is an n-dimensional

array, z is the integral along the first nonsingleton dimension of y.

z = trapz(x,y) computes the integral of y with respect to x, which must be a
vector with the same length as the first nonsingleton dimension of y. Alternatively,

both x and y must be vectors of equal length.

z = trapz(y,dim) or z = trapz(x,y,dim) integrate across the dimension dim

of'y. x, if given, must be a vector with the same length as y along the dimension dim.

y = reshape(0:11,3,4);
trapz(y) returns [2 8 14 20]
trapz(y,2) returns [13.5 ; 16.5 ; 19.5].

cumtrapz

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

tril, triu

Purpose Extract elements above or below the main diagonal of a matrix.
Synopsis 1 = tril(a)
u = triu(a)

1 = tril(a, n)
triu(a, n)

c
1l

Description 1 = tril(a) returns a matrix containing the elements on or below the main
diagonal of a.

u = triu(a) returns a matrix containing the elements on or above the main
diagonal of a.

1 = tril(a, n) returns a matrix containing the elements on or below the nth
superdiagonal of a.

u = triu(a, n) returnsa matrix containing the elements on or above the nth

superdiagonal of a.

See also diag

531

trimesh

Purpose Create a mesh plot with triangles.

Synopsis trimesh(tri, x, y, z, c)
trimesh(tri, x, y, z)
trimesh(tri, x, y)
h=trimesh(...)

Description trimesh(tri, x, y, z, c) creates a mesh plot with triangles. triis a N-by-3
matrix where each row corresponds to a triangle. The entries in tri are indices into
X, Y, z and c.

trimesh(tri, x, y, z) usesc=z.

trimesh(tri, x, y) displays the mesh in 2D using line.
h = trimesh(...) returns a handle to the created object.

Additional property values from patch or 1ine can be given at the end of the

command to further control the created object.

See also trisurf

532 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

trisurf

Purpose

Synopsis

Description

See also

Create a surface plot with triangles.

trisurf(tri, x, y, z, C)
trisurf(tri, x, y, 2z)
h=trisurf(...)

trisurf(tri, x, y, z, c) creates a surface plot with triangles. tri is a N-by-3
matrix where each row corresponds to a triangle. The entries in tri are indices into

X, Y,z and c.
trisurf(tri, x, y, z) usesc=z.

h = trisurf(...) returns a handle to the created patch object.

Additional property values from patch can be given at the end of the command to

further control the created object.

trimesh

533

true

Purpose Create an all-true logical matrix.
Synopsis f = true
f = true(n)
f = true(m, n, ...)
f = true(sz)
Description In all cases, an all-true logical matrix is returned. Its size is determined as follows:

f = true returns a scalar.
f = true(n), where n is a nonnegative integer, returns an n X n matrix.

f = true(m, n, ...), wherem, n, ... are nonnegative integers, returns an m x n x

...-matrix.

f = true(sz), where sz is an integer vector, returns a matrix of size sz.

See also false

534 | CHAPTER |I: COMSOL SCRIPT COMMAND REFERENCE

tsearch

Purpose

Synopsis

Description

Example

See also

Find Delaunay element.

ind = tsearch(x,y,t,xi,yi)

ind = tsearch(x,y,t,xi,yi) finds the Delaunay element for each point (xi,
yi). ind is a column vector containing row indices into t (or NaN for points outside

the mesh), where t is a triangulation of x and y as returned by delaunay.

To get the barycentric coordinates for xi and yi, use tsearchn:
[ind,coord] = tsearchn([x(:),y(:)],t,[xi(:),tiyi(:)])

X = rand(20,1);y = rand(20,1);
tri = delaunay(x,y);
xi = rand(5,5); yi
tsearch(x,y,tri,xi,yi

rand(5,5);
)

delaunay, delaunayg3, tsearchn, griddata, griddata3, griddatan

535

tsearchn

536

Purpose

Synopsis

Description

Example

See also

Find Delaunay element in nD.

ind = tsearchn(pts,t,ptsi)
[ind,coord] = tsearchn(pts,t,ptsi)

ind = tsearchn(pts,t,ptsi) finds the Delaunay element for each pointin ptsi.
ind is a column vector containing row indices into t (or NaN for points outside the
mesh), where t is a triangulation of pts as returned by delaunay or delaunay3.
pts and ptsi are nx2 or nx3 matrices, for 2D and 3D space respectively.

[ind,coord] = tsearchn(pts,t,ptsi) also returns the barycentric or area
coordinates for all points in ptsi.

pts [00O0;00 1;0 1 Oy
tri = delaunay3(pts(:,1),
t =0:0.1:1;

[xi,yi,zi] = meshgrid(t,t,t);

ptsi = [xi(:),yi(:),zi(:)];
[ind,coord] = tsearchn(pts,tri,ptsi);

011;100;101; 110;111];
pts(:,2),pts(:,3));

delaunay, delaunay3, tsearch, griddata, griddata3, griddatan

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

type

Purpose Display the contents in a text file on the command line.
Synopsis type(filename)
Description type(filename) displays the contents of the file filename on the command line.

filename can be an absolute file name or an M-file on the path.

537

uint8, uintl 6, uint32, uinté4

538 |

Purpose Convert matrix to an unsigned integer matrix.
Synopsis m = uint8(a)

m = uint16(a)

m = uint32(a)

m = uint64(a)

Description m = uint8(a)converts the real matrix a to an unsigned integer matrix by rounding
each element to the closest unsigned 8-bit integer. Elements too large or too small
to be represented using unsigned 8-bit integers are rounded to the largest and
smallest 8-bit integers, respectively.
uint16, uint32, and uint64 instead round to 16-, 32-, and 64-bit unsigned
integers, respectively.

The maximum and minimum values of n-bit unsigned integers are as follows:.
TABLE 1-57:
FUNCTION MIN MAX
uint8 0 255
uinti6 0 65535
uint32 0 4294967295
uint64 0 18446744073709551615
See also int8, int16, int32, int64
CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

uminus

Purpose Compute the unary negation of a matrix.
Synopsis d = uminus(a)
Description d = uminus(a) computes the unary negation of the matrix a.

uminus(a) is equivalent to -a.

See also uplus

539

union

540 |

Purpose

Synopsis

Description

Examples

.See also

Set union.

o
1]

union(a,b)

c = union(a,b, 'rows')

[c,ai,bi] = union(...)

c = union(a,b) returns the set union of a and b. a and b can be ecither arrays or

cell arrays of strings.

¢ = union(a,b, 'rows'), where a and b must be 2D matrices, returns the row set
union, that is, the unique rows of a and b combined. a and b must have the same

number of columns.

[c,ai,bi] = union(...) also returns the index vectors ai and bi, where ai
contains the linear indices of the elements of ¢ that belong to a, and bi contains the
linear indices of the elements of ¢ that belong to b. Elements that occur in both a

and b are indexed in bi.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command.

TABLE 1-58: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off' on Controls whether or not

output should be sorted.

a [12012 3];
b [2 4570 8];
c= union(a,b) returns [0, 1, 2, 3, 4, 5, 7, 8].

c1 = union(a,b, 'sort','off') returns the same result unsorted.

a=[123; 231; 345;543; 435;13 3];

b [8345; 345;122; 435];

union(a,b, 'rows') returns
(t,2,2;1,2,3;1,83,3;2,3,1;3,4,5;4,3,5;5,4,3]

a = {'green','yellow', 'blue', 'green'};
b = {'red', 'purple','yellow'};
union(a,b) returns {'blue', 'green', 'purple', 'red', 'yellow'}.

intersect, ismember, setdiff, setxor, unique

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

unique

Purpose

Synopsis

Description

Examples

See also

Retrieve unique elements.

b = unique(a)

b = unique(a, 'rows')

[b,m,n] = unique(...)

b = unique(a) returns a copy of a without repetitions. a can be either an array or

a cell arrays of strings.

b = unique(a, 'rows'), where a must be a 2D matrix, returns the unique rows of

a.

[b,ai,bi] = unique(...) also returns the index vectors ai and bi. ai contains
the linear indices of the last occurrence of each element in a, while bi contains the

linear indices of where each element of a is in b.

In addition to the fixed arguments, additional property-value pairs can be given at

the end of the command.

TABLE 1-59: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off ‘on Controls whether or not

output should be sorted.

a=1[120123];
unique(a) returns [0, 1, 2, 3].

a=[123;231; 345;345; 435;123];
[b,ai,bi] = unique(a, 'rows') returns
b=11,2,35;2,3,1;3,45;4,3,5],

ai = [6 ;2 ; 4 ; 5]landbi =[1 ;2 ;3 ;3 ; 4; 1].

[b1,ai1,bi1] = unique(a, 'rows', 'sort','off"') returns the same result
unsorted.

a = {'green','yellow', 'blue','green', 'blue'};
unique(a) returns {'blue', 'green', 'yellow'}.

intersect, ismember, setdiff, setxor, union

541

unix

542 |

Purpose

Synopsis

Description

See also

Run a system command.

status = unix(cmd)
[status output] = unix(cmd)

unix is a synonym for system.

dos, system

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

unmkpp

Purpose
Synopsis

Description

See also

Extract details from piecewise polynomial.

[breaks,coefs,pieces,order,dim] = unmkpp (pp)

[breaks,coefs,pieces,order,dim] = unmkpp(pp) returns the breaks,
coefficients, number of pieces, order and dimension of the piecewise polynomial
pp, represented by a structure (described in ppval).

ppval, mkpp, pchip, spline

543

unwrap

544 |

Purpose

Synopsis

Description

Example

Remove phase jumps.

b unwrap(a)
b unwrap(a, tol)
b = unwrap(a, tol, dim)

b = unwrap(a), for a matrix a, returns a matrix with the same size as a but where
jumps along the first nonunit dimension larger than pi have been replaced with the
equivalent angle closest to 0.

b

unwrap(a, tol) replaces only jumps larger than tol.

b = unwrap(a, tol, dim) unwraps along the dimension dim.

unwrap([0 1 2 2+1.5*pi])is [0 1 2 2-0.5*pi].

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

uplus

Purpose Compute the unary plus of a matrix.
Synopsis d = uplus(a)
Description d = uplus(a) computes the unary plus of the matrix a.

uplus(a) is equivalent to +a.

See also uminus

545

upper

Purpose Convert string to upper case

Synopsis s2 = upper(s1)

Description s2 = upper(s1) converts the characters in the string s1 to upper case. s1 can also

be a cell array of strings. In that case, a new cell array is returned where each of the

strings has been converted to upper case.

See also lower

546 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

var

Purpose

Synopsis

Description

Examples

See also

Compute variance.

y = var(x)

y = var(x,w)
y = var(x,w,dim)
y = var(x) andy = var(x,0) compute the variance of x using normalization by

n-1, where n is the sample size.
y = var(x,1) computes the variance of x using normalization by n.

When x is a vector, y is the variance of x. When x is a matrix, y is a row vector where
each element is the variance of the corresponding column of x. When x is an

n-dimensional array, y is the variance along the first nonsingleton dimension of x.

y = var(x,w) computes the variance of x using the weight vector w, which var
normalizes to sum to one. w must contain only nonnegative elements and must be

of the same length as x along the dimension the variance is computed.

y = var(x,w,dim) computes the variance along the dimension dim.

X =[041;29 2;4 -1 0];
x2 =[-341;320;-181];
y(i,0,1)=x5y (1, 1,2)=X2;

var(x) returns [4,25,1].

var(x,[1 1 3]) returns [2.56,16,0.64].
var(x,[],2) returns [4.333; 16.333 ; 7].
var(y,[]1,3) returns

[4.5,0,0; 0.5,24.5,2; 12.5,40.5,0.5].

corrcoef, cov, std

547

varargin

548 |

Purpose
Synopsis

Description

Example

See also

Retrieve arguments to a function that has a variable number of input arguments.

o
1]

varargin

¢ = varargin returns a cell array containing the last arguments to a function that

has a variable number of input arguments. This can be done only in a function where
the last input argument is varargin.

Suppose that a function func has the following declaration:
function out = func(x, varargin)

and that it is called with func (2, 3, 5, 7). Then varargin returns {3 5 7}.

varargout

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

varargout

Purpose
Synopsis

Description

Example

See also

Set the outputs from a function that has a variable number of outputs.

varargout

After execution of a function where the last output argument is varargout, the
value of the cell array varargout is used to determine the values of the last output
arguments.

Suppose that a function func has the following declaration:
function varargout = func(x)

and that it is called with [a b ¢c] = func(10). If varargout is a cell array with the
contents {2 3 5} when func has executed, then the assignmentsa = 2, b = 3,

and ¢ = 5 are made.

varargin

549

vectorize

Purpose Vectorize an expression.

Synopsis r = vectorize(s)

Description r = vectorize(s) returns a copy of a string s where every occurrence of '*', '/
“and '~"' are replaced with ' .*', './' and '."".

Example

vectorize('x*y - x."2/y.”2 + 12') returns 'X.*y - x."2./y."2 + 12",

550 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

version

Purpose Return the current version as a string.

Synopsis version
version java

Description version returns the current version of COMSOL Script as a string.

version java returns the Java version used in COMSOL Script as a string.

551

vertcat

552 |

Purpose
Synopsis

Description

See also

Concatenate matrices or cell arrays vertically.

o
1]

vertcat(argl, ...)

c = vertcat(arg1l, ...) returns the vertical concatenation of its input

arguments. The arguments need not be of the same type; if they differ, the result is

the common base type of all arguments.

vertcat(argl, ...) isequivalentto [argl ; ...]orcat(1, argl, ...).

cat, horzcat

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

view

Purpose

Synopsis

Description

Control position of view point.

view(2) specifies that the plot should be viewed as a 2-D plot.

view(3) specifies that the plot should be viewed from the default 3D view.
view('xy") specifies that the plot should be viewed in the xy-plane.
view('yz') specifies that the plot should be viewed in the yz-plane.
view('zx"') specifies that the plot should be viewed in the zx-plane.

view(az,elev) sets the view point at the azimuth az and the elevation elev. az is

the horizontal rotation and elev is the vertical elevation. Both are given in degrees.

view(ax,...) controls the view in the axes ax instead of in the current axes.

553

warning

554 |

Purpose

Synopsis

Description

See also

Display a warning.

warning(msg)
warning(msg, id)

warning('on')
warning('off"')

S warning(‘'on', id)
s = warning('off', id)

warning(msg) displays the warning message msg.

warning(msg, id) displays the warning message msg belonging to the
category id.

warning('on') and warning('off') enable and disable, respectively, display of
warnings.

s = warning('on', id) and s = warning('off', id) enable and disable,
respectively, display of warnings belonging to the category id. It returns a structure
containing the previous state of the warning category id.

error

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

wavemap

Purpose Create a colormap suitable for wave phenomena.
Synopsis wavemap (n)
Description wavemap (n) returns a colormap with n colors. It is a matrix with n rows and 3

columns with RGB values for the colors in the colormap. The colors are blue to

white and white to blue, suitable for wave phenomena.

See also colormap, bone, cool, gray, grayprint, jet, hot, hsv, pink

555

wavread

556 |

Purpose

Synopsis

Description

See also

Read a .wav sound file.

data = wavread(name)

data = wavread(name, sz)

[data, rate] = wavread(name)

[data, rate] wavread(name, sz)

[data, rate, nbits] = wavread(name)

[data, rate, nbits] = wavread(name, sz)
[data, rate, nbits, desc] = wavread(name)
[data, rate, nbits, desc] = wavread(name, sz)

[nframes, nchannels] = wavread(name, 'size')

data = wavread(name) reads and returns pulse-code modulated signal data from
the .wav file name. The number of bits per sample must be 8 or 16. For a mono
signal, a column vector is returned, and for a stereo signal, an N-by-2 matrix is

returned.
[data, rate] = wavread(name) also returns the sample rate.

[data, rate, nbits] = wavread(name) also returns the sample rate and the

number of bits per sample.

[data, rate, nbits, desc] = wavread(name) also returns the sample rate, the
number of bits per sample, and a structure containing a further description of the
data (if available).

wavread(..., sz) only reads a part of the signal: If sz is a scalar, then the first sz
signal values are read. If sz is a vector of length 2, then the signal values for positions
sz(1)..sz(2) are read.

[nframes, nchannels] = wavread(name, 'size') returns the number of

frames and channels but ignores the signal.

sound, soundsc,wavwrite

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

wavwrite

Purpose

Synopsis

Description

See also

Write a .wav sound file.

wavwrite(data, name)
wavwrite(data, rate, name)
wavwrite(data, rate, nbits, name)

wavwrite(data, name) writes the pulse-code modulated signal data to the
.wav-file name using a sample rate of 8000Hz and 16 bits per sample. For a mono
signal, data is a column vector, and for a stereo signal, data is an N-by-2 matrix.
Signal values outside [-1,1] are clipped.

wavwrite(data, rate, name) writes the pulse-code modulated signal data to
the .wav-file name using a sample rate of rate and 16 bits per sample.

wavwrite(data, rate, nbits, name) writes the pulse-code modulated signal
data to the .wav-file name using a sample rate of rate and nbits bits per sample
(must be 8 or 16).

wavread

557

which

558

Purpose

Synopsis

Description

See also

Display the function or variable to which a name is mapped.

which (name)
w = which(name)

which(..., '-all')
which(..., '-subfun')

which(name) displays the function, variable, or built-in function to which name is
mapped.

w = which(name) returns the name of the function, variable, or built-function to
which name is mapped.

which(..., '-all"') displays or returns all candidate maps listed in order of
decreasing priority.

which(name, '-subfun') displays or returns all subfunctions in the function
called name.

exist

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

who

Purpose

Synopsis

Description

See also

Get the names of variables in the workspace.

who
v = who

who (namel, ...)
v = who(namel, ...)

who displays the names of all workspace variables.
v = who returns a cell array containing the names of all workspace variables.

who (name1, ...) displays the names of all workspace variables matching any of the
namei. The variable names may contain the wildcard *, which matches any character

sequence.

v = who(namet, ...) returns a cell array containing the names of all workspace

variables matching any of the names:.

whos

559

whos

560 |

Purpose

Synopsis

Description

See also

Get information about variables in the workspace.

whos
v = whos

whos (namet, ...)
v = whos(namel, ...)

whos displays information about the variables in the workspace.

v = whos returns a structure array with one element for each variable in the

workspace. It contains the following fields:.

FIELD CONTENTS
name variable name

size dimensions

bytes approximate number of bytes occupied

class class

whos (name1, ...) displays information about the variables in the workspace with

names matching any of the namei. The variable names may contain the wildcard *,

which matches any character sequence.

v = whos(namel1, ...) returns a structure array with one element for each

workspace variable matching any of the names:.

who

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

xlim, ylim, zlim

Purpose

Synopsis

Description

Controls axis limits.

lim = x1lim

mode = xlim('mode"')
xlim(limits)
x1lim(mode)
xlim(ax,...)

1im = x1im returns the x-axis limits for the current axes.
mode = xlim('mode') returns 'auto' or 'manual’ for the x-axis limits mode

x1lim(limits) sets the x-axis limits to the limits given by the 2-element vector
limits.

x1lim(mode), where mode is the string 'auto' or 'manual', sets the x-axis limits
mode.

xlim(ax,...) uses the axes ax instead of the current axes.

The y1lim and z1im functions have the same functionality as x1im but operate on

the y- and z-axis, respectively.

561

xlabel

Purpose Specify an x-axis label.
Synopsis xlabel(string)
Description xlabel(string) places the text string as the label on the x-axis.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text

562 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

xlIsread

Purpose

Synopsis

Description

Read from .xls file

num = xlsread(filename,sheet)

[num,txt] = xlsread(filename,sheet)
[num,txt,raw] = xlsread(filename,sheet)
[num,txt,raw] = xlsread(filename,range)
[num,txt,raw] = xlsread(filename,sheet,range)
xlsread(filename,...)

[num,txt,raw] = xlsread(filename) reads all entries from the first sheet of an
xls file filename and returns numerical data in matrix num, strings in cell array txt
and mixed output in cell array raw. Excel cells containing string values will appear
as NaN in num while numerical values will appear as empty strings in txt. Likewise

for empty or unreadable cells (such as error codes, images etc). Empty leading rows
or columns will be ignored.

xlsread(filename,sheet), xlsread(filename,range) and
xlsread(filename,sheet,range) read from a specific sheet and/or range.
sheet must be given either as a number or a string containing the sheet’s name.

range must be a string in Excels Al-notation, for example 'A1:F24"'.

xlsread(filename,...) supports property value pairs as follows:

TABLE 1-60: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

out "num' | {'num', Output variables.
‘raw' | "text',
"text' "raw'}

range string bt Range to read from.

563

xlsread

564 |

See also

TABLE 1-60: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
sheet string or 1 Sheet to read from.
positive
integer
trim ‘on' | ‘on' If 'on', x1sread trims leading and
'off! trailing rows/columns of NaNs (for

num, raw) or empty strings (for
text). For example, a leading row
containing only strings will
automatically be removed from num,
as opposed to appearing as a row of
NaN's.

Note that if range has been given,
setting trim to 'off' does not
guarantee output of corresponding
size, as completely empty trailing
rows and columns will still not be
read.

x1lsread supports Excel 97 format and later.

Note: Excel cells stored in date format will be returned as numbers or strings

depending on the format in which they were stored in the xls file. Numerical dates

are based on the number of serial days elapsed since January 1, 1900.

xlswrite

CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

xlswrite

Purpose

Synopsis

Description

Examples

See also

Write to .xIs file

xlswrite(filename,data)
xlswrite(filename,data,sheet)
xlswrite(filename,data,range)
xlswrite(filename,data,sheet,range)
xlswrite(filename,data,...)

xlswrite(filename, data) writes entries in data to the first sheet of an .xls file
filename. data can be a real matrix or a cell array. In the latter case, only numerical

and string entries are printed to filename. Empty strings or NaN entries are ignored.

xlsread(filename,data,sheet), xlsread(filename,data,range) and
xlsread(filename,data,sheet,range) write to a specific sheet and/or range.
sheet must be given either as a number or a string containing the sheet’s name.

range must be a string in Excels Al-notation, for example 'A1:F24"'.

xlswrite(filename,data,...) supports property value pairs as follows:

TABLE 1-61: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
range string i Range to write to.
sheet string 1 Sheet to write to.

or

positive

integer

mat = [1:10; sin(1:10); exp(1:10)]1"';
xlswrite('myfile.x1s',mat, 'range', 'A1:B5');

¢ = [{'Header 1','Header 2', 'Header 3'};num2cell(mat)];
xlswrite('myfile.x1s',c,'My sheet');

xlsread

565

ylabel

Purpose Specity a y-axis label.
Synopsis ylabel(string)
Description ylabel(string) places the text string as the label on the y-axis.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text

566 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

Xor

Purpose
Synopsis

Description

Examples

See also

Compute the logical XOR of two matrices pointwise.

d xor(a, b)

d = xor(a, b) computes the pointwise logical XOR of the two matrices a and b.
For each dimension, a and b must have the same size or either of them must have
size 1. In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

xor([0 O 1 1], [0 10 1])
xor([0 1], 0)

xor([0 1], [1 ; 0])

and, not, or

567

Zeros

Purpose Create an all-zero matrix.
Synopsis m = zeros(n)
m = zeros(sz)
m = zeros(n1l, n2, ...)
Description m = zeros(n), where n is an integer, returns an n-by-n all-zero matrix.

m = zeros(sz), where sz is a vector of integers, returns an all-zero matrix of

size sz.
m = zeros(ni,n2,...), where ni are integers, returns an n1xn2x ... all-zero
matrix.

See also eye, ones, repmat, zeros

568 | CHAPTER |: COMSOL SCRIPT COMMAND REFERENCE

zlabel

Purpose Specify a z-axis label.
Synopsis zlabel(string)
Description zlabel(string) places the text string as the label on the z-axis.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text

569

zlabel

570 | CHAPTER I: COMSOL SCRIPT COMMAND REFERENCE

| NDEX

3D contour plots 88

A Airy functions 19
axes object
for new plots 371
handle to current 212
axes objects 27
clearing contents of current 68
axis limits 561

axis properties 28

B bar graph 29

base-2 logarithm 326
beta function 33

natural logarithm of 35
binary data 195
binary file

writing data to 207
bitwise complement 38
bitwise functions 37
block-diagonal matrices 44
breakpoints 307
built-in functions, evaluating 47
button groups 49, 524
buttons 48

C check box 65
Cholesky factorization 66
class of an object 70
colormap

assigning to plots 78
bone 45

cool 94

gray 222, 223, 555
hot 241, 242

jet 306

pink 398

combo box 79

command window
clearing contents of 71
closing 421
complementary error function |50
scaled 151
complex conjugate transpose 99
condition numbers 85, 86
contour data 89
contour plots 87
converting
cell array to matrix 60
cell array to structure 61
character array to cell array of strings
63
integers to strings 260
numbers to strings 378
strings to numbers 481
structure array to cell array 497
value to character array 64
convolution of matrices 92, 93
convolution of vectors 91
coordinate transformations
Cartesian to polar 54
Cartesian to spherical 55
polar to Cartesian 404
spherical to Cartesian 463
cross product 98
cumulative product 100
cumulative sum 101

current directory 58

DAEs 103

DASPK 103

date 104
determinant 126
diagonal matrix 127

dialog boxes 128

INDEX] 571

572 | INDEX

difference of an array 131
digamma function 416
digital filtering 180
direct form Il transposed form 180
directory
list of files in 132

removing from search path 439

eigenvalues 143, 144
eigenvectors 143, 144
elapsed time 155
end-of-file 167
error exceptions 153, 154
error messages

rethrowing 436

retrieving or setting 310, 311
evaluating

functions 169

polynomials 409
evaluating built-in functions 47

evaluating expressions 156

factorial 164
fast Fourier transform 170, 171
inverse 244
inverse 2D 245
inverse n-dimensional 246
n-dimensional 172
shifting frequency spectrum of 173
FFT 170, 171, 172
inverse 244, 245
inverse n-dimensional 246
shifting frequency spectrum of 173
undo frequency-spectrum shift 247
fgetl 174
figure window
clearing contents of current 73
closing 76
handle to current 214

figure windows

creating 177
file names
temporary 512
file pointer
moving 201
position of 202
files
closing 166
list of 132
opening 189
reading binary data from 195
reading formatted data from 200
rewinding 199
filled contour plots 90
filtering 180
flushing drawing 141
formatted data
reading from a string 475
reading from files 200
formatted output 193
formatted string
converting data to 469
formatted text
reading 490
frame objects 194
frequency range 198
frequency-spectrum shift
undoing 247
functions

clearing from workspace 72

gamma function 209
logarithm of 211

gradient 220

graphics objects
getting data from 217
setting values of 449

greatest common divisor 213

Greek symbols 514

grid lines 224
GridBaglayout 387
grids 345

n-dimensional 368

handle

to current axes object 212

to current figure window 214
help texts 232
Hessenberg form 233
histogram counts 238
histograms 237
HTML formatting 513

image icons 250
imaginary unit 243, 301
infinite value 256
inline functions
argument names for 24
creating 257
formula computed by 192
input arguments
variable number of 548
interpolation
1D 262
2D 263
3D 264
inverse error function 152
inverse fast Fourier transform 244
for matrix 245
inverse n-dimensional fast Fourier trans-

form 246

Java methods, invoking 303, 304
Java objects
creating 305

creating array of 302
Kronecker tensor product 308

labels 309

for x-axis 562

for y-axis 566
Laplacian 121
least common multiple 312
legends 315
light objects 317
lighting 317, 318
line plots 400
in 3D 401
linear system of equations 354, 359
lines 319
list boxes 321
loading workspace contents 323
Lobatto quadrature 420
logarithm
base-2 326
logarithmic scales 328
logarithmic scales in plots 447, 448
logarithmically spaced values 330

LU factorization 335

machine type 84
math symbols 515
matrix exponential 161
matrix inverse 267
matrix power 358, 41|
matrix product 360
menu items 343
menus 342
mesh plots

hidden lines in 236
modulus of matrices 356
movies 357
multidimensional index vector 499

multidimensional index vectors 255

NaNs 363

Nelder-Mead simplex algorithm 188
nonzero elements 372

norms 373

not-a-numbers 363

INDEX]| 573

574 | INDEX

null space 375

number of input arguments 365
checking 364

number of output arguments 366
checking 367

numerical integration
trapezoidal 102, 530
using Lobatto quadrature 420

using Simpson quadrature 419

ODE options
creating structure for 382
getting values of 381
ordinary differential equations 103
orthonormal basis 375, 386
output arguments
variable number of 549

output formats 191

panel for GUI components 387

patches of triangles or quadrilaterals 390

path
for M-files 392

path separator 393

phase jumps, removing 544

pi 397

plots
3D contour 88
contour 87
filled contour 90
getting axes object ready for 371
log-log 328
multiple in on figure window 500
saving as images 444
surface of quadrilaterals 504
titles in 523
using wireframe surface 344, 346
with semilog axes 447, 448
y versus x 400

points 403

polynomials 405
differentiating 406
evaluating 409
fitting to data 407
integrating 408
roots of 440

prime factors 163

prime numbers
generating 413
testing for 291

pseudoinverse 399

psi function 416

QR factorization 418
quadrature

Lobatto 420

Simpson 419
quadrilaterals, in mesh plots

mesh plots 344, 346

radio buttons 422

random numbers
uniformly distributed 423

random permutation 424

range of a matrix 386

rank of a matrix 425

remainder 433

root workspace 25

roots of polynomials 440

scene lights 318

Schur decomposition 445
scripts, running 442
scroll panes 446

set difference 450

set intersection 265

set members 286

set union 540

shading 453

Simpson quadrature 419

singular value decomposition 506
size of an array 456
solving linear equation systems 354, 359
sorting an array 457
sorting rows 458
sparse matrix
converting to full 203
creating 460
identity matrix 462
testing for 295
standard deviation 477
standard difference equation
direct form Il transposed form 180
structure
creating 496
removing fields from 438
structure fields

getting values from 219

structures w

setting value of fields in 451
subplots 500
surface of quadrilaterals 504

surface reflectance 338

tabbed panes 509
tables 510
text areas 516
text fields 517
text files, typing contents of 537
text symbols 515
texts 513
time 74
timer 519
titles 523
toggle buttons 524
trace of a matrix 526, 528
transpose
complex conjugate 99

of a matrix 529

trapezoidal numerical integration 102,

530

unicode 515

unique elements 541

user inputs 258

user interface components

properties for 83

variable names
test if string is valid as 299
variables
clearing from workspace 72
variables in workspace
information about 560
name of 559
variance 547
vectorizing an expression 550

view point 553

warnings, displaying 554
white-space characters 495
wireframe plots 344, 346
working directory 417
workspaces
evaluating in specific 158
loading from file 323
saving to file 443

INDEX| 575

576 | INDEX

	CONTENTS
	Chapter 1: COMSOL Script Command Reference
	Summary of Commands 2

	COMSOL Script Command Reference
	Summary of Commands
	Elementary functions
	addpath
	airy
	all
	and
	ans
	any
	argnames
	assignin
	atan2
	axes
	axis
	bar
	base2dec
	bessel, besselh, besseli, besselj, besselk, bessely
	beta
	betainc
	betaln
	bin2dec
	bitand, bitor, bitxor
	bitcmp
	bitget
	bitmax
	bitset
	bitshift
	blanks
	blkdiag
	bone
	box
	builtin
	button
	buttongroup
	campos
	camtarget
	camup
	camva
	cart2pol
	cart2sph
	cat
	caxis
	cd
	cell
	cell2mat
	cell2struct
	cellfun
	cellstr
	char
	checkbox
	chol
	circshift
	cla
	clabel
	class
	clc
	clear
	clf
	clock
	clone
	close
	colon
	colormap
	combobox
	compile
	complex
	component
	computer
	cond
	condeig
	contour
	contour3
	contourc
	contourf
	conv
	conv2
	convn
	cool
	corrcoef
	cov
	cputime
	cross
	ctranspose
	cumprod
	cumsum
	cumtrapz
	daspk
	date
	dbclear
	dbcont
	dbdown
	dbquit
	dbstack
	dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	deal
	deblank
	dec2base
	dec2bin
	dec2hex
	deconv
	del2
	delaunay
	delaunay3
	delete
	det
	diag
	dialog
	diary
	diff
	dir
	disp
	display
	dlmread
	dlmwrite
	dlsim
	dos
	dot
	double
	drawnow
	echo
	eig
	eigs
	encrypt
	eps
	eq
	erf
	erfc
	erfcx
	erfinv
	error
	errorbar
	etime
	eval
	evalc
	evalin
	exist
	exit
	expm
	eye
	factor
	factorial
	false
	fclose
	feof
	ferror
	feval
	fft
	fft2
	fftn
	fftshift
	fgetl
	fgets
	fieldnames
	figure
	fileparts
	filesep
	filter
	find
	findobj
	findstr
	flipdim
	fliplr
	flipud
	fminsearch
	fopen
	format
	formula
	fprintf
	frame
	fread
	freqspace
	frewind
	fscanf
	fseek
	ftell
	full
	fullfile
	funm
	fwrite
	fzero
	gamma
	gammainc
	gammaln
	gca
	gcd
	gcf
	ge
	genpath
	get
	getdata
	getfield
	gradient
	gray
	grayprint
	grid
	griddata
	griddata3
	griddatan
	gt
	help
	hess
	hex2dec
	hex2num
	hidden
	hist
	histc
	horzcat
	hold
	hot
	hsv
	i
	ifft
	ifft2
	ifftn
	ifftshift
	imag
	image
	imageicon
	imagesc
	imread
	imshow
	imwrite
	ind2sub
	inf
	inline
	input
	inputname
	int2str
	int8, int16, int32, int64
	interp1
	interp2
	interp3
	intersect
	intmax, intmin
	inv
	isa
	iscell
	iscellstr
	ischar
	isdir
	isempty
	isequal
	isequalwithequalnans
	isfield
	isfinite
	isglobal
	ishandle
	ishold
	isinf
	isjava
	iskeyword
	isletter
	islogical
	ismember
	isnan
	isnumeric
	isobject
	ispc
	isprime
	isreal
	isscalar
	isspace
	issparse
	isstr
	isstruct
	isunix
	isvarname
	isvector
	j
	javaArray
	javaDeclare
	javaMethod
	javaObject
	jet
	keyboard
	kron
	label
	lasterr
	lasterror
	lcm
	ldivide
	le
	legend
	length
	light
	lighting
	line
	linspace
	listbox
	load
	log
	log10
	log2
	logical
	loglog
	logm
	logspace
	lookfor
	lower
	ls
	lt
	lu
	mat2cell
	mat2str
	material
	max
	mean
	median
	menu
	menuitem
	mesh
	meshgrid
	meshz
	methods
	mfilename
	min
	minus
	mislocked
	mkdir
	mkpp
	mldivide
	mlock
	mod
	movie
	mpower
	mrdivide
	mtimes
	munlock
	namelengthmax
	nan
	nargchk
	nargin
	nargout
	nargoutchk
	ndgrid
	ndims
	ne
	newplot
	nnz
	norm
	not
	null
	num2cell
	num2hex
	num2str
	numel
	nzmax
	odeget
	odeset
	ones
	or
	ordschur
	orth
	panel
	patch
	path
	pathsep
	pause
	pchip
	permute, ipermute
	pi
	pink
	pinv
	plot
	plot3
	plus
	point
	pol2cart
	poly
	polyder
	polyfit
	polyint
	polyval
	pow2
	power
	ppval
	primes
	prod
	profile
	psi
	pwd
	qr
	quad
	quadl
	quit
	radiobutton
	rand
	randperm
	rank
	rat
	rats
	rdivide
	real
	realmin, realmax
	realpow
	rehash
	rem
	repmat
	reshape
	rethrow
	rmdir
	rmfield
	rmpath
	roots
	rot90
	run
	save
	saveimage
	schur
	scrollpane
	semilogx
	semilogy
	set
	setdiff
	setfield
	setxor
	shading
	shiftdim
	single
	size
	sort
	sortrows
	sound, soundsc
	sparse
	spdiags
	speye
	sph2cart
	spline
	spones
	sprand
	sprandn
	sprandsym
	sprintf
	spy
	sqrt
	sqrtm
	squeeze
	sscanf
	stairs
	std
	stem
	stem3
	storedata
	str2num
	strcat
	strcmp
	strcmpi
	strfind
	strjust
	strmatch
	strncmp
	strncmpi
	strread, textread
	strrep
	strrep
	strtok
	strtrim
	struct
	struct2cell
	strvcat
	sub2ind
	subplot
	subspace
	sum
	super
	surf
	surface
	svd
	symvar
	system
	tabbedpane
	table
	tempdir
	tempname
	text
	textarea
	textfield
	this
	tic, toc
	times
	tinterp
	title
	togglebutton
	tprod
	trace
	transpose
	trapz
	tril, triu
	trimesh
	trisurf
	true
	tsearch
	tsearchn
	type
	uint8, uint16, uint32, uint64
	uminus
	union
	unique
	unix
	unmkpp
	unwrap
	uplus
	upper
	var
	varargin
	varargout
	vectorize
	version
	vertcat
	view
	warning
	wavemap
	wavread
	wavwrite
	which
	who
	whos
	xlim, ylim, zlim
	xlabel
	xlsread
	xlswrite
	ylabel
	xor
	zeros
	zlabel

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

