
 COMSOL
 Script ™

V E R S I O N 1 . 2

COMMAND REFERENCE

How to contact COMSOL:

Benelux
COMSOL BV
Röntgenlaan 19
2719 DX Zoetermeer
The Netherlands
Phone: +31 (0) 79 363 4230
Fax: +31 (0) 79 361 4212
info@femlab.nl
www.femlab.nl

Denmark
COMSOL A/S
Diplomvej 376
2800 Kgs. Lyngby
Phone: +45 88 70 82 00
Fax: +45 88 70 80 90
info@comsol.dk
www.comsol.dk

Finland
COMSOL OY
Arabianranta 6
FIN-00560 Helsinki
Phone: +358 9 2510 400
Fax: +358 9 2510 4010
info@comsol.fi
www.comsol.fi

France
COMSOL France
WTC, 5 pl. Robert Schuman
F-38000 Grenoble
Phone: +33 (0)4 76 46 49 01
Fax: +33 (0)4 76 46 07 42
info@comsol.fr
www.comsol.fr

Germany
FEMLAB GmbH
Berliner Str. 4
D-37073 Göttingen
Phone: +49-551-99721-0
Fax: +49-551-99721-29
info@femlab.de
www.femlab.de

Italy
COMSOL S.r.l.
Via Vittorio Emanuele II, 22
25122 Brescia
Phone: +39-030-3793800
Fax: +39-030-3793899
info.it@comsol.com
www.it.comsol.com

Norway
COMSOL AS
Søndre gate 7
NO-7485 Trondheim
Phone: +47 73 84 24 00
Fax: +47 73 84 24 01
info@comsol.no
www.comsol.no

Sweden
COMSOL AB
Tegnérgatan 23
SE-111 40 Stockholm
Phone: +46 8 412 95 00
Fax: +46 8 412 95 10
info@comsol.se
www.comsol.se

Switzerland
FEMLAB GmbH
Technoparkstrasse 1
CH-8005 Zürich
Phone: +41 (0)44 445 2140
Fax: +41 (0)44 445 2141
info@femlab.ch
www.femlab.ch

United Kingdom
COMSOL Ltd.
UH Innovation Centre
College Lane
Hatfield
Hertfordshire AL10 9AB
Phone:+44-(0)-1707 284747
Fax: +44-(0)-1707 284746
info.uk@comsol.com
www.uk.comsol.com

United States
COMSOL, Inc.
1 New England Executive Park
Suite 350
Burlington, MA 01803
Phone: +1-781-273-3322
Fax: +1-781-273-6603

COMSOL, Inc.
10850 Wilshire Boulevard
Suite 800
Los Angeles, CA 90024
Phone: +1-310-441-4800
Fax: +1-310-441-0868

COMSOL, Inc.
744 Cowper Street
Palo Alto, CA 94301
Phone: +1-650-324-9935
Fax: +1-650-324-9936

info@comsol.com
www.comsol.com

For a complete list of international
representatives, visit
www.comsol.com/contact

Company home page
www.comsol.com

COMSOL user forums
www.comsol.com/support/forums

COMSOL Script Reference Guide
 © COPYRIGHT 1994–2007 by COMSOL AB. All rights reserved

Patent pending

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from COMSOL AB.

COMSOL, COMSOL Multiphysics, COMSOL Reaction Engineering Lab, and FEMLAB are registered
trademarks of COMSOL AB. COMSOL Script is a trademark of COMSOL AB.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Version: October 2007 COMSOL 3.4

C O N T E N T S

C h a p t e r 1 : C O M S O L S c r i p t C o m m a n d R e f e r e n c e

Summary of Commands 2

Elementary functions . 16

addpath . 18

airy . 19

all . 20

and . 21

ans . 22

any . 23

argnames . 24

assignin . 25

atan2 . 26

axes . 27

axis . 28

bar . 29

base2dec . 30

bessel, besselh, besseli, besselj, besselk, bessely 31

beta . 33

betainc. . 34

betaln . 35

bin2dec . 36

bitand, bitor, bitxor . 37

bitcmp . 38

bitget . 39

bitmax . 40

bitset . 41

bitshift . 42

blanks . 43

blkdiag . 44

bone . 45

box . 46

builtin . 47

button . 48
C O N T E N T S | i

ii | C O N T E N T S
buttongroup . 49

campos . 50

camtarget . 51

camup . 52

camva . 53

cart2pol . 54

cart2sph . 55

cat . 56

caxis . 57

cd . 58

cell . 59

cell2mat . 60

cell2struct . 61

cellfun . 62

cellstr . 63

char . 64

checkbox . 65

chol . 66

circshift . 67

cla . 68

clabel . 69

class. . 70

clc . 71

clear . 72

clf . 73

clock . 74

clone . 75

close . 76

colon . 77

colormap . 78

combobox . 79

compile . 81

complex . 82

component . 83

computer. . 84

cond . 85

condeig . 86

contour . 87

contour3 . 88

contourc . 89

contourf . 90

conv . 91

conv2 . 92

convn . 93

cool . 94

corrcoef . 95

cov . 96

cputime . 97

cross . 98

ctranspose . 99

cumprod . 100

cumsum . 101

cumtrapz . 102

daspk . 103

date . 104

dbclear . 105

dbcont . 106

dbdown . 107

dbquit . 108

dbstack . 109

dbstatus . 110

dbstep . 111

dbstop . 112

dbtype . 113

dbup . 114

deal . 115

deblank . 116

dec2base . 117

dec2bin . 118

dec2hex . 119

deconv. 120

del2 . 121

delaunay . 122

delaunay3. 124

delete . 125

det . 126
C O N T E N T S | iii

iv | C O N T E N T S
diag . 127

dialog . 128

diary . 130

diff . 131

dir . 132

disp . 133

display . 134

dlmread . 135

dlmwrite . 136

dlsim . 137

dos . 138

dot . 139

double . 140

drawnow . 141

echo . 142

eig . 143

eigs . 144

encrypt . 146

eps . 147

eq . 148

erf . 149

erfc . 150

erfcx . 151

erfinv . 152

error . 153

errorbar . 154

etime . 155

eval . 156

evalc . 157

evalin . 158

exist . 159

exit . 160

expm . 161

eye . 162

factor . 163

factorial . 164

false . 165

fclose . 166

feof . 167

ferror . 168

feval . 169

fft. 170

fft2 . 171

fftn . 172

fftshift . 173

fgetl . 174

fgets. 175

fieldnames . 176

figure . 177

fileparts . 178

filesep . 179

filter . 180

find . 181

findobj . 182

findstr . 183

flipdim . 184

fliplr . 185

flipud . 186

fminsearch . 187

fopen . 189

format . 191

formula . 192

fprintf . 193

frame . 194

fread . 195

freqspace . 198

frewind . 199

fscanf . 200

fseek . 201

ftell . 202

full . 203

fullfile . 204

funm . 205

fwrite . 207

fzero . 208

gamma . 209
C O N T E N T S | v

vi | C O N T E N T S
gammainc. 210

gammaln . 211

gca . 212

gcd . 213

gcf . 214

ge . 215

genpath . 216

get . 217

getdata. 218

getfield. 219

gradient . 220

gray . 222

grayprint . 223

grid . 224

griddata . 225

griddata3 . 227

griddatan . 229

gt. 231

help . 232

hess . 233

hex2dec . 234

hex2num . 235

hidden . 236

hist . 237

histc. 238

horzcat . 239

hold . 240

hot . 241

hsv . 242

i . 243

ifft . 244

ifft2 . 245

ifftn . 246

ifftshift . 247

imag. 248

image . 249

imageicon . 250

imagesc . 251

imread . 252

imshow . 253

imwrite . 254

ind2sub . 255

inf . 256

inline . 257

input . 258

inputname . 259

int2str . 260

int8, int16, int32, int64. 261

interp1. 262

interp2. 263

interp3. 264

intersect . 265

intmax, intmin . 266

inv . 267

isa . 268

iscell . 269

iscellstr . 270

ischar . 271

isdir . 272

isempty . 273

isequal . 274

isequalwithequalnans . 275

isfield . 276

isfinite . 277

isglobal . 278

ishandle . 279

ishold . 280

isinf . 281

isjava . 282

iskeyword . 283

isletter . 284

islogical . 285

ismember. 286

isnan . 287

isnumeric . 288

isobject . 289
C O N T E N T S | vii

viii | C O N T E N T S
ispc . 290

isprime . 291

isreal . 292

isscalar. 293

isspace . 294

issparse . 295

isstr . 296

isstruct . 297

isunix . 298

isvarname . 299

isvector . 300

j . 301

javaArray . 302

javaDeclare . 303

javaMethod . 304

javaObject . 305

jet . 306

keyboard . 307

kron . 308

label. 309

lasterr . 310

lasterror . 311

lcm . 312

ldivide . 313

le . 314

legend . 315

length . 316

light . 317

lighting . 318

line . 319

linspace . 320

listbox . 321

load . 323

log . 324

log10 . 325

log2 . 326

logical . 327

loglog . 328

logm . 329

logspace . 330

lookfor . 331

lower . 332

ls . 333

lt . 334

lu . 335

mat2cell . 336

mat2str . 337

material . 338

max . 339

mean . 340

median. 341

menu . 342

menuitem . 343

mesh . 344

meshgrid . 345

meshz . 346

methods . 347

mfilename . 348

min . 349

minus . 350

mislocked . 351

mkdir . 352

mkpp . 353

mldivide . 354

mlock . 355

mod. 356

movie . 357

mpower . 358

mrdivide . 359

mtimes . 360

munlock . 361

namelengthmax . 362

nan . 363

nargchk . 364

nargin . 365

nargout . 366
C O N T E N T S | ix

x | C O N T E N T S
nargoutchk . 367

ndgrid . 368

ndims . 369

ne . 370

newplot . 371

nnz . 372

norm . 373

not . 374

null . 375

num2cell . 376

num2hex . 377

num2str . 378

numel . 379

nzmax . 380

odeget . 381

odeset . 382

ones . 383

or . 384

ordschur . 385

orth . 386

panel . 387

patch . 390

path . 392

pathsep . 393

pause . 394

pchip . 395

permute, ipermute . 396

pi . 397

pink . 398

pinv . 399

plot . 400

plot3 . 401

plus . 402

point . 403

pol2cart . 404

poly . 405

polyder . 406

polyfit . 407

polyint . 408

polyval . 409

pow2 . 410

power . 411

ppval . 412

primes . 413

prod . 414

profile . 415

psi . 416

pwd . 417

qr . 418

quad . 419

quadl . 420

quit . 421

radiobutton . 422

rand. 423

randperm. 424

rank . 425

rat . 426

rats . 427

rdivide . 428

real . 429

realmin, realmax . 430

realpow . 431

rehash . 432

rem . 433

repmat. 434

reshape . 435

rethrow . 436

rmdir . 437

rmfield . 438

rmpath. 439

roots . 440

rot90 . 441

run . 442

save . 443

saveimage . 444

schur . 445
C O N T E N T S | xi

xii | C O N T E N T S
scrollpane . 446

semilogx . 447

semilogy . 448

set . 449

setdiff . 450

setfield. 451

setxor . 452

shading . 453

shiftdim . 454

single . 455

size . 456

sort . 457

sortrows . 458

sound, soundsc . 459

sparse . 460

spdiags . 461

speye . 462

sph2cart . 463

spline . 464

spones . 465

sprand . 466

sprandn . 467

sprandsym . 468

sprintf . 469

spy . 471

sqrt . 472

sqrtm . 473

squeeze . 474

sscanf . 475

stairs . 476

std . 477

stem . 478

stem3 . 479

storedata . 480

str2num . 481

strcat . 482

strcmp . 483

strcmpi . 484

strfind . 485

strjust . 486

strmatch . 487

strncmp . 488

strncmpi . 489

strread, textread . 490

strrep . 493

strrep . 493

strtok . 494

strtrim . 495

struct . 496

struct2cell . 497

strvcat . 498

sub2ind . 499

subplot . 500

subspace . 501

sum . 502

super . 503

surf . 504

surface. 505

svd . 506

symvar . 507

system . 508

tabbedpane . 509

table . 510

tempdir . 511

tempname . 512

text . 513

textarea . 516

textfield . 517

this . 518

tic, toc . 519

times . 520

tinterp . 521

title . 523

togglebutton . 524

tprod . 526

trace . 528
C O N T E N T S | xiii

xiv | C O N T E N T S
transpose. 529

trapz . 530

tril, triu . 531

trimesh . 532

trisurf . 533

true . 534

tsearch . 535

tsearchn . 536

type . 537

uint8, uint16, uint32, uint64 538

uminus. 539

union . 540

unique . 541

unix . 542

unmkpp . 543

unwrap . 544

uplus . 545

upper . 546

var . 547

varargin . 548

varargout . 549

vectorize . 550

version . 551

vertcat . 552

view. 553

warning . 554

wavemap . 555

wavread . 556

wavwrite . 557

which . 558

who . 559

whos . 560

xlim, ylim, zlim . 561

xlabel . 562

xlsread. 563

xlswrite . 565

ylabel . 566

xor . 567

zeros . 568

zlabel . 569

INDEX 571
C O N T E N T S | xv

xvi | C O N T E N T S

 1
C O M S O L S c r i p t C o m m a n d R e f e r e n c e
 1

2 | C H A P T E R
S umma r y o f C ommand s
addpath on page 18

airy on page 19

all on page 20

and on page 21

ans on page 22

any on page 23

argnames on page 24

assignin on page 25

atan2 on page 26

axes on page 27

bar on page 29

base2dec on page 30

bessel, besselh, besseli, besselj, besselk, bessely on page 31

beta on page 33

betainc on page 34

betaln on page 35

bin2dec on page 36

bitand, bitor, bitxor on page 37

bitcmp on page 38

bitget on page 39

bitmax on page 40

bitset on page 41

bitshift on page 42

blanks on page 43

blkdiag on page 44

bone on page 45

box on page 46

builtin on page 47

button on page 48

buttongroup on page 49

campos on page 50

camtarget on page 51

camup on page 52

camva on page 53

cart2pol on page 54
1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cart2sph on page 55

cat on page 56

cd on page 58

cell on page 59

cell2mat on page 60

cell2struct on page 61

cellfun on page 62

cellstr on page 63

char on page 64

checkbox on page 65

chol on page 66

circshift on page 67

cla on page 68

clabel on page 69

class on page 70

clc on page 71

clear on page 72

clf on page 73

clock on page 74

clone on page 75

close on page 76

colon on page 77

combobox on page 79

complex on page 82

computer on page 84

cond on page 85

condeig on page 86

contour on page 87

contourf on page 90

contour3 on page 88

contourc on page 89

conv on page 91

conv2 on page 92

convn on page 93

cool on page 94

corrcoef on page 95

cov on page 96

cputime on page 97
S U M M A R Y O F C O M M A N D S | 3

4 | C H A P T E R
cross on page 98

ctranspose on page 99

cumprod on page 100

cumsum on page 101

cumtrapz on page 102

daspk on page 103

date on page 104

dbclear on page 105

dbcont on page 106

dbdown on page 107

dbquit on page 108

dbstack on page 109

dbstatus on page 110

dbstep on page 111

dbstop on page 112

dbtype on page 113

dbup on page 114

deal on page 115

deblank on page 116

dec2base on page 117

dec2bin on page 118

dec2hex on page 119

deconv on page 120

del2 on page 121

delaunay on page 122

delaunay3 on page 124

delete on page 125

det on page 126

diag on page 127

dialog on page 128

diary on page 130

diff on page 131

dir on page 132

disp on page 133

display on page 134

dlmread on page 135

dlmwrite on page 136

dlsim on page 137
1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dos on page 138

dot on page 139

double on page 140

drawnow on page 141

echo on page 142

eig on page 143

eigs on page 144

Elementary functions on page 16 (abs, acos, acosh, acot, acoth, acsc, acsch, angle, asec,

asech, asin, asinh, atan, atanh, ceil, conj, cos, cosh, cot, coth, csc, csch, exp, fix, floor, imag, log,

log10, real, reallog, realsqrt, round, sec, sech, sign, sin, sinh, sqrt, tan, tanh)

encrypt on page 146

eps on page 147

eq on page 148

erf on page 149

erfc on page 150

erfcx on page 151

erfinv on page 152

error on page 153

errorbar on page 154

etime on page 155

eval on page 156

evalc on page 157

evalin on page 158

exist on page 159

exit on page 160

expm on page 161

eye on page 162

factor on page 163

factorial on page 164

false on page 165

fclose on page 166

feof on page 167

ferror on page 168

feval on page 169

fft on page 170

fft2 on page 171

fftn on page 172

fftshift on page 173
S U M M A R Y O F C O M M A N D S | 5

6 | C H A P T E R
fgetl on page 174

fgets on page 175

fieldnames on page 176

figure on page 177

fileparts on page 178

filesep on page 179

filter on page 180

find on page 181

findobj on page 182

findstr on page 183

flipdim on page 184

fliplr on page 185

flipud on page 186

fminsearch on page 187

fopen on page 189

format on page 191

formula on page 192

fprintf on page 193

fread on page 195

freqspace on page 198

frewind on page 199

fscanf on page 200

fseek on page 201

ftell on page 202

full on page 203

fullfile on page 204

funm on page 205

fwrite on page 207

fzero on page 208

gamma on page 209

gammainc on page 210

gammaln on page 211

gca on page 212

gcd on page 213

gcf on page 214

ge on page 215

genpath on page 216

get on page 217
1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

getdata on page 218

gradient on page 220

gray on page 222

grayprint on page 223

grid on page 224

griddata on page 225

griddata3 on page 227

griddatan on page 229

gt on page 231

help on page 232

hess on page 233

hex2dec on page 234

hex2num on page 235

hidden on page 236

hist on page 237

histc on page 238

horzcat on page 239

hold on page 240

hot on page 241

hsv on page 242

i on page 243

ifft on page 244

ifft2 on page 245

ifftn on page 246

ifftshift on page 247

imag on page 248

image on page 249

imageicon on page 250

imagesc on page 251

imread on page 252

imshow on page 253

imwrite on page 254

ind2sub on page 255

inf on page 256

inline on page 257

input on page 258

inputname on page 259

int2str on page 260
S U M M A R Y O F C O M M A N D S | 7

8 | C H A P T E R
int8, int16, int32, int64 on page 261

interp1 on page 262

interp2 on page 263

interp3 on page 264

intersect on page 265

intmax, intmin on page 266

inv on page 267

isa on page 268

iscell on page 269

iscellstr on page 270

ischar on page 271

isdir on page 272

isempty on page 273

isequal on page 274

isequalwithequalnans on page 275

isfield on page 276

isfinite on page 277

isglobal on page 278

ishandle on page 279

isinf on page 281

isjava on page 282

iskeyword on page 283

isletter on page 284

ismember on page 286

isnan on page 287

isnumeric on page 288

isobject on page 289

ispc on page 290

isprime on page 291

isreal on page 292

isscalar on page 293

isspace on page 294

issparse on page 295

isstr on page 296

isstruct on page 297

isunix on page 298

isvarname on page 299

isvector on page 300
1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

j on page 301

javaArray on page 302

javaDeclare on page 303

javaMethod on page 304

javaObject on page 305

jet on page 306

keyboard on page 307

kron on page 308

label on page 309

lasterr on page 310

lasterror on page 311

lcm on page 312

ldivide on page 313

le on page 314

legend on page 315

length on page 316

light on page 317

lighting on page 318

line on page 319

linspace on page 320

listbox on page 321

load on page 323

log on page 324

log10 on page 325

log2 on page 326

logical on page 327

loglog on page 328

logm on page 329

logspace on page 330

lookfor on page 331

lower on page 332

ls on page 333

lt on page 334

lu on page 335

mat2cell on page 336

mat2str on page 337

max on page 339

mean on page 340
S U M M A R Y O F C O M M A N D S | 9

10 | C H A P T E R
median on page 341

menu on page 342

menuitem on page 343

mesh on page 344

meshgrid on page 345

meshz on page 346

methods on page 347

mfilename on page 348

min on page 349

minus on page 350

mislocked on page 351

mkdir on page 352

mkpp on page 353

mldivide on page 354

mlock on page 355

mod on page 356

movie on page 357

mpower on page 358

mrdivide on page 359

mtimes on page 360

munlock on page 361

namelengthmax on page 362

nan on page 363

nargchk on page 364

nargin on page 365

nargout on page 366

nargoutchk on page 367

ndgrid on page 368

ndims on page 369

ne on page 370

newplot on page 371

nnz on page 372

norm on page 373

not on page 374

null on page 375

num2cell on page 376

num2hex on page 377

num2str on page 378
 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

numel on page 379

nzmax on page 380

odeget on page 381

odeset on page 382

ones on page 383

or on page 384

ordschur on page 385

orth on page 386

panel on page 387

patch on page 390

path on page 392

pathsep on page 393

pause on page 394

pchip on page 395

permute, ipermute on page 396

pi on page 397

pink on page 398

pinv on page 399

plot on page 400

plot3 on page 401

plus on page 402

point on page 403

pol2cart on page 404

poly on page 405

polyder on page 406

polyfit on page 407

polyint on page 408

polyval on page 409

pow2 on page 410

power on page 411

ppval on page 412

primes on page 413

prod on page 414

profile on page 415

psi on page 416

pwd on page 417

qr on page 418

quad on page 419
S U M M A R Y O F C O M M A N D S | 11

12 | C H A P T E R
quadl on page 420

quit on page 421

radiobutton on page 422

rand on page 423

randperm on page 424

rank on page 425

rat on page 426

rats on page 427

rdivide on page 428

real on page 429

realmin, realmax on page 430

realpow on page 431

rehash on page 432

rem on page 433

repmat on page 434

reshape on page 435

rethrow on page 436

rmdir on page 437

rmfield on page 438

roots on page 440

run on page 442

save on page 443

saveimage on page 444

schur on page 445

scrollpane on page 446

semilogx on page 447

semilogy on page 448

setdiff on page 450

setfield on page 451

setxor on page 452

shading on page 453

size on page 456

sort on page 457

sortrows on page 458

sound, soundsc on page 459

sparse on page 460

spdiags on page 461

speye on page 462
 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sph2cart on page 463

spline on page 464

spones on page 465

sprand on page 466

sprandn on page 467

sprandsym on page 468

sprintf on page 469

spy on page 471

sqrt on page 472

sqrtm on page 473

squeeze on page 474

sscanf on page 475

stairs on page 476

std on page 477

stem on page 478

stem3 on page 479

storedata on page 480

str2num on page 481

strcat on page 482

strcmp on page 483

strcmpi on page 484

strfind on page 485

strjust on page 486

strmatch on page 487

strncmp on page 488

strncmpi on page 489

strread, textread on page 490

strrep on page 493

strtok on page 494

strtrim on page 495

struct on page 496

struct2cell on page 497

strvcat on page 498

sub2ind on page 499

subplot on page 500

subspace on page 501

sum on page 502

super on page 503
S U M M A R Y O F C O M M A N D S | 13

14 | C H A P T E R
surf on page 504

surface on page 505

svd on page 506

symvar on page 507

system on page 508

tabbedpane on page 509

table on page 510

tempdir on page 511

tempname on page 512

text on page 513

textarea on page 516

textfield on page 517

this on page 518

tic, toc on page 519

times on page 520

tinterp on page 521

title on page 523

togglebutton on page 524

tprod on page 526

trace on page 528

transpose on page 529

trapz on page 530

tril, triu on page 531

trimesh on page 532

trisurf on page 533

true on page 534

tsearch on page 535

tsearchn on page 536

type on page 537

uint8, uint16, uint32, uint64 on page 538

uminus on page 539

union on page 540

unique on page 541

unix on page 542

unmkpp on page 543

unwrap on page 544

uplus on page 545

upper on page 546
 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

var on page 547

varargin on page 548

varargout on page 549

vectorize on page 550

version on page 551

vertcat on page 552

view on page 553

warning on page 554

wavemap on page 555

wavread on page 556

wavwrite on page 557

which on page 558

who on page 559

whos on page 560

xlabel on page 562

xlim, ylim, zlim on page 561

xlsread on page 563

xlswrite on page 565

ylabel on page 566

zeros on page 568

zlabel on page 569
S U M M A R Y O F C O M M A N D S | 15

Elementary functions

16 | C H A P T E
Elementary functionsPurpose Evaluate an elementary function.

Synopsis abs(a)

and the same format for other elementary functions

Description <elementary function>(a) computes the elementary function of the matrix a
pointwise. The following elementary functions are available:

FUNCTION WHAT IT COMPUTES

abs Absolute value

acos Inverse cosine

acosh Inverse hyperbolic cosine

acot Inverse cotangent

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant

acsch Inverse hyperbolic cosecant

angle Polar angle of complex number

asec Inverse secant

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atanh Inverse hyperbolic tangent

ceil Floating-point number rounded to the next integer
towards infinity

conj Complex conjugate

cos Cosine

cosh Hyperbolic cosine

cot Cotangent

coth Hyperbolic cotangent

csc Cosecant

csch Hyperbolic cosecant

exp Exponential

fix Floating-point number rounded to the next integer
toward 0
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

Elementary functions
floor Floating-point number rounded to the next integer
toward negative infinity

imag Imaginary part of complex number

log Natural logarithm

log10 Base-10 logarithm

real Real part of complex number

reallog Natural logarithm of nonnegative real number

realsqrt Square root of nonnegative real number

round Floating-point number rounded to nearest integer

sec Secant

sech Hyperbolic secant

sign Sign of argument: +1 if positive, 0 if 0, −1 if negative

sin Sine

sinh Hyperbolic sine

sqrt Square root

tan Tangent

tanh Hyperbolic tangent

FUNCTION WHAT IT COMPUTES
17

addpath

18 | C H A P T E
addpathPurpose Add one or more directories to the COMSOL Script search path.

Synopsis addpath(dir1, ...)
addpath(dir1, ..., '-begin')
addpath(dir1, ..., '-end')

Description addpath(dir1, ...) and addpath(dir1, ..., '-begin') prepend directories
to the COMSOL Script search path.

 addpath(dir1, ..., '-end') appends directories to the COMSOL Script search
path.

See also path
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

airy
airyPurpose Airy functions

Synopsis w = airy(z)
w = airy(k,z)

Description airy computes the Airy functions Ai(z), Bi(z) or their derivatives depending on the
flag k, as indicated below. The default is zero.

airy can give the following errors:

See also bessel, besselh, besseli, besselj, besselk, bessely

TABLE 1-1: AIRY FUNCTION FLAG VALUES

K FUNCTION

0 Ai(z)

1 Ai’(z)

2 Bi(z)

3 Bi’(z)

TABLE 1-2: AIRY FUNCTION ERROR CODES

ERROR CODE DESCRIPTION

1 Illegal input

2 Overflow

3 Loss of significance by
argument reduction

4 Complete loss of accuracy in
argument reduction

5 No convergence
19

all

20 | C H A P T E
allPurpose Determine if all the elements along a dimension are nonzero.

Synopsis y = all(x)
y = all(x,dim)

Description y = all(x) tests if all elements along a specific dimension are nonzero.

When x is a vector, all(x) returns true if all the elements of x are nonzero, and
false otherwise. When x is a matrix, y is a row vector where each element is true or
false depending on whether or not all the elements of corresponding column of x
are nonzero. When x is an n-dimensional array, all(x) tests for nonzero elements
along the first nonsingleton dimension of x.

y = all(x,dim) tests x for nonzero elements along the dimension dim.

Example all(eye(10),2)

See also any
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

and
andPurpose Compute the logical AND of two matrices pointwise.

Synopsis d = and(a, b)

Description d = and(a, b) computes the pointwise logical AND of the two matrices a and b.
For each dimension, a and b must have the same size or either of them must have
size 1. In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

 and(a, b) is equivalent to a & b.

Examples [0 0 1 1] & [0 1 0 1]

 [0 1] & 0

 [0 1] & [1 ; 0]

See also not, or, xor
21

ans

22 | C H A P T E
ansPurpose Get the result of the last operation.

Synopsis a = ans

Description a = ans returns the result of the last operation that produced a result that was not
assigned to any variable.
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

any
anyPurpose Determine if any element along a dimension is nonzero.

Synopsis y = any(x)
y = any(x,dim)

Description y = any(x) tests if any element along a specific dimension is nonzero.

When x is a vector, any(x) returns true if any element of x is nonzero, and false
otherwise. When x is a matrix, y is a row vector where each element is true or false
depending on whether or not any elements of corresponding column of x is
nonzero. When x is an n-dimensional array, any(x) tests for nonzero elements
along the first nonsingleton dimension of x.

y = any(x,dim) tests x for nonzero elements along the dimension dim.

Example any(eye(10),2)

See also all
23

argnames

24 | C H A P T E
argnamesPurpose Get the argument names for an inline function.

Synopsis names = argnames(f)

Description names = argnames(f) returns the argument names for the inline function f in a
cell array.

See also inline
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

assignin
assigninPurpose Assign a value to a variable in another workspace.

Synopsis assignin(ws, var, val)

Description assignin(ws, var, val) assigns the value val to the variable var in the
workspace ws. Possible values for ws are 'caller' (the workspace owning the
current workspace through a function call) and 'base' (the root workspace).

See also evalin
25

atan2

26 | C H A P T E
atan2Purpose Compute binary atan.

Synopsis v = atan2(y, x)

Description v = atan2(y, x) computes the pointwise atan of the two matrices x and y. For
scalars, atan2(y, x) is the angle v such that tan(v) = y/x.

The sizes of x and y must be identical unless one of them is a scalar; in that case, the
scalar is expanded to a matrix of the correct size.

See also Elementary functions
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

axes
axesPurpose Create axes for use in a GUI.

Synopsis ax = axes

Description ax = axes creates an axes component that can be added to a frame or a dialog in
a built graphical user interface.

The function returns an axes object that can then be manipulated further using the
methods in the following table:

See also dialog, frame, panel

TABLE 1-3: METHODS FOR MANIPULATING A AXES OBJECT.

METHOD DESCRIPTION

getHandle Returns a handle to the axes. This handle
can then be used as any other axes
handle. It can for example be used as
parent in plotting command or to set and
get axes properties such as axis limits.

addMouseListener(name) Specifies that the function with the given
name should be run the mouse is moved
or clicked over the axes.
27

axis

28 | C H A P T E
axisPurpose Control axis limits and properties.

Synopsis axis(limits)
axis('auto')
axis('equal')
axis('manual')
axis('normal')
axis('on')
axis('off')
axis('tight')
axis(ax,...)

Description axis(limits) sets the limits of the current axis to the limits given by the vector
limits. In 2D it has the values [xmin xmax ymin ymax] and in 3D it has the values
[xmin xmax ymin ymax zmin zmax] .

axis('auto') dictates that axis limits should automatically be recomputed to fit
graphics that are added to the axes.

axis('equal') sets the aspect ratio so that distances in different directions are
equal in size on the screen.

axis('manual') sets axis limits in Manual mode, which means the axis limits are
kept and not automatically updated when new graphics are plotted into the axes.

axis('normal') is the opposite of axis('equal'). It allows distances in different
directions to have different lengths on the screen.

axis('on') displays the axis labeling, tick marks, and the box. This has an effect
only in 3D.

axis('off') turns off the display of axis labeling, tick marks and the box. This has
an effect only in 3D.

axis('tight') makes the axis limits tight around the plotted data.

axis(ax,...) can be used with all the different syntaxes just given to affect the
axes ax instead of the current axes.
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

bar
barPurpose Create a bar graph.

Synopsis bar(x,y)
bar(y)
bar(x,y,width)
bar(y,width)

Description bar(x,y) draws a bar graph. x is a vector and y is an m-by-n matrix or a vector. If y
is a vector it has the same length as x and length(x) bars are produced. If y is a matrix
x must have length(m) and m groups of n bars will be created.

 bar(y) uses x=1:m.

 bar(...,width) can be used to specify the relative width of the bars. The default
value is 0.8 and a value of 1 means that the bars will touch each other.

 bar(...,'grouped') draws multiple bars within each group.

 bar(...,'stacked') stacks the bars vertically within each group.

 The bars are normally colored using colors from the colormap in the figure plotted
into.

 bar(...,'linecolor') where 'linecolor' is one of the color strings listed in
PLOT can be used to color all bars using the same color.

See also plot
29

base2dec

30 | C H A P T E
base2decPurpose Convert strings in a specific base to decimal integers.

Synopsis d = base2dec(str,b)

Description d = base2dec(str,b) converts a string str representing a number in base b to a
decimal integer. str can also be a string matrix, in which case base2dec converts
each row, or a cell array of strings, in which case base2dec converts each element.
b must be an integer between 2 and 36, inclusive.

Example base2dec('21',5) converts 21 in base 5 to 11 in base 10.

See also bin2dec, hex2dec, hex2num, dec2base, dec2bin, dec2hex, num2hex
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

bessel, besselh, besseli, besselj, besselk, bessely
bessel, besselh, besseli, besselj, besselk, besselyPurpose Compute a Bessel function.

Synopsis b = bessel(n, z)
b = besselh(n, z)
b = besselh(n, m, z)
b = besseli(n, z)
b = besselj(n, z)
b = besselk(n, z)
b = bessely(n, z)

Description b = bessel(n,z)—see b = besselj(n, z) below.

 b = besselh(n,z) computes the Bessel function of the third kind with m set to 1.

 b = besselh(n,m,z) computes Hn
(m), the Bessel function of the third kind, also

called the Hankel function, of order n, defined as

where Jn(x) is the Bessel function of the first kind, and Yn(x) is the Bessel function
of the second kind.

 b = besseli(n,z) computes the modified Bessel function of the first kind of
order n, defined as

 b = besselj(n,z) and b = bessel(n,z) compute the Bessel function of the first
kind of order n, defined as

 b = besselk(n,z) computes the modified Bessel function of the second kind of
order n, defined as

 b = bessely(n,z) computes the Bessel function of the second kind of order n,
defined as:

Hn
1() Jn x() iYn x()+=

Hn
2() Jn x() iYn x()–=

In z() 1
2πi
--------- e z 2⁄() t 1 t⁄+()t n– 1– dt∫°=

Jn z() 1
2πi
--------- e z 2⁄() t 1 t⁄–()t n– 1– dt∫°=

Kn z() π
2

I n– x() In x()–

nπ()sin
-----------------------------------=
31

bessel, besselh, besseli, besselj, besselk, bessely

32 | C H A P T E
The sizes of z and n must be identical unless one of them is a scalar; in that case, the
scalar is expanded to a matrix of the correct size.

See also airy

Yn z()
Jn z() nπ()cos J n– z()–

nπ()sin
---=
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

beta
betaPurpose Beta function.

Synopsis b = beta(x,y)

Description b = beta(x,y) computes the beta function of x and y, defined as

where Γ(x) is the gamma function. x and y must be real arrays of the same size, or
either can be a scalar.

See also betainc, betaln, gamma

B x y,() tx 1– 1 t–()y 1– td

0

1

∫ Γ x()Γ y()
Γ x y+()
------------------------= =
33

betainc

34 | C H A P T E
betaincPurpose Incomplete beta function.

Synopsis IX = betainc(x,a,b)

Description IX = betainc(x,a,b) computes the incomplete beta function (sometimes called
the regularized incomplete beta function) defined as

where is the beta function. x, a and b must be real arrays of the same size,
or any can be a scalar. x must be in the interval [0,1], inclusive. a and b must be
nonnegative.

See also beta, betaln, gammainc

Ix a b,() 1
B a b,()
------------------- ta 1– 1 t–()b 1– td

0

x

∫⋅=

B a b,()
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

betaln
betalnPurpose Logarithm of the beta function.

Synopsis b = betaln(x,y)

Description b = betaln(x,y) computes the natural logarithm of the beta function of x and y
without computing the actual beta function. x and y must be real arrays of the same
size, or either can be a scalar.

Example betaln(600,600) computes the logarithm of the beta function where
log(beta(600,600)) would underflow.

See also beta, betainc, gamma, gammaln
35

bin2dec

36 | C H A P T E
bin2decPurpose Convert binary strings to decimal integers.

Synopsis d = bin2dec(str)

Description d = bin2dec(str) converts a string str representing a binary number to a decimal
integer. str can also be a string matrix, in which case bin2dec converts each row,
or a cell array of strings, in which case bin2dec converts each element.

Example bin2dec('1100') converts binary number 1100 to its decimal equivalent, 12.

See also base2dec, hex2dec, hex2num, dec2base, dec2bin, dec2hex, num2hex
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

bitand, bitor, bitxor
bitand, bitor, bitxorPurpose Compute bitwise function of two matrices pointwise.

Synopsis d = bitand(a, b)
d = bitor(a, b)
d = bitxor(a, b)

Description d = bitand(a, b) computes the pointwise bitwise AND of the two matrices a
and b.

 d = bitor(a, b) computes the pointwise bitwise OR of the two matrices a and b.

 d = bitxor(a, b) computes the pointwise bitwise XOR of the two matrices a
and b.

For each dimension, a and b must have the same size or either of them must have
size 1. In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

Examples bitand(20, 4)

bitand([16 32 64], [15 31 63])

bitor(15, 16)

bitor([8 16 32], 8)

bitxor(15, 31)

bitxor([0 1], [0 ; 1])

See also bitcmp, bitget, bitmax, bitset, bitshift
37

bitcmp

38 | C H A P T E
bitcmpPurpose Create the bitwise complement.

Synopsis d = bitcmp(a, ndig)
d = bitcmp(u)

Description d = bitcmp(a, ndig) returns the bitwise complement of the matrix a when
treated as a matrix of binary numbers with ndig digits.

The sizes of a and ndig must be identical unless one of them is a scalar; in that case,
the scalar is expanded to a matrix of the correct size. All entries of a must be
nonnegative integers less than bitmax, and all entries of ndig must be integers
between 1 and 53.

d = bitcmp(u) returns the bitwise complement of the uint8 matrix u.

See also bitand, bitor, bitxor, bitget, bitmax, bitset, bitshift
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

bitget
bitgetPurpose Extract bit values from a matrix.

Synopsis d = bitget(a, pos)

Description d = bitget(a, pos) returns the values of bits pos in the matrix a.The least
significant bit has position 1, and the most significant bit has position 53.

The sizes of a and pos must be identical unless one of them is a scalar; in that case,
the scalar is expanded to a matrix of the correct size. All entries of a must be
nonnegative integers less than bitmax, and all entries of pos must be integers
between 1 and 53.

See also bitand, bitor, bitxor, bitcmp, bitmax, bitset, bitshift
39

bitmax

40 | C H A P T E
bitmaxPurpose The largest integer that can be used as an argument to bitwise functions.

Synopsis d = bitmax

Description d = bitmax returns the largest integer that can be used as an argument to bitwise
functions, specifically 253 − 1.

See also bitand, bitor, bitxor, bitcmp, bitget, bitset, bitshift
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

bitset
bitsetPurpose Set bit values in matrix.

Synopsis d = bitset(a, pos)
d = bitset(a, pos, val)

Description d = bitset(a, pos) returns a with the bit(s) in position pos set to 1. The least
significant bit has position 1, and the most significant bit has position 53.

 d = bitset(a, pos, val) returns a with the bit(s) in position pos set to val,
which must be 0 or 1.The least significant bit has position 1, the most significant bit
has position 53.

The sizes of a and pos must be identical unless one of them is a scalar; in that case,
the scalar is expanded to a matrix of the correct size. All elements of a must be
nonnegative integers less than bitmax, and all elements of pos must be integers
between 1 and 53.

See also bitand, bitor, bitxor, bitcmp, bitget, bitmax, bitshift
41

bitshift

42 | C H A P T E
bitshiftPurpose Shift bit values in a matrix.

Synopsis d = bitshift(a, shift)
d = bitshift(a, shift, ndig)

Description d = bitshift(a, shift) returns a with the bits shifted by shift steps. Positive
values of shift are multiplications by powers of 2, and negative values of shift
correspond to divisions by powers of 2.

 d = bitshift(a, shift, ndig) first performs the shift as does bitshift(a,
shift) but afterwards it zeroes out all bits with positions larger than ndig. It thus
converts the returned matrix to binary numbers with ndig digits.

The sizes of a, shift, and ndig must be identical unless one of them is a scalar; in
that case, the scalar is expanded to a matrix of the correct size. All entries of a must
be nonnegative integers less than bitmax, all entries of shift must be integers, and
all entries of shift and ndig must be integers between 1 and 53.

See also bitand, bitor, bitxor, bitcmp, bitget, bitmax, bitset
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

blanks
blanksPurpose Generate a string of blanks.

Synopsis s = blanks(n)

Description s = blanks(n) generates a string s of n blanks.

See also deblank
43

blkdiag

44 | C H A P T E
blkdiagPurpose Create a block-diagonal matrix or cell array.

Synopsis b = blkdiag(a1, a2, ...)

Description b = blkdiag(a1, a2, ...) returns a block-diagonal matrix with a1, a2 and so
forth on the block diagonal. All other elements are assigned the default value for the
output type (0 for matrices, [] for cell arrays).

All inputs must be 2D.

See also diag, horzcat, vertcat
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

bone
bonePurpose Create a colormap with gray scales and a touch of blue.

Synopsis bone(n)

Description bone(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are gray scales and a
touch of blue.

See also colormap, cool, gray, grayprint, jet, hot, hsv, pink, wavemap
45

box

46 | C H A P T E
boxPurpose Add a box to 3D axes.

Synopsis box('on')
box('off')
box
box(ax, ...)

Description box('on') turns on a box in the current 3D axes.

box('off') turns off the box in the current 3D axes.

box toggles the box on or off.

box(ax,...) adds a box to the axes ax instead of to the current axes.

See also grid
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

builtin
builtinPurpose Evaluate a built-in function.

Synopsis builtin(name, arg1, ...)

Description builtin(name, arg1, ...) evaluates the built-in function name with arguments
arg1, ... and returns the result (if any). This overrides any other definition of name
as a variable in the current workspace.
47

button

48 | C H A P T E
buttonPurpose Create a button.

Synopsis b = button(text,...)
b = button(...)

Description b = button(text) creates a button with the specified text.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the list to further control how the button is created:

The function returns a button object that can then be manipulated further using the
methods in the following table.

See also the reference entry for component to get details on property-value pairs and
methods that are valid for all components.

See also component, checkbox, radiobutton, togglebutton

TABLE 1-4: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

image iconimage An image to display on the button.

text string A text to display on the button.

TABLE 1-5: METHODS FOR MANIPULATING A BUTTON OBJECT.

METHOD DESCRIPTION

addActionListener(name) Specifies that the function with the given
name should be run when the button is
clicked.

addActionListenerThread(name) Specifies that the function with the given
name should be run when the button is
clicked. The function will be run in a
separate thread. This can be used for
operations that run for a long time and
need to update graphics while running.

getText Returns the text on the button.

setText(text) Sets the text on the button.
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

buttongroup
buttongroupPurpose Create a button group

Synopsis bg = buttongroup

Description bg = buttongroup creates a button group.

A button group is used to get the desired effect for multiple radio buttons or toggle
buttons. When one of the buttons in the group is selected, the others are
automatically be deselected.

Use bg.add(button) after the button group has been created to add radio buttons
or toggle buttons whose selection state should be synchronized.

See also radiobutton, togglebutton
49

campos

50 | C H A P T E
camposPurpose Control the camera position.

Synopsis pos = campos;
campos(pos)
campos(ax,...)

Description pos = campos returns the camera position for the current axes.

campos(pos) where pos is a 3 element vector sets the camera position for the
current axes.

campos(ax,...) uses the axes ax instead of the current axes.

See also camtarget, camup, camva
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

camtarget
camtargetPurpose Control the camera target.

Synopsis target = camtarget;
camtarget(target)
camtarget(ax,...)

Description target = camtarget returns the camera target for the current axes.

camtarget(target) where target is a 3 element vector sets the camera target for
the current axes.

camtarget(ax,...) uses the axes ax instead of the current axes.

See also campos, camup, camva
51

camup

52 | C H A P T E
camupPurpose Control the camera up vector.

Synopsis up = camup;
camup(up)
camup(ax,...)

Description up= camup returns the camera up vector for the current axes.

camup(up) where up is a 3 element vector sets the camera up vector for the current
axes.

camup(ax,...) uses the axes ax instead of the current axes.

See also campos, camtarget, camva
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

camva
camvaPurpose Control the camera view angle.

Synopsis angle = camva;
camva(angle)
camva(ax,...)

Description angle = camva returns the camera view angle for the current axes.

camva(angle) where angle is an angle in degrees sets the camera view angle for
the current axes.

camva(ax,...) uses the axes ax instead of the current axes.

See also campos, camtarget, camup
53

cart2pol

54 | C H A P T E
cart2polPurpose Transform from Cartesian to polar coordinates.

Synopsis [theta,r] = cart2pol(x,y)
[theta,r,z] = cart2pol(x,y,z)

Description [theta,r] = cart2pol(x,y) transforms Cartesian 2D coordinates in the arrays
x and y into polar coordinates, where theta is the counterclockwise angle in radians
from the x-axis, and r is the radius. x and y must be the same size or either one can
be a scalar.

[theta,r,z] = cart2pol(x,y,z) transforms Cartesian 3D coordinates into
cylindrical coordinates, where theta is the counterclockwise angle in radians from
the x-axis, r is the radius and z the height. x, y and z must be the same size or a
scalar.

Example [t,r,z] = cart2pol([0 1 0 0],[0 0 1 0],[0 0 0 1]) returns the cylindrical
coordinates for the points (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in the Cartesian 3D
plane, that is points (0,0,0), (0,1,0), (pi/2,1,0) and (0,0,1), respectively.

See also pol2cart, cart2sph, sph2cart
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cart2sph
cart2sphPurpose Transform from Cartesian to spherical coordinates.

Synopsis [theta,phi,r] = cart2sph(x,y,z)

Description [theta,phi,r] = cart2sph(x,y,z) transforms Cartesian 3D coordinates into
spherical coordinates, where theta is the azimuth, phi the elevation, and r the
radius. theta and phi are in radians. x, y, and z must be the same size or a scalar.

Example [t,p,r] = cart2sph([0 1 0 0],[0 0 1 0],[0 0 0 1]) returns the spherical
coordinates for the points (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in the Cartesian 3D
plane, that is points (0,0,0), (0,0,1), (pi/2,0,1) and (0,pi/2,1), respectively.

See also sph2cart, cart2pol, pol2cart
55

cat

56 | C H A P T E
catPurpose Concatenate matrices or cell arrays.

Synopsis b = cat(dim, a1, ...)

Description b = cat(dim, a1, ...) concatenates its input arguments along the
dimension dim. The arguments need not be of the same type; if they differ, the
result is the common base type of all the arguments.

 cat(1, a1, ...) and cat(2, a1, ...) are equivalent to

[a1 ; ...] and [a1 , ...] respectively.

See also horzcat, vertcat
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

caxis
caxisPurpose Control mapping of data values to a colormap range.

Synopsis lim = caxis
caxis(lim)
caxis('auto')
caxis('manual')

Description lim = caxis returns the data values that map to the minimum and maximum color
in the colormap.

caxis(lim) sets the data values that should map to the minimum and maximum
colors in the colormap.

caxis('auto') sets that the color range should automatically be calculated to be
the minimum and maximum of the plotted data.

caxis('manual') sets that the color range is manually given and should not be
updated automatically.

caxis(ax) controls the axes ax instead of the current axes.

See also colormap
57

cd

58 | C H A P T E
cdPurpose Change or retrieve current directory.

Synopsis dir = cd
cd(dir)

Description dir = cd returns the current directory.

 cd(dir) changes the current directory to dir.

See also pwd
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cell
cellPurpose Create empty cell array.

Synopsis c = cell(n)
c = cell(sz)
c = cell(sz1, sz2, ...)
c = cell(javaobj)

Description c = cell(n), for an integer n, returns an empty n x n cell array.

 c = cell(sz), for a vector sz, returns an empty cell array of size sz.

 c = cell(sz1, sz2, ...) returns an empty cell array of size (sz1, sz2, ...).

c = cell(javaobj), for a Java object javaobj, returns a cell array with the same
size as javaobj where each cell contains one element of javaobj.

See also struct, deal
59

cell2mat

60 | C H A P T E
cell2matPurpose Convert cell array to a matrix.

Synopsis m = cell2mat(c)

Description m = cell2mat(c) returns a matrix formed by the concatenation of the elements of
the cell array c. This is possible only if the cell-array elements are of compatible types
and the sizes match; all elements with the same ith index must have the same size
along dimension i.

Example cell2mat({[1 2 ; 3 4], [5 ; 6]}) is [1 2 5 ; 3 4 6].

See also mat2cell
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cell2struct
cell2structPurpose Convert a cell array to a structure.

Synopsis s = cell2struct(c, fields, dim)

Description s = cell2struct(c, fields, dim) returns the structure where the
dimension dim of c has been replaced by structure fields and all other dimensions
of c are transferred to s: size(s) == [csize(1:dim-1) csize(dim+1:end)]
where csize = size(c).

fields must be a character array or cell array of character arrays containing
size(c, dim) elements. These strings are used as fields names in s.

See also struct2cell, fieldnames
61

cellfun

62 | C H A P T E
cellfunPurpose Apply a function to the elements of a cell array.

Synopsis r = cellfun('prodofsize', c)
r = cellfun('isclass', c, cla)
r = cellfun(func, c, ...)

Description r is a double matrix the same size as c where each element is the result of the
application of a function to the corresponding element of c.

r = cellfun('prodofsize', c) results in r(i) = prod(size(c{i})) for all i.

 r = cellfun('isclass', c, cla) results in r(i) = 1 if c{i} is of the class cla,
otherwise r(i) = 0.

 r = cellfun(func, c, ...) results in r(i) = eval(func, c{i}, ...) where
func must be a function that returns a scalar numerical value for any input.
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cellstr
cellstrPurpose Convert a character matrix to a cell array of strings.

Synopsis c = cellstr(s)

Description c = cellstr(s) puts each row of the character matrix s in a separate cell in the
cell array c.

See also char, iscellstr
63

char

64 | C H A P T E
charPurpose Convert a value to a character matrix.

Synopsis s = char(c)
s = char(m)
s = char(jobj)
s = char(s1, s2, ...)

Description s = char(c), where c is a cell array of strings, returns a character matrix where the
ith row is c{i}.

 s = char(m), where m is a full matrix, returns a character matrix of the same size
as m where each element of m has been converted to a character.

 s = char(jobj), where jobj is a java.lang.String or an array of
java.lang.String, returns a matrix where the rows equal the elements of jobj.

 s = char(jobj), where jobj is any other Java object, returns the result of invoking
the toChar() method on the object. It generates an error if there is no such
method.

 s = char(s1, s2, ...) converts s1, s2, and so on to character matrices and
returns a character matrix where the rows of s1, s2, and so on are concatenated
vertically; the first size(s1, 1) rows of s are the rows of s1, the next size(s2,
1) rows of s are the rows of s2, and so on.

See also cellstr, ischar
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

checkbox
checkboxPurpose Create a check box.

Synopsis c = checkbox(text,...)
c = checkbox(...)

Description c = checkbox(text) creates a check box with the specified text.

A checkbox behaves exactly like a togglebutton except that it is rendered as a
check box. See the reference entry for togglebutton for available property values
and methods.

See also togglebutton
65

chol

66 | C H A P T E
cholPurpose Cholesky factorization.

Synopsis c = chol(x)
[c,p] = chol(x)

Description c = chol(x) returns the Cholesky factorization of x using LAPACK’s DPOTRF
and ZPOTRF functions. c is an upper triangular matrix such that x = c'*c.

x is assumed to be symmetric or Hermitian, hence the part below the main diagonal
is not used. x must be positive definite.

[c,p] = chol(x) does not require x to be positive definite, but if that is the case,
then c is the same as above and p is 0. Otherwise, p is a positive integer and c is a
matrix of order p-1 such that c'*c = x(1:p-1,1:p-1).
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

circshift
circshiftPurpose Shift the indices of a matrix circularly.

Synopsis b = circshift(a, shift)

Description b = circshift(a, shift) where a is a matrix and shift is an integer vector
returns a matrix with the same size and type as a where the ith index has been shifted
circularly with shift(i).

See also shiftdim
67

cla

68 | C H A P T E
claPurpose Clear all contents in the current axes.

Synopsis cla

Description cla removes all graphics objects from the current axes.

See also clf, hold
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

clabel
clabelPurpose Add labels to a contour plot.

Synopsis clabel(c)

Description clabel(c)

See also clabel(c) adds labels to the contour lines specified by the contour matrix c. See
contourc for description of the contour matrix c. A marker and a text with the
contour level value is placed on each line.

Additional property values pairs can be added at the end of the command to further
control the label. Use the 'parent' property to specify what axes to add the labels to
and the property values from text can to control color, size and font for the labels.

Example [x,y]=meshgrid(linspace(-3,3,50));
z=(x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
c=contour(x,y,z);
clabel(c);

See also contour, contour3, contourc
69

class

70 | C H A P T E
classPurpose Get the class of an object.

Synopsis c = class(m)

Description c = class(m) returns a string containing the class name of m.
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

clc
clcPurpose Clear the contents in the command window.

Synopsis clc

Description clc clears the contents in the command window and moves the cursor to the upper
left corner.
71

clear

72 | C H A P T E
clearPurpose Remove variables or functions from the workspace.

Synopsis clear
clear('all')
clear('variables')
clear('functions')
clear(var1, ...)
clear('global', var1, ...)
clear('classes')
clear('classes', cl1, ...)

Description clear, clear('all'), and clear('variables') remove all variables from the
workspace.

 clear('functions') removes all user-defined functions from memory.

 clear(var1, ...) removes the variables with names var1, ... from the workspace.
The variable names may contain the wildcard character *, which matches any
character sequence.

 clear('global', var1, ...) removes the variables with names var1, ... from
the global workspace.

clear('classes') removes all variables from the workspace and also removes all
class definitions for classes that there are no instances of in some other workspace.

clear('classes', cl1, ...) only removes the definitions of the classes cl1, ...

See also mlock, munlock
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

clf
clfPurpose Clear all the contents in the current figure.

Synopsis clf

Description clf removes all the graphics objects from the current figure.

See also cla, hold
73

clock

74 | C H A P T E
clockPurpose Current time.

Synopsis c = clock

Description c = clock returns the current time as a vector of six elements representing, in order:
year, month, day, hour, minute, and seconds. All but the seconds field are integers.

See also etime, date
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

clone
clonePurpose Create a copy of an instance of a user-defined class.

Synopsis copy = clone(obj)
copy = clone

Description copy = clone(obj) returns a copy of obj, which must be an instance of a
user-defined class.

 copy = clone, when called from an instance method of a class, returns a copy of
the instance object.

See also this
75

close

76 | C H A P T E
closePurpose Close a figure window.

Synopsis close
close(h)
close('all')

Description close closes the current figure window.

close(h) closes the figure window with handle h.

close('all') closes all open figure windows.

See also delete
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

colon
colonPurpose Compute range.

Synopsis d = colon(a, b)

d = colon(a, b, c)

Description d = colon(a, b) returns the vector [a a+1 a+2 ... a+k] where k is the largest
integer for which a <= a+k <= c. a and b must be scalars.

 d = colon(a, b, c) returns the vector [a a+b a+2b ... a+kb] where k is the
largest integer for which a <= a+kb <= b. a, b, and c must be scalars.

 colon(a, b) is equivalent to a:b and colon(a, b, c) is equivalent to a:b:c.

See also linspace, linspace
77

colormap

78 | C H A P T E
colormapPurpose Assign a colormap to plots and figure windows.

Synopsis colormap(map)
colormap(h,map)

Description colormap(map) sets the colormap of the current figure and all plots in the current
figure to map.

colormap(h,map) sets the colormap of the graphics object h to map. h can be a
handle to a figure window or to an individual plot.

See also caxis
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

combobox
comboboxPurpose Create a combo box.

Synopsis c = combobox(...)

Description c = combobox(...) creates a combo box. The values and descriptions for the
values in the combo box are specified using the properties in the following table

The function returns a combobox object that can then be further manipulated using
the methods in the following table.

TABLE 1-6: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

descr cell array of strings The strings to display in the combobox. If not
given the strings specified as items will be
displayed in the combobox.

items cell array of strings String representing the value corresponding
to each entry in the combobox. Can then be
used to easily set and get the value of the
combobox using strings instead of indices.

TABLE 1-7: METHODS FOR MANIPULATING A COMBOBOX OBJECT.

METHOD DESCRIPTION

addActionListener(name) Specifies that the function with the given
name should be run when the selection
in the combobox changes.

getSelectedIndex Returns an index to the currently
selected item in the combobox.

getValue Returns a string corresponding to the
currently selected item in the combobox.

setItems(items) Sets the items to display in the
combobox by passing a cell array of
strings.

setItems(items,descr) Sets the descriptions to display in the
combobox and their corresponding
values by passing two cell arrays of
strings.

setSelectedIndex(ind) Selects the item with the specified index
in the combobox.

setValue(value) Selects the item with the specified value
in the combobox.
79

combobox

80 | C H A P T E
See also the reference entry for component to get details on property-value pairs and
methods that are valid for all components.

See also component, listbox
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

compile
compilePurpose Compile C code into a shared library that can be called from COMSOL Script.

Synopsis status = compile(options, ...)

Description status = compile(options, ...) compiles one or more C source files and by
default links them into a shared library. All options must be strings; any option that
ends with .c is assumed to be a C source code file. The return value is 0 if
compilation succeeded and nonzero if it failed.

The following options can be supplied:

Any unrecognized compiler options are passed as arguments to the linker if linking
is done.

Example To compile and link the source code file myfftlib.c with optimization enabled:

compile -O myfftlib.c

TABLE 1-8: COMPILATION OPTIONS

OPTION FUNCTION

-c The source code files are compiled but not linked.

-DSYMBOL Defines the preprocessor macro SYMBOL when compiling.
Equivalent to inserting #define SYMBOL in the source
code files.

-DSYMBOL=VALUE Assigns the value VALUE to the preprocessor macro
SYMBOL . Equivalent to inserting #define SYMBOL VALUE
in the source code files.

-fFILE Compilation options are read from FILE.

-g Debug information is generated by the compiler.

-h, -help Displays a help text.

-IDIR Adds the directory DIR to the include file path.

-LDIR Adds the directory DIR to the link directory path.

-lLIB Adds the library LIB to the list of libraries to link against.

-oOUTLIB Sets the name of the generated shared library to OUTLIB.

-O Enables optimization.
81

complex

82 | C H A P T E
complexPurpose Create a complex matrix.

Synopsis c = complex(a)
c = complex(re, im)

Description c = complex(a) returns the matrix a converted to a complex matrix.

 c = complex(re, im) returns a complex matrix with real part re and imaginary
part im. The sizes of re and im must be identical unless one of them is a scalar; in
that case, the scalar is expanded to a matrix of the correct size.

See also imag, real
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

component
componentPurpose The following property values can be used when creating all types of components:

The following methods can be used to interact with all types of components after
they have been created:

TABLE 1-9: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

size 2 element vector The preferred width and height for the
component. Not needed for most
components but can be useful for giving a size
to frames, list boxes and scrollpanes.

tag string The tag to assign to the component. Can be
used to access it later on.

tooltip string The tooltip to display with the component.

TABLE 1-10: METHODS FOR MANIPULATING ALL TYPES OF COMPONENTS.

METHOD DESCRIPTION

addFocusListener(name) Specifies that the function with the given
name should be run when the
component gains or looses focus.

addMouseListener(name) Specifies that the function with the given
name should be run when the mouse is
moved or clicked over the component.

getEnabled Returns a logical telling if the component
is enabled or not.

getMinimumSize

getMaximumSize

getPreferredSize

Returns the minimum, maximum or
preferred size of the component as a 2
element vector with width and height.

getTag Returns the tag of the component.

getVisible Returns a logical telling if the component
is visible or not.

setEnabled(enab) Sets if the component is enabled using a
logical.

setMinimumSize(w,h)

setMaximumSize(w,h)

setPreferredSize(w,h)

Sets the minimum, maximum or
preferred size of the component by
specifying the width and height.

setTag(tag) Sets the tag of the component to the
specified string.

setVisible(vis) Sets the visibility of the component using
a logical.
83

computer

84 | C H A P T E
computerPurpose Get the machine type.

Synopsis type = computer
[type, maxsize] = computer
[type, maxsize, endian] = computer

Description type = computer returns the machine type. Possible values are

 [type, maxsize] = computer also returns the maximum number of bytes a
matrix can occupy.

 [type, maxsize, endian] = computer also returns the endianness: 'B' for
big-endian, and 'L' for little-endian.

See also ispc, isunix

TABLE 1-11: TYPE CODES FOR MACHINE TYPES

TYPE INTERPRETATION

GLNX86 Linux on x86

GLNXI64 Linux on Itanium

GLNXA64 Linux on AMD64

SOL2 32-bit Sun

SOL64 64-bit Sun

MAC PowerPC Macintosh running Mac OS X

MACI Intel Macintosh running Mac OS X

PCWIN 32-bit Windows

WIN64 64-bit Windows
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cond
condPurpose The condition number for inversion.

Synopsis c = cond(x)
c = cond(x,p)

Description c = cond(x) returns the 2-norm condition number of x.

c = cond(x,p) returns the p-norm condition number of x with respect to
inversion. That is, the ratio of the largest singular value of x to the smallest. (For
information about possible values for p, see norm)

See also condeig, svd
85

condeig

86 | C H A P T E
condeigPurpose The condition number for eigenvalues.

Synopsis c = condeig(A)
[X,LAMBDA,c] = condeig(A)

Description c = condeig(A) returns a column vector containing the condition numbers for the
eigenvalues of A.

[X,LAMBDA,c] = condeig(A) also returns [X,LAMBDA] = eig(A). (See eig for
further information.)

See also cond, eig
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

contour
contourPurpose Create a contour plot.

Synopsis contour(Z)
contour(X,Y,Z)
contour(X,Y,Z,lev)

Description contour(X,Y,Z) creates a contour plot for a function defined on a grid. X, Y, and
Z are matrices of the same size. The function has value Z(i) in the grid point
(X(i),Y(i)). By default 7 contour lines between the minimum and maximum
values of Z are created.

contour(X,Y,Z,lev) creates lev contour lines if lev is a scalar. If lev is a vector
it creates contour lines at the values specified in lev.

contour(x,y,Z,...) when x and y are vectors can also be used. In that case X and
Y will be created using [X,Y] = meshgrid(x,y).

contour(Z,...) uses x = 1:size(Z,2) and y = 1:size(Z,1).

[c,h] = contour(...) returns the contour matrix, c, and a handle, h, to the
plotted lines. See contourc for details about the contour matrix.

Normally contours gets colors from the colormap of the figure plotted into or from
a colormap passed to contour using the 'colormap' property.

contour(...,'lincolor'), where 'lincolor' is one of the color strings listed
in plot, can be used to color all lines using the same color. You can give additional
property values from line at the end of the command to control color, linewidth,
and the axes into which to plot.

Example [x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
contour(x,y,z);

See also clabel, contour3, contourc, contourf
87

contour3

88 | C H A P T E
contour3Purpose Create a 3D contour plot.

Synopsis contour3(Z)
contour3(X,Y,Z)
contour3(X,Y,Z,lev)

Description contour3 supports the same syntaxes as contour. The difference is that contour3
draws the contour lines at a Z-coordinate corresponding to the value of the contour
level.

See also clabel, contour, contourc
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

contourc
contourcPurpose Calculate a contour data matrix.

Synopsis c = contourc(Z)
c = contourc(X,Y,Z)
c = contourc(X,Y,Z,lev)

Description c=contourc(...) calculates the contour data matrix. The same syntaxes as for
contour is supported. The contour data matrix, c, has two rows with blocks of data
for the contour lines. Each block starts with a column with information about that
block. The first row in the information column is value for that contour level and
the second row is the number of following columns that contains x- and
y-coordinates for that contour line. The x- and y-coordinates are ordered within
each segment so that lines can be drawn directly between them to form the contour
lines.

This means that the contour matrix c looks as follows:

c = [level1 x11 x12 ... x1n1 level2 x21 x22 ... x2n2 ;
 n1 y11 y12 ... y1n1 n2 y21 y22 ... y2n2];

See also clabel, contour, contour3
89

contourf

90 | C H A P T E
contourfPurpose Create a filled contour plot.

Synopsis contourf(Z)
contourf(X,Y,Z)
contourf(X,Y,Z,lev)

Description contourf(X,Y,Z) creates a filled contour plot for a function defined on a grid. X,
Y, and Z are matrices of the same size. The function has value Z(i) in the grid point
(X(i),Y(i)). By default 7 contour lines between the minimum and maximum
values of Z are created.

contourf(X,Y,Z,lev) creates lev contour lines and lev+1 bands if lev is a scalar.
If lev is a vector it creates contour lines at the values specified in lev.

contourf(x,y,Z,...) where x and y are vectors can also be used. In that case X
and Y are created using [X,Y] = meshgrid(x,y).

contourf(Z,...) uses x = 1:size(Z,2) and y = 1:size(Z,1).

[c,h] = contourf(...) returns the contour matrix, c, and a handle to the plotted
lines. See contourc for details about the contour matrix.

Filled contours get their colors from the colormap of the figure plotted into or from
a colormap passed to contourf using the 'colormap' property.

You can give the additional property parent at the end of the command to control
the axes into which to plot.

Example [x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
contourf(x,y,z);

See also contour, contour3, contourc
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

conv
convPurpose Compute the convolution of two vectors.

Synopsis c = conv(a, b)

Description c = conv(a, b) returns the convolution of a and b, which must be real or complex
vectors. This can be used to multiply polynomials in this way: If a and b contain the
coefficients of two polynomials, then c contains the coefficients of their product.

See also conv2, convn, deconv
91

conv2

92 | C H A P T E
conv2Purpose Compute the 2D convolution of two matrices.

Synopsis out = conv2(a, b)
out = conv2(a, b, c)
out = conv2(..., 'full')
out = conv2(..., 'same')
out = conv2(..., 'valid')

Description c = conv2(a, b) returns the 2D convolution of a and b, which must be real or
complex matrices.

 c = conv2(a, b, c) first convolutes the rows of c with a, then it convolutes the
rows of the result with b.

See convn for an interpretation of the optional shape argument 'full', 'same',
and 'valid'.

See also conv2, convn
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

convn
convnPurpose Compute the nD convolution of two matrices.

Synopsis out = convn(a, b)
out = convn(..., 'full')
out = convn(..., 'same')
out = convn(..., 'valid')

Description c = convn(a, b) returns the nD convolution of a and b, which must be real or
complex matrices.

The optional shape argument dictates the size of the output matrix. It has the
following effect:

See also conv, conv2

TABLE 1-12: SHAPE ARGUMENT INTERPRETATION

SHAPE INTERPRETATION

 'full' (default) The whole output matrix is returned.

'same' The output matrix has the same size as a. It is a
centered submatrix of the result returned for
'full'.

'valid' The output matrix only contains the entries that
can be computed without assuming that b is
extended with zeros when indexed out of
bounds. The size of the output is
max(size(a)-size(b)+1, 0).
93

cool

94 | C H A P T E
coolPurpose Create a colormap with different shades of cyan and magenta.

Synopsis cool(n)

Description cool(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are different shades of
cyan and magenta.

See also colormap, bone, gray, grayprint, jet, hot, hsv, pink, wavemap
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

corrcoef
corrcoefPurpose Correlation coefficients.

Synopsis R = corrcoef(x,...)
R = corrcoef(x,y,...)
[R,P] = corrcoef(...)
[R,P,L,U] = corrcoef(...)

Description R = corrcoef(x) returns the of correlation coefficients of x. x is a matrix where
each row is an observation and each column a variable. R is a matrix such that each
element , where C is the covariance matrix of x (see
cov).

corrcoef(x,y) is equivalent to corrcoef([x(:),y(:)]).

[R,P] = corrcoef(...) also returns the matrix P where each element is the
p-value representing the probability of getting a correlation as large as the observed
value, given that the null hypothesis is true. Hence, a small p-value means that the
corresponding correlation is significant. corrcoef computes P using Student's
t-test on the statistic , where n is the number of samples.

[R,P,L,U] = corrcoef(...) also returns lower (L) and upper (U) bounds for a
confidence interval specified by the alpha property (see below). Default is 95%.

In addition to the fixed arguments, property-value pairs can be given at the end of
the argument list:

Examples a = randn(5);
a(1,2) = NaN; a(3,5)=NaN;
r_all=corrcoef(a)
r_comp=corrcoef(a,'row','complete')
r_row=corrcoef(a,'row','pairwise')

See also cov

TABLE 1-13: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

alpha A real value
between 0
and 1

0.05 Specifies the confidence level of
100*(1-alpha)%. Hence default gives 95%
confidence intervals.

rows string 'all' A string with the value 'all' (all rows are
used), 'complete', (rows containing
NaN are ignored) or 'pairwise' (rows
with no NaN values in column i or j are
used to compute R(i,j))

R i j,() C i j,()
C i i,() C j j,()⋅

---=

t R n 2–

1 R2
–

----------------⋅=
95

cov

96 | C H A P T E
covPurpose Covariance matrix.

Synopsis c = cov(x)
c = cov(x,y)
c = cov(...,n)

Description c = cov(x) and cov(x,0) return the covariance matrix of x using normalization
by m-1, where m is the number of observations. x is a matrix where each row is an
observation and each column a variable. The diagonal of c contains the variance of
each column of x. If x is a vector, cov(x) is the variance of x.

c = cov(x,y) and c = cov(x,y,0) return the covariance matrix of x and y using
normalization by m-1. This is equivalent to cov([x(:),y(:)]).

 c = cov(...,1) returns the covariance matrix using normalization by m.

cov removes the mean from each column before calculation.

Example a = [0 1 1;2 3 4;1 2 3];
c = cov(a);
v = diag(c)';
v1 = var(a); %Identical to v

See also var, corrcoef
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cputime
cputimePurpose CPU time used.

Synopsis c = cputime

Description c = cputime returns the amount of CPU time used in seconds.

See also tic, toc
97

cross

98 | C H A P T E
crossPurpose Cross product.

Synopsis c = cross(u,v)
c = cross(u,v,dim)

Description c = cross(u,v) computes the cross product of the arrays u and v, both of which
must be either vectors with three elements or n-dimensional arrays of equal size with
at least one dimension of length three. The cross product is computed along the first
such dimension.

c = cross(u,v,dim) returns the cross product along the dimension dim.

Example x = [1 -1 3];y=[4 3 2];cross(x,y) gives the cross product of x and y, that is
[-11 10 7]

See also dot
R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ctranspose
ctransposePurpose Compute the complex conjugate transpose of a matrix.

Synopsis d = ctranspose(a)

Description d = ctranspose(a) computes the complex conjugate transpose of the matrix a.

 ctranspose(a) is equivalent to a'.

See also transpose
99

cumprod

100 | C H A P T
cumprodPurpose Computes the cumulative product of array elements.

Synopsis y = cumprod(x)
y = cumprod(x,dim)

Description y = cumprod(x) computes the cumulative product of x. y is the same size as x and
contains the cumulative product of the elements along the first nonsingleton
dimension of x.

y = cumprod(x,dim) computes the cumulative product of the elements along the
dimension dim of x.

Examples x = [0 2 3;-3 1 3;2 4 5];
cumprod(x) returns [0, 2, 3 ; 0, 2, 9 ; 0, 8, 45]
cumprod(x,2) returns [0, 0, 0 ; -3, -3, -9 ; 2, 8, 40]

See also prod, sum, cumsum
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

cumsum
cumsumPurpose Computes the cumulative sum of an array.

Synopsis y = cumsum(x)
y = cumsum(x,dim)

Description y = cumsum(x) computes the cumulative sum of x. y is the same size as x and
contains the cumulative sum along the first nonsingleton dimension of x.

y = cumsum(x,dim) computes the cumulative sum of the elements along the
dimension dim of x.

Examples x = [0 2 3;-3 1 3;2 4 0];
cumsum(x) returns [0, 2, 3 ; -3, 3, 6 ; -1, 7, 6].
cumsum(x,2) returns [0, 2, 5 ; -3, -2, 1 ; 2, 6, 6].

See also sum, prod, cumprod
101

cumtrapz

102 | C H A P T
cumtrapzPurpose Cumulative trapezoidal numerical integration.

Synopsis z = cumtrapz(y)
z = cumtrapz(x,y)
z = cumtrapz(y,dim)
z = cumtrapz(x,y,dim)

Description z = cumtrapz(y) computes the cumulative integral of y using the trapezoidal
method with unit spacing. (To compute the integral for different spacing, multiply
z by the spacing increment.) z is the same size as y and contains the cumulative
integral along the first nonsingleton dimension of y.

z = cumtrapz(x,y) computes the cumulative integral of y with respect to x. x
must be a vector with the same length as the first nonsingleton dimension of y.
Alternatively, both x and y must be vectors of equal length.

z = cumtrapz(y,dim) or z = cumtrapz(x,y,dim) integrates across dimension
dim of y. If given, x must be a vector with the same length as y along the dimension
dim.

Examples y = reshape(0:11,3,4);
cumtrapz(y) returns [0 0 0 0;0.5 3.5 6.5 9.5;2 8 14 20]
cumtrapz(y,2) returns [0 1.5 6 13.5;0 2.5 8 16.5;0 3.5 10 19.5]

See also trapz
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

daspk
daspkPurpose Solve a stiff ordinary differential equation.

Synopsis [t, y] = daspk(f, tlist, y0)
[t, y] = daspk(f, tlist, y0, options, ...)

Description [t, y] = daspk(f, tlist, y0) solves ODEs and DAEs of the form M(t,y)y' =
f(t,y), in both cases with the initial value y(t(1)) = y0. f is the name of a function
such that f(t, y) returns a vector when t is a scalar and y is a column vector. If
tlist has a length two, then it is the interval over which the ODE is to be solved,
otherwise it gives the times at which the solution is requested. tlist must be strictly
increasing or decreasing. On return, t is a column vector containing the times, and
y is a matrix where the rows contain the corresponding solutions.

[t, y] = daspk(f, tlist, y0, options) allows for supplying options to the
ODE solver. options is a structure returned by odeset. If it is empty, default
options are used.

[t, y] = daspk(f, tlist, y0, options, farg1, ...) results in f being
invoked with f(t, y, farg1, ...).

Examples To solve with :

f = inline('y+sin(t)’, 't', 'y');
[t y] = daspk(f, [0 2], 5);

To solve the Lotka-Volterra equation, first create a function lv.m that defines the
equation:

function ydot = lv(t, y)
ydot = [y(1)-y(1).*y(2) ; -y(2)+y(1).*y(2)];

and then solve the ODE with

[t y] = daspk('lv', [0 10], [2 ; 1]);

See also odeget, odeset

dy
dt
------- y tsin+= y 0() 5=
103

date

104 | C H A P T
datePurpose Current date.

Synopsis d = date

Description d = date returns the current date as a string in the format dd-mmm-yyyy.

See also clock, etime
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dbclear
dbclearPurpose Remove breakpoints.

Synopsis dbclear
dbclear('all')
dbclear(line)
dbclear(func)
dbclear(func, line)
dbclear('if', 'error')
dbclear('if', 'caught', 'error')

Description dbclear or dbclear('all') removes all breakpoints.

 dbclear(line) removes the breakpoint set on line line of the function currently
being debugged. This syntax can be used only in Debug mode.

 dbclear(func) removes all breakpoints from the function called func.

 dbclear(func, line) removes the breakpoint on line line in the function
called func.

 dbclear('if', 'error') removes the breakpoint set on any uncaught error that
occurs.

 dbclear('if', 'caught', 'error') removes the breakpoint set on any error
that occurs.

See also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup
105

dbcont

106 | C H A P T
dbcontPurpose Resume execution when in debug mode.

Synopsis dbcont

Description dbcont resumes execution from the point where a breakpoint triggered and Debug
mode was entered. This command has no effect outside Debug mode.

See also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dbdown
dbdownPurpose Move down in debug call stack.

Synopsis dbdown
dbdown(steps)

Description dbdown changes the debug workspace to the child of the current debug workspace,
i.e., the workspace created from the current workspace.

 dbdown(steps) is equivalent to steps calls to dbdown without arguments.

This function can only be used in Debug mode.

See also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup
107

dbquit

108 | C H A P T
dbquitPurpose Terminate the script being executed and leave Debug mode.

Synopsis dbquit

Description dbquit terminates the script being executed and leaves Debug mode.

See also dbclear, dbdown, dbcont, dbstack, dbstatus, dbstep, dbstop, dbtype,dbup
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dbstack
dbstackPurpose Display the function-call stack.

Synopsis dbstack

Description dbstack displays the function-call stack with the most recently entered function
displayed first. dbstack can be used only in Debug mode.

See also dbclear, dbdown, dbcont, dbquit, dbstatus, dbstep, dbstop, dbtype,dbup
109

dbstatus

110 | C H A P T
dbstatusPurpose Display all breakpoints that are set.

Synopsis dbstatus

Description dbstatus displays all breakpoints and other conditions where execution of a
function should be stopped and Debug mode entered.

See also dbclear, dbdown, dbcont, dbquit, dbstack, dbstep, dbstop, dbtype,dbup
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dbstep
dbstepPurpose Step to the next line of source code.

Synopsis dbstep
dbstep('in')
dbstep('out')

Description dbstep resumes execution at the current breakpoint and steps to the line of source
code in the current function.

 dbstep('in') resumes execution at the current breakpoint and steps to the next
line of source code in the current function or a function being called.

 dbstep('out') resumes execution at the current breakpoint and steps until the
function currently being executed has returned.

This function can be used only in Debug mode.

See also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype,dbup
111

dbstop

112 | C H A P T
dbstopPurpose Set a breakpoint.

Synopsis dbstop(func)
dbstop(func, line)
dbstop(line)
dbstop('if', 'error')
dbstop('if', 'caught', 'error')

Description dbstop(func) sets a breakpoint at the entry of the function called func.

 dbstop(func, line) sets a breakpoint on line line of the function called func.

 dbstop(line) sets a breakpoint on line line of the function currently being
debugged.

 dbstop('if', 'error') sets a breakpoint on any uncaught error that occurs.

 dbstop('if', 'caught', 'error') sets a breakpoint on any caught error that
occurs, i.e., any error that occurs within one or more try-catch blocks.

Debug mode is entered when the conditions for a breakpoint are triggered.

See also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype,dbup
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dbtype
dbtypePurpose Display source code of a function.

Synopsis dbtype
dbtype(range)
dbtype(func)
dbtype(func, range)

Description dbtype displays the source code around the breakpoint of the function currently
being debugged. This can only be done in Debug mode.

 dbtype(range), where range is a string containing a line number or a range of line
numbers such as '11:47', displays a line number range of the source code of the
function currently being debugged. This can only be done in debug mode.

 dbtype(func) displays the source code of the function called func.

 dbtype(func, range) displays a range of line numbers for the source code of the
function called func.

See also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
type
113

dbup

114 | C H A P T
dbupPurpose Move up in debug call stack.

Synopsis dbup
dbup(steps)

Description dbup changes the debug workspace to the parent of the current debug workspace,
i.e., the workspace from which the current workspace was created.

 dbup(steps) is equivalent to steps calls to dbup without arguments.

This function can only be used in Debug mode.

See also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

deal
dealPurpose Distribute function inputs to several output variables.

Synopsis [out1, out2, ...] = deal(in)
[out1, out2, ...] = deal(in1, in2, ...)

Description [out1, out2, ...] = deal(in) assigns in to out1, out2, and so on.

 [out1, out2, ...] = deal(in1, in2, ...) assigns in1 to out1, in2 to out2,
and so on. The number of inputs and outputs must be identical.

Example deal is most commonly used together with cell arrays such as in this example:
d = {2 3 5}; [a b c] = deal(d{:});, which assigns 2 to a, 3 to b, and 5 to d.
115

deblank

116 | C H A P T
deblankPurpose Remove trailing blanks.

Synopsis s = deblank(s)

Description s = deblank(s) removes all trailing blanks from s, which can be a either a string
(in which case deblank removes all trailing blanks from s) or a cell array of strings
(in which case deblank removes all trailing blanks from each element of s).

Example c = {'blue ','green';'red ',' yellow'};
deblank(c) returns {'blue', 'green' ; 'red', ' yellow'}

See also blanks
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dec2base
dec2basePurpose Convert decimal integers to strings in a specific base.

Synopsis s = dec2base(d,b)
s = dec2base(d,b,n)

Description s = dec2base(d,b) converts an array of nonnegative integers to string
representations in base b, where b must be an integer between 2 and 36, inclusive.
s is a character matrix where each row represents one number.

s = dec2base(d,b,n) converts d into strings with at least n characters by padding
with zeros.

Example dec2base(210,5,9) converts 210 in base 10 to 1320 (represented by the string
'000001320') in base 5.

See also base2dec, bin2dec, hex2dec, hex2num, dec2bin, dec2hex, num2hex
117

dec2bin

118 | C H A P T
dec2binPurpose Convert decimal integers to binary strings.

Synopsis s = dec2bin(d)
s = dec2bin(d,n)

Description s = dec2bin(d) converts an array of nonnegative integers to binary string
representations. s is a character matrix where each row represents one number.

s = dec2bin(d,n) converts d into strings with at least n characters by padding with
zeros.

Example dec2bin(210,9) converts 210 to its binary equivalent 11010010 (represented by
the string '011010010').

See also base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2hex, num2hex
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dec2hex
dec2hexPurpose Convert decimal integers to hexadecimal strings.

Synopsis s = dec2hex(d)
s = dec2hex(d,n)

Description s = dec2hex(d) converts an array of nonnegative integers to hexadecimal string
representations. s is a character matrix where each row represents one number.

s = dec2hex(d,n) converts d into strings with at least n characters by padding with
zeros.

Example dec2hex(44562) converts 44562 to its hexadecimal equivalent AE12 (represented
by the string 'AE12').

See also base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2bin, num2hex
119

deconv

120 | C H A P T
deconvPurpose Compute the deconvolution of two vectors.

Synopsis q = deconv(a, b)
[q, r] = deconv(a, b)

Description q = deconv(a, b) returns the deconvolution of a and b, which must be real or
complex vectors. This can be used to divide polynomials in this way: If a and b
contain the coefficients of two polynomials, then q contains the coefficients of their
product. This interpretation holds if the coefficients are listed in decreasing degree,
that is., a(end) is the constant term and a(1) is the highest coefficient.

 [q, r] = deconv(a, b) also returns the remainder in the polynomial division.

See also deconv
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

del2
del2Purpose Discrete Laplacian.

Synopsis l = del2(u)
l = del2(u,h)
l = del2(u,hx,hy)
l = del2(u,hx,hy,hz,...)

Description l = del2(u) computes the discrete Laplacian of u. When u is a matrix, l is a discrete
approximation of

l is the same size as u, with each element equal to the difference between
corresponding element of u and the average of its four neighbors. When u is an nD
array, l is an approximation of

where n is the number of dimensions of u.

l = del2(u,h) computes the discrete Laplacian of u using spacing h, where h is a
scalar.

l = del2(u,hx,hy) computes the discrete Laplacian of u using the spacing given
by hx and hy. u must be 2D, while hx and hy must be either scalars (in which case
they specify spacing between points in the x and y direction, respectively) or vectors
(in which case they specify the coordinates of the points in their respective
directions). If either hx or hy is a vector, its length must match the corresponding
dimension of u.

l = del2(u,hx,hy,hz,...) computes the discrete Laplacian of u when u is an
n-dimensional array, and uses the spacing given by hx, hy, hz, and so on.

See also diff, gradient

u∇2

4
---------- 1

4

x2

2

d

d u

y2

2

d

d u
+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

∇2u
2n

121

delaunay

122 | C H A P T
delaunayPurpose Delaunay triangulation.

Synopsis t = delaunay(x,y)
t = delaunay(x,y,bnd)

Description t = delaunay(x,y) returns a Delaunay triangulation of the points in the vectors
x and y, that is, a set of triangles such that no points are contained in any triangle's
circumcircle. t is a matrix where each row contains the indices in x and y that define
one triangle.

t = delaunay(x,y,bnd) also uses boundary element information contained in
bnd, a 4xn matrix, where n is the number of elements. The first two rows contain
the indices of boundary element corners and rows three and four contain up and
down subdomains, respectively.

Example x = [0 0 3 3];
y = [0 1 0 1];
t = delaunay(x,y);
trimesh(t,x,y)

Coordinates that define two intersecting ellipses and a rectangle (in no particular
order):

p1 = [-10 0 0 0 6 8 8 10 10 10 16 16 26;
 0 -10 0 10 0 -6 6 0 8 10 -10 10 0];

p2 = [7 10 -7 -7 6 7 9 12 23 23 0 -4 -4;
 10 5 -7 7 8 4 4 9 -7 7 -4 -2 3];

p3 = [4 4 2 8 8 19 14 18 17 14 13;
 6 3 5 8 2 0 -3 -5 5 2 7];

p = [p1,p2,p3];

Boundary information:

b1 = [3 3 4 14 5 8 15 9 1 16;
 4 5 14 10 8 15 9 10 16 2;
 2 3 1 1 5 7 7 4 2 2;
 3 2 4 4 6 8 8 1 1 1];

b2 = [1 17 2 4 18 5 5 19 6 6;
 17 4 6 18 7 6 19 7 8 11;
 1 1 2 4 4 6 3 3 6 8;
 2 2 1 3 3 2 5 5 8 1];

b3 = [7 20 7 9 21 11 22 12 23;
 20 8 9 21 12 22 13 23 13;
 7 7 4 1 1 8 8 1 1;
 5 5 7 8 8 1 1 8 8];
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

delaunay
bnd = [b1,b2,b3];

t = delaunay(p(1,:),p(2,:));
tbnd = delaunay(p(1,:),p(2,:), bnd);

h = gca;
set(h,'xlim',[-30 59])
set(h,'ylim',[-20 20])
trimesh(t,p(1,:),p(2,:), 'parent',h);

figure
h = gca;
set(h,'xlim',[-30 59])
set(h,'ylim',[-20 20])
trimesh(tbnd,p(1,:),p(2,:), 'parent',h);

See also delaunay3, trimesh
123

delaunay3

124 | C H A P T
delaunay3Purpose 3D Delaunay triangulation.

Synopsis t = delaunay3(x,y,z)
t = delaunay3(x,y,z,bnd)

Description t = delaunay3(x,y,z) returns a 3D Delaunay triangulation of the points in the
vectors x, y, and z, that is, a set of tetrahedrons such that no points are contained in
any tetrahedron’s circumsphere. t is a matrix where each row contains the indices
in x, y, and z that define one tetrahedron.

t = delaunay3(x,y,z,bnd) also uses boundary element information contained
in bnd, a 5-by-n matrix, where n is the number of elements. The first three rows
contain the indices of boundary element corners and rows three and four contain
up and down subdomains, respectively.

Example x = [0, 1, 0, 1, 0, 1, 0, 1];
y = [0, 0, 2, 2, 0, 0, 2, 2];
z = [0, 0, 0, 0, 3, 3, 3, 3];
t = delaunay3(x,y,z);

For an example using boundary information, see the 2D example under delaunay.

See also delaunay, trimesh
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

delete
deletePurpose Delete files or graphics objects.

Synopsis delete(h)
delete(filename)

Description delete(h) deletes all graphics objects in the array of handles h. For entries that are
handles to a figure window, the corresponding window is closed.

delete(filename) deletes the file filename.
125

det

126 | C H A P T
detPurpose Determinant of a square matrix.

Synopsis det(A)

Description det(A) returns the determinant of a square matrix A.

To test for singular matrices, use cond instead of det.

Example det([2 -3 1; 4 -2 2;1 1 3]) returns 20.

See also cond
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

diag
diagPurpose Extract diagonal from a matrix or create a diagonal matrix.

Synopsis d = diag(v)
d = diag(v, k)
v = diag(m)
v = diag(m, k)

Description d = diag(v), for a vector v, returns a matrix with v on the diagonal

 d = diag(v, k), for a vector v, returns a matrix with v on the kth diagonal. k=0
is the diagonal, k = 1 is the superdiagonal, and so on.

 v = diag(m), for a matrix m, returns a vector containing the elements on the
diagonal of m.

 v = diag(m, k), for a matrix m, returns a vector containing the elements on the
kth diagonal of m.

See also tril, triu
127

dialog

128 | C H A P T
dialogPurpose Create a dialog box.

Synopsis d = dialog(title,...)

Description d = dialog(title) creates a dialog box with the specified title.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the function to further control how the dialog box is created:

The function returns a dialog object that can be manipulated further using the
methods in the following table:

The methods for panel are also available for dialog, thereby allowing you to add
panels and components to a dialog box.

TABLE 1-14: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

modal string A string with the value 'on' or 'off' telling
if a modal dialog box should be created. The
default is to create a nonmodal dialog box.

parent frame The frame that is the parent to this dialog
box.

position 2-element vector The position on the screen for the upper left
corner of the dialog box.

size 2-element vector The size of the dialog box. If not given the
dialog box will be packed to fit the size of the
components that have been added to it.

TABLE 1-15: METHODS FOR MANIPULATING A DIALOG BOX.

METHOD DESCRIPTION

addMenu(menu) Adds the specified menu at the end of the
main menu bar of the dialog box.

close Closes the dialog box.

getParent Returns the frame that is the parent of
this dialog box.

getSize Returns the size of the dialog box as a
2-element vector with width and height.

setSize(width,height) Sets the size of the dialog box.

show While the dialog box is being created it is
invisible. Call the show method after
adding all components to it to show it on
screen.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dialog
See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, frame, panel
129

diary

130 | C H A P T
diaryPurpose Save activity on the command line to a text file.

Synopsis diary(filename)
diary('on')
diary('off')

Description diary(filename) starts saving all input and output on the command line to the
file filename.

diary('off') temporarily turns of logging and flushes the file.

diary('on') turns logging back on again.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

diff
diffPurpose Compute the difference of an array.

Synopsis y = diff(x)
y = diff(x,n)
y = diff(x,n,dim)

Description y = diff(x) computes the difference between adjacent elements of x along the
first nonsingleton dimension. When x is a vector, y is the difference between
adjacent elements. When x is a matrix, y is a matrix containing the differences
between adjacent rows of x.

y = diff(x,n) computes the nth order difference of x.

y = diff(x,n,dim) computes the nth order difference of x along the dimension
dim.

Examples a = [1 4 10 12;0 3 -10 20;2 -1 3 4];
diff(a) returns [-1, -1, -20, 8 ; 2, -4, 13, -16].
diff(a,2,1) returns [3, -3, 33, -24]

See also del2, gradient
131

dir

132 | C H A P T
dirPurpose Get a list of the files in a directory.

Synopsis dir
dir(path)
f = dir
f = dir(d)

Description dir displays the files in the current directory.

 dir(path) displays the files in the path path. The path can contain the wildcard
character *, which matches any character sequence.

 f = dir returns a structure array with one element for each file in the current
directory. It has the following fields:

 f = dir(path) returns a struct array with one element for each file in the
path path.

See also cd, pwd

FIELD CONTENTS

name Name.

date Creation date.

bytes Number of bytes occupied.

isdir true if directory, false otherwise.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

disp
dispPurpose Display a value.

Synopsis disp(v)

Description disp(v) displays the value of the variable or expression v.

See also display
133

display

134 | C H A P T
displayPurpose Display a value.

Synopsis display(v)

Description display(v) displays the value of the variable or expression v.

See also disp
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dlmread
dlmreadPurpose Read a delimited file.

Synopsis out = dlmread(filename)
out = dlmread(filename, delimiter)
out = dlmread(filename, delimiter, range)
out = dlmread(filename, delimiter, row, col)

Description out = dlmread(filename) reads the file filename and returns a matrix where
each row contains a row of the file. The delimiter used, if any, is guessed from the
contents of the file; the default is to use whitespace as delimiter. The elements of the
matrix must be real or complex numbers.

 out = dlmread(filename, delimiter) uses the character delimiter as
delimiter between elements.

 out = dlmread(filename, delimiter, range) reads a part of the file. If range
is a vector of the form [R1 C1 R2 C2], then rows R1..R2 and columns C1..C2 are
read; row and column numbers are 0-based. range can also be a string in
spreadsheet notation; for example, 'C4..H7' selects rows 4–7 and columns 3–8.

 out = dlmread(filename, delimiter, row, col) ignores rows and columns
with numbers less than row and col, respectively; row and column numbers are
0-based.

See also dlmwrite, strread, textread
135

dlmwrite

136 | C H A P T
dlmwritePurpose Write a delimited file.

Synopsis dlmwrite(filename, data)
dlmwrite(filename, data, delim)
dlmwrite(filename, data, delim, row, col)
dlmwrite(filename, data, ...)
dlmwrite(filename, data, '-append', ...)

Description dlmwrite(filename, data) writes the matrix data as a comma-separated text file
to filename.

 dlmwrite(filename, data, delim) uses delim as delimiter.

 dlmwrite(filename, data, delim, row, col) uses delim as delimiter. The
data is preceded by row empty rows; each row begins with col spaces.

 dlmwrite(filename, data, ...) accepts the following property/value pairs:

 dlmwrite(filename, data, '-append', ...) appends the data to the file
instead of over-writing it.

Example data = reshape(sin(1:9), 3, 3);
dlmwrite('TABLE', data, 'delimiter', ':', 'precision', 2)

creates a file called TABLE with the following contents:

0.84:-0.76:0.66
0.91:-0.96:0.99
0.14:-0.28:0.41

See also dlmread, fprintf, sprintf

TABLE 1-16: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

coffset Integer Number of spaces preceding the data on each
row.

delimiter Character Element separator.

newline 'pc' or 'unix' Newline convention.

precision Integer or string Number or significant digits or format string
of the form used by fprintf and sprintf.

roffset Integer Number of empty lines preceding data.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dlsim
dlsimPurpose Simulate a discrete-time state space model.

Synopsis y = dlsim(A, B, C, D, U)
y = dlsim(A, B, C, D, U, x0)
[y x] = dlsim(A, B, C, D, U)
[y x] = dlsim(A, B, C, D, U, x0)

Description [y x] = dlsim(A, B, C, D, U) simulates the state space model

using the input u. The input and output arguments have the following dimensions:

 dlsim(..., x0) uses x0 as initial state.

See also filter

INPUT/OUTPUT ARGUMENT DIMENSIONS

A nx-by-nx

B nx-by-nu

C ny-by-nx

D ny-by-nu

U N-by-nu

x0 nx-by-1 (default zeros(nx,1))

y N-by-ny

x N-by-nx

xn 1+ Axn Bun+=

yn Cxn Dun+=
137

dos

138 | C H A P T
dosPurpose Run a DOS command.

Synopsis status = dos(cmd)
[status output] = dos(cmd)

Description status = dos(cmd) runs the DOS command cmd in the operating system and
returns the exit code, which is 0 if the execution was successful and nonzero
otherwise.

 [status output] = dos(cmd) runs the DOS command cmd and returns any
output to the standard output stream in output.

dos(cmd) is equivalent to system(['cmd.exe /C ' cmd]).

See also system, unix
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

dot
dotPurpose Dot product.

Synopsis c = dot(u,v)
c = dot(u,v,dim)

Description c = dot(u,v) returns the scalar product of the arrays u and v. Both arrays must be
vectors with the same length or n-dimensional arrays of equal size, in which case the
scalar product is computed along the first nonsingleton dimension of u and v.

c = dot(u,v,dim) returns the scalar product along the dimension dim.

Example x = [1 -1 3];y=[4 3 2];dot(x,y) gives the dot product of x and y, that is 7.

See also cross
139

double

140 | C H A P T
doublePurpose Convert a value to a real or complex matrix.

Synopsis d = double(v)

Description d = double(v) returns a matrix the same size as v where each element has been
converted to a real or complex number.

If v is a Java object but not a subclass of java.lang.Number, then v.toDouble is
invoked to do the conversion. It generates an error if no such method exists.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

drawnow
drawnowPurpose Flush drawing to the screen.

Synopsis drawnow

Description When you draw several plots in a row in a script, the screen is not automatically
repainted after each of them.

A flush happens when control returns to the prompt after running a script or when
calling getFrame on a movie-generation object.

You can also force a flush in a script to achieve repaints while the script is running
by calling the drawnow function.
141

echo

142 | C H A P T
echoPurpose Enable/disable echoing of lines executed in functions and scripts.

Synopsis echo('on')
echo('off')

echo(func)
echo(func, 'on')
echo(func, 'off')

echo('on', 'all')
echo('off', 'all')

Description echo('on') and echo('off') enable and disable, respectively, echoing of all lines
executed in user-defined scripts.

 echo(func, 'on') and echo(func, 'off') enable and disable, respectively,
echoing of all lines executed in the function called func.

 echo(func) toggles echoing of all lines executed in the function called func.

 echo('on', 'all') and echo('off', 'all') enable and disable, respectively,
echoing of all lines executed in scripts and functions.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

eig
eigPurpose Compute eigenvalues and eigenvectors.

Synopsis eig(A)
[X,LAMBDA]=eig(A)
eig(A,B)
[X,LAMBDA]=eig(A,B)

Description eig(A) computes the eigenvalues of the square matrix A.

[X,LAMBDA]=eig(A) computes the right eigenvectors X and eigenvalues of the
square matrix A, so that A*X=X*LAMBDA. LAMBDA is a diagonal matrix with the
eigenvalues on the diagonal.

eig(A,B) computes the generalized eigenvalues of A and B.

[X,LAMBDA]=eig(A,B) computes the right eigenvectors X and eigenvalues of the
generalized eigenvalues of A and B so that A*X=B*X*LAMBDA. LAMBDA is a diagonal
matrix with the eigenvalues on the diagonal.

See also condeig, eigs
143

eigs

144 | C H A P T
eigsPurpose Compute a few eigenvalues and eigenvectors for a sparse matrix.

Synopsis D = eigs(A)
[V D] = eigs(A)

D = eigs(A, k)
[V D] = eigs(A, k)

D = eigs(A, k, sigma)
[V D] = eigs(A, k, sigma)

D = eigs(A, B)
[V D] = eigs(A, B)

D = eigs(A, B, k)
[V D] = eigs(A, B, k)

D = eigs(A, B, k, sigma)
[V D] = eigs(A, B, k, sigma)

D = eigs(..., opts)
[V D] = eigs(..., opts)

Description D = eigs(A) computes the six eigenvalues of largest magnitude of the square sparse
matrix A.

[V D] = eigs(A) computes the six eigenvalues of largest magnitude and the
corresponding eigenvalues for the sparse matrix A. V is a size(A,1)-by-6-matrix
where the columns are the eigenvectors, and D is a 6-by-6-matrix with the
eigenvalues on the diagonal. The matrices satisfy the relation AV = VD.

D = eigs(A, k) computes k eigenvalues.

[V D] = eigs(A, k) computes k eigenvectors and eigenvalues.

D = eigs(A, k, sigma) computes k eigenvalues in the vicinity of sigma, which
can be a real or scalar constant or a string. String arguments decide what eigenvalues
to search for. The following values are allowed:

SIGMA INTERPRETATION

'lm' Largest magnitude.

'sm' Smallest magnitude.

'lr' Largest real part.

'sr' Smallest real part.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

eigs
D = eigs(A, B) returns six eigenvalues for the generalized eigenvalue problem AV
= BVD.

[V D] = eigs(A, B) returns six eigenvectors and corresponding eigenvalues for
the generalized eigenvalue problem AV = BVD.

D = eigs(A, B, k) and [V D] = eigs(A, B, k) return k eigenvalues and
eigenvectors for the generalized eigenvalue problem AV = BVD.

D = eigs(A, B, k, sigma) and [V D] = eigs(A, B, k, sigma) return k
eigenvalues and eigenvectors close to sigma for the generalized eigenvalue problem
AV = BVD. Possible values for sigma are listed above.

D = eigs(..., opts) and [V D] = eigs(..., opts) solve eigenvalue problems
with options taken from the structure opts. The following fields of opts are used:

Algorithm The function uses the ARPACK package. For generalized problems and problems
where you specify a numerical value for sigma, eigs uses the shift-invert mode
(ARPACK mode 3), otherwise it uses the standard mode (ARPACK mode 1). The
shift-invert mode can be numerically more stable also for standard problems; setting
sigma=0 forces eigs to use it.

See also condeig, eig

'li' Largest imaginary part.

'si' Smallest imaginary part.

FIELD INTERPRETATION

'tol' Convergence tolerance.

'maxit' Maximum number of Arnoldi iterations.

'p' Dimension of Krylov subspace.

SIGMA INTERPRETATION
145

encrypt

146 | C H A P T
encryptPurpose Encrypt .M-files and .CSL-files.

Synopsis encrypt(file1, ...)
encrypt(..., '-inplace')

Description encrypt(file1, ...) creates encrypted versions of file1, ... The input file(s)
must exist and be valid .M- or .CSL-files. For each input file, an .MC- or .CSLC-file
is created in the current directory. When executed, it is equivalent to the original
file, but its contents have been scrambled to make it unreadable.

encrypt(..., '-inplace') creates each encrypted file in the directory where the
corresponding file was found.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

eps
epsPurpose Retrieve the difference between a number and the next larger number.

Synopsis e = eps
e = eps(v)
e = eps('double')
e = eps('single')

Description e = eps returns the smallest e such that 1 and 1+e are different floating-point
numbers.

 e = eps(v) returns the difference between v and the next-larger floating-point
number.

 e = eps('double') is equivalent to e = eps.

 e = eps('single') returns what eps would be if 32-bit floating-point numbers
were used instead of 64-bit floating-point numbers.
147

eq

148 | C H A P T
eqPurpose Compare matrices pointwise.

Synopsis d = eq(a, b)

Description d = eq(a, b) tests if the elements of the two matrices a and b are equal pointwise.
For each dimension, a and b must have the same size or either of them must have
size 1. In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

 eq(a, b) is equivalent to a == b.

Examples [2 3 5] == [0 3 6]

[10 20 30] == 30

[0 1] == [0 ; 1]

See also ge, gt, le, lt, ne
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

erf
erfPurpose Error function

Synopsis y = erf(x)

Description y = erf(x) computes the error function of the elements of x, where x must be a
real array.

The error function is defined as:

See also erfc, erfcx, erfinv

erf x() 2
π

------- e t– 2

td

0

x

∫=
149

erfc

150 | C H A P T
erfcPurpose Complementary error function

Synopsis y = erfc(x)

Description y = erfc(x) computes the complementary error function of the elements of x,
where x must be a real array.

The complementary error function is defined as:

See also erf erfcx, erfinv

erfc x() 1 erf x() 2
π

------- e t– 2

td

x

∞

∫=+=
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

erfcx
erfcxPurpose Scaled complementary error function.

Synopsis y = erfcx(x)

Description y = erfcx(x) computes the scaled complementary error function of the elements
of x, where x must be a real array.

The scaled complementary error function is defined as:

See also erf, erfc, erfinv

erfcx x() ex2

erfc x()=
151

erfinv

152 | C H A P T
erfinvPurpose Inverse error function.

Synopsis y = erfinv(x)

Description y = erfinv(x) computes the inverse error function of x such that
erf(erfinv(x)) = x, where each element of x must satisfy -1 <= x <= 1. For
any other values, corresponding elements of y are NaN.

Example erf(erfinv([-0.5 0 0.3])) returns [-0.5 0 0.3].

See also erf, erfc, erfcx
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

error
errorPurpose Throw an error exception.

Synopsis error(msg)
error(s)

Description error(msg), where msg is a nonempty string, throws an error exception containing
msg. Note that error('') does nothing.

 error(s), where s is a structure, is equivalent to error(s.message).

See also warning
153

errorbar

154 | C H A P T
errorbarPurpose Throw an error exception.

Synopsis errorbar(x,y,l,u)
errorbar(x,y,e)
h=errorbar(...)

Description errorbar(x,y,l,u) plots y versus x and adds error bars according to l and u. l
and u are the lower and upper error ranges for each point in y. If the inputs are
matrices one line with error bars is drawn for each column.

errorbar(x,y,e) uses e as both l and u.

errorbar('linespec') can be used to control line color and line style. See plot
for allowed values.

h=errorbar(...) returns handles to the drawn lines.

The property values for line can be passed at the end of the command to further
control the plot.

See also hist
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

etime
etimePurpose Determine elapsed time.

Synopsis t = etime(t2,t1)

Description t = etime(t2,t1) computes the time difference in seconds between t2 and t1.

t2 and t1 must be vectors of the form returned by clock, that is, vectors with six
elements representing, in order, year, month, day, hour, minute, and seconds. (See
clock for further information.)

Example A = rand(500);
t1 = clock;
B=svd(A);
t = etime(clock,t1)

See also clock, date
155

eval

156 | C H A P T
evalPurpose Evaluate an expression or a sequence of statements.

Synopsis a = eval(expr)
a = eval(expr1, expr2)
eval(stmts)
eval(stmts1, stmts2)

Description a = eval(expr) evaluates the expression string expr and returns the result(s). It
is possible for the evaluation to return more than one value.

a = eval(expr1, expr2) behaves like a = eval(expr1) except when this
evaluation results in an error; in that case, a = eval(expr2) is performed.

eval(stmts) evaluates the statement string stmts.

eval(stmts1, stmts2) behaves like eval(stmts1) except when this evaluation
results in an error; in that case, eval(stmts2) is performed.

See also evalc, evalin
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

evalc
evalcPurpose Evaluate an expression or a sequence of statements and retrieve any output made in
the process.

Synopsis [out, a] = evalc(expr)
[out, a] = evalc(expr1, expr2)
out = evalc(stmts)
out = evalc(stmts1, stmts2)

Description The string out that is returned contains any text output to the prompt during the
evaluation of the expression or statements. This is the only difference between
evalc and eval.

See also eval, evalin
157

evalin

158 | C H A P T
evalinPurpose Evaluate an expression or a sequence of statements in a specific workspace.

Synopsis a = evalin(ws, expr)
a = evalin(ws, expr1, expr2)
evalin(ws, stmts)
evalin(ws, stmts1, stmts2)

Description The string ws specifies in which workspace the evaluation is performed: 'base' is
the root workspace, and 'caller' is the parent workspace in the function-call stack.
This is the only difference between evalin and eval.

See also eval, evalc
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

exist
existPurpose Test whether or not a named object exists.

Synopsis e = exist(name, 'var')
e = exist(name, 'file')
e = exist(name, 'builtin')
e = exist(name, 'dir')
e = exist(name, 'class')
e = exist(name)

Description exist(name, 'var') returns 1 if there is a variable called name, otherwise 0.

exist(name, 'file') returns 2 if there is a file called name, 7 if there is a directory
called name, otherwise 0.

exist(name, 'builtin') returns 5 if there is a built-in function called name,
otherwise 0.

exist(name, 'dir') returns 7 if there is a directory called name, otherwise 0.

exist(name, 'class') returns 8 if there is a Java class called name, otherwise 0.

exist(name) tests name against all the above criteria and uses the same return-value
conventions.

See also which
159

exit

160 | C H A P T
exitPurpose Close the command window.

Synopsis exit

Description exit closes the command window.

See also quit
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

expm
expmPurpose Matrix exponential.

Synopsis b = expm(a)

Description b = expm(a) computes the matrix exponential of the square matrix a.

Example a = [1 2;3 4];
em = expm(a);
e = exp(a);

returns em approximately [51.97 74.74;112.1 164.1] and e approximately
[2.718 7.389; 20.09 54.6].

See also exp, mpower
161

eye

162 | C H A P T
eyePurpose Create a matrix with ones on the diagonal.

Synopsis e = eye(n)
e = eye(sz)
e = eye(m, n)

Description In all cases it returns a matrix with ones on the diagonal and zeros elsewhere.The
matrix size is determined as follows:

eye(n), where n is a nonnegative integer, returns an n x n-matrix.

eye(sz), where sz is a vector of length two, returns a matrix of size sz.

eye(m, n), where m and n are nonnegative integers, returns an m x n-matrix.

See also ones, repmat, zeros
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

factor
factorPurpose Prime factors.

Synopsis f = factor(n)

Description f = factor(n) computes the prime factors of n as a row vector f.

Example factor(1275) returns [3, 5, 5, 17].

See also isprime, primes
163

factorial

164 | C H A P T
factorialPurpose Factorial function.

Synopsis b= factorial(a)

Description b = factorial(a) computes the factorial of all elements of a, where a is an array
of nonnegative integers.

Example factorial(5) returns 120, that is, 1*2*3*4*5.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

false
falsePurpose Create all-false logical matrix.

Synopsis f = false
f = false(n)
f = false(m, n, ...)
f = false(sz)

Description In all cases, it returns all-false logical matrix whose size is determined as follows:

f = false returns a scalar.

f = false(n), where n is a nonnegative integer, returns an n x n matrix.

f = false(m, n, ...), where m, n, ... are nonnegative integers, returns an
m x n x...-matrix.

f = false(sz), where sz is a vector, returns a matrix of size sz.

See also true
165

fclose

166 | C H A P T
fclosePurpose Close an open file or all open files.

Synopsis fclose(h)
fclose('all')

Description fclose(h), for an integer h, closes the file associated with the handle h, which must
be one returned by fopen.

fclose('all') closes all open files.

See also fopen
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

feof
feofPurpose Test whether end-of-file has been reached for an open file.

Synopsis e = feof(h)

Description feof(h), for an integer h, returns true if the end-of-file has been reached for the
file associated with the handle h, otherwise it returns false. h must be a handle
returned by fopen.

See also fopen
167

ferror

168 | C H A P T
ferrorPurpose Return or reset the error message for an open file.

Synopsis e = ferror(h)
ferror(h, 'clear')

Description ferror(h) returns the error message, if any, set by a previous failed file operation
on h.

ferror(h, 'clear') clear the error message for h.

h must be a handle returned by fopen.

See also fopen, fread
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

feval
fevalPurpose Evaluate a function.

Synopsis [a ...] = feval(func, arg1, ...)

Description feval(func, arg1, ...) evaluates the function func for the arguments arg1, ...
and returns the result(s). The number of inputs to and outputs from func can both
be zero.

See also builtin
169

fft

170 | C H A P T
fftPurpose Compute the fast Fourier transform of a vector or matrix.

Synopsis f = fft(v)
f = fft(v, n)
f = fft(v, n, dim)
f = fft(v, [], dim)

Description f = fft(v) computes the FFT along the first nonunit dimension of v.

f = fft(v, n) computes the n-point FFT. v is padded with zeros if it is shorter
than n and truncated if it is longer.

f = fft(v, n, dim) computes the n-point FFT along the dimension dim.

f = fft(v, [], dim) computes the FFT along the dimension dim.

See also ifft, fft2, ifft2, fftn, ifftn
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fft2
fft2Purpose Compute the 2D fast Fourier transform of a matrix.

Synopsis f = fft2(m)
f = fft2(m, rows, cols)

Description f = fft2(m) computes the 2D FFT of m.

f = fft2(m, rows, cols) computes the 2D FFT of size (rows, cols). The
input matrix is truncated or padded with zeros if necessary.

See also fft, ifft, ifft2, fftn, ifftn
171

fftn

172 | C H A P T
fftnPurpose Compute the n-dimensional fast Fourier transform of an array.

Synopsis f = fftn(m)
f = fftn(m, size)

Description f = fftn(m) computes the n-dimensional FFT of m.

f = fftn(m, size) computes the n-dimensional FFT of m of size size. The input
array is truncated or padded with zeros if necessary.

See also fft, ifft, fft2, ifft2, ifftn
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fftshift
fftshiftPurpose Shift a frequency spectrum computed with an FFT.

Synopsis f = fftshift(m)

Description f = fftshift(m) shifts the indices in each dimension circularly so that index 1 in
m corresponds to the middle index in f.

See also circshift, fft, ifft, fft2, ifft2, fftn, ifftn, ifftshift
173

fgetl

174 | C H A P T
fgetlPurpose Read a line from a file and discard the linefeed character(s).

Synopsis s = fgetl(h)

Description s = fgetl(h) reads a line from the file pointed to by h and returns the line with
the linefeed character(s) removed.

h must be a handle returned by fopen.

See also fgets, fopen
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fgets
fgetsPurpose Read a line from a file.

Synopsis s = fgets(h)
s = fgets(h, n)

Description s = fgets(h) reads and returns a line from the file pointed to by h.

s = fgets(h, n) reads from the file pointed to by h until it has read n characters
or reached a linefeed character. Unlike fgetl, this functions returns linefeed
characters.

h must be a handle returned by fopen.

See also fgetl, fopen
175

fieldnames

176 | C H A P T
fieldnamesPurpose Get fields in structure or Java object.

Synopsis f = fieldnames(s)
f = fieldnames(jo)
f = fieldnames(obj)
f = fieldnames(obj, attr)
f = fieldnames(obj, attr, noattr)

Description f = fieldnames(s), where s is a structure, returns a cell array containing the field
names of s.

f = fieldnames(jo), where jo is a Java object, returns a cell array containing the
public fields in the class to which jo belongs.

f = fieldnames(obj), where obj is an instance of a user-defined class, returns a
cell array containing the public nonstatic fields of the class of obj.

f = fieldnames(obj, attr), where obj is an instance of a user-defined class and
attr is a string or cell array of strings, returns a cell array containing the fields that
have at least one of the attributes listed in attr. Possible attributes are 'public',
'protected', 'private', 'static', and 'transient'.

f = fieldnames(obj, attr, noattr) is like f = fieldnames(obj, attr) but
excludes any field having an attribute listed in noattr, which must be a string or cell
array of strings.

See also methods
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

figure
figurePurpose Create a new figure window.

Synopsis figure
figure(h)

Description figure creates and opens a new figure window. You can retrieve the handle to the
created figure with the syntax h=figure.

figure(h) makes the figure with handle h the current figure and shows it on top
of all other windows.

See also clf, close, gcf, subplot
177

fileparts

178 | C H A P T
filepartsPurpose Split a file name into its path, name, and extension.

Synopsis p = fileparts(name)
[p, n] = fileparts(name)
[p, n, e] = fileparts(name)

Description [p, n, e] = fileparts(name), where name is a string, returns the path of name
in p, the name in n, and the extension in e. It is possible to omit the last or the last
two output parameters.

Example [p, n, e] = fileparts('C:/COMSOL/license.txt') results in p = ‘C:/
COMSOL’, n = ‘license’, and e = ‘.txt’.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

filesep
filesepPurpose Get the system file separator.

Synopsis sep = filesep

Description sep = filesep returns the directory separator in file names. For Windows this is
'\', and on all other platforms it is '/'.

See also pathsep
179

filter

180 | C H A P T
filterPurpose 1D digital filtering.

Synopsis y = filter(b,a,x)
y = filter(b,a,x,zi)
y = filter(b,a,x,zi,dim)
y = filter(b,a,x,[],dim)
[y,zf] = filter(...)

Description y = filter(b,a,x) uses a filter that is a Direct Form II Transposed
implementation of the standard difference equation:

a(1)y(n) = b(1)x(n) + b(2)x(n-1) + ... + b(nb+1)x(n-nb)

- a(2)y(n-1) - ... - a(na+1)y(n-na)

where x is a data array, y is the filtered data, while a and b describe the filter. n-1 is
the filter order. Filter coefficients are normalized by a(1).

When x is a matrix, filter works along the columns of x. When x is an array,
filter works along the first nonsingleton dimension of x.

y = filter(b,a,x,zi) also includes zi, the initial conditions of the filter delays.
zi must be either a vector of length max(length(a),length(b))-1, or an array of
the same size as x except for the leading dimension, which must be
max(length(a),length(b))-1.

[y,zf] = filter(...) also returns the final conditions of the filter delays.

filter(b,a,x,zi,dim) and filter(b,a,x,[],dim) work along the dimension
dim.

See also dlsim
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

find
findPurpose Find nonzero elements.

Synopsis i = find(x)
[i,j] = find(x)
[i,j,y] = find(x)

Description i = find(x) returns the linear indices of the nonzero elements of x.

[i,j] = find(x) returns row and column indices of nonzero elements of x, where
x must be a matrix.

[i,j,v] = find(x) also returns the value of each nonzero element of x. If x is a
row vector, v will be a row vector. Otherwise, v will be a column vector.

Examples a = [1 4 0 12; 0 3 -10 0; 2 -1 3 4];

find(a>0) returns [1; 3; 4; 5; 9; 10; 12].

[j,i,b] = find(a); returns
i = [1; 3; 1; 2; 3; 2; 3; 1; 3],
j = [1; 1; 2; 2; 2; 3; 3; 4; 4] and
b = [1; 2; 4; 3; -1; -10; 3; 12; 4];

See also sparse
181

findobj

182 | C H A P T
findobjPurpose Find graphics objects.

Synopsis h = findobj(...)
h = findobj(parents,...)

Description h = findobj(...) finds graphics objects. The properties 'tag' and 'type' with
a following value can be used to find graphics objects of a certain type or with a
certain tag.

h = findobj(parents,...) searches only in the figure windows listed in
parents.

Example h = findobj('type','line') finds all graphics objects of the type 'line'.

See also gca, gcf, get, set
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

findstr
findstrPurpose Find a shorter string within a longer one.

Synopsis ind = findstr(str1,str2)

Description ind = findstr(str1,str2) finds occurrences of the shorter of the two strings
str1 and str2 within the other and returns the first index of each such occurrence.

To find one string within another in a set order, use strfind.

Examples findstr('blue yellow green red','e') and findstr('e','blue yellow
green red') both return [4, 7, 15, 16, 20].

See also strfind
183

flipdim

184 | C H A P T
flipdimPurpose Flip a dimension of a matrix.

Synopsis f = flipdim(m, dim)

Description f = flipdim(m, dim) returns a matrix with the same contents as m but where the
matrix indices in dimension dim have been flipped.

Example flipdim([2 3 ; 5 7], 1) returns [5 7 ; 2 3].

See also fliplr, flipud, permute, ipermute
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fliplr
fliplrPurpose Flip a matrix horizontally.

Synopsis f = fliplr(m)

Description f = fliplr(m) returns a matrix with the same contents as m but where each row
has been flipped.

Example fliplr([2 3 ; 5 7]) returns [3 2 ; 7 5].

See also flipdim, flipud, permute, ipermute
185

flipud

186 | C H A P T
flipudPurpose Flip a matrix vertically.

Synopsis f = flipud(m)

Description f = flipud(m) returns a matrix with the same contents as m but where each column
has been flipped.

Example flipud([2 3 ; 5 7]) returns [5 7 ; 2 3].

See also flipdim, fliplr, permute, ipermute
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fminsearch
fminsearchPurpose Solve an unconstrained nonlinear optimization problem using the Nelder-Mead
simplex algorithm.

Syntax x = fminsearch(f,x0,...)
[x,f] = fminsearch(f,x0,...)
[x,f,exitflag] = fminsearch(f,x0,...)
[x,f,exitflag,infostruct] = fminsearch(f,x0,...)
fminsearch(f,x0,options)

Description x = fminsearch(f,x0) solves the unconstrained nonlinear optimization problem
min f(x), where f is a function and x0 the initial guess. (Functions can be either
strings, denoting the function name, or inline functions.)

Aside from x, fminsearch can return f, the value of the objective function at x,
exitflag, indicating the exit condition (0, if fminsearch reached the maximum
number of iterations or function evaluations, 1 for successful completion) and a
struct infostruct containing information about number of iterations and function
evaluations.

fminsearch(f,x0,options) also includes an options structure, which can have
the following fields (N is the number of variables):

TABLE 1-17: VALID PROPERTIES FOR THE FMINSEARCH FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

Display 'off'| 'iter' 'off' 'iter' displays the result at
each iteration and whether
fminsearch performs a
reflection, expansion, inner or
outer contraction, or a shrinking
step.

MaxFunEvals integer 200*N Limit on number of function
evaluations.

MaxIter integer 200*N Iterations limit.

LengthScale numeric 1 Length scale used when creating
the initial simplex, which is
defined by the starting guess x0
and n more points
x0 + LengthScale*eye(n).
187

fminsearch

188 | C H A P T
Examples function f = exnm_obj(x)
f = x(1)^4 + x(2)^4 - x(1)*x(2) + 1;

[x,f] = fminsearch('exnm_obj',[1 1]);

% With inline function
[x,f] = fminsearch(inline('x(1)^4 + x(2)^4 - x(1)*x(2) + 1'),
 [1 1]);

Algorithm fminsearch uses the Nelder-Mead simplex algorithm, as defined in “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions” (Jeffrey C.
Lagarias, James A. Reeds, Margaret H. Wright, Paul E. Wright, SIAM Journal of
Optimization, 9(1) p.112–147, 1998).

Param any empty Allows additional arguments to
be passed along to the callback
function. Use a cell array to pass
along more than one argument.
Note that the cell array will be
unpacked in the function call,
hence setting Param to {a1,a2}
will result in function being called
with userfun(x,a1,a2).

TolFun numeric 1e-4 Absolute termination tolerance
on the function precision

TolX numeric 1e-4 Absolute termination tolerance
on the largest diameter of the
simplex, using infinity norm

TABLE 1-17: VALID PROPERTIES FOR THE FMINSEARCH FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fopen
fopenPurpose Open a file or get information about an open file.

Synopsis h = fopen(filename)
h = fopen(filename, mode)
h = fopen(filename, mode, endian)

[name, mode, endian] = fopen(h)

Description h = fopen(filename) opens the file filename for reading and returns a handle
to the open file.

h = fopen(filename, mode) opens the file filename in the mode mode. The
following modes can be used:

If running Windows, you can append a 't' to the mode string. This results in the
file being opened in text mode.

h = fopen(filename, mode, endian) opens the file filename in the mode mode
and the endianness endian. The following endiannesses can be used:

The file is open in the native endianness if no endianness is specified.

[name, mode, endian] = fopen(h) returns the filename, mode, and endianness
used when the file handle h was created using fopen. The file must be open.

TABLE 1-18: FOPEN MODES

MODE INTERPRETATION

'r' Open for reading.

'w' Open for writing.

'a' Open for writing, position the file pointer at the
end of the file.

'r+' Open for reading and writing.

'w+' Open for reading and writing, remove the current
contents of the file.

'a+' Open for reading and writing, position the file
pointer at the end of the file.

TABLE 1-19: ENDIANNESSES

MODE INTERPRETATION

'n' or 'native' Open in the native system endianness.

'b', 's', 'ieee-be',
or 'ieee-be.l64'

Open as big-endian.

'l', 'a', ieee-le', or
'ieee-le.l64'

Open as little-endian.
189

fopen

190 | C H A P T
See also fclose, fread, fwrite
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

format
formatPurpose Set the output format.

Synopsis format('compact')
format('loose')

format('short')
format('long')
format('hex')
format('+')

Description format('compact') results in output being generated with no extra vertical space.

format('loose') results in output being generated with empty lines inserted to
improve readability. This is the default.

format('short') results in floating-point numbers being displayed with
approximately 8 significant digits. This is the default.

format('long') result in floating-point numbers being displayed with
approximately 16 significant digits.

format('hex') results in floating-point numbers being displayed as the
hexadecimal form of their IEEE-754 representation.

format('+') results in floating-point numbers being displayed as '+' if they are
positive; '-' if they are negative; and ' ' if they are zero.
191

formula

192 | C H A P T
formulaPurpose Get the formula computed by an inline function.

Synopsis form = formula(func)

Description form = formula(func), where func is an inline function, returns the string that
defines the function computed by func. This is the first argument that was given to
inline when func was created.

See also inline
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fprintf
fprintfPurpose Write formatted output to a file.

Synopsis n = fprintf(h, format, ...)
n = fprintf(format, ...)

Description For the syntax and interpretation of the format string, see the manual entry for
sprintf.

n = fprintf(h, format, ...) writes formatted output to the file pointed to by
the handle h. The return value is the number of bytes written.

n = fprintf(format, ...) writes formatted output to the terminal.

See also fopen, sprintf
193

frame

194 | C H A P T
framePurpose Create a window for use when creating a custom user interface.

Synopsis f = frame(title,...)

Description f = frame(title) creates a frame with the specified title.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the function to further control how the frame is created:

The function returns a frame object that can then be further manipulated using the
methods in the following table.

The methods for panel are also available for frame, thereby allowing you to add
panels and components to a frame.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, dialog, panel

TABLE 1-20: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

position 2-element vector The position on the screen for the upper left
corner of the frame.

size 2-element vector The size of the frame. If not given the frame
will be packed to fit the size of the
components that have been added to it.

TABLE 1-21: METHODS FOR MANIPULATING A FRAME OBJECT.

METHOD DESCRIPTION

addMenu(menu) Adds the specified menu at the end of the
main menu bar of the frame.

close Closes the frame.

getSize Returns the size of the frame as a
2-element vector with width and height.

setSize(width,height) Sets the size of the frame.

show While the frame is being created it is
invisible. Call the show method after
adding all components to it to show it on
screen.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fread
freadPurpose Read binary data from a file.

Synopsis d = fread(h)
d = fread(h, sz)
d = fread(h, type)
d = fread(h, sz, type)

Description d = fread(h) reads one character at a time from the file with the handle h until it
reaches the end of the file. The characters read are returned in a real column vector.

d = fread(h, sz), where sz is a numerical vector, reads one character at a time
from the file with the handle h until it has filled a matrix of size sz. The last element
of sz can be Inf; in that case, that dimension grows until the end of the file is
reached.

d = fread(h, type), where type is a string, reads data of type type until it
reaches the end of the file. The following type syntaxes are supported:

TABLE 1-22:

TYPE SYNTAX INTERPRETATION

'char'

'schar'

'signed char'

'char*1'

Read signed 8-bit characters into double matrix.

'uchar'

'unsigned char'
Read unsigned 8-bit characters into double
matrix.

'int8'

'integer*1'
Read signed 8-bit integers into double matrix

'uint8' Read unsigned 8-bit integers into double matrix.

'int16'

'short'

'integer*2'

Read signed 16-bit integers into double matrix.

'uint16'

‘ushort'

'unsigned short'

Read unsigned 16-bit integers into double
matrix.

'int32'

'int'

'integer*4'

Read signed 32-bit integers into double matrix.

'uint32'

'uint'

'unsigned int'

Read unsigned 32-bit integers into double
matrix.
195

fread

196 | C H A P T
d = fread(h, sz, type) reads data of type type until it has filled a matrix of
size sz.

d = fread(h, sz, type, skip) reads data of type type until it has filled a matrix
of size sz. After reading one or more values (depending on the type string), it reads
skip values of the same type but ignores them. This only has meaning if the type
string contains a '=>' (see the table), and it can be used for reading entries from
records of a fixed size.

Examples d = fread(h, [4 inf]) returns a 4 x n-matrix of doubles where n is the largest
integer such that it is possible to read 4n characters without reaching the end of the
file.

'int64'

'long'

'integer*8'

Read signed 64-bit integers into double matrix.

'uint64'

'unsigned long'

'ulong'

Read unsigned 64-bit integers into double
matrix.

'float'

'float32'

'real*4'

'single'

Read 32-bit IEEE floating-point numbers into
double matrix.

'double'

'float64'

'real*8'

Read 64-bit IEEE floating-point numbers into
double matrix.

'*type' Read data of type type into a matrix of the
closest type. Equivalent to only using 'type’.

'type1=>type2’ Read data of type type1 into a matrix of the
type closest to type2.

'block*type’ Read block values of type type into a double
matrix. Must be used together with a skip
parameter, see below.

'block*type1=>type2' Read block values of type type1 into a matrix
of the type closest to type2. Must be used
together with a skip parameter, see below.

TABLE 1-22:

TYPE SYNTAX INTERPRETATION
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fread
d = fread(h, 'int32=>double') reads signed 32-bit integers until it reaches the
end of the file is reached and returns them in a column vector of doubles.

d = fread(h, 20, '5*double', 3) reads five doubles from file, skips the next
three, and so on until it has read 20 doubles.

See also fopen, fwrite
197

freqspace

198 | C H A P T
freqspacePurpose Create a frequency range.

Synopsis freq = freqspace(sz)
freq = freqspace(sz, 'whole')

[freq1, freq2] = freqspace(sz)
[freq1, freq2] = freqspace(sz, 'meshgrid')

Description freq = freqspace(sz), for a scalar sz, returns a vector with (sz+1)/2 uniformly
spaced values between 0 and 1.

freq = freqspace(sz, 'whole'), for a scalar sz, returns a vector with sz
uniformly spaced values between 0 and 2(1-1/sz).

[freq1, freq2] = freqspace(sz), for a vector sz, of length 2 returns
length(sz(2)) uniformly spaced values between -1+1/sz(2)) and 1-1/sz(2) in
freq1, and it returns length(sz(1)) uniformly spaced values between -1+1/
sz(1)) and 1-1/sz(1) in freq2.

[freq1, freq2] = freqspace(sz, 'meshgrid'), for a vector of length 2,
computes [a, b] = freqspace(sz) and returns meshgrid(a, b).

See also meshgrid
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

frewind
frewindPurpose Rewind a file.

Synopsis frewind(h)

Description frewind(h), for an integer h, rewinds the file associated with the handle.

h must be a handle returned by fopen.

See also fopen
199

fscanf

200 | C H A P T
fscanfPurpose Read formatted data from file.

Synopsis d = fscanf(h, format)
d = fscanf(h, format, sz)

Description d = fscanf(h, format, ...) reads formatted data from the file handle h. For
the interpretation of the format and sz argument, see sscanf. For valid format
strings, see sprintf.

h must be a handle returned by fopen.

See also sscanf, fprintf, sprintf
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fseek
fseekPurpose Move a file pointer.

Synopsis fseek(h, offset, dir)

Description fseek(h, offset, dir), for integers h and offset, moves the file pointer by a
distance offset bytes in a way defined by dir, which can have the following values:

h must be a handle returned by fopen.

See also fopen

DIR INTERPRETATION

'bof' or -1 Move offset bytes from the
beginning of the file; offset must be
nonnegative.

'cof' or 0 Move offset bytes from the current
position in the file.

'eof' or +1 Move offset bytes from the end of
the file; offset must be nonpositive.
201

ftell

202 | C H A P T
ftellPurpose Get the position of the file pointer.

Synopsis pos = ftell(h)

Description pos = ftell(h), for an integer h, returns the offset (in bytes) of the file pointer
relative to the beginning of the file. If the handle is invalid, it returns -1.

h must be a handle returned by fopen.

See also fopen, fseek
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

full
fullPurpose Convert a matrix from sparse to full.

Synopsis f = full(sp)

Description f = full(sp), where sp is a sparse matrix, returns a full matrix with the same
contents. If sp is a full matrix, full returns sp.

See also sparse
203

fullfile

204 | C H A P T
fullfilePurpose Create a file name.

Synopsis name = fullfile(dir1, ..., file)

Description name = fullfile(dir1, ..., file) creates a file name from one or more
directory names dir1, ...and a file name file.

See also fileparts
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

funm
funmPurpose Evaluate matrix function.

Synopsis F = funm(A,fun)
F = funm(A,fun,options)
[F,taylorflag] = funm(...)
[F,taylorflag,stat] = funm(...)
funm(A,fun,[],x1,x2,...)
funm(A,fun,options,x1,x2,...)

Description F = funm(A,fun) computes the matrix function fun of a square matrix A. fun must
have a Taylor series with an infinite radius of convergence and fun(x,k) should
return the k’th derivative of fun evaluated at x. fun = 'log' is a special case and
returns the matrix logarithm as described in logm.

 F = funm(A,fun,options) computes the matrix function with one or more
parameters given in the structure options:

[F,taylorflag] = funm(...) returns taylorflag, which is 1 if one or more
Taylor series evaluations did not converge and 0 otherwise.

[F,taylorflag,stat] = funm(...) also returns a structure stat with the
following fields:

FIELDNAME VALUE/{DEFAULT} DESCRIPTION

TolBlk positive scalar
{0.1}

Tolerance for blocking Schur form.

TolTay positive scalar
{eps}

Termination tolerance for Taylor series.

MaxTerms positive integer
{250}

Maximum number of Taylor series terms.

MaxSqrt positive integer
{100}

Maximum number of square roots in inverse
scaling and squaring method. Only applicable
when computing logarithm.)

Ord integer vector
{[]}

Specific ordering of the Schur form, T. (See
ordschur for more information.)

FIELDNAME DESCRIPTION

terms Vector containing the number of Taylor series terms used when
evaluating each block. In the case of the logarithm, it contains instead
the number of square roots evaluations.

ind Cell array that specifies the blocking, that is, the block (i,j) of the
reordered Schur matrix T is T(stat.ind{i},stat.ind{j}).
205

funm

206 | C H A P T
When the Schur form is diagonal,
stat = struct('terms',ones(n,1),'ind',{1:n})

 funm(A,fun,[],x1,x2,...) and funm(A,fun,options,x1,x2,...) allows
additional input arguments x1, x2, … to be passed to fun.

Example function c = coshm(a,k)
if mod(k,2);
 c = sinh(a);
else
 c = cosh(a);
end

F = funm(X,'coshm');

See also expm, logm, sqrtm

ord The ordering passed to ordschur

T The reordered Schur matrix.

FIELDNAME DESCRIPTION
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

fwrite
fwritePurpose Write data to a binary file.

Synopsis n = fwrite(h, mat)
n = fwrite(h, mat, type)
n = fwrite(h, mat, type, skip)

Description n = fwrite(h, mat) writes the matrix mat to the file handle h.

n = fwrite(h, mat, type) writes each element as type type. For a listing of the
available types, see fread.

n = fwrite(h, mat, type, skip) moves the file pointer forward a distance of
 skip bytes before writing each element.

The number of elements successfully written is returned.

Examples fwrite(h, pi) writes the double pi to the file.

 fwrite(h, 1:100, 'int16') writes the 100 16-bit integers 1, 2, … to file.

 fwrite(h, 1:100, '5*int32', 3) skips three bytes, then writes the five 32-bit
integers 1, 2, …, 5, then skips three more bytes, and so on, until it has written the
integers 1:100. The file pointer moves 460 bytes forwards in the process; 400 bytes
are written and 60 bytes are skipped (3 bytes each for 20 blocks).

See also fopen, fread
207

fzero

208 | C H A P T
fzeroPurpose Find a zero of a function.

Synopsis x = fzero(f, x0, ...)

Description x = fzero(f, x0, ...) finds the x argument where the function f is equal to
zero. f can be an M-file, inline function, or expression. If it is an expression, the
argument has to be 'x'. All other variables in the expression have to be passed to
fzero in the same order as they appear in the expression. fzero uses the secant
method to find a zero.

Valid property-value pairs:

All other arguments are passed to the function call.

Examples Find a zero of cosine near 1:

x0 = fzero('cos(x)',[1]);

fzero using an inline function:

myfun=inline('exp(y).*cos(x)');
x=-5:0.05:5;
plot(x,myfun(x,2));

Find a zero of exp(2).*cos(x) using start guess 5:
x1 = fzero(myfun,-5,2)

Find a zero of exp(2).*cos(x) using start guess -2
x2 = fzero(myfun,-2,2);

See also inline

TABLE 1-23:

PROPERTY DESCRIPTION

'maxiter' Maximum number of iterations before giving up.

'tol' Absolute tolerance for x.

'x1' Second point for the secant method.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

gamma
gammaPurpose Gamma function.

Synopsis g = gamma(z)

Description g = gamma(z) computes the gamma function, as defined in the following equation,
of the elements of z:

 z must be a real array.

See also gammainc, gammaln, beta

Γ z() e t– tz 1– td

0

∞

∫=
209

gammainc

210 | C H A P T
gammaincPurpose Incomplete gamma function.

Synopsis g = gammainc(x,a)
g = gammainc(x,a,tail)

Description g = gammainc(x,a) computes the incomplete gamma function (sometimes called
the regularized incomplete gamma function), as defined in the following equation:

where is the gamma function.

a and x must be nonnegative real arrays of the same size or either one can be a scalar.

g = gammainc(x,a,tail) computes the incomplete gamma function using either
the upper or lower tail, denoted by the strings 'upper' and 'lower', respectively.
The default is 'lower'.

 gammainc(x,a,'upper') = 1 - gammainc(x,a,'lower').

See also gamma, gammaln, betainc

P x a,() 1
Γ a()
------------ ta 1– e t– td

0

x

∫⋅=

Γ x()
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

gammaln
gammalnPurpose Logarithm of the gamma function

Synopsis g = gammaln(z)

Description g = gammaln(z) computes the natural logarithm of the gamma function of z
without computing the actual gamma function. z must be a real array.

Example gammaln(200) computes the logarithm of the gamma function where
log(gamma(200)) would overflow.

See also gamma, gammainc, beta, betaln
211

gca

212 | C H A P T
gcaPurpose Get the handle to the current axes in the current figure.

Synopsis h = gca

Description h = gca returns the handle to the current axes in the current figure. This is the axes
object into which the plotting commands plot if the 'parent' property is not used
to explicitly specify one.

You can change the current axes with the subplot command or by clicking in the
axes. Giving a figure focus makes the current axes in that figure the current axes.

See also cla, gcf, subplot
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

gcd
gcdPurpose Greatest common divisor

Synopsis [g,x,y] = gcd(a,b)

Description g = gcd(a,b) computes the greatest common divisors of the corresponding
elements of arrays a and b, which must be the same size or either one can be a scalar.

[g,x,y] = gcd(a,b) also returns integers x and y such that ax + by = g.

Examples gcd([1209 678 211 136],342) returns [3, 6, 1, 2].

[g,x,y] = gcd([120 78 111 136], [142,20,12,98]) returns
g = [2, 2, 3, 2], x = [-13, -1, 1, -18] and y = [11, 4, -9, 25].

See also lcm
213

gcf

214 | C H A P T
gcfPurpose Get the handle to the current figure.

Synopsis h = gcf

Description h = gcf returns the handle to the current figure, which you can change by giving
a certain figure window the focus.

The plotting commands plot into the current axes of the current figure if the
'parent' property is not used to explicitly specify an axes object.

See also clf, figure, gca
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ge
gePurpose Compare matrices pointwise.

Synopsis d = ge(a, b)

Description d = ge(a, b) tests if the elements of the matrix a are pointwise greater than or
equal to those of the matrix b. For each dimension, a and b must have the same size
or either of them must have size 1. In the latter case, the unit dimension is expanded
to the size of the nonunit dimension.

ge(a, b) is equivalent to a >= b.

Examples [2 3 5] >= [1 3 7]

[5 -10 20] >= 0

[1 2 3] >= [1 ; 2]

See also eq, gt, le, lt, ne
215

genpath

216 | C H A P T
genpathPurpose Return path string for a directory tree.

Synopsis p = genpath(dir)

Description p = genpath(dir), where dir is a string containing a directory name, returns a
path string containing dir, its subdirectories, the subdirectories of the
subdirectories, and so on.

See also path
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

get
getPurpose Get data from a graphics object.

Synopsis get(h,name)
get(h)

Description get(h,name) returns the value of the property name for the object to which the
graphics handle h refers.

get(h) returns the values of all properties in a structure where the property names
are the field names of the structure.

See also set
217

getdata

218 | C H A P T
getdataPurpose Return application data from a frame or a dialog box.

Synopsis data = getdata(f)

Description data = getdata(f) returns data that has been stored in f using the storedata
function. f can be a frame or a dialog box.

See also storedata
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

getfield
getfieldPurpose Get the value of a structure field.

Synopsis f = getfield(s, field)

f = getfield(s, index1, field, index2)

Description f = getfield(s, field), for a structure s, returns the value of s.(field).

f = getfield(s, index1, field, index2) returns
s(index1{:}).(field)(index2{:}) where index1 and index2 are cell arrays
containing array indices.

See also setfield
219

gradient

220 | C H A P T
gradientPurpose Compute approximate gradient.

Synopsis df = gradient(f)
df = gradient(f,h)
[fx,fy] = gradient(f)
[fx,fy] = gradient(f,h)
[fx,fy] = gradient(f,hx,hy)
[fx,fy,fz,...] = gradient(f)
[fx,fy,fz,...] = gradient(f,h)
[fx,fy,fz,...] = gradient(f,hx,hy,hz,...)

Description df = gradient(f) computes the 1D gradient of a vector f using unit spacing.

df = gradient(f,h) computes the gradient using spacing h between points. h
must be a scalar.

[fx,fy] = gradient(f) computes the gradient of a matrix f using unit spacing.
fx corresponds to , the differences in the column direction, and fy corresponds
to , the differences in the row direction.

[fx,fy] = gradient(f,h) computes the gradient using spacing h between points.
h must be a scalar.

[fx,fy] = gradient(f,hx,hy) computes the gradient using pacing specified by
hx and hy. f must be 2D and hx and hy must be either scalars (in which case they
specify spacing between points in the x and y directions, respectively) or vectors, in
which case they specify the coordinates of the points in their respective directions.
If either hx or hy is a vector, its length must match the corresponding dimension of
f.

[fx,fy,fz,...] = gradient(f) computes the gradient of the 3D array f. fz
corresponds to , the differences in the z direction.

[fx,fy,fz] = gradient(f,h) computes the gradient using the spacing h
between points. h must be a scalar.

[fx,fy,fz]=gradient(f,hx,hy,hz) uses the spacing given by hx, hy, hz.

Similarly, when f is an n-dimensional array, gradient must have n outputs, and the
input must be in the form gradient(f,h) or gradient(f,h1,h2...hn).

Examples gradient([1 3 5 10]) computes the 1D gradient with unit spacing and returns
[2, 2, 3.5, 5].

a = [1 4 0 12;0 3 -10 0;2 -1 3 4];

xd
df

yd
df

zd
df
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

gradient
[fx,fy] = gradient(a) computes fx and fy with unit spacing.
fx = [3, -0.5, 4, 12 ; 3, -5, -1.5, 10 ; -3, 0.5, 2.5, 1] and
fy = [-1, -1, -10, -12 ; 0.5, -2.5, 1.5, -4 ; 2, -4, 13, 4].

[fx,fy] = gradient(a,0.2,0.4) computes fx and fy with spacing 0.2 in the
x direction and 0.4 in the y direction.
fx = [15 -2.5 20 60;15 -25 -7.5 50;-15 2.5 12.5 5] and
fy = [-2.5 -2.5 -25 -30;1.25 -6.25 3.75 -10;5 -10 32.5 10].

See also del2, diff
221

gray

222 | C H A P T
grayPurpose Create a colormap with gray scales.

Synopsis gray(n)

Description gray(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are gray scales.

See also colormap, bone, cool, grayprint, jet, hot, hsv, pink, wavemap
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

grayprint
grayprintPurpose Create a colormap with printer-friendly gray scales.

Synopsis grayprint(n)

Description grayprint(n) returns a colormap with n colors. It is a matrix with n rows and 3
columns with RGB values for the colors in the colormap. The colors are
printer-friendly gray scales.

See also colormap, bone, cool, gray, jet, hot, hsv, pink, wavemap
223

grid

224 | C H A P T
gridPurpose Display grid lines.

Synopsis grid('on')
grid('off')
grid
grid(ax, ...)

Description grid('on') turns the display of grid lines on.

grid('off') turns the display of grid lines off.

grid toggles the display of grid lines on or off.

grid(ax,...) controls the display of grid lines in the axes ax instead of in the
current axes.

See also box
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

griddata
griddataPurpose 2D data gridding.

Synopsis zi = griddata(x,y,z,xi,yi)
[xi,yi,zi] = griddata(x,y,z,xi,yi)
s = griddata(x,y,xi,yi)
griddata(...,method)
griddata(...,method,bnd)
griddata(...,method,bnd,strategy)

Description zi = griddata(x,y,z,xi,yi) performs a delaunay triangulation on x and y,
where z = f(x,y), and interpolates xi and yi linearly to determine zi =
f(xi,yi). The points do not need to be uniformly spaced.

x and y must either be of the same size or vectors of different orientation, in which
case griddata uses [x,y] = meshgrid(x,y). z must either be the same size as x
and y or, when they are vectors of different orientation, a matrix with length(x)
rows and length(y) columns. Similarly, when xi and yi are vectors of different
orientation, griddata uses [xi,yi] = meshgrid(xi,yi). Otherwise, xi and yi
must have the same size.

[xi,yi,zi] = griddata(x,y,z,xi,yi) returns xi and yi used by griddata.

s = griddata(x,y,xi,yi) returns a struct s that contains the triangulation of x
and y and information about which delaunay element the points in xi and yi
belong to, including local coordinates. This can be used together with tinterp to
interpolate different data values using the same points and triangulation. (See
tinterp for more details.)

griddata(...,method) specifies the interpolation method, which can be either
'linear' (denoting linear interpolation) or 'nearest' (denoting nearest
neighbor interpolation). Nearest neighbor in this case signifies the closest vertex in
the nearest delaunay triangle. Default method is linear.

griddata(...,method,bnd) also includes boundary information bnd, which
griddata sends on to the internal call to delaunay (see delaunay for further
information).

griddata(...,method,bnd,strategy) allows the search strategy to be set
explicitly. strategy can be either 'boxonly' (default for linear interpolation), in
which case griddata returns NaN for all points outside the mesh, or 'closest'
(default for nearest neighbor interpolation), in which case griddata locates the
nearest element for all points.

Examples rand('state',0);
225

griddata

226 | C H A P T
x = 4*rand(1,100)-2;y = 4*rand(1,100)-2;
z=sin(x).*sin(y).*exp(-x.^2-y.^2);
ti = -2:.1:2;
[xi,yi] = meshgrid(ti,ti);
zi = griddata(x,y,z,xi,yi,'linear',[],'closest');

plot3(x,y,z,'*');
hold on;
mesh(xi,yi,zi);
hold off;

g = griddata(x,y,xi,yi, 'linear',[],'closest');
zi1 = tinterp(g,z);
z2 = sin(x).*sin(y);
zi2 = tinterp(g,z2);

plot3(x,y,z,'*');
hold on;
mesh(xi,yi,zi1);
hold off;
figure;
plot3(x,y,z2,'*');
hold on;
mesh(xi,yi,zi2);
hold off;

g is the struct:

g =
 method: 'linear'
 strategy: 'closest'
 t: [182x3 double]
 ind: [1681x1 double]
 coord: [1681x3 double]
 size: [41 41]

See also griddata3, griddatan, tinterp, tsearch, tsearchn, delaunay, delaunay3
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

griddata3
griddata3Purpose 3D data gridding.

Synopsis vi = griddata3(x,y,z,v,xi,yi,zi)
s = griddata3(x,y,xi,zi)
griddatan3(...,method)
griddatan3(...,method,bnd)
griddatan3(...,method,bnd,stratgy)

Description vi = griddata3(x,y,z,v,xi,yi,zi) performs a 3D delaunay triangulation on
the points defined by x, y and z, where v = f(x,y,z), and interpolates the points
defined by xi, yi and zi linearly to determine vi = f(xi,yi,zi). The points do
not need to be uniformly spaced.

s = griddata3(x,y,z,xi,yi,zi) returns a struct s containing the triangulation
of x, y and z and information about which delaunay element each point xi, yi and
zi belongs to, including local coordinates. This can be used together with tinterp
to interpolate different data values using the same points and triangulation. (See
tinterp for more details.)

griddata3(...,method) specifies the interpolation method, which can be either
'linear' (denoting linear interpolation) or 'nearest' (denoting nearest
neighbor interpolation). Nearest neighbor in this case signifies the closest vertex in
the nearest delaunay tetrahedron. Default method is linear.

griddata3(...,method,bnd) also includes boundary information bnd, which
griddata3 sends on to the internal call to delaunay3 (see delaunay3 for further
information).

griddata3(...,method,bnd,strategy) allows the search strategy to be set
explicitly. strategy can be either 'boxonly' (default for linear interpolation), in
which case griddata3 returns NaN for all points outside the mesh, or 'closest'
(default for nearest neighbor interpolation), in which case griddata3 locates the
nearest element for all points.

Examples x = rand(1,13);y = rand(1,13);z = rand(1,13);
v = sin(x).*sin(x).*sin(z);
[xi,yi,zi] = meshgrid(0:.24:1);
vi = griddata3(x,y,z,v,xi,yi,zi,'linear',[],'closest');

g = griddata3(x,y,z,xi,yi,zi,'nearest');
vi1 = tinterp(g,rand(1,13));
vi2 = tinterp(g,rand(1,13));

g is the struct:

g =
227

griddata3

228 | C H A P T
 method: 'nearest'
 strategy: 'closest'
 t: [28x4 double]
 ind: [125x1 double]
 coord: [125x4 double]
 size: [5 5 5]

See also griddata, griddatan, tinterp, tsearch, tsearchn, delaunay, delaunay3
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

griddatan
griddatanPurpose nD data gridding.

Synopsis yi = griddatan(pts,y,ptsi)
s = griddatan(pts,ptsi)
griddatan(...,method)
griddatan(...,method,bnd)
griddatan(...,method,bnd,strategy)

Description yi = griddatan(pts,y,ptsi) performs a delaunay triangulation on the points in
pts, where y = f(x1,x2,...), xj = pts(:,j), and interpolates the points in
ptsi linearly to determine yi = f(xi1,xi2,...), where xij = ptsi(:,j). The
points do not need to be uniformly spaced. pts and ptsi must be of size nx2 (for
2D) or nx3 (for 3D).

s = griddatan(pts,ptsi) returns a struct s containing the triangulation of pts
and information about which delaunay element each point belongs to, including
local coordinates. This can be used together with tinterp to interpolate different
data values using the same points and triangulation. (See tinterp for more details.)

griddatan(...,method) specifies the interpolation method, which can be either
'linear' (denoting linear interpolation) or 'nearest' (denoting nearest
neighbor interpolation). Nearest neighbor in this case signifies the closest vertex in
the nearest delaunay element. Default method is linear.

griddatan(...,method,bnd) also includes boundary information bnd, which
griddatan sends on to the internal delaunay call (see delaunay or delaunay3 for
further information).

griddatan(...,method,bnd,strategy) allows the search strategy to be set
explicitly. strategy can be either 'boxonly' (default for linear interpolation), in
which case griddatan returns NaN for all points outside the mesh, or 'closest'
(default for nearest neighbor interpolation), in which case griddatan locates the
nearest element for all points.

Examples rand('state',0);
p = 4*rand(100,2)-2;
z=sin(p(:,1)).*sin(p(:,2)).*exp(-p(:,1).^2-p(:,2).^2);
ti = -2:.1:2;
[xi,yi] = meshgrid(ti,ti);
ptsi = [xi(:),yi(:)];
zi = griddatan(p,z,ptsi,'linear',[],'closest');

g = griddatan(p,ptsi,'linear',[],'closest');
zi1 = tinterp(g,z);
z2 = sin(p(:,1)).*sin(p(:,2));
229

griddatan

230 | C H A P T
zi2 = tinterp(g,z2);

g is the struct:

g =
 method: 'linear'
 strategy: 'closest'
 t: [182x3 double]
 ind: [1681x1 double]
 coord: [1681x3 double]
 size: [1681 1]

See also griddata, griddata3, tinterp, tsearch, tsearchn, delaunay, delaunay3
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

gt
gtPurpose Compare matrices pointwise.

Synopsis d = gt(a, b)

Description d = gt(a, b) tests if the elements of the matrix a are pointwise greater than those
of the matrix b. For each dimension, a and b must have the same size or either of
them must have size 1. In the latter case, the unit dimension is expanded to the size
of the nonunit dimension.

gt(a, b) is equivalent to a > b.

Examples [2 3 5] > [1 3 7]

[5 -10 20] > 0

[1 2 3] > [1 ; 2]

See also eq, ge, le, lt, ne
231

help

232 | C H A P T
helpPurpose Display help text.

Synopsis help
help(topic)
help(obj)

Description help displays a brief list of available help topics.

help(topic) displays the help text for a topic, which can be the name of an M-file
or class on the path; in that case, the help text is the first contiguous block of
comment lines in the file. If no matching file is found and there is a class instance
variable topic in the current workspace, then the help for the class to which topic
belong is displayed.

help(obj) where obj is an instance of a user-defined class displays the help text for
the class to which obj belongs.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

hess
hessPurpose Hessenberg form.

Synopsis H = hess(A)
[Q,H] = hess(A)
[H,T,Q,Z] = hess(A,B)

Description H = hess(A) returns a Hessenberg form of a square matrix A.

[Q,H] = hess(A) also returns a unitary matrix Q such that A = Q*H*Q' and
Q'*Q = I.

[H,T,Q,Z] = hess(A,B) returns a Hessenberg matrix H, an upper triangular matrix
T, and unitary matrices Q and Z such that Q*A*Z = H and Q*B*Z = T. A and B must
be square matrices, and B must be upper triangular.

See also schur
233

hex2dec

234 | C H A P T
hex2decPurpose Convert hexadecimal strings to decimal integers.

Synopsis d = hex2dec(str)

Description d = hex2dec(str) converts a string str representing a hexadecimal number to a
decimal integer. str can also be a string matrix, in which case hex2dec converts
each row, or a cell array of strings, in which case hex2dec converts each element.

Example hex2dec('AE12') converts the hexadecimal string 'AE12' to its decimal
equivalent 44562.

See also base2dec, bin2dec, hex2num, dec2base, dec2bin, dec2hex, num2hex
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

hex2num
hex2numPurpose Convert IEEE-754 hexadecimal strings to decimal numbers.

Synopsis d = hex2num(str)

Description d = hex2num(str) converts a string str representing an IEEE-754 hexadecimal
number to a decimal floating point number d. str can also be a string matrix, in
which case hex2num converts each row, or a cell array of strings, in which case
hex2num converts each element. If an input string is shorter than 16 characters,
hex2num automatically pads it with zeros. For strings longer than 16 characters,
hex2num ignores any beyond the first 16.

Example hex2num({'3ff','4034','7ff'}) returns [1 ; 20 ; Inf].

See also base2dec, bin2dec, hex2dec, dec2base, dec2bin, dec2hex, num2hex
235

hidden

236 | C H A P T
hiddenPurpose Remove or show hidden lines for a mesh plot.

Synopsis hidden('on')
hidden('off')
hidden
hidden(ax, ...)

Description hidden('on') turns the removal of hidden lines in the current axes on.

hidden('off') turns the removal of hidden lines in the current axes off.

hidden toggles hidden-line removal on or off.

hidden(ax,...) controls hidden-line removal in the axes ax instead of in the
current axes.

See also mesh
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

hist
histPurpose Calculate histogram data or plot histogram.

Synopsis n = hist(x)
n = hist(x,ni)
n = hist(x,c)
[n,cent] = hist(...)

Description n = hist(x) divides the interval between the minimum and maximum value of x
into 10 intervals of equal size. It returns the number of elements of x that fall into
each of these bins. If x is a matrix, one count is done for each of the columns.

n = hist(x,ni) divides the interval into ni intervals of equal size.

n = hist(x,c) divides the interval between minimum and maximum value of x
into intervals centered at the positions given by the vector c. It then returns the
number of elements of x that falls into each of these bins.

[n,cent] = hist(...) also returns the centers for each of the subintervals in cent.

When hist is called without output arguments a histogram plot is produced from
the generated data.

See also histc
237

histc

238 | C H A P T
histcPurpose Histogram count.

Synopsis n = histc(x,edges)
n = histc(x,edges,dim)
[n,bin] = histc(...)

Description n = histc(x,edges) returns the number of elements of x that fall in the bins
specified by edges, which is a vector containing monotonically nondecreasing
values. Thus x(i) falls in bin k if edges(k) <= x(i) < edges(k+1). The last bin
contains the number of elements that exactly match the last element of edges. To
include all values (except NaN), put -Inf and Inf at the extremities of edges.

When x is a vector, n is the histogram count of x. When x is a matrix, n is matrix
containing the histogram count of each column of x. When x is an n-dimensional
array, n is the histogram count along the first nonsingleton dimension of x.

n = histc(x,edges,dim) returns the histogram count along the dimension dim.

[n,bin] = histc(...) also returns the index vector bin. For each element of x,
bin contains the index into which it falls, or 0 if it does not fit into any bin.

Example a=1:20;
histc(a,[0 5 7 12 20]) returns [4, 2, 5, 8, 1].

b=[-10.1 2 2.12 3 pi 1 1 0];
[res,ri] = histc(b,[-10,1,2,4]) returns
res = [1, 2, 4, 0] and ri = [0, 3, 3, 3, 3, 2, 2, 1].

See also hist
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

horzcat
horzcatPurpose Concatenate matrices or cell arrays horizontally.

Synopsis c = horzcat(arg1, ...)

Description c = horzcat(arg1, ...) returns the horizontal concatenation of its input
arguments, which need not be of the same type; if they differ, the result is the
common base type of them all.

horzcat(arg1, ...) is equivalent to [arg1 , ...] or cat(2, arg1, ...).

See also cat, vertcat
239

hold

240 | C H A P T
holdPurpose Retain contents in an axes when adding new plots.

Syntax hold('on')
hold('off')

Description hold('on') specifies that the contents in the current axes should be kept when new
plots are added.

hold('off') specifies that the current axes should be cleared automatically before
adding new plots.

See also ishold
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

hot
hotPurpose Create a colormap with colors from red and yellow to white.

Synopsis hot(n)

Description hot(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are from red and yellow
to white.

See also colormap, bone, cool, gray, grayprint, jet, hsv, pink, wavemap
241

hsv

242 | C H A P T
hsvPurpose Create a colormap containing a HSV colormap.

Synopsis hsv(n)

Description hsv(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The HSV colormap varies the hue
component of the hue-saturation-value color model. The colors begin with red, pass
through yellow, green, cyan, blue, magenta, and return to red. The map is
particularly useful for displaying periodic functions.

See also colormap, bone, cool, gray, grayprint, jet, hot, pink, wavemap
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

i

iPurpose Get the imaginary unit.

Syntax i

Description i is the imaginary unit.

See also imag, j
243

ifft

244 | C H A P T
ifftPurpose Compute the inverse fast Fourier transform of a vector or matrix.

Synopsis f = ifft(v)
f = ifft(v, n)
f = ifft(v, n, dim)
f = ifft(v, [], dim)
f = ifft(..., 'symmetric')

Description f = ifft(v) computes the inverse FFT along the first nonunit dimension of v.

f = ifft(v, n) computes the n-point inverse FFT. v is padded with zeros if it is
shorter than n and truncated if it is longer.

f = ifft(v, n, dim) computes the n-point inverse FFT along the dimension dim.

f = ifft(v, [], dim) computes the inverse FFT along the dimension dim.

f = ifft(..., 'symmetric') computes the inverse FFT under the assumption
that the input has Hermitian symmetry. As a result, the output f is always real.

See also fft, fft2, ifft2, fftn, ifftn
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ifft2
ifft2Purpose Compute the inverse 2D fast Fourier transform of a matrix.

Synopsis f = ifft2(m)
f = ifft2(m, rows, cols)
f = ifft2(..., 'symmetric')

Description f = ifft2(m) computes the inverse 2D FFT of the matrix m.

f = ifft2(m, rows, cols) computes the 2D inverse FFT of size (rows, cols).
The input matrix is truncated or padded with zeros if necessary.

f = ifft2(..., 'symmetric') computes the inverse 2D FFT under the
assumption that the input has Hermitian symmetry. As a result, the output f is
always real.

See also fft, ifft, fft2, fftn, ifftn
245

ifftn

246 | C H A P T
ifftnPurpose Compute the inverse n-dimensional fast Fourier transform of an array.

Synopsis f = ifftn(m)
f = ifftn(m, size)
f = ifftn(..., 'symmetric')

Description f = ifftn(m) computes the inverse n-dimensional FFT of the n-dimensional
array m.

f = ifftn(m, size) computes the inverse n-dimensional FFT of size size. The
input array is truncated or padded with zeros if necessary.

f = ifftn(..., 'symmetric') computes the inverse n-dimensional FFT under
the assumption that the input has Hermitian symmetry. As a result, the output f is
always real.

See also fft, ifft, fft2, ifft2, fftn, ifftn
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ifftshift
ifftshiftPurpose Undo the frequency-spectrum shift performed by fftshift.

Synopsis f = ifftshift(m)

Description f = ifftshift(m) shifts the indices in each dimension circularly so that index 1 in
f corresponds to the middle index in m. ifftshift is the inverse of fftshift.

See also circshift, fft, ifft, fft2, fftshift, ifft2, fftn, ifftn
247

imag

248 | C H A P T
imagPurpose Return imaginary part.

Synopsis b = imag(a)

Description b = imag(a) returns the imaginary part of the complex matrix a.

See also i, j, real
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

image
imagePurpose Show an image.

Synopsis image(im)

Description image(im) displays the matrix im as and image. im is either an m-by-n matrix or a
m-by-n-by-3 matrix. If im is an m-by-n matrix the values in im are used as direct
indices into the colormap. If im is an m-by-n-by-3 matrix it is treated as direct
specification of colors and the last index corresponds to red, green and blue color
component values respectively. The lower left corner in the image will be centered
over (1,1) in the axes and the upper left corner over (n,m).

image(x,y,im) where x and y are two element vector places the corner of the
image at (x(1),y(1)) and (x(2),y(2)) in the axes.

The property values for patch can also be given at the end of the command to
control how the image is created.

image is suitable for displaying small images. Use imshow to display larger images.

See also imagesc, imread, imshow, imwrite
249

imageicon

250 | C H A P T
imageiconPurpose Create an image icon that can be added to buttons and labels.

Synopsis im = imageicon(name)

Description im = imageicon(name) creates an image icon using the image in the file name.
That file can be an image of the types JPEG, GIF or PNG.

You can then add the image icon to buttons or labels when creating those objects.

See also button, label
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

imagesc
imagescPurpose Show an image.

Synopsis imagesc(im)

Description imagesc has the same functionality as image except that a scaled mapping is used
when mapping the data values to the color map.

imagesc is suitable for displaying small images. Use imshow to display larger
images.

See also image, imread, imshow, imwrite
251

imread

252 | C H A P T
imreadPurpose Read an image from file.

Syntax im=imread(filename)

Description im=imread(filename) reads the image from the file filename into the matrix im.
im will be a height-by-width-by-3 matrix with RGB values for each pixel in the
image. The RGB values will be between 0 and 255 and of the type uint8.

The extension of filename is used to determine the type of the image. On 32-bit
Windows, Linux, Solaris, and Macintosh, the imread function supports bmp, jpeg,
png, and tiff images. On other platforms jpeg and png images are supported.

See also image, imagesc, imshow, imwrite
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

imshow
imshowPurpose Show an image.

Synopsis imshow(im)
imshow(im,colormap)

Description imshow(im) show the image matrix im in a window. The matrix has dimensions
height-by-width-3 where the last index corresponds to the RGB values for the color
at each position. If im is a uint8 matrix the RGB values ranges from 0 to 255. If it
is a double matrix it ranges from 0 to 1.

im can also be a width-by-height matrix. In that case the values of im are mapped to
a colormap to create an image. By default the jet(1024) colormap is used. If you
want to use another colormap you can pass that as the second argument to imshow.

See also image, imagesc, imread, imwrite
253

imwrite

254 | C H A P T
imwritePurpose Write an image to file.

Synopsis imwrite(im,filename)

Description imwrite(im,filename) writes the image im to the file filename. IM is a
height-by-width-by-3 matrix with RGB values for each pixel in the image. It can
either be a uint8 matrix with RGB values between 0 and 255 or a double matrix with
RGB values between 0 and 1.

The extension of filename is used to determine the type of the image. On 32-bit
Windows, Linux, Solaris and Macintosh bmp, jpeg, png and tiff images are
supported. On other platforms jpeg and png images are supported.

See also image, imagesc, imread, imshow
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ind2sub
ind2subPurpose Convert a 1D matrix index into an equivalent multidimensional index vector.

Synopsis [ix1, ...] = ind2sub(sz, n)

Description [ix1, ...] = ind2sub(sz, n) returns the multidimensional index vector (ix1,
...) that is equivalent to the matrix index n for a matrix of size sz.

Example [row, col] = ind2sub([4 5], 7) results in row = 3 and col = 2 as M(7) and
M(3, 2) refer to the same element for a 4 x 5 matrix M.

See also sub2ind
255

inf

256 | C H A P T
infPurpose Get an infinite value.

Synopsis inf
m = inf(n)
m = inf(sz)
m = inf(n1,n2,...)

Description inf returns an infinite floating-point value.

m = inf(n), where n is an integer, returns an nxn all-inf matrix.

m = inf(sz), where sz is a vector of integers, returns an all-inf matrix of size sz.

m = inf(n1,n2,...), where ni are integers, returns an
n1xn2x ... all-inf matrix.

See also nan
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

inline
inlinePurpose Create an in-line function.

Synopsis f = inline(expr)
f = inline(expr, n)
f = inline(expr, in1, ...)

Description f = inline(expr) creates an in-line function that computes the expression expr.
The inputs to the function are the identifiers returned by symvar. If symvar finds
no identifiers, the inline function takes a single input, x.

f = inline(expr, n), where n is a nonnegative integer, creates an in-line function
that computes the expression expr. Inputs to the function are x, P1, ..., Pn.

f = inline(expr, in1, ...) creates an inline function that computes the
expression expr using inputs in1,

Examples r = inline('sqrt(x.^2+y.^2)') defines an in-line function with two inputs: x
and y.

r = inline('c*a+b', 'a', 'b', 'c') defines an in-line function with three
inputs in a specified order. Compare this with r = inline('c*a+b') which would
assume that the function arguments are given in the order 'c', 'a', 'b'.

See also argnames, symvar
257

input

258 | C H A P T
inputPurpose Ask for user input.

Synopsis a = input(quest)
a = input(quest,'s')

Description a = input(quest) displays the text in the string quest and waits for user input at
the prompt. When the user presses the return key, it evaluates the entered text using
the variables in the current context and returns the result in a.

a = input(quest,'s') returns the entered text as a string in a without trying to
evaluate it.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

inputname
inputnamePurpose Get the name of an input to a user-defined function.

Synopsis name = inputname(n)

Description name = inputname(n) returns the name of the variable used as the nth input to the
user-defined function currently being executed. n must be an integer between 1 and
nargin. If the nth input does not map to a variable in the calling workspace, the
command returns ''.

See also nargin, varargin
259

int2str

260 | C H A P T
int2strPurpose Integer to string conversion.

Synopsis str = int2str(n)

Description int2str(n) converts an integer or a 2D array of integers n into a string after
rounding all noninteger values.

Example int2str([1,-10,-1.4,-1.5,1.49,1.5,Inf,NaN]) returns the string
'1 -10 -1 -2 1 2 Inf NaN'.

See also num2str, sprintf
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

int8, int16, int32, int64
int8, int16, int32, int64Purpose Convert a matrix into an integer matrix.

Synopsis m = int8(a)
m = int16(a)
m = int32(a)
m = int64(a)

Description m = int8(a) converts the real matrix a to an integer matrix by rounding each
element to the closest 8-bit integer. Elements too large or too small to be
represented using 8-bit integers are rounded to the largest and smallest 8-bit
integers, respectively.

int16, int32, and int64 instead round to 16-, 32-, and 64-bit integers,
respectively.

The maximum and minimum values of n-bit integers are:.

See also uint8, uint16, uint32, uint64

TABLE 1-24:

FUNCTION MIN MAX

int8 -128 127

int16 -32768 32767

int32 -2147483648 2147483647

int64 -9223372036854775808 9223372036854775807
261

interp1

262 | C H A P T
interp1Purpose 1D interpolation.

Synopsis yi = interp1(x,y,xi)
yi = interp1(y,xi)
yi = interp1(...,method)
yi = interp1(...,method,extrap)

Description yi = interp1(x,y,xi), where y=f(x), performs linear interpolation to determine
yi=f(xi). x must be a vector, and y must be an array whose first dimension equals the
length of x.

yi = interp1(y,xi) performs linear interpolation using the default values
x = 1...n, where n is the length of the first dimension of y.

yi = interp1(...,method) performs interpolation using a specific method:
'nearest' (nearest neighbor interpolation), 'linear'(linear interpolation),
'spline' (cubic spline interpolation) or 'cubic'(piecewise cubic Hermite
interpolation, same as'pchip').

yi = interp1(...,method,extrap) performs interpolation using a specific
method for out-of-range values. extrap can be either the string 'const' or
'extrap' (denoting a constant extension or extrapolation, respectively) or a scalar,
which is then returned for any out-of-range values. The default method for linear
and nearest neighbor interpolation is to set all out of range values to NaN. The other
interpolation methods use extrapolation.

Example This example interpolates points from the sine curve.

x = linspace(0,2*pi,10); y = sin(x);
xi = linspace(0,2*pi,20);
yin = interp1(x,y,xi,'nearest');
yil = interp1(x,y,xi,'linear');
yis = interp1(x,y,xi,'spline');

See also interp2, interp3, spline, pchip
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

interp2
interp2Purpose 2D interpolation.

Synopsis zi = interp2(x,y,z,xi,yi)
zi = interp2(z,xi,yi)
zi = interp2(...,method)
zi = interp2(...,method,extrap)

Description zi = interp2(x,y,z,xi,yi), where z = f(x,y), performs linear interpolation to
determine zi = f(xi,yi). If x and y are vectors of length n and m respectively, then z
must be a matrix of size mxn. x and y can also be grid matrices as described in
meshgrid. xi and yi can be matrices or vectors of different orientations.

zi = interp2(z,xi,yi) performs linear interpolation using the default values
x = 1...n and y = 1...m.

zi = interp2(...,method) performs interpolation using a specific method:
'nearest' (nearest neighbor interpolation) or 'linear'(linear interpolation).

zi = interp2(...,method,extrap) performs interpolation using a specific
method for out-of-range values. extrap can be either the string 'const' or
'extrap' (denoting a constant extension or extrapolation, respectively) or a scalar,
which is then returned for any out-of-range values. The default method is to set all
out-of-range values to NaN.

See also interp1, interp3
263

interp3

264 | C H A P T
interp3Purpose 3D interpolation.

Synopsis vi = interp3(x,y,z,v,xi,yi,zi)
vi = interp3(v,xi,yi,zi)
vi = interp3(...,method)
vi = interp3(...,method,extrap)

Description vi = interp3(x,y,z,v,xi,yi,zi), where v = f(x,y,z), performs linear
interpolation to determine vi = f(xi,yi,zi). If x, y, and z are vectors of length n, m,
and p respectively, then v must be a matrix of size mxnxp. x, y, and z can also be grid
matrices as described in meshgrid. xi, yi, and zi can be matrices or vectors of
different orientation.

vi = interp3(v,xi,yi,zi) performs linear interpolation using the default values
x = 1...n, y = 1...m, and z = 1...p.

vi = interp3(...,method) performs interpolation using a specific method:
'nearest' (nearest neighbor interpolation) or 'linear'(linear interpolation).

vi = interp3(...,method,extrap) performs interpolation using a specific
method for out-of-range values. extrap can be either the string 'const' or
'extrap' (denoting a constant extension or extrapolation, respectively) or a scalar,
which is then returned for any out-of-range values. The default method is to set all
out-of-range values to NaN.

See also interp1, interp2
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

intersect
intersectPurpose Set intersection.

Synopsis c = intersect(a,b)
c = intersect(a,b,'rows')
[c,ai,bi] = intersect(...)

Description c = intersect(a,b) returns the intersection of a and b, that is, the elements
contained in both a and b, both of which can be either arrays or cell arrays of strings.

c = intersect(a,b,'rows'), where a and b must be 2D matrices, returns the
row intersection, that is the rows common to both a and b, both of which must have
the same number of columns.

[c,ai,bi] = intersect(...) also returns index vectors ai and bi, which
contain the linear indices of the elements of c in a and b, respectively.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command.

Examples a = [1 2 0 1 2 3];
b = [2 4 5 7 0 8];
intersect(a,b) returns [0, 2]

a = [1 2 3; 2 3 1; 3 4 5; 5 4 3; 4 3 5;1 3 3];
b = [3 4 5; 3 4 5; 1 2 2; 4 3 5];
intersect(a,b,'rows') returns [3, 4, 5 ; 4, 3, 5]

a = {'green','yellow','blue','green','red'};
b = {'red','green'};
[c,ai,bi] = intersect(a,b) returns c = {'green', 'red'}

[c1,ai1,bi1] = intersect(a,b,'sort','off') returns the same result
unsorted.

See also ismember, setdiff, setxor, union, unique

TABLE 1-25: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off' 'on' Controls whether or not
output should be sorted.
265

intmax, intmin

266 | C H A P T
intmax, intminPurpose Get the largest and smallest values that can be represented as k-bit integers.

Synopsis m = intmax(type)
m = intmin(type)

m = intmax
m = intmin

Description m = intmax(type) and m = intmin(type) return the smallest and largest values,
respectively, that can be returned by the integer conversion function type. Possible
values for type are 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16',
'uint32', and 'uint64'.

m = intmax and m = intmin are equivalent to m = intmax('int32') and m =
intmin('int32'), respectively.

See also int8, int16, int32, int64, uint8, uint16, uint32, uint64
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

inv
invPurpose Matrix inverse.

Synopsis inv(A)

Description inv(A) computes the inverse of the matrix A.
267

isa

268 | C H A P T
isaPurpose Test if a value belongs to a class.

Synopsis d = isa(val, classname)

Description d = isa(val, classname) returns true if val belongs to the class classname,
otherwise false.

See also class
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

iscell
iscellPurpose Test if a value is a cell array.

Synopsis d = iscell(c)

Description d = iscell(c) returns true if c is a cell array, otherwise false.
269

iscellstr

270 | C H A P T
iscellstrPurpose Test if a value is a cell array of strings.

Synopsis d = iscellstr(c)

Description d = iscellstr(c) returns true if c is a cell array of strings, otherwise false.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ischar
ischarPurpose Test if a value is a character matrix.

Synopsis d = ischar(c)

Description d = ischar(c) returns true if c is a character matrix, otherwise false.
271

isdir

272 | C H A P T
isdirPurpose Test if a directory exists.

Synopsis d = isdir(name)

Description d = isdir(name) returns true there is a readable directory called name.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isempty
isemptyPurpose Test if a value is empty.

Synopsis d = isempty(m)

Description d = isempty(m) returns true if any dimension of m has size 0, otherwise false.
273

isequal

274 | C H A P T
isequalPurpose Test if values are equal.

Synopsis d = isequal(a, b, ...)

Description d = isequal(a, b, ...) returns true if all input arguments are equal, otherwise
false. For matrices and cell arrays, equality means that the sizes and all elements
are equal. For structures to be equal, they must have the same fields and the values
of the fields must be equal. In all these cases, the equality tests for elements and
fields are performed by recursively invoking isequal.

Note isequal(NaN, NaN) returns false. If you want to consider NaNs as being equal,
use isequalwithequalnans.

See also isequalwithequalnans
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isequalwithequalnans
isequalwithequalnansPurpose Test if two values are equal without special semantics for NaN.

Synopsis d = isequalwithequalnans(a, b, ...)

Description d = isequalwithequalnans(a, b, ...) returns true if all input arguments are
equal, otherwise false. For matrices and cell arrays, equality means that the sizes
and all elements are equal. For structures to be equal, they must have the same fields
and the values of the fields must be equal. In all these cases, the equality tests for
elements and fields are performed by recursively invoking isequalwithequalnans.

See also isequal
275

isfield

276 | C H A P T
isfieldPurpose Test if a structure has a certain field.

Synopsis d = isfield(s, name)

Description d = isfield(s, name) returns true if s is a structure that contains a field called
name, otherwise false.

See also getfield, setfield
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isfinite
isfinitePurpose Test if elements of a matrix are finite.

Synopsis d = isfinite(a)

Description d = isfinite(a), for a matrix a, returns a logical array of the same size as a. The
elements in d are false if the corresponding position in a is Inf, -Inf, or NaN,
otherwise true. For complex matrices, this criterion is applied to the real and
imaginary parts.

See also isinf, isnan
277

isglobal

278 | C H A P T
isglobalPurpose Test if a variable is global.

Synopsis d = isglobal(name)

Description d = isglobal(name) returns true if the workspace contains a global
variable name, otherwise false.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ishandle
ishandlePurpose Test if a variable is a graphics handle.

Synopsis is = ishandle(h)

Description is = ishandle(h) returns a logical array of the same length as h with true for the
entries in h that are graphics handles.
279

ishold

280 | C H A P T
isholdPurpose Check if hold is on.

Synopsis h = ishold
h = ishold(ax)

Description h = ishold returns 1 if hold is on in the current axes and 0 otherwise. When hold
is on, graphics commands that plot into the axes add data to the existing plot instead
of replacing it.

h = ishold(ax) returns the hold state of the axes ax.

See also hold
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isinf
isinfPurpose Test if elements of a matrix are infinite.

Synopsis d = isinf(a)

Description d = isinf(a), for a matrix a, returns a logical array of the same size as a. The
elements in d are true if the corresponding position in a is Inf or -Inf, otherwise false.
For complex matrices, this criterion is applied to the real and imaginary parts.

See also isfinite, isnan
281

isjava

282 | C H A P T
isjavaPurpose Test if a value is a Java object.

Synopsis d = isjava(jo)

Description d = isjava(jo) returns true if jo is a Java object, otherwise false.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

iskeyword
iskeywordPurpose Test if a string is a reserved word.

Synopsis iskeyword
d = iskeyword(str)

Description iskeyword returns a cell array containing all reserved words.

d = iskeyword(str) returns true if str is a reserved word, otherwise false.
283

isletter

284 | C H A P T
isletterPurpose Test for letters.

Synopsis x = isletter(str)

Description x = isletter(str), where str is a character array, returns a logical array x of the
same size as str, containing true for each character that is a letter of the alphabet
and false otherwise.

Example isletter('ab89*%') returns [true, true, false, false, false, false].

See also ischar, isspace
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

islogical
islogicalPurpose Test if a value is logical.

Synopsis d = islogical(a)

Description d = islogical(a) returns true if a is a logical matrix, otherwise false.
285

ismember

286 | C H A P T
ismemberPurpose Determine set members.

Synopsis c = ismember(a, b)
c = ismember(a, b, 'rows')
[c, ai] = ismember(a, b, ...)

Description c = ismember(a,b) determines which elements of a belong to set b. a and b can
be either arrays or cell arrays of strings. c is an array of the same size as a, containing
logical true and false depending on whether or not corresponding element of a
belongs to b.

c = ismember(a,b,'rows'), where a and b must be two-dimensional matrices,
determines which rows of a belong b. a and b must have the same number of
columns.

[c,ai] = ismember(...) also returns index vector ai, containing the linear
indices of the last occurrences of elements in a that are in b, or zero otherwise.

Examples a = [1 2 0 1 2 3];
b = [2 4 5 7 0 8];
[c,ai] = ismember(a,b) returns c = [false, true, rue, false, true,
false] and ai = [0, 1, 5, 0, 1, 0].

a = [1 2 3; 2 3 1; 3 4 5; 5 4 3; 4 3 5;1 3 3];
b = [3 4 5; 3 4 5; 1 2 2; 4 3 5];
ismember(a,b,'rows') returns [0 ; 0 ; 1 ; 0 ; 1 ; 0].

a = {'green','yellow','blue','green'};
b = {'red','purple','yellow'};
ismember(a,b) returns [0, 1, 0, 0].

See also intersect, setdiff, setxor, union, unique
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isnan
isnanPurpose Test if elements of a matrix are NaN.

Synopsis d = isnan(a)

Description d = isnan(a), for a matrix a, returns a logical array of the same size as a. The
elements in d are true if the corresponding position in a is NaN, otherwise false. For
complex matrices, this criterion is applied to the real and imaginary parts.

See also isfinite, isinf
287

isnumeric

288 | C H A P T
isnumericPurpose Test if a value is numeric.

Synopsis d = isnumeric(a)

Description d = isnumeric(a) returns true if a is a real or complex matrix, otherwise false.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isobject
isobjectPurpose Test if a value is an object.

Synopsis d = isobject(obj)

Description d = isobject(obj) returns true if obj is a COMSOL Script object, otherwise
false.
289

ispc

290 | C H A P T
ispcPurpose Test if COMSOL Script is running on a PC.

Synopsis d = ispc

Description d = ispc returns true if COMSOL Script is running on a PC, otherwise false.

See also isunix
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isprime
isprimePurpose Test for prime numbers

Synopsis y = isprime(x)

Description y = isprime(x) tests each element of the array x for prime numbers. y is an array
of the same size as x that contains true for each element of x that is prime and
false otherwise.

Example isprime([3 17 19 231 86421 99823]) returns
[true, true, true, false, false, true].

See also factor, primes
291

isreal

292 | C H A P T
isrealPurpose Test if a value is a real matrix.

Synopsis d = isreal(a)

Description d = isreal(a) returns true if a is a double matrix, a character matrix or a logical
matrix, or a Java object, otherwise it returns false.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isscalar
isscalarPurpose Test if a value is a scalar.

Synopsis d = isscalar(a)

Description d = isscalar(a) returns true if all dimensions of a have length 1, otherwise
false.
293

isspace

294 | C H A P T
isspacePurpose Test for white space.

Synopsis x = isspace(str)

Description x = isspace(str), where str is a character array, returns a logical array x of the
same size as str, containing true for each character that is a white-space character
and false otherwise.

White-space characters are defined as the following ASCII values: 9 (horizontal
tabulation), 10 (new line), 11 (vertical tab), 12 (form feed), 13 (carriage return),
and 32 (space).

Example isspace(['a b',char([9 10 11 12 13 32]),'/*']) returns
[false,true, false,true,true,true,true,true,true,false,false]

See also ischar, isletter
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

issparse
issparsePurpose Test if a value is a sparse matrix.

Synopsis d = issparse(a)

Description d = issparse(a) returns true if a is a sparse matrix, otherwise false.
295

isstr

296 | C H A P T
isstrPurpose Test if a value is a character matrix.

Synopsis d = isstr(c)

Description d = isstr(c) returns true if c is a character matrix, otherwise false.

Remark isstr is equivalent to ischar.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isstruct
isstructPurpose Test if a value is a structure.

Synopsis d = isstruct(s)

Description d = isstruct(s) returns true if s is a structure, otherwise false.
297

isunix

298 | C H A P T
isunixPurpose Test if COMSOL Script is running under Unix.

Synopsis d = isunix

Description d = isunix returns true if COMSOL Script is running under Unix, otherwise
false.

See also ispc
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

isvarname
isvarnamePurpose Test if a string can be used as a variable name.

Synopsis d = isvarname(str)

Description d = isvarname(str) returns true if str is a string that contains a valid variable
name, otherwise false. A variable name can contain only letters, digits, and
underscores, and it must start with a letter.
299

isvector

300 | C H A P T
isvectorPurpose Test if a value is a vector.

Synopsis d = isvector(a)

Description d = isvector(a) returns true if a has the size (1, n) or (n, 1), otherwise false.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

j

jPurpose Get the imaginary unit.

Syntax j

Description j is the imaginary unit.

See also i, imag
301

javaArray

302 | C H A P T
javaArrayPurpose Create an array of Java objects.

Syntax j = javaArray(cls, dim1, ...)

Description j = javaArray(cls, dim1, ...), where cls is a Java class name, creates an array
of size (dim1, ...) of Java objects of class cls.

See also javaMethod, javaDeclare,javaObject
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

javaDeclare
javaDeclarePurpose Load declarations of Java methods.

Syntax javaDeclare(file)
javaDeclare(file, replace)
javaDeclare(methods, file)

Description javaDeclare(file), where file is a file name, loads declarations of Java methods
from file. The declaration file should contain method declarations written in Java.

javaDeclare(file, replace), replaces the existing set of Java declarations with
those in file if replace is true and appends to the existing set if replace is false.

javaDeclare(methods, file), where methods is a cell array of Java class names
and file is a file name, writes the declarations of all public methods found in the
class name list to file.

Only public methods can be accessed through the Java interface. Methods with no
visibility specified are assumed to be public.

For overloaded methods and constructors, the number of arguments must differ: It
is not possible to declare two methods in a class that have the same name and
number of arguments.

Example The file my.decls has the following contents:

// The file can contain comments.
/* Both types of comments can be used. */
java.lang.String(String);
static java.lang.String.valueOf(double);
int java.lang.String.indexOf(java.lang.String);

javaDeclare('my.decls') adds the declarations of three member methods of
java.lang.String to the declaration database.

See also javaArray, javaMethod,javaObject
303

javaMethod

304 | C H A P T
javaMethodPurpose Invoke a Java method.

Syntax d = javaMethod(method, cls)
d = javaMethod(method, cls, arg1, ...)
d = javaMethod(method, obj)
d = javaMethod(method, obj, arg1, ...)

Description d = javaMethod(method, cls, arg1, ...), where method is a method name
and cls a class name, invokes the static method called method in the class cls with
the arguments (arg1, ...) and returns the result.

d = javaMethod(method, obj, arg1, ...), where method is a method name
and obj a Java object, invokes the member function called method in the Java object
obj with the arguments (arg1, ...) and returns the result.

See also javaArray, javaDeclare, javaObject
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

javaObject
javaObjectPurpose Create Java object.

Syntax j = javaObject(cls, ...)

Description j = javaObject(cls, ...), where cls is a Java class name, creates a Java object
of class cls. The arguments, if any, after cls are passed on to the constructor.

See also javaArray, javaDeclare, javaMethod
305

jet

306 | C H A P T
jetPurpose Create a colormap with all colors from blue to red.

Synopsis jet(n)

Description jet(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are all colors from blue
to red.

See also colormap, bone, cool, gray, grayprint, hot, hsv, pink, wavemap
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

keyboard
keyboardPurpose Manually place a breakpoint in the code.

Synopsis keyboard

Description When you place keyboard somewhere in a script or function, execution stops on
that line just as if you had placed a break point there. Ordinary debugging
commands can then be used.
307

kron

308 | C H A P T
kronPurpose Kronecker tensor product.

Synopsis C = kron(A,B)

Description C = kron(A,B) computes the Kronecker tensor product of matrices A and B. If A is
an mxn matrix and B is a pxq matrix, then the Kronecker product of A and B is the
mpxnq block matrix.

Example kron([1 2;0 2],[2,3,4;1,1,1]) returns a 4x6 matrix [2 3 4 4 6 8;1 1 1 2
2 2;0 0 0 4 6 8;0 0 0 2 2 2].
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

label
labelPurpose Create a label.

Synopsis l = label(text,...)
l = label(...)

Description l = label(text) creates a label with the specified text.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the label is created.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component

PROPERTY VALUE DESCRIPTION

image iconimage An image to display on the label.

text string A text to display on the label.
309

lasterr

310 | C H A P T
lasterrPurpose Get or set the current error message.

Syntax lasterr(msg)
lasterr(msg, id)
msg = lasterr
[msg, id] = lasterr

Description lasterr(msg), where msg is a string, sets the current error message to msg.

 lasterr(msg, id), where msg and id are strings, sets the current error message
to msg and the current error ID to id.

 msg = lasterr returns the current error message.

 [msg, id] = lasterr returns the current error message and error ID.

See also lasterror
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

lasterror
lasterrorPurpose Get or set the current error message.

Syntax lasterror(s)
s = lasterror

Description lasterror(s), where s is a structure, sets the current error message to s.message
and sets the current error ID to s.identifier.

 s = lasterror returns a structure containing the current error message in the
field message, the error ID in the field identifier, and a detailed error trace in
the field details.

See also lasterr
311

lcm

312 | C H A P T
lcmPurpose Least common multiple.

Synopsis l = lcm(a,b)

Description l = lcm(a,b) computes the least common multiple of the elements of arrays a and
b. a and b must be the same size, or either one can be a scalar.

Example lcm([120 3 7],9) returns [360, 9, 63].

See also gcd
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ldivide
ldividePurpose Divide matrices pointwise.

Synopsis d = ldivide(a, b)

Description d = ldivide(a, b) computes the pointwise ratio between the two matrices b
and a. For each dimension, a and b must have the same size or either of them must
have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

ldivide(a, b) is equivalent to a.\b.

Examples [1 10 100].\[3 4 5]

10.\[2 3 5]

See also minus, plus, rdivide, times
313

le

314 | C H A P T
lePurpose Compare matrices pointwise.

Synopsis d = le(a, b)

Description d = le(a, b) tests if the elements of the matrix a are pointwise less than or equal
to those of the matrix b. For each dimension, a and b must have the same size or
either of them must have size 1. In the latter case, the unit dimension is expanded
to the size of the nonunit dimension.

le(a, b) is equivalent to a <= b.

Examples [2 3 5] <= [1 3 7]

[5 -10 20] <= 0

[1 2 3] <= [1 ; 2]

See also eq, ge, gt, lt, ne
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

legend
legendPurpose Display a legend with a plot.

Synopsis legend(leg1,leg2,leg3,...)
legend('show')
legend('hide')
legend(ax,...)

Description legend(leg1,leg2,leg3,...) displays the strings leg1, leg2, leg3 and so on
as legends with the current plot.

legend('show') turns on the display of legends.

legend('hide') turns off the display of legends.

legend(ax,...) controls legends in the axes ax instead of in the current axes.

See also plot
315

length

316 | C H A P T
lengthPurpose Get the largest dimension of a matrix.

Syntax l = length(a)

Description l = length(a), for a nonempty matrix a, returns the maximum length of any
dimension of a, that is, max(size(a)). If a is empty, 0 is returned.

See also size
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

light
lightPurpose Create a light.

Synopsis light(...)

Description light(...) adds a light to a plot. Several different types of light can be created. To
control which type of light to create and what properties to give it, use the
properties in the following table.

h = light(...) also returns a handle to the created light.

See also lighting, material, patch, surface

TABLE 1-26: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec w A string or an RGB triplet
specifying the color of the
light. If it is a string it is one of
the letters r, g, b, c, m, y or k,
meaning red, green, blue, cyan,
magenta, yellow and black
respectively.

concentra
tion

A real value
between 0 and 128

0 The concentration for a
spotlight.

direction A three element
array.

[0 0 1] The direction for a directional
light or a spot light.

parent Axes handle gca What axes to add the light to.

position A three element
array.

[0 0 0] The position for a point light
or a spotlight.

style ambient |

directional |

point | spot

point The type of light to create.

spread A real number
between 0 and pi.

pi The spread angle for a
spotlight.
317

lighting

318 | C H A P T
lightingPurpose Turn on and off scene light.

Synopsis lighting('phong')
lighting('none')

Description lighting('phong') turns on scene lights in the current axes.

lighting('none') turns off scene lights in the current axes.

lighting(ax,...) controls scene lights in the axes AX instead of in the current
axes.

See also light, material, patch, surface
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

line
linePurpose Create a line.

Syntax line(x,y)
line(x,y,z)

Description line(x,y) connects the coordinates in the vectors x and y to form a line. If x and
y are matrices, one connected line is created for each column in the matrices.

line(x,y,z) adds a line in 3D.

h = line(...) returns a handle to the created line.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the line is created.

See also plot, plot3

TABLE 1-27: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec k A string or an RGB triplet
specifying the color of the line.
If it is a string it is one of the
letters r, g, b, c, m, y or k,
meaning red, green, blue, cyan,
magenta, yellow, and black,
respectively.

linestyle One of the strings
-,:,-.,--

- String representing solid,
dotted, dash-dot, and dashed
line styles, respectively

linewidth positive scalar 1 The width of the line

marker .,v,+,o,*,s,p The marker to show along the
line. Only available for 2D
lines.

parent Axes handle gca What axes to add the line to.
319

linspace

320 | C H A P T
linspacePurpose Create vector containing linearly spaced values.

Syntax v = linspace(a, b, n)
v = linspace(a, b)

Description v = linspace(a, b, n), where a and b are real or complex scalars, creates a vector
containing n elements linearly spaced between a and b, that is, [a a+(b-a)/(n-1)
... b].

v = linspace(a, b) is equivalent to v = linspace(a, b, 100).

See also logspace
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

listbox
listboxPurpose Create a list box.

Synopsis c = listbox(...)

Description c = listbox(...) creates a list box. Values and descriptions for the values in the
list box are specified using the properties in the following table

The function returns a list-box object that can then be further manipulated using
the methods in the following table.

TABLE 1-28: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

descr cell array of strings The strings to display in the list box. If not
given the strings specified as items will be
displayed in the list box.

items cell array of strings String representing the value corresponding
to each entry in the list box. Can then be used
to easily set and get the value of the list box
using strings instead of indices.

TABLE 1-29: METHODS FOR MANIPULATING A LISTBOX OBJECT.

METHOD DESCRIPTION

addListSelectionListener(name) Specifies that the function with the given
name should be run when the selection
in the list box changes.

getSelectedIndex Returns an index to the currently
selected item in the list box.

getSelectedIndices Returns an array with indices to the
selected items in the list box.

getValue Returns a string corresponding to the
currently selected item in the list box.

setItems(items) Sets the items to display in the list box by
passing a cell array of strings.

setItems(items,descr) Sets the descriptions to display in the list
box and their corresponding values by
passing two cell arrays of strings.

setSelectedIndex(ind) Selects the item with the specified index
in the list box.

setSelectedIndices(ind) Selects the items corresponding to the
indices in the vector ind.

setValue(value) Selects the item with the specified value
in the list box.
321

listbox

322 | C H A P T
See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, combobox
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

load
loadPurpose Load a workspace from a file.

Syntax load(filename)
load(filename, var1, ...)
s = load(filename)
s = load(filename, var1, ...)

load(..., '-mat')
s = load(..., '-mat')

load(..., '-ascii')
s = load(..., '-ascii')

Description load(filename), where filename is a string, loads variables and their values from
the file filename. Existing workspace variables are overwritten.

load(filename, var1, ...) loads only the variables var1, ... into the workspace.
* can be used as wildcard character unless '-ascii' is given..

s = load(filename) loads variables and values into a structure. Each variable
corresponds to a field in the structure.

s = load(filename, var1, ...) loads only the variables var1, ...

load(..., '-mat') loads the file as a MATLAB workspace file. (The default
behavior is to load the file as a Comsol workspace file.)

load(..., '-ascii') reads a text representation of a real matrix from filename
into a workspace variable with a name derived from filename. Each row of the file
corresponds to one row in the matrix; hence all rows must have the same number
of columns.

s = load(..., '-ascii') reads a text representation of a real matrix and returns
the matrix.

See also save
323

log

324 | C H A P T
logPurpose Compute natural logarithm.

Syntax b = log(a)

Description b = log(a) returns the natural logarithm of the matrix a pointwise.

See also log10
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

log10
log10Purpose Compute a base-10 logarithm.

Syntax b = log10(a)

Description b = log10(a) returns the base-10 logarithm of the matrix a pointwise.

See also log
325

log2

326 | C H A P T
log2Purpose Compute a base-2 logarithm.

Syntax b = log2(a)
[m, e] = log2(mat)

Description b = log2(a) returns the base-2 logarithm of the matrix a pointwise.

[m, e] = log2(a) returns the mantissa m and exponent e pointwise for the
matrix a. They satisfy the relation a = m.*2.^e.

See also log, log10
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

logical
logicalPurpose Convert a matrix to a logical matrix.

Syntax l = logical(a)

Description l = logical(a) returns a logical matrix with the same size as a that is the result of
element-wise converting a to logical values.
327

loglog

328 | C H A P T
loglogPurpose Create a plot with log scales on both the x-axis and the y-axis.

Synopsis loglog(...)

Description loglog(...) has the same functionality as plot(...) with the addition that it uses
log scales on both the x-axis and the y-axis.

See also plot
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

logm
logmPurpose Matrix logarithm.

Syntax F = logm(A)

Description F = logm(A) returns the principal logarithm of a square matrix A.

See also expm, funm
329

logspace

330 | C H A P T
logspacePurpose Create a vector containing logarithmically spaced values.

Syntax v = logspace(a, b, n)
v = logspace(a, b)

Description v = logspace(a, b, n), where a and b are real or complex scalars, returns a vector
containing n elements logarithmically spaced between 10^a and 10^b, that is, [10^a
10^(a+(b-a)/(n-1) ... 10^(b)]. If b is pi, then 10^b is replaced with pi in
these expressions.

v = logspace(a, b) is equivalent to v = logspace(a, b, 50).

See also linspace
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

lookfor
lookforPurpose Search M-files.

Synopsis lookfor(str)

Description lookfor(str) searches for string str in the first line of all .M files on the current
path and displays matches.
331

lower

332 | C H A P T
lowerPurpose Convert string to lower case

Syntax s2 = lower(s1)

Description s2 = lower(s1) converts the characters in the string s1 to lower case. s1 can also
be a cell array of strings. In that case, a new cell array is returned where each of the
strings has been converted to lower case.

See also upper
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ls
lsPurpose Get a list of the files in a directory.

Synopsis ls
ls(d)
f = ls
f = ls(d)

Description ls is a synonym for dir.

See also dir
333

lt

334 | C H A P T
ltPurpose Compare matrices pointwise.

Synopsis d = lt(a, b)

Description d = lt(a, b) tests if the elements of the matrix a are pointwise less than those of
the matrix b. For each dimension, a and b must have the same size or either of them
must have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

lt(a, b) is equivalent to a < b.

Examples [2 3 5] < [1 3 7]

[5 -10 20] < 0

[1 2 3] < [1 ; 2]

See also eq, ge, gt, le, ne
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

lu
luPurpose Compute the LU factorization of matrix.

Synopsis lu(A)
[L,U] = lu(A)
[L,U,P] = lu(A)

[L,U,P,Q] = lu(A)
[L,U,P,Q] = lu(A, thresh)
[L,U,P,Q,R] = lu(A)
[L,U,P,Q,R] = lu(A, thresh)

Description The following syntaxes can be used for a full matrix A:

lu(A) returns a matrix containing the lower-triangular L and the upper-triangular U
above and below the diagonal, respectively. It is not guaranteed that A = L*U.

[L,U] = lu(A) returns an upper-triangular U and an L that is the product of a
lower-triangular matrix and a permutation matrix such that L*U = A.

[L,U,P] = lu(A) returns a lower-triangular L, an upper-triangular U, and a
permutation matrix P such that P*U = L*U.

The following syntaxes can be used for a sparse matrix A:

[L,U,P,Q] = lu(A) returns a lower-triangular L, an upper-triangular U, and
permutation matrices P and Q such that P*A*Q = L*U.

[L,U,P,Q,R] = lu(A) returns a lower-triangular L, an upper-triangular U,
permutation matrices P and Q, and a diagonal matrix R such that P*R*A*Q = L*U.
This syntax is more numerically stable than [L,U,P,Q] = lu(A).

[L,U,P,Q,...] = lu(A, thresh) uses a threshold thresh when pivoting. The
default threshold is 0.1. When selecting a pivot element in a column, eligible
elements are those that are at least thresh times the largest absolute value in that
column.
335

mat2cell

336 | C H A P T
mat2cellPurpose Create a cell array from a matrix.

Synopsis c = mat2cell(a, part1, part2,...)

Description c = mat2cell(a, part1, part2, ...) creates a cell array from the matrix a
where the first dimension of a is split into length(part1) parts of sizes part1(1),
part1(2), and so on. For the partition to be valid, sum(parti) == size(a, i)
must hold for all i.

Example c = mat2cell(rand(5, 15), [2 3], [4 5 6]) creates a 2 x 3 cell array where
c(1,1) is the 2 x 4 submatrix in the upper-left corner of the random matrix.

See also cell2mat
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

mat2str
mat2strPurpose Create a string from a value.

Synopsis s = mat2str(a)

Description s = mat2str(a) returns a textual expression that evaluates to a.

Examples mat2str([1 2+3 ; 5+7 11]) returns the string [1, 5; 12, 11].

a.b = 12;
a.s = {'abc'};
mat2str(a)

returns the string struct('b', {12}, 's', {{'abc'}})
337

material

338 | C H A P T
materialPurpose Control the material for surface reflectance.

Synopsis material(...)

Description material(...) specifies properties for the material to use for surface reflectance in
the current axes. Use property-value pairs from the following table to specify the
type of material to create.

material(ax,...) controls the material in the axes ax instead of in the current
axes.

See also lighting, light, patch, surface

TABLE 1-30: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

Ambient colorspec Specifies the ambient color.

A string or an RGB triplet specifying the
color of the line. If it is a string it is one of
the letters r, g, b, c, m, y or k, meaning
red, green, blue, cyan, magenta, yellow, and
black, respectively.

Diffusive colorspec Specifies the diffusive color.

Emissive colorspec Specifies the emissive color.

Specular colorspec Specifies the specular color.

Shininess Real number >0 and
<128.

Specifies the shininess.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

max
maxPurpose Compute the maximum value of an array.

Synopsis y = max(x)
y = max(x,[],dim)
[y,i] = max(x,...)
z = max(x,y)

Description y = max(x) returns the maximum of x. When x is a vector, y is the largest element
of x. When x is a matrix, y is a row vector containing the maximum of each column
of x. When x is an n-dimensional array, y is the maximum along the first
nonsingleton dimension of y.

y = max(x,[],dim) returns the maximum of x along the dimension dim.

[y,i] = max(x) and [y,i] = max(x,[],dim) also return i, the indices in x of
the maximum elements. In the case of duplicate elements, i refers to the first
occurrence.

z = max(x,y) compares each element of x with the corresponding element in y
and returns the larger of the two. x and y must be of equal size, or either one can
be a scalar.

When x is complex, max uses the magnitude and ignores the angle.

NaN values are considered smaller than any other value.

Examples x = [0 2 3;-3 1 3;2 4 0];
x2 = [-3 4 1;3 2 0;-1 8 1];
y(:,:,1)=x;y(:,:,2)=x2;
max(x,[],1) returns [2, 4, 3].
max(x,[],2) returns [3; 3; 4].
max(y,[],3) returns [0, 4, 3 ; 3, 2, 3 ; 2, 8, 1].

See also min, mean, median
339

mean

340 | C H A P T
meanPurpose Compute the mean value of an array.

Synopsis y = mean(x)
y = mean(x,dim)

Description y = mean(x) returns the mean value of x. When x is a vector, y is the mean value
of x. When x is a matrix, y is a row vector containing the mean value of each column
of x. When x is an n-dimensional array, y is the mean along the first nonsingleton
dimension of x.

y = mean(x,dim) returns the mean value of x along the dimension dim.

Examples x = [8 3 3;-4 2 3;2 4 0];
x2 = [-3 4 2;3 5 1;-1 9 7];
y(:,:,1)=x;y(:,:,2)=x2;
mean(x,1) returns [2, 3, 2].
mean(x2,2) returns [1; 3; 5].
mean(y,3) returns [2.5, 3.5, 2.5; -0.5, 3.5, 2; 0.5, 6.5, 3.5].

See also median, max, min
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

median
medianPurpose Compute the median value of an array.

Synopsis y = median(x)
y = median(x,dim)

Description y = median(x) returns the median value of x. When x is a vector, y is the median
value of x. When x is a matrix, y is a row vector containing the median value of each
column of x. When x is an n-dimensional array, y is the median value along the first
nonsingleton dimension of x.

y = median(x,dim) returns the median value of x along the dimension dim.

Examples x = [0 2 3;-3 1 3;2 4 0];
x2 = [-3 4 1;3 2 0;-1 8 1];
y(:,:,1)=x;y(:,:,2)=x2;
median(x,1) returns [0, 2, 3].
median(x2,2) returns [1; 2; 1].
median(y,3) returns [-1.5, 3, 2 ; 0, 1.5, 1.5 ; 0.5, 6, 0.5].

See also mean, max, min
341

menu

342 | C H A P T
menuPurpose Create a menu.

Synopsis m = menu

Description m = menu(text) creates a menu that displays the specified text.

The function returns a menu object that can then be further manipulated using the
methods in the following table:

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, menuitem

TABLE 1-31: METHODS FOR MANIPULATING A MENU OBJECT.

METHOD DESCRIPTION

add(menuitem) Adds a menu item to this menu.

addSeparator Adds a separator to this menu.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

menuitem
menuitemPurpose Create a menu item.

Synopsis m = menuitem(text,action)
m = menuitem(text,action,thread)

Description m = menuitem(text,action) creates a menu item that displays the specified text.
When the menu item is selected the function with the name action is called.

m = menuitem(text,action,thread) creates a menu item that displays the
specified text. When the menu item is selected the function with the name action
is called. thread is true or false to indicate if the action should be run in a
separate thread.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, menu
343

mesh

344 | C H A P T
meshPurpose Create a colored wireframe surface of quadrilaterals.

Syntax mesh(x,y,z,c)
mesh(x,y,z)
mesh(z,c)
mesh(z)

Description mesh(x,y,z,c) creates a colored wireframe surface of quadrilaterals from the given
matrices. The surface is created by placing grid points in x(i, j), y(i, j), and z(i, j) for
each element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix c is used to color each of the grid
points by mapping the range of c to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length(y) must equal the number of rows in z. The grid points
are then created as x(j), y(i), and z(i, j).

mesh(x,y,z) does the same as mesh(x,y,z,c) but uses z as c.

mesh(z,c) is the same as mesh(x,y,z,c) where x = 1:nx, y = 1:ny, [ny,nx]
= size(z).

mesh(z) does the same as mesh(z,c) but uses z as c.

h = mesh(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the
reference entry for patch for details of allowed properties and corresponding values.

The function mesh is the same as the function surf with the addition that it sets the
property 'facecolor' to 'w'.

See also meshz, surf
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

meshgrid
meshgridPurpose Create a 2D or 3D grid.

Synopsis [x, y] = meshgrid(xrange, yrange)
[x, y, z] = meshgrid(xrange, yrange, zrange)

Description [x, y] = meshgrid(xrange, yrange) creates a 2D grid from vectors xrange
and yrange. The outputs x and y are matrices of size length(yrange) x
length(xrange) that can be used, for example, when plotting a function f(x, y).

[x, y, z] = meshgrid(xrange, yrange, zrange) creates a 3D grid from
vectors xrange, yrange, and zrange. The outputs x, y, and z are matrices of size
length(yrange) x length(xrange) x length(zrange).

See also ndgrid
345

meshz

346 | C H A P T
meshzPurpose Create a colored wireframe surface of quadrilaterals with a curtain around it.

Syntax meshz(x,y,z,c)
meshz(x,y,z)
meshz(z,c)
meshz(z)

Description meshz is the same as the function mesh except it also adds a curtain around the plot,
which consists of a series of lines extending from the surface to the lowest z value
anywhere in the plot.

meshz(x,y,z,c) creates a colored wireframe surface of quadrilaterals from the
given matrices. The surface is created by placing grid points at x(i, j), y(i, j) and z(i, j)
for each element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix c is used to color each of the grid
points by mapping the range of c to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length(y) must equal the number of rows in z. The grid points
are then created at x(j), y(i), and z(i, j).

meshz(x,y,z) does the same as mesh(x,y,z,c) but uses z as c.

meshz(z,c) is the same as mesh(x,y,z,c) where x = 1:nx, y = 1:ny, [ny,nx]
= size(z).

meshz(z) does the same as meshz(z,c) but uses z as c.

h = meshz(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the
reference entry for patch for details of allowed properties and corresponding values.

See also mesh, surf
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

methods
methodsPurpose Get the methods provided by a user-defined class.

Synopsis methods cls
c = methods(cls)
c = methods(cls, attr)
c = methods(cls, attr, noattr)

Description methods cls displays the public nonstatic methods in the user-defined class cls.

c = methods(cls) returns a cell array containing the public nonstatic methods in
the class cls.

c = methods(cls, attr), where attr is a string or cell array of strings, returns a
cell array containing the methods of cls that have at least one of the attributes listed
in attr. Possible attributes are 'public', 'protected', 'private', 'static',
and 'transient'.

c = methods(cls, attr, noattr) is like c = methods(cls, attr) but excludes
any field having an attribute listed in noattr, which must be a string or cell array of
strings.

See also fieldnames
347

mfilename

348 | C H A P T
mfilenamePurpose Get the name of the function or script being executed.

Synopsis s = mfilename

Description s = mfilename returns the name of the function or script being executed. When
you run it from the command prompt, it returns the empty string.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

min
minPurpose Compute the minimum value of an array.

Synopsis y = min(x)
y = min(x,[],dim)
[y,i] = min(x,...)
z = min(x,y)

Description y = min(x) returns the minimum of x. When x is a vector, y is the smallest element
of x. When x is a matrix, y is a row vector containing the minimum of each column
of x. When x is an n-dimensional array, y is the minimum along the first
nonsingleton dimension of y.

y = min(x,[],dim) returns the minimum of x along the dimension dim.

[y,i] = min(x) and [y,i] = min(x,[],dim) return i, the indices in x of the
minimum elements. In the case of duplicate elements, i refers to the first
occurrence.

z = min(x,y) compares each element of x with corresponding element in y and
returns the smaller of the two. x and y must be of equal size, or either one can be a
scalar.

When x is complex, min uses the magnitude and ignores the angle.

NaN values are considered larger than any other value.

Examples x = [0 2 3;-3 1 3;2 4 0];
x2 = [-3 4 1;3 2 0;-1 8 1];
y(:,:,1)=x;y(:,:,2)=x2;
min(x,[],1) returns [-3,1,0].
min(x2,[],2) returns [-3; 0; -1].
min(y,[],3) returns [-3, 2, 1; -3, 1, 0; -1, 4, 0].

See also max, mean, median
349

minus

350 | C H A P T
minusPurpose Subtract matrices pointwise.

Synopsis d = minus(a, b)

Description d = minus(a, b) computes the pointwise difference between the two matrices a
and b. For each dimension, a and b must have the same size or either of them must
have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

minus(a, b) is equivalent to a - b.

Examples [10 20 30]-[2 3 4]

[5 10]-3

See also plus, ldivide, rdivide, times
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

mislocked
mislockedPurpose Test if a function is locked in memory.

Synopsis a = mislocked
a = mislocked(func)

Description a = mislocked, when called from a function, returns true if the function has been
locked with mlock, otherwise false.

a = mislocked(func) returns true if the function called func has been locked,
otherwise false.

See also mlock, munlock
351

mkdir

352 | C H A P T
mkdirPurpose Create a directory.

Synopsis status = mkdir(name)
status = mkdir(base, name)

Description status = mkdir(name) creates a directory called name in the current directory. 1 is
returned if the operation was successful, 0 if it failed.

status = mkdir(base, name) creates a directory called name in the
directory base.

See also isdir, rmdir
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

mkpp
mkppPurpose Make piecewise polynomial.

Synopsis pp = mkpp(breaks, coefficients)
pp = mkpp(breaks, coefficients, dim)

Description pp = mkpp(breaks, coefficients) returns a structure representing the
piecewise polynomial described by its breaks and coefficients. breaks must be
a vector of strictly increasing elements, representing the start and end of each
interval. coefficients must be a matrix where each row contains the coefficients
(in order from highest to lowest exponent) of the polynomial for one interval.

pp = mkpp(breaks, coefficients, dim) returns a structure representing the
piecewise polynomial where each coefficient is of an array of dimension dim.

Example This example creates a pp structure with three polynomial pieces ,
 and on the intervals [1,2], [2,3] and [3,4], respectively.

b = [1 2 3 4];
c = [1 2 1;1 4 4;1 6 9];
pp = mkpp(b,c)

See also ppval, unmkpp, pchip, spline

x2 2x 1+ +

x2 4x 4+ + x2 6x 9+ +
353

mldivide

354 | C H A P T
mldividePurpose Solve a linear system of equations.

Synopsis x = mldivide(A, b)

Description x = mldivide(A, b) returns the solution to the linear system of equations Ax=b.
Both A and b must be matrices with the same number of rows. If A has more rows
than columns, then x is the least-squares solution to an overdetermined system. in
this case, x is the solution to A'Ax = A'b.

mldivide(A, b) is equivalent to A \ b.

See also ldivide, mrdivide
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

mlock
mlockPurpose Lock a function in memory.

Synopsis mlock(func)

Description mlock(func) locks the function called func so that it is not removed from memory
when the command clear functions is called.

See also mislocked, munlock
355

mod

356 | C H A P T
modPurpose Compute the modulus of matrices.

Synopsis m = mod(a, b)

Description m = mod(a, b) computes a mod b pointwise. The sizes of a and b must be identical
unless one of them is a scalar; in that case, the scalar is expanded to a matrix of the
correct size.

See also rdivide, rem
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

movie
moviePurpose Create a movie.

Synopsis m = movie(...)

Description m = movie(...) creates a movie-generation object. Frames can then be added to
the movie from plots in figure windows. The properties 'width' and 'height' can
be used with movie to specify a desired width and height for the movie.

You can then interact with the movie-generation object using the following
methods

METHOD VALUES DESCRIPTION

m.addFrame Adds the plot in the current
figure window as a frame in
the movie.

m.addFrame(h) Adds the plot in the figure
window with handle h as a
frame in the movie.

m.setFrameRate(rate) Sets the frame rate to use
when generating the movie.

m.setQuality(qual) A real number
between 0 and 1,
where 1 is the best
quality.

Sets the quality to use when
generating the movie.

m.setFileType(type) 'avi', 'quicktime' Sets which type of movie to
generate.

m.listEncodings Displays a list of available
encoding formats.

m.setEncoding(enc) Any string listed by
listEncodings.

Sets which encoding format
to use.

m.generate(filename) Generates a movie with the
name filename from the
frames that have been added
to the movie.
357

mpower

358 | C H A P T
mpowerPurpose Matrix power.

Synopsis d = mpower(a, b)

Description d = mpower(a, b) raises a to the power b, where a must be a square matrix, and
b must be a positive integer.

mpower(a,b) is equivalent to a ^ b.

Example a = [-3, 2, 1; -3, 1, 0; -1, 4, 0]
mpower(a,2) returns [2, 0, -3; 6, -5, -3; -9, 2, -1].

See also mtimes, power
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

mrdivide
mrdividePurpose Solve a linear system of equations.

Synopsis x = mrdivide(A, b)

Description x = mrdivide(A, b) returns the solution to the linear system of equations
b'x'=A'. Both A and b must be matrices with the same number of columns. If b has
more columns than rows, then x is the least-squares solution to an overdetermined
system. In this case, x is the solution to bb'x' = bA'.

mrdivide(A, b) is equivalent to A / b.

See also mldivide, rdivide
359

mtimes

360 | C H A P T
mtimesPurpose Compute a matrix product.

Synopsis p = mtimes(a, b)

Description p = mtimes(a, b) returns the matrix product of a and b, both of which must be
numerical matrices with compatible dimensions; if a is an m1 x n1-matrix and b is an
m2 x n2-matrix, then n1==m2 must hold.

mtimes(a, b) is equivalent to a * b.

See also times
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

munlock
munlockPurpose Remove a function lock.

Synopsis munlock(func)

Description munlock(func) removes the lock on the function called func that was set
with mlock.

See also mislocked, mlock
361

namelengthmax

362 | C H A P T
namelengthmaxPurpose Get the maximum length of variable or function name.

Synopsis len = namelengthmax

Description len = namelengthmax returns the maximum length of a variable or function name.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

nan
nanPurpose Get a not-a-number value.

Synopsis nan
m = nan(n)
m = nan(sz)
m = nan(n1,n2,...)

Description nan returns a not-a-number value. This value is returned for mathematical
operations where the result is ambiguous, for instance, 0/0.

m = nan(n), where n is an integer, returns an nxn all-nan matrix.

m = nan(sz), where sz is a vector of integers, returns an all-nan matrix of size sz.

m = nan(n1,n2,...), where ni are integers, returns an
n1xn2x ... all-nan matrix.

See also inf
363

nargchk

364 | C H A P T
nargchkPurpose Check that the number of arguments supplied to function is in a specified range.

Synopsis msg = nargchk(lower, upper, actual)

Description msg = nargchk(lower, upper, actual) returns an error message if actual falls
outside the range [lower, upper], otherwise it returns ''.

Example The intended use of this function is to validate the number of input arguments to a
function, for example, by placing a nargchk(2, 5, nargin) call at the top of a
function expecting between two and five input arguments.

See also nargoutchk
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

nargin
narginPurpose Get the number of arguments supplied to a function.

Synopsis n = nargin
n = nargin(funcname)

Description n = nargin, when invoked from inside a function, returns the number of
arguments with which the function was invoked.

 n = nargin(funcname) returns the number of arguments declared in the
definition of the function called funcname.

See also nargout
365

nargout

366 | C H A P T
nargoutPurpose Get the number of outputs expected from a function.

Synopsis n = nargout
n = nargout(funcname)

Description n = nargout, when invoked from inside a function, returns the number of output
arguments that the caller expects the function to return.

 n = nargout(funcname) returns the number of outputs declared in the definition
of the function called funcname.

See also nargin
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

nargoutchk
nargoutchkPurpose Check that the number of outputs expected from a function is in a specified range.

Synopsis msg = nargoutchk(lower, upper, actual)

Description msg = nargoutchk(lower, upper, actual) returns an error message if actual
falls outside the range [lower, upper], otherwise it returns ''.

Example The intended use of this function is to validate the number of expected outputs from
a function, for example, by placing a nargoutchk(1, 4, nargout) call at the top
of a function expecting between one and four outputs.

See also nargchk
367

ndgrid

368 | C H A P T
ndgridPurpose Create an n-dimensional grid.

Synopsis [x, y, z, ...] = ndgrid(xrange, yrange, zrange, ...)

Description [x, y, z, ...] = ndgrid(xrange, yrange, zrange, ...) creates an
n-dimensional grid from vectors xrange, yrange, zrange, ….

The outputs x, y, and z are matrices of size
length(xrange)-by-length(yrange)-by-length(zrange)-by-… .

See also meshgrid
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ndims
ndimsPurpose Get the number of dimensions of a value.

Synopsis n = ndims(a)

Description n = ndims(a) returns the number of dimensions in a.

 ndims(a) is equivalent to length(size(a)).

See also length, size
369

ne

370 | C H A P T
nePurpose Compare matrices pointwise.

Synopsis d = ne(a, b)

Description d = ne(a, b) tests if the elements of the two matrices a and b are unequal
pointwise. For each dimension, a and b must have the same size or either of them
must have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

 ne(a, b) is equivalent to a~=b.

Examples [2 3 5] ~= [0 3 6]

 [10 20 30] ~= 30

 [0 1] ~= [0 ; 1]

See also eq, ge, gt, le, lt
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

newplot
newplotPurpose Return a fresh axes for plotting.

Synopsis h = newplot

Description h = newplot returns a fresh axes into which to plot. If a current axes does not exist,
it creates a new one. If a current axes exists, all plots that are not under control of a
hold command are cleared before a handle to the current axes is returned.

See also gca
371

nnz

372 | C H A P T
nnzPurpose Determine the number of nonzero elements in a matrix.

Synopsis n = nnz(a)

Description n = nnz(a) returns the number of nonzero elements in a.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

norm
normPurpose Norm of a matrix or a vector.

Synopsis norm(V)
norm(V,n)
norm(A)
norm(A,n)

Description norm(V), for a vector, computes its Euclidian norm.

norm(V,p) computes the p-norm of the vector.

norm(V,inf) and norm(V,-inf) compute the vector’s maximum and minimum,
respectively.

norm(A) and norm(A,2), for a matrix, compute its largest singular value.

norm(A,1) computes the 1-norm of the matrix.

norm(A,'fro') computes the Frobenius norm of the matrix.

norm(A,inf) computes the infinity norm.

See also cond
373

not

374 | C H A P T
notPurpose Compute the logical negation of a matrix.

Synopsis d = not(a)

Description d = not(a) computes the logical negation of the matrix a.

not(a) is equivalent to ~a.

See also and, or, xor
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

null
nullPurpose Orthonormal basis of the null space of a matrix.

Synopsis null(A)
null(A,tol)

Description null(A) computes an orthonormal basis for the null space of A.

null(A,tol) uses the relative tolerance tol.
375

num2cell

376 | C H A P T
num2cellPurpose Create a cell array from numerical matrix.

Synopsis c = num2cell(a)
c = num2cell(a, dims)

Description c = num2cell(a) returns a cell array with the same size as a where each cell
contains an element of a.

c = num2cell(a, dims) returns a cell array c where size(c, i) is 1 if i is listed
in the vector dims, otherwise size(c, i) is size(a, i). In the former case,
elements with a different ith index but all other indices equal are put in the same cell.

num2cell(a) is equivalent to num2cell(a, []).

Examples num2cell([2 3 ; 5 7]) is {2 3 ; 5 7}.

num2cell([2 3 ; 5 7], 1) is {[2 5] [5 7]}.

num2cell([2 3 ; 5 7], 2) is {[2 3] ; [5 7]}.

num2cell([2 3 ; 5 7], [1 2]) is {[2 3 ; 5 7]}.

See also mat2cell, cell2mat
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

num2hex
num2hexPurpose Convert decimal numbers to IEEE-754 hexadecimal strings.

Synopsis s = num2hex(d)

Description s = num2hex(d) converts an array of doubles to IEEE-754 hexadecimal string
representations 16 characters long. s is a character matrix where each row represents
one double.

Example num2hex([1 ; 20 ; Inf]) returns a character matrix:

'3ff0000000000000'
'4034000000000000'
'7ff0000000000000'

See also format, base2dec, bin2dec, hex2dec, hex2num, dec2base, dec2bin, dec2hex
377

num2str

378 | C H A P T
num2strPurpose Convert a number to a string.

Synopsis str = num2str(x)
str = num2str(x,precision)
str = num2str(x,format)

Description str = num2str(x) converts a 2D array x into a string representation with
approximately 4-digit precision.

str = num2str(x,precision) converts x using the maximum precision
precision.

str = num2str(x, format) converts x using a specific format string. The default
is '%11.4g'. (See sprintf for possible formats).

Example num2str([13 0;pi NaN]) returns a character matrix:

' 13 0'
'3.141593 NaN'

See also int2str, mat2str, sprintf
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

numel
numelPurpose Get the number of elements in a matrix or cell array.

Synopsis n = numel(m)

Description n = numel(m) returns the number of elements in m, that is, prod(size(m)).

See also size
379

nzmax

380 | C H A P T
nzmaxPurpose Get the number of nonzero elements for which there has been allocated space in a
matrix.

Synopsis nz = nzmax(a)

Description nz = nzmax(a), for a dense matrix a, is numel(a). For a sparse matrix a, the
returned value is the number of nonzero elements for which space has been
allocated. In neither case need the returned value coincide with the actual number
of nonzero elements of a.

See also nnz
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

odeget
odegetPurpose Get value of an ODE option.

Synopsis value = odeget(options, name)

Description value = odeget(options, name) returns the value of the property name in the
ODE options structure options.

See also daspk, odeset
381

odeset

382 | C H A P T
odesetPurpose Create an options structure for an ODE solver.

Synopsis opts = odeset
opts = odeset(name, value, ...)
opts = odeset(oldopts, name, value, ...)

Description opts = odeset creates an empty options structure.

opts = odeset(name, value, ...) creates an options structure where one or
more property/value pairs have been set.

opts = odeset(oldopts, name, value, ...) adds one or more property-value
pairs to an existing options structure.

See also daspk, odeget

TABLE 1-32: PROPERTY VALUES FOR ODESET

NAME VALUE

'abstol' Absolute tolerance, scalar or vector.

'complex' If true, the solution is assumed to be complex even
if the initial value is real.

'consistent' Consistent initialization of DAE system. If
'bweuler' (the default), a consistent initial value is
determined using the backward Euler method, if
'off', the initial value supplied is assumed to be
consistent

'initialstep' Suggested length of first step.

'Jacobian' Matrix or name of function that computes df/dy.

'Mass' Matrix or name of function that computes the mass
matrix M(t, y). If omitted, the unit matrix is used.

'maxorder' The maximum order of the backward differentiation
formula that is used; must be an integer between 1
and 5.

'minorder' The minimum order of the backward differentiation
formula that is used; must be 1 or 2.

'maxstep' Maximum step size.

'outputfcn' Callback function invoked after each step has been
taken.

'reltol' Relative tolerance, scalar or vector.

'stats' Display statistics on exit.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ones
onesPurpose Create an all-one matrix.

Synopsis m = ones(n)
m = ones(sz)
m = ones(n1, n2, ...)

Description m = ones(n), where n is an integer, returns an n x n all-one matrix.

m = ones(sz), where sz is a vector of integers, returns an all-one matrix of size sz.

m = ones(n1, n2, ...), where ni are integers, returns an n1 x n2-... all-one
matrix.

See also eye, repmat, zeros
383

or

384 | C H A P T
orPurpose Compute the logical OR of two matrices pointwise.

Synopsis d = or(a, b)

Description d = or(a, b) computes the pointwise logical OR of the two matrices a and b. For
each dimension, a and b must have the same size or either of them must have size 1.
In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

or(a, b) is equivalent to a | b.

Examples [0 0 1 1] | [0 1 0 1]

[0 1] | 0

[0 1] | [1 ; 0]

See also and, not, xor
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

ordschur
ordschurPurpose Reorder Schur factorization.

Synopsis [U1,T1] = ordschur(U,T,select)

Description [U1,T1] = ordschur(U,T,select) reorders unitary matrix U and Schur matrix T
(typically returned from a call to schur) so that a selected cluster of eigenvalues
appears in the leading diagonal blocks. select is a logical vector with length(T)
elements, where true signifies a selected eigenvalue.

[U1,T1] = ordschur(U,T,order) reorders U and T so that the eigenvalues appear
in descending order as specified by the integer vector order, where each element
corresponds to one eigenvalue.

If T is in real Schur form with complex eigenvalues (that is, complex eigenvalues are
stored in 2 x 2 block on the diagonal), then said block cannot be separated by
ordschur. If select or order contains different values for two elements in the
same block, then the block is sorted by the larger of the two.

Examples A = [1 0 3 1; 2 2 1 1; 0 0 5 1; 0 0 0 10];
[U,T]=schur(A);
[US,TS] = ordschur(U,T,[0 1 0 1]);

[UO,TO] = ordschur(U,T,[1 2 3 2]);

See also schur
385

orth

386 | C H A P T
orthPurpose Orthonormal basis of the range of a matrix.

Synopsis orth(A)
orth(A,tol)

Description orth(A) computes an orthonormal basis for the range of A.

orth(A,tol) uses the relative tolerance tol.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

panel
panelPurpose Create a panel to add GUI components to.

Synopsis p = panel

Description p = panel creates a panel into which you add GUI components.

A panel uses a layout manager called GridBagLayout from Java. With it you add
components within cells on a grid. Components can span several cells or be aligned
to different positions within a cell. You can also specify that a component should
keep its preferred size or fill the cell in which it lies.

When you have added all the desired components to the panel, COMSOL Script
automatically determines the size of the panel and each cell in the panel by asking
the components for their preferred sizes. This means that there is no need to
manually account for different font sizes on different platforms, and so on.

When you have created a panel, you can use the following methods to add more
components:

TABLE 1-33: METHODS FOR MANIPULATING PANEL OBJECTS

METHOD DESCRIPTION

add(comp,row,col) Adds a component to the cell in the given
row and column.

add(comp,row,col,nrows,ncols) Adds a component to the cell in the given
row and column. The component spans
the specified number of rows and
columns.

add(comp,row,col,fill) Adds a component and specifies how it
should fill the cell that it is assigned to. Fill
is a string that tells the component to
stretch to fill the cell in certain directions.
It can have one of the values 'both',
'horizontal' or 'vertical'.

add(comp,row,col,nrwos,ncols,

fill)

The same as add(comp,row,col,fill)
but also gives the possibility to specify the
number of rows and columns that the
component should span.

addBorder(text) Adds a border with the specified text
around the panel.

addHSeparator(width,row,col) Adds a horizontal separator with the
specified width in pixels to the given row
and column.
387

panel

388 | C H A P T
addVSeparator(height,row,col) Adds a vertical separator with the
specified height in pixels to the given row
and column.

get(tag) Returns the component with the specified
tag on this panel or on subpanels to this
panel.

pack Packs components on the panel toward
the upper left corner. Use, for example,
before adding a panel to a tabbed pane
to avoid that the components on each tab
stretch to fill the tab.

packColumn(row,col) Packs components in a column away from
the specified row and column.

packRow(row,col) Packs components in a row away from the
specified row and column.

resetWeight Resets the weights to their default values,
which are1 in both the x and y directions.

setAlignment(align) Components added after calling this
method get a certain alignment within the
cell.

align is a string with one of the following
values: 'northwest', 'north',
'northeast', 'west', 'center',
'east', 'southwest', 'south', or
'east'.

setFill(fill) Use to set the fill method that is used
when adding components after the call.
You can used it to avoid having to specify
a fill method explicitly in the add calls
when adding many components with the
same fill style.

setWeight(x,y) Sets the weight in the x and y directions
for components that are added after this
call. The relative values of the weights of
the components are used to determine
how extra space within the panel should
be distributed if the panel is larger than
needed by the preferred size of the
components in the panel.

TABLE 1-33: METHODS FOR MANIPULATING PANEL OBJECTS

METHOD DESCRIPTION
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

panel
See Also component, dialog, frame

setWeightX(x) Only set the weight in the x direction.

setWeightY(y) Only set the weight in the y direction.

TABLE 1-33: METHODS FOR MANIPULATING PANEL OBJECTS

METHOD DESCRIPTION
389

patch

390 | C H A P T
patchPurpose Create a patch consisting of triangles or quadrilaterals.

Syntax patch(x,y,c)
patch(x,y,z,c)

Description patch(x,y,c) creates one filled triangle or quadrilateral for each column in the
matrices x and y. Both x and y must have three or four rows.

c is a matrix specifying the patch’s color, and it can be one of the following:

• one of the strings 'r', 'g', 'b', 'c', 'm', 'y', or 'k', specifying the color of
the entire patch directly.

• a 3-element vector with values between 0 and 1 representing an RGB triplet of a
color for the entire patch.

• a matrix of the same size as x, or a matrix with one row and the same number of
columns as x. If c has one row, it specifies the color per triangle or quadrilateral
and flat coloring is used. If c has the same size as x, it specifies the color at the
vertices and interpolated coloring is used. The colors are created by mapping the
range of c to the colormap used.

patch(x,y,z,c) is the same as patch(x,y,c) but creates a 3D patch by taking
coordinates from z.

h = patch(...) returns a handle to the created patch object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the patch is created.

PROPERTY VALUE DEFAULT DESCRIPTION

clim 2-element vector Which data values to map to the
first and last color in the colormap.

colormap String of the type
'jet(256)', or a
matrix with three
columns

The colormap used to color the
patch. It is either a string to be
evaluated, or a matrix with one
row for each color and one
column for red, green, and blue
values.

edgecolor none | flat |
interp |
colorspec

none How to color the edges between
each element in the patch.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

patch
The interpretation of facecolor and edgecolor for the different allowed values
are as follows:

See also line, surface

facecolor none | flat |
interp |
colorspec

How to color the interior of each
element in the patch.

parent Axes handle gca The axes to which the patch is
added.

VALUE DESCRIPTION

none Either the elements is be filled, or their edges are not drawn. For
example, 'facecolor','none' can be used to create a
wireframe plot.

flat or
interp

How to interpolate the color using the vertex colors. If the value
is 'flat', the entire element gets the same color; if the value is
'interp', the color in the interior of the element is created by
interpolation from the values at the vertices.

colorspec A string or an RGB triplet specifying the color of the entire patch.
If it is a string, it is one of the letters r, g, b, c, m, y, or k, meaning
red, green, blue, cyan, magenta, yellow, and black, respectively.

PROPERTY VALUE DEFAULT DESCRIPTION
391

path

392 | C H A P T
pathPurpose Get or set the M-file path.

Synopsis path
p = path
path(str)
path(str1, str2)

Description path displays the directories on the path in the order in which they are searched.

p = path returns a string containing the directories on the path separated by
pathsep.

path(str) sets the M-file path, where str must be a string containing directories
separated by pathsep.

path(str1, str2) sets the M-file path to the union of the paths in str1 and str2.

Example path('C:/MyProgs', path) prepends the directory C:/MyProgs to the path.

See also filesep, pathsep
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

pathsep
pathsepPurpose Get the system path separator.

Synopsis sep = pathsep

Description sep = pathsep returns the separator between directories in a path list. For
Windows this is ';', and on all other platforms it is ':'.

See also filesep
393

pause

394 | C H A P T
pausePurpose Pause execution and wait for keypress.

Synopsis pause(t)
pause
pause('off')
pause('on')

Description pause(t) pauses execution for t seconds.

pause with no input pauses the execution and waits for the user to press any key.

pause('off') disables any pause calls in the code.

pause('on') enables the effect of pause commands again.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

pchip
pchipPurpose Piecewise cubic Hermite interpolation.

Synopsis yi = pchip(x,y,xi)
pp = pchip(x,y)

Description yi = pchip(x,y,xi) performs piecewise cubic Hermite interpolation of y at
points x and returns an array yi corresponding to the values of the underlaying
function y at xi. x must be a vector and y must be either a vector of the same length
as x or an array whose last dimension equals the length of x. In the latter case, the
interpolation is performed along the last dimension of y.

pp = pchip(x,y) performs piecewise cubic Hermite interpolation of y at points x
and returns the interpolant as a piecewise polynomial structure (described in
ppval).

Example This example interpolates points from the sine curve and shows how to reuse the
piecewise polynomial.

x = linspace(0,2*pi,10); y = sin(x);
xi = linspace(0,2*pi,20);
yi = pchip(x,y,xi);
pp = pchip(x,y);
yip = ppval(pp,xi); %Identical to yi

xi1 = linspace(0,2*pi,100);
yip1 = ppval(pp,xi1);

See also ppval, spline, mkpp, unmkpp
395

permute, ipermute

396 | C H A P T
permute, ipermutePurpose Permute the order of matrix dimensions.

Synopsis b = permute(a, perm)
b = ipermute(a, perm)

Description b = permute(a, perm) returns a matrix with the same elements as a but where
the matrix dimensions have been reordered using the permutation vector perm,
which must be a permutation of 1:ndims(a).

b = ipermute(a, perm) returns a matrix with the same elements as a but where
the matrix dimensions have been reordered using the inverse of the permutation
vector perm.

Examples permute(a, [2 1]) is equivalent to a' if a is a 2D matrix.

permute(ones(2, 3, 5), [2 3 1]) is equivalent to ones(3, 5, 2).

If b = permute(a, perm), then a(ix(1), ix(2), ...) == b(ix(p(1)),
ix(p(2)), ...).
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

pi
piPurpose Get pi.

Synopsis pi

Description pi returns the mathematical constant π.
397

pink

398 | C H A P T
pinkPurpose Create a colormap with different shades of pink.

Synopsis pink(n)

Description pink(n) returns a colormap with n colors. It is a matrix with n rows and 3 columns
with RGB values for the colors in the colormap. The colors are different shades of
pink.

See also colormap, bone, cool, gray, grayprint, jet, hot, hsv, wavemap
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

pinv
pinvPurpose Pseudoinverse.

Synopsis pinv(A)
pinv(A,tol)

Description pinv(A) computes the pseudoinverse of A.

pinv(A,tol) uses the relative tolerance tol.
399

plot

400 | C H A P T
plotPurpose Create line plots of type y versus x.

Syntax plot(x,y)
plot(y)
plot(x,y,f)

Description plot(x,y) creates a plot of y versus x. If x and y are vectors, one plot is created. If
x and y are matrices, one plot is created for each column in the matrices.

plot(y) plots y versus 1:length(y) if y is a vector or versus the row indices if y is
a matrix.

plot(y), where y is complex, is the same as plot(real(y),imag(y)).

plot(x,y,f) creates a plot with colors, line styles, and markers given by the format
string f, which has one or more characters from the following table:

h = plot(...) returns a handle to the plotted lines.

plot(x1,y1,f1,x2,y2,f2,x3,y3,f3,...) can be used to create several different
plots with one command.

In addition to the fixed arguments, additional property value pairs can be given at
the end of the command to further control the plot. See the reference entry for line
for details of allowed properties and corresponding values.

Example Plot sin(x) versus x with a dashed red curve of circular markers:

x=linspace(0,2*pi,50);
y=sin(x);
plot(x,y,'ro--');

See also loglog, semilogx, semilogy, line, plot3

TABLE 1-34: STRINGS THAT CAN BE PART OF THE FORMAT STRING F

COLOR MARKER LINE STYLE

r red + plus - solid

g green o circle : dotted

b blue * star -. dashdot

c cyan v triangle -- dashed

m magenta s square

y yellow p pentagram

k black . dot
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

plot3
plot3Purpose Create line plots in 3D.

Syntax plot3(x,y,z)
plot3(x,y,z,c)

Description plot3(x,y,z) creates a plot by connecting the coordinates in x, y and z with lines.
If x,y, and z are vectors, one plot is created. If x,y, and z are matrices, one plot
is created for each column in the matrices.

plot3(x,y,z,c) creates a plot with a color given by c, the single-letter color
specification.

h=plot3(...) returns a handle to the plotted lines.

In addition to the fixed arguments additional property value pairs can be given at
the end to further control the plot. See the reference entry for line for details of
allowed properties and corresponding values.

See also plot, line, mesh, surf
401

plus

402 | C H A P T
plusPurpose Add matrices pointwise.

Synopsis d = plus(a, b)

Description d = plus(a, b) computes the pointwise sum of the two matrices a and b. For each
dimension, a and b must have the same size or either of them must have size 1. In
the latter case, the unit dimension is expanded to the size of the nonunit dimension.

plus(a, b) is equivalent to a + b.

Examples [1 2 3]+[4 5 6]

[1 2 ; 3 4]+10

[1 2 3]+[10 20 30]'

See also ldivide, minus, rdivide, times
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

point
pointPurpose Create a point.

Syntax point(x,y)
point(x,y,z)

Description point(x,y) creates points at the coordinates given by the vectors x and y.

point(x,y,z) creates points in 3D.

h = point(...) returns a handle to the created points.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the point is created.

TABLE 1-35: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec k A string or an RGB triplet
specifying the color of the
points. If it is a string it is one
of the letters r, g, b, c, m, y or
k, meaning red, green, blue,
cyan, magenta, yellow, and
black, respectively.

parent Axes handle gca What axes to add the line to.

size Positive real 6 The size of the points.
403

pol2cart

404 | C H A P T
pol2cartPurpose Transform from polar to Cartesian coordinates.

Synopsis [x,y] = pol2cart(theta,r)
[x,y,z] = pol2cart(theta,r,z)

Description [x,y] = pol2cart(theta,r) transforms polar coordinates in arrays theta and r
into Cartesian 2D coordinates. theta should be the angle in radians and r the
radius. They must be the same size or either one can be scalar.

[x,y,z] = pol2cart(theta,r,z) transforms cylindrical coordinates into
Cartesian 3D coordinates. theta should be the angle in radians, r the radius and z
the height. They must be the same size or scalar.

Example [x,y,z]=pol2cart([0 0 pi/2 0],[0 1 1 0],[0 0 0 1]) returns the Cartesian
coordinates for the points (0,0,0), (0,1,0),(pi/2,1,0) and (0,0,1) in cylindrical
coordinates, that is points (0,0,0), (1,0,0), (0,1,0) and (0,0,1), respectively.

See also cart2pol, sph2cart, cart2sph
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

poly
polyPurpose Polynomial with specific roots.

Synopsis p = poly(a)

Description p = poly(a), where a is a matrix, returns a vector containing the coefficients of the
characteristic polynomial . If a is an nxn matrix, p is a row vector of
length n+1.

When a is a vector, p is a vector containing the coefficients of the polynomial whose
roots are a.

Example a = [1 2 5]; p = poly(a) returns p = [1, -8, 17, -10], which represents
the polynomial . Calling roots(p) returns the original roots,
1, 2 and 5.

See also polyder, polyfit, polyint, polyval

det λI a–()

x3 8x2
– 17x 10–+
405

polyder

406 | C H A P T
polyderPurpose Differentiate a polynomial.

Synopsis q = polyder(p)
q = polyder(a,b)
[n,d] = polyder(b,a)

Description q = polyder(p) returns the derivative of polynomial p, where p is a vector
containing the polynomial coefficients.

q = polyder(a,b) returns the derivative of the product of two polynomials,
a * b.

[n,d] = polyder(a,b) returns the numerator n and the denominator d of the
derivative of the quotient of two polynomials, a / b.

Examples Derivative of polynomial :

q = polyder([1,-8,17,-10])

q is [3, -16, 17], that is

Derivative of the product of polynomials and :

q = polyder([1,10,2],[1,3])

q is [3, 26, 32], that is

See also poly, polyfit, polyint, polyval

x3 8x2
– 17x 10–+

3x2 16x– 17+

x2 10x 2+ + x 3+

x2 10x 2+ +() 1⋅ 2x 10+() x 3+()⋅+ 3x2 26x 32+ +=
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

polyfit
polyfitPurpose Polynomial fit.

Synopsis p = polyfit(x,y,n)
[p,s] = polyfit(x,y,n)
[p,s,m] = polyfit(x,y,n)

Description p = polyfit(x,y,n) returns the coefficients of a least squares polynomial p(x) of
degree n that fits the data p(x(i)) to y(i).

[p,s] = polyfit(x,y,n) also returns a structure s with the fields R (the Cholesky
factor of the Vandermonde matrix), df (degrees of freedom), and normr (the norm
of the residuals).

[p,s,m] = polyfit(x,y,n) uses data z = (x - m(1)) / m(2) instead of x. m
is a vector of length two where m(1) is the mean value of x and m(2) is the standard
deviation.

See also poly, polyder, polyint, polyval
407

polyint

408 | C H A P T
polyintPurpose Integrate a polynomial.

Synopsis q = polyint(p,k)
q = polyint(p)

Description q = polyint(p,k) returns the integral of polynomial p, where p is a vector
containing the polynomial coefficients and k is a scalar constant of integration.

 q = polyint(p) returns the integral of polynomial p using the default scalar
constant of integration 0.

Example Integral of polynomial 8 x3 − 3 x2 + 6 x − 10 with scalar constant 20:

q = polyint([8,-3,6,-10],20)

q is [2,-1,3,-10,20], that is 2 x4 − x3 + 3 x2 − 10 x + 20.

See also poly, polyder, polyfit, polyval
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

polyval
polyvalPurpose Evaluate a polynomial.

Synopsis y = polyval(p,x)
y = polyval(p,x,[],m)
[y,d] = polyval(p,x,s)
[y,d] = polyval(p,x,s,m)

Description y = polyval(p,x) evaluates the polynomial p at the elements of an array x. p is a
vector containing the polynomial coefficients.

y = polyval(p,x,[],m) evaluates the polynomial p using data
z = (x - m(1)) / m(2) instead of x. m is a vector of length two where m(1) is the
mean value of x and m(2) is the standard deviation, as described in polyfit.

[y,d] = polyval(p,x,s) and [y,d] = polyval(p,x,s,m) use the structure s
to generate error estimates d of y. s must be on the form returned by polyfit, that
is, a structure with the fields R (the Cholesky factor of the Vandermonde matrix), df
(degrees of freedom), and normr (the norm of the residuals). If the errors in the data
are independent normal with constant variance, polyval gives error bounds y
which contain at least 50% of the predictions.

Example Evaluating polynomial at 0,1 and 2, that is
y = polyval([8,-3,6,-10],[0 1 2]), returns y = [-10,1,54].

See also poly, polyder, polyfit, polyint

d±

8x3 3x2
– 6x 10–+
409

pow2

410 | C H A P T
pow2Purpose Compute or multiply by power of 2.

Synopsis d = pow2(a)
d = pow2(a, exp)

Description d = pow2(a) is equivalent to 2.^a.

d = pow2(a, exp), where exp is an all-integer matrix, is a faster equivalent to
a.*2.^exp. The sizes of a and exp must be identical unless one of them is a scalar;
in that case, the scalar is expanded to a matrix of the correct size.

See also power
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

power
powerPurpose Compute a matrix power pointwise.

Synopsis d = power(a, b)

Description d = power(a, b) raises a to the power b pointwise. For each dimension, a and b
must have the same size or either of them must have size 1. In the latter case, the
unit dimension is expanded to the size of the nonunit dimension.

power(a, b) is equivalent to a.^b.

Examples (1:5).^3

(2:6).^(3:7)

See also times
411

ppval

412 | C H A P T
ppvalPurpose Evaluate piecewise polynomial.

Synopsis y = ppval(pp,x)
y = ppval(x,pp)

Description y = ppval(pp,x) and y = ppval(x,pp) evaluate the piecewise polynomial pp for
the points in the real array x. pp is a structure returned by for example spline or
mkpp. It should contain the following fields:

See also pchip, spline, mkpp, unmkpp

TABLE 1-36: FIELDS OF A PP STRUCT

FIELDNAME DESCRIPTION

form Indicates the function form and should contain string 'pp' (piecewise
polynomial).

breaks A vector of strictly increasing elements, representing the start and
end of each interval.

coefs A matrix where each row contains the coefficients (in order from
highest to lowest exponent) of the polynomial for one interval.

pieces A scalar indicating the number of pieces.

order The order of the polynomial.

dim A vector indicating the size of each coefficient.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

primes
primesPurpose Generate prime numbers.

Synopsis p = primes(n)

Description p = primes(n) generates a row vector p of all primes less than or equal to n, which
must be a real scalar.

Example primes(20) returns [2, 3, 5, 7, 11, 13, 17, 19].

See also factor, isprime
413

prod

414 | C H A P T
prodPurpose Compute the product of array elements.

Synopsis y = prod(x)
y = prod(x,dim)

Description y = prod(x) computes the product of the elements of x along a specific dimension.
When x is a vector, y is the product of the elements of x. When x is a matrix, y is a
row vector containing the product of the elements of each column of x. When x is
an n-dimensional array, y is the product of the elements along the first nonsingleton
dimension of x.

y = prod(x,dim) returns the product of the elements of x along the dimension
dim.

Examples x = [0 2 3;-3 1 3;2 4 5];
prod(x) returns [0,8,45].
prod(x,2) returns [0;-9;40].

See also cumprod, sum, cumsum
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

profile
profilePurpose Generate profiling information.

Synopsis profile('on')
profile('off')
profile('clear')
profile('report', func, ...)

Description profile('on') enables collection of profiling information for all M-file functions
and scripts.

profile('off') disables collection of profiling information.

profile('clear') removes all collected profiling information.

profile('report', func, ...) outputs a profile report for the function func.
The following options can be given:

For each line of func, the number of times it has been executed and the relative
amount of time spent there is displayed. HTML reports also contain more detailed
statistics and links to reports for called functions.

Examples To generate an HTML report for gradient with HTML files put in /tmp:

profile on
gradient(rand(100));
profile report -dir /tmp gradient

To generated a report formatted as text:

profile report gradient -raw

TABLE 1-37:

OPTION MEANING

'-html’ Generate the report as hyperlinked HTML
files. The reports of the functions called by
func are generated automatically. (Default)

'-raw' Print the report as formatted text.

'-silent' Same as '-html' but the HTML files are
only generated, not displayed.

'-dir' followed by
a directory name

Specify the directory where generated
HTML files are put.
415

psi

416 | C H A P T
psiPurpose Psi function.

Synopsis y = psi(x)
y = psi(k,x)
y = psi(k0:k1,x)

Description y = psi(x) computes the psi function (also called the digamma function) for x,
which must be real and nonnegative.

y = psi(k,x) computes the kth derivative of the psi function at x.

y = psi(k0:k1,x) computes the derivatives of order k0 through k1 of the psi
function at x.

See also gamma, gammaln
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

pwd
pwdPurpose Print the working directory.

Synopsis pwd

Description pwd prints the working directory.

See also cd, ls
417

qr

418 | C H A P T
qrPurpose QR factorization.

Synopsis [q,r] = qr(a)
[q,r,p] = qr(a)
[q,r] = qr(a,0)
[q,r,p] = qr(a,0)
qr(a)

Description [Q,R] = qr(A) computes the QR factorization of the dense MxN matrix A, so that
QR = A. Q is a MxM square unitary matrix and R is a MxN upper triangular matrix.

[Q,R,P] = qr(A) computes the QR factorization of the dense matrix A such that
QR = AP. The absolute value of the diagonal elements of R are in decreasing order.

[Q,R] = qr(A,0) computes a reduced size factorization: For M>N, only the first
N columns of Q and the first N rows of R are computed.

[Q,R,P] = qr(A,0) computes the reduced size factorization and in addition
returns, P such that Q*R = A(:,P).

qr(A) returns the output from the LAPACK algorithms DGEQRF and ZGEQRF,
respectively.

See also lu, chol, svd
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

quad
quadPurpose Evaluate integral numerically using adaptive Simpson quadrature.

Synopsis q = quad(f,a,b)
q = quad(f,a,b,tol)
q = quad(f,a,b,tol,trace)
q = quad(f,a,b,tol,trace,x1,x2,...)
[q,fnr] = quad(f,a,b,...)

Description q = quad(f,a,b) approximates the integral of a function f from a to b using
adaptive Simpson quadrature with the default tolerance 1e-6.

q = quad(f,a,b) approximates the integral to a relative error tol.

q = quad(f,a,b,tol,trace), when trace is nonzero, displays the number of
function evaluations, a, b-a and q during the recursion.

q = quad(f,a,b,tol,trace,x1,x2,...) passes any further arguments x1,x2, ...
to the function f.

[q,fnr] = quad(f,a,b,...) also returns fnr, the number of times quad
evaluated the function f.

Example q = quad('myfun',-1,2,1e-8) approximates the integral of a function myfun
between -1 and 2 with relative error 1e-8.

See also quadl
419

quadl

420 | C H A P T
quadlPurpose Evaluate integral numerically using adaptive Lobatto quadrature.

Synopsis q = quadl(f,a,b)
q = quadl(f,a,b,tol)
q = quadl(f,a,b,tol,trace)
q = quadl(f,a,b,tol,trace,x1,x2,...)
[q,fnr] = quadl(f,a,b,...)

Description q = quadl(f,a,b) approximates the integral of a function f from a to b using
adaptive Lobatto quadrature with the default tolerance 1e-6.

q = quadl(f,a,b) approximates the integral to a relative error tol.

q = quadl(f,a,b,tol,trace), when trace is nonzero, displays the number of
function evaluations, a, b-a and q during the recursion.

q = quadl(f,a,b,tol,trace,x1,x2,...) passes any further arguments x1,x2,
... to the function f.

[q,fnr] = quadl(f,a,b,...) also returns fnr, the number of times quad
evaluated the function f.

Example q = quadl('myfun',-1,2,1e-8) approximates the integral of a function myfun
between -1 and 2 with relative error 1e-8.

See also quad
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

quit
quitPurpose Close the command window.

Synopsis quit

Description quit closes the command window.

See also exit
421

radiobutton

422 | C H A P T
radiobuttonPurpose Create a radio button.

Synopsis r = radiobutton(text,...)
r = radiobutton(...)

Description r = radiobutton(text) creates a radio button with the specified text.

A radiobutton behaves exactly as does a togglebutton except that it is rendered
as a radio button. See the reference entry for togglebutton for available property
values and methods.

See also togglebutton
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rand, randn
randPurpose Generate random numbers uniformly distributed over [0, 1].

Synopsis a = rand
a = randn

a = rand(n)
a = randn(n)

a = rand(m, n, ...)
a = randn(m, n, ...)

a = rand(sz)
a = randn(sz)

a = rand('state')
a = randn('state')

rand('state', n)
randn('state', n)

rand('state', vec)
randn('state', vec)

Description rand generates pseudorandom numbers uniformly distributed over [0, 1] while
randn generates pseudorandom numbers with the normal distribution. This is the
only difference between the two functions; in the description below, you can replace
rand by randn in all places.

 a = rand returns a random number.

 a = rand(n), where n is a positive integer, returns an n-by-n-matrix of random
numbers.

 a = rand(m, n, ...), where m, n, … are positive integers, returns a matrix of
random numbers of size (m, n, ...).

 a = rand(sz), where sz is an integer vector, returns a matrix of random numbers
of size sz.

 a = rand('state') returns the state vector of the pseudorandom number
generator.

 rand('state', n), where n is an integer, resets the generator using the seed n.

 rand('state', vec), where vec is a vector of doubles, sets the state of the
generator to vec.
423

randperm

424 | C H A P T
randpermPurpose Random permutation.

Synopsis p = randperm(n)

Description p = randperm(n), where n is an integer, returns an n-long vector that contains a
random permutation of 1:n.

Example randperm(5) returns a random permutation of [1,2,3,4,5], for instance
[4,2,3,1,5] or [3,2,4,1,5].
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rank
rankPurpose Compute the rank of a matrix.

Synopsis rank(A)
rank(A,tol)

Description rank(A) computes the rank of A.

 rank(A,tol) computes the rank of A using the relative tolerance tol.
425

rat

426 | C H A P T
ratPurpose Rational fraction approximation

Synopsis [n,d] = rat(x)
[n,d] = rat(x,tol)
str = rat(...)

Description [n,d] = rat(x) returns arrays n and d such that n./d approximates the elements
of x within tolerance 1.e-6*norm(X(:),1).

 [n,d] = rat(x,tol) approximates x within tolerance tol.

str = rat(...) returns a string representation of the continued fraction of each
element of x.

Example [n,d] = rat([0.3 pi sqrt(2)]) returns n = [3,355,577] and
d = [10,113,408].

See also rats
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rats
ratsPurpose String representation of rational fraction approximation

Synopsis str = rats(x)
str = rats(x,len)

Description str = rats(x) returns string representations of the simple rational fraction
approximations of x. (Unlike str = rat(...), which returns the continued
fraction.) An asterisk represents elements that cannot be contained within the
default string length of 13.

 str = rats(x,len) returns string representations of the elements of x within the
length len. Note that elements are separated by a space character. Hence
rats([0.325 4.442],3) returns a string of length 8.

Example rats([0.3 pi sqrt(2)]) returns the string
 ' 3/10 355/113 577/408 '.

See also rat
427

rdivide

428 | C H A P T
rdividePurpose Divide matrices pointwise.

Synopsis d = rdivide(a, b)

Description d = rdivide(a, b) computes the pointwise ratio between the two matrices a
and b. For each dimension, a and b must have the same size or either of them must
have size 1. In the latter case, the unit dimension is expanded to the size of the
nonunit dimension.

 rdivide(a, b) is equivalent to a./b.

Examples [2 3 5]./10

 (2:5)./(3:6)

See also minus, plus, ldivide, times
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

real
realPurpose Return real part.

Synopsis b = real(a)

Description b = real(a) returns the real part of the complex matrix a.

See also imag
429

realmin, realmax

430 | C H A P T
realmin, realmaxPurpose Get the smallest and largest values that can be represented as floating-point values.

Synopsis realmin
realmax

Description realmin returns the smallest value that can be represented as a floating-point value,
1/2^1022.

 realmax returns the largest value that can be represented as a floating-point value,
2^1024-1.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

realpow
realpowPurpose Compute power of real matrix.

Synopsis m = realpow(a, b)

Description m = realpow(a, b) computes ab pointwise. The sizes of a and b must be identical
unless one of them is a scalar; in that case, the scalar is expanded to a matrix of the
correct size.

 realpow can only be used when the result is real, that is, when all elements of a.^b
are real.

See also power
431

rehash

432 | C H A P T
rehashPurpose Refreshes the view of the path.

Synopsis rehash
rehash path

Description rehash checks for each function on the path if it has been modified since it was
loaded into memory and reloads it if this is the case.

 rehash path refreshes the view of all directories on the path and loads new and
modified functions.

 rehash path is needed if a new function has been created that shadows an existing
function on the path.

See also path
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rem
remPurpose Compute a remainder.

Synopsis r = rem(a, b)

Description r = rem(a, b) computes the remainder for the pointwise division of a and b,
whose sizes must be identical unless one of them is a scalar; in that case, the scalar
is expanded to a matrix of the correct size.

See also mod, rdivide
433

repmat

434 | C H A P T
repmatPurpose Create matrix by repeating another matrix in a pattern.

Synopsis r = repmat(a, sz)
r = repmat(a, dim1, dim2, ...)

Description r = repmat(a, sz) returns a matrix created by repeating the matrix a in an
sz(1)-by-sz(2)-… pattern, which results in a matrix of size (sz(1)*size(a,1),
sz(2)*size(a,2), ...).

 r = repmat(a, dim1, dim2, ...) is equivalent to repmat(a, [dim1 dim2
...]).

Examples repmat(pi, 5, 3) returns a 5-by-3-matrix where all the elements are pi.

 repmat(eye(2), 2, 3) returns a 4-by-6-matrix where half the elements are ones
and the other half are zeros.

See also eye, ones, zeros
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

reshape
reshapePurpose Reshape a matrix.

Synopsis r = reshape(a, sz)
r = reshape(a, dim1, dim2, ...)

Description r = reshape(a, sz) returns the matrix a reshaped into size sz, which must be an
integer vector such that prod(sz)==numel(a). The returned matrix r has the same
column-major order contents as a so that r(:) equals a(:).

 r = reshape(a, dim1, dim2, ...) returns the matrix a reshaped into
size (dim1, dim2, ...). The dimensions must satisfy the relation
dim1*dim2*...==numel(a). If one of the dimi is the empty matrix [], then the
size of that dimension is chosen such that the number of elements does not change.
This is possible only if the product of the supplied dimensions divides numel(a).

Examples reshape(1:4, 2, 2) returns [1 3 ; 2 4].

 reshape(1:100, 4, [], 5) returns an 4-by-5-by-5-matrix.

See also squeeze
435

rethrow

436 | C H A P T
rethrowPurpose Rethrow an error message.

Synopsis rethrow(s)

Description rethrow(s) throws the error message in the message field of the structure s.

The typical use of rethrow is in a catch clause, where rethrow(lasterror)
throws the error caught by catch.

See also error, lasterror
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rmdir
rmdirPurpose Remove a directory.

Synopsis status = rmdir(name)
status = rmdir(name, 's')

Description status = rmdir(name) removes the directory name, which must be empty. 1 is
returned if the operation was successful, 0 if it failed.

 status = rmdir(name, 's') removes the directory name and its contents
recursively.

See also isdir, mkdir
437

rmfield

438 | C H A P T
rmfieldPurpose Remove a field from a structure.

Synopsis news = rmfield(s, field)

Description news = rmfield(s, field) returns a copy of the structure s where the field
called field has been removed.

See also isfield, getfield, setfield
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rmpath
rmpathPurpose Remove a directory from the search path.

Synopsis rmpath(dir)

Description rmpath(dir) removes the directory dir from the list of directories where
COMSOL Script looks for M-files.

See also addpath, path
439

roots

440 | C H A P T
rootsPurpose Compute polynomial roots.

Synopsis roots(P)

Description roots(P) returns the roots of the polynomial P.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

rot90
rot90Purpose Rotate a matrix counterclockwise.

Synopsis b = rot90(a)
b = rot90(a, n)

Description b = rot90(a) returns a rotated 90 degrees counterclockwise.

 b = rot90(a, n) returns a rotated 90n degrees counterclockwise where n must
be an integer.

See also fliplr, flipud
441

run

442 | C H A P T
runPurpose Run a script.

Synopsis run(scrname)

Description run(scrname) runs the script scrname.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

save
savePurpose Save a workspace to file.

Syntax save(filename)
save(filename, var1, var2, ...)

save(..., '-mat')
save(..., '-ascii')
save(..., '-ascii', '-tabs')
save(..., '-ascii', '-double')
save(..., '-ascii', '-double', '-tabs')

Description save(filename), where filename is a string, saves variables and their values to the
file filename.

save(filename, var1, var2, ...) saves only the variables var1, var2, to
file. * can be used as wildcard character unless '-ascii' is given.

save(..., '-mat') saves the file as a MATLAB workspace file. (The default
behavior is to save it as a Comsol workspace file.)

save(..., '-ascii') saves text representations of the variables. This is possible
only for numerical 2D matrices. The variables are written in the order they were
specified. For each matrix variable, a row in the matrix corresponds to a row in the
output file.

save(...,'-ascii','-tabs') separates the elements on each row of a matrix
using tabs instead of spaces.

save(...,'-ascii','-double') saves the variables in full precision instead of
using 8 significant digits.

save(...,'-ascii','-double','-tabs') saves the variables tab-separated in
full precision.

Example Saving only the variables with names beginning with 'ab':

a = 2;
ab = 3;
abc = 5;
save mydata ab*

See also load
443

saveimage

444 | C H A P T
saveimagePurpose Save a plot as an image

Synopsis saveimage(filename,...)

Description saveimage(filename,...) saves the plot in the current figure as an image with
the name filename.

The following property-value pairs can be used to control the generated image:

TABLE 1-38: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

antialias on | off on Antialiasing.

autoticks on | off on Automatic axis tick marks.

figure handle current
figure

Handle to the figure
window to generate an
image from.

fontscale positive scalar 1 Relative font scale.

fontscaleabs positive scalar 1 Absolute font scale.

height positive scalar 600 The height of the image.

hideaxis3d on | off off Hide 3D axes objects.

includeall on | off on Include colorbars and
legends.

linescale positive scalar 1 Relative line scale.

linescaleabs positive scalar 1 Absolute line scale.

resolution positive integer 300 Image resolution (dpi).

thingrid on | off off Thin grid lines.

type bmp | jpeg | png |
tiff | eps

jpeg The type of image to
create.

unit cm | inch | pixel pixel Image size unit.

width positive scalar 800 The width of the image.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

schur
schurPurpose Schur decomposition.

Synopsis T = schur(A)
T = schur(A,str)
[U,T] = schur(A,...)

Description T = schur(A) returns the Schur form of a square matrix A.

 T = schur(A,str), where str can be either 'real' or 'complex', returns the
corresponding Schur form of A. The default is 'real', which puts the eigenvalues
on the diagonal if they are real and in 2-by-2 block on the diagonal if they are
complex. In the latter case, the complex eigenvalues are the eigenvalues of each
block. 'complex' gives the eigenvalues on the diagonal, independent of whether
they are real or complex.

 [U,T] = schur(A,...) also returns a unitary matrix U such that A = U*T*U' and
U'*U = I.

See also hess
445

scrollpane

446 | C H A P T
scrollpanePurpose Create a scroll pane.

Synopsis s = scrollpane(comp,...)

Description s = scrollpane(comp) creates a scroll pane that controls the specified
component.

The property values listed under the reference entry for component can be used to
further control how the scroll pane is created. In particular, it is important to specify
the 'size' property because the scroll pane is very small by default.

See also component, panel
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

semilogx
semilogxPurpose Create a plot with a log scale on the x-axis.

Synopsis semilogx(...)

Description semilogx(...) has the same functionality as plot(...) except that it uses a log
scale on the x-axis.

See also plot
447

semilogy

448 | C H A P T
semilogyPurpose Create a plot with a log scale on the y-axis.

Synopsis semilogy(...)

Description semilogy(...) has the same functionality as plot(...) except that it uses a log
scale on the y-axis.

See also plot
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

set
setPurpose Set the value of a property for a graphics object.

Synopsis set(h,name,value)

Description set(h,name,value) sets the value of property name to value for the graphics
object to which the handle h refers.

See also get
449

setdiff

450 | C H A P T
setdiffPurpose Set difference.

Synopsis c = setdiff(a,b)
c = setdiff(a,b,'rows')
[c,ai] = setdiff(...)

Description c = setdiff(a,b) returns the elements of a that are not in b. Both of them can
be either arrays or cell arrays of strings.

 c = setdiff(a,b,'rows'), where a and b must be 2D matrices, returns the row
set difference, that is, the rows in a that are not in b. a and b must have the same
number of columns.

 [c,ai] = setdiff(...) also returns the index vector ai, which contains the
linear indices in a of the elements in c.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command.

Examples a = [1 2 0 1 2 3];
b = [2 4 5 7 0 8];
[c,ai] = setdiff(a,b) returns c = [1, 3] and ai = [4, 6].

[c1,ai1] = setdiff(a,b,'sort','off') returns the same result unsorted.

a = [1 2 3; 2 3 1; 3 4 5; 5 4 3; 4 3 5;1 3 3];
b = [3 4 5; 3 4 5; 1 2 2; 4 3 5];
setdiff(a,b,'rows') returns [1, 2, 3; 1, 3, 3; 2, 3, 1; 5, 4, 3].

a = {'green','yellow','blue','green'};
b = {'red','purple','yellow'};
setdiff(a,b) returns {'blue', 'green'}.

See also intersect, ismember, setxor, union, unique

TABLE 1-39: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off' 'on' Controls whether or not
output should be sorted.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

setfield
setfieldPurpose Set the value of a structure field.

Synopsis t = setfield(s, field, val)

t = setfield(s, index1, field, index2, val)

Description t = setfield(s, field, val), for a structure s, returns a copy of s where the
field field has been assigned the value val. This is equivalent to t = s;
t.(field) = val.

 t = setfield(s, index1, field, index2, val), for a structure s, is
equivalent to t = s; t(index1{:}).(field)(index2{:}) = val where index1
and index2 are cell arrays containing array indices.

See also getfield
451

setxor

452 | C H A P T
setxorPurpose Set exclusive OR.

Synopsis c = setxor(a,b)
c = setxor(a,b,'rows')
[c,ai,bi] = setxor(...)

Description c = setxor(a,b) returns the set exclusive or of a and b, that is, the elements that
are not in the intersection of a and b. a and b can be either arrays or cell arrays of
strings.

 c = setxor(a,b,'rows'), where a and b must be 2D matrices, returns the row
set XOR, that is, the rows not in the intersection of a and b. a and b must have the
same number of columns.

 [c,ai,bi] = setxor(...) also returns the index vectors ai and bi, where ai
contains the linear indices of the elements of c that belong to a, and bi contains the
linear indices of the elements of c that belong to b.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command.

Examples a = [1 2 0 1 2 3];
b = [2 4 5 7 0 8];
[c,ai,bi] = setxor(a,b)

returns c = [1, 3, 4, 5, 7, 8], ai = [4, 6], and bi = [2, 3, 4, 6].

a = [1 2 3; 2 3 1; 3 4 5; 5 4 3; 4 3 5;1 3 3];
b = [3 4 5; 3 4 5; 1 2 2; 4 3 5];
c1 = setxor(a,b,'rows')

returns [1, 2, 2 ; 1, 2, 3 ; 1, 3, 3 ; 2, 3, 1 ; 5, 4, 3].

c2 = setxor(a,b,'rows','sort','off') returns the same result unsorted.

a = {'green','yellow','blue','green'};
b = {'red','purple','yellow'};
setxor(a,b) returns {'blue', 'green', 'purple', 'red'}.

See also intersect, ismember, setdiff, union, unique

TABLE 1-40: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off' 'on' Controls whether or not
output should be sorted.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

shading
shadingPurpose Control shading of surface and patch objects.

Synopsis shading('flat')
shading('interp')
shading('faceted')

Description shading('flat') sets that flat shading should be used on patch and surface
objects in the current axes. This means that a constant color picked from one of the
corners will be used in each element.

 shading('interp') sets that the color within elements should be interpolated
from color values at the corner nodes.

 shading('faceted') uses flat shading within the elements but also shows black
lines along the edges of each element.

 shading(ax,...) controls the axes ax instead of the current axes.

See also patch, surface
453

shiftdim

454 | C H A P T
shiftdimPurpose Shift matrix dimensions.

Syntax b = shiftdim(a, n)

[b, n] = shiftdim(a)

Description b = shiftdim(a, n), for a positive integer n, returns a after shifting the matrix
dimensions cyclically n steps. If n is negative, b gets the same size as a but with -n
unit dimensions prepended.

 [b, n] = shiftdim(a) returns a with prefix unit dimensions removed; n is the
number of unit dimensions that were removed.

Examples size(shiftdim(ones(2, 3, 4), 1))) is [3 4 2].

 size(shiftdim(ones(2, 3, 4), -2))) is [1 1 2 3 4].

 [b, n] = shiftdim(ones(1, 1, 3, 5)) results in b = ones(3, 5) and n = 2.

See also circshift
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

single
singlePurpose Round a matrix to single precision.

Syntax b = single(a)

Description b = single(a) returns the result of converting a to single precision pointwise. The
returned matrix b is still double precision.

See also double
455

size

456 | C H A P T
sizePurpose Get the size of a matrix.

Syntax sz = size(a)
[rows,cols]=size(a)
szd = size(a,dim)

Description sz = size(a) returns the size of a.

 [rows,cols]=size(a) returns the number of rows and columns in a.

 szd = size(a,dim) returns the size of dimension dim in a.

See also length
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sort
sortPurpose Sort an array.

Synopsis y = sort(x)
y = sort(x,dim)
[y,ind] = sort(...)

Description y = sort(x) sorts the elements of x in ascending order. When x is a vector, sort
sorts the elements of x. When x is a matrix, sort sorts each column of x. When x
is an n-dimensional array, sort sorts along the first nonsingleton dimension of x.

 y = sort(x,dim) sorts x along the dimension dim.

 [y,ind] = sort(...) also returns ind, an array of the same size as x containing
the original index of each element in y along the dimension x is sorted.

 sort is stable, hence the relative order of identical elements is preserved.

Note that NaN values are sorted as larger than any other value, including Inf.
Complex values are sorted first by magnitude, then by angle.

Examples a= [1 10 0 3 2 1 7 7 5];
[res,ri] = sort(a); returns
res = [0, 1, 1, 2, 3, 5, 7, 7, 10] and
ri = [3, 1, 6, 5, 4, 9, 7, 8, 2].

x = [0 2 3;-3 1 3;2 4 0];
x2 = [-3 4 1;3 2 0;-1 8 1];
y(:,:,1)=x;y(:,:,2)=x2;
sort(x,1) returns [-3, 1, 0; 0, 2, 3; 2, 4, 3].
sort(x2,2) returns [-3, 1, 4; 0, 2, 3; -1, 1, 8].
[z,ind] = sort(y,3) returns z and ind such that:

z(:,:,1) = [-3, 2, 1; -3, 1, 0; -1, 4, 0]
z(:,:,2) = [0, 4, 3; 3, 2, 3; 2, 8, 1]
ind(:,:,1) = [2, 1, 2; 1, 1, 2; 2, 1, 1]
ind(:,:,2) = [1, 2, 1; 2, 2, 1; 1, 2, 2].

See also sortrows
457

sortrows

458 | C H A P T
sortrowsPurpose Sort rows.

Synopsis y = sortrows(x)
y = sortrows(x,col)
[y,ind] = sortrows(x)

Description y = sortrows(x) sorts the rows of x in ascending order. x must be a matrix or a
column vector.

 y = sortrows(x,col) sorts the rows of x according to the columns specified in
col, which must be a vector of positive integers, where each entry specifies one
column. sortrows(x,[3,2]), for example, sorts first along column three, then, for
rows with equal values in column three, along column two.

 [y,ind] = sortrows(...) also returns ind, a vector containing the original index
of each row of y.

 sortrows is stable, hence the relative order of identical elements is preserved.

Note that NaN values are sorted as larger than any other value, including Inf.
Complex values are sorted first by magnitude, then by angle.

Examples x = [0 1 2; 1 1 0; 0 1 0; 1 0 2; 0 2 1];
sortrows(x) returns [0, 1, 0 ; 0, 1, 2 ; 0, 2, 1 ; 1, 0, 2 ; 1, 1, 0].
sortrows(x,[2 1]) returns
[1, 0, 2 ; 0, 1, 2 ; 0, 1, 0 ; 1, 1, 0 ; 0, 2, 1].

See also sort
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sound, soundsc
sound, soundscPurpose Plays sound.

Synopsis sound(data)
sound(data, rate)
sound(data, rate, nbits)

soundsc(data)
soundsc(data, rate)
soundsc(data, rate, nbits)

Description sound(data) interprets data as a pulse-code modulated signal and plays it with a
sample rate of 8192Hz using 16 bits per sample. Signal values outside [-1,1] are
clipped.

sound(data, rate) uses a sample rate of rate.

sound(data, rate, nbits) uses a sample rate of rate and nbits bits per sample
(only 8 and 16 are supported).

soundsc(data, ...) scales and translates the signal such that the minimum and
maximum amplitudes are -1 and 1 respectively when sent to the output device.

sound and soundsc is only available if the platform has support for sound.
459

sparse

460 | C H A P T
sparsePurpose Create a sparse matrix.

Synopsis sp = sparse(a)
sp = sparse(m, n)
sp = sparse(rows, cols, data)
sp = sparse(rows, cols, m, n)

Description sp = sparse(a) returns a sparse matrix with the same contents as the sparse or full
matrix a.

 sp = sparse(m, n) returns an mxn all-zero real sparse matrix.

 sp = sparse(rows, cols, data) returns a sparse matrix with a specified sparsity
pattern: rows and cols are vectors containing row and column indices for nonzero
elements, and data is a vector containing the values of the nonzero elements. The
returned matrix has the size (max(rows), max(cols)), where rows, cols, and data
all must have the same length or be scalars; if any of them is a scalar, then it is
expanded to a constant vector.

 sp = sparse(rows, cols, data, m, n) returns an m-by-n sparse matrix with
contents interpreted in the same way as for the syntax sparse(rows, cols,
data).

See also full
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

spdiags
spdiagsPurpose Extract diagonals from a sparse matrix or create a sparse matrix from diagonals.

Synopsis [C,d] = spdiags(S)
C = spdiags(S,d)
S = spdiags(C,d,A)
S = spdiags(C,d,m,n)

Description [C,d] = spdiags(S), where S is a 2D matrix, returns a matrix C, whose columns
are the nonzero diagonal of S, and a vector d specifying the indices of the diagonals.
0 indicates the diagonal, -1 the first subdiagonal, 1 the first superdiagonal and so
on. C will have min(m,n) rows, where [m,n] = size(S). If a column in C is
longer than the diagonal in S it represents, elements of superdiagonals correspond
to the lower part of the column and elements of subdiagonals to the upper.

C = spdiags(S,d) returns a matrix C whose columns are the d diagonals of S.

S = spdiags(C,d,A) returns a sparse copy of a matrix A with diagonals d replaced
by the columns in C.

S = spdiags(C,d,m,n) returns a sparse matrix of size m-by-n with diagonals d
replaced by the columns in C.

Example A = reshape(1:16,4,4);
C = [-1,0;0,0;0,-12;0,-14];
S = spdiags(C,[-3,2],A);

See also diag
461

speye

462 | C H A P T
speyePurpose Create a sparse matrix with ones on the diagonal.

Synopsis e = speye(n)
e = speye(m,n)

Description In all cases, a sparse matrix with ones on the main diagonal and zeros elsewhere is
returned. Its size is determined as follows:

 speye(n), where n is a nonnegative integer, returns a square n-by-n-matrix.

 speye(m,n), where m and n are nonnegative integers returns an m-by-n-matrix.

See also eye
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sph2cart
sph2cartPurpose Transform from spherical to Cartesian coordinates.

Synopsis [x,y,z] = sph2cart(theta,phi,r)

Description [x,y,z] = sph2cart(theta,phi,r) transforms spherical coordinates into
Cartesian coordinates. theta is the azimuth, phi is the elevation, and r is the radius.
Both theta and phi must be in radians. All input must be the same size or a scalar.

Example [x,y,z]=sph2cart([0 0 pi/2 0],[0 0 0 pi/2],[0 1 1 1]) returns the
Cartesian 3D coordinates for the points (0,0,0), (0,0,1), (pi/2,0,1) and (0,pi/2,1)
in spherical coordinates, that is points (0,0,0), (1,0,0), (0,1,0) and (0,0,1),
respectively.

See also cart2sph, cart2pol, pol2cart
463

spline

464 | C H A P T
splinePurpose Cubic spline interpolation.

Synopsis yi = spline(x,y,xi)
pp = spline(x,y)

Description yi = spline(x,y,xi) performs spline interpolation of y at points x and returns
an array yi corresponding to the values of the underlaying function y at xi. x must
be a vector and y must be either a vector of the same length as x or an array whose
last dimension equals the length of x. In the latter case, the interpolation is
performed along the last dimension of y.

pp = spline(x,y) performs spline interpolation of y at points x and returns the
cubic spline interpolant as a piecewise polynomial structure (described in ppval).

Example This example interpolates points from the sine curve and shows how to reuse the
piecewise polynomial.

x = linspace(0,2*pi,10); y = sin(x);
xi = linspace(0,2*pi,20);
yi = spline(x,y,xi);
pp = spline(x,y);
yip = ppval(pp,xi); %Identical to yi

xi1 = linspace(0,2*pi,100);
yip1 = ppval(pp,xi1);

See also ppval, pchip, mkpp, unmkpp
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

spones
sponesPurpose Sparse matrix of ones.

Synopsis S = spones(A)

Description spones(A) returns a sparse matrix with the same sparsity structure as A but with
ones in the place of nonzero elements.

Example spones([0 10 2;0 0 0; Inf 0 0]) returns the sparse version of the matrix
[0,1,1; 0,0,0; 1,0,0].

See also nnz, spdiags
465

sprand

466 | C H A P T
sprandPurpose Sparse random matrix with uniformly distributed numbers.

Synopsis S = sprand(A)
S = sprand(m,n,density)

Description sprand(A) returns a sparse matrix with the same sparsity structure as A but with
random numbers uniformly distributed over [0, 1] in the place of nonzero elements.

 sprand(m,n,density) returns a sparse matrix of size m-by-n with approximately
density*m*n random numbers uniformly distributed over [0, 1].

See also sprandn, sprandsym, rand
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sprandn
sprandnPurpose Sparse random matrix with normally distributed numbers.

Synopsis S = sprandn(A)
S = sprandn(m,n,density)

Description sprandn(A) returns a sparse matrix with the same sparsity structure as A but with
normally distributed random numbers in the place of nonzero elements.

 sprandn(m,n,density) returns a sparse matrix of size m-by-n with approximately
density*m*n normally distributed random numbers.

See also sprand, sprandsym, rand
467

sprandsym

468 | C H A P T
sprandsymPurpose Symmetric sparse random matrix.

Synopsis S = sprandsym(A)
S = sprandsym(m,density)

Description sprandsym(A) returns a symmetric sparse matrix whose lower triangular part has
the same sparsity structure as A but with normally distributed random numbers in
the place of nonzero elements.

 sprandsym(m,density) returns a symmetric sparse matrix of size m-by-m with
approximately density*m*m normally distributed random numbers.

See also sprand, sprandn, rand
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sprintf
sprintfPurpose Convert data to a formatted string.

Synopsis s = sprintf(format,m,...)

Description s = sprintf(format,m,...) returns a string representation of the input matrices
according to the C-style format string format.

The format string contains conversion specifications for the input matrices. Each
specification begins with the % character followed by optional flags, width and
precision fields and the required conversion character as described below:

Flags can be combined, that is, you can have more than one flag at the same time.

'%g' uses exponential notation when the exponent is larger than or equal to the
precision, or if the exponent is less than -4. The default precision is 6. Note that
precision means number of digits to the right of the decimal point for '%f' and the
total number of digits for '%g'. '%g' always removes insignificant zeros.

TABLE 1-41: FLAGS

 CHARACTER DESCRIPTION EXAMPLE CODE EXAMPLE OUTPUT

'-' (minus) Result is left
justified

sprintf('x=%-6.2fm',10) x=10.00 m

'+' (plus) Always print sign sprintf('%+d, ',[2 -2]) +2, -2,

'0' (zero) Pad with zeros
instead of spaces

sprintf('%05.1f',2.123) 002.1

TABLE 1-42: CONVERSION CHARACTERS

CHARACTER DESCRIPTION

'd' (or 'i') Integer notation

'e' Exponential notation using lowercase e

'E' Exponential notation using uppercase E

'f' Fixed-point notation

'g' Exponential or fixed-point notation.

'G' Identical to 'g', but using uppercase E for
exponential notation.

's' String
469

sprintf

470 | C H A P T
Examples

See also num2str, int2str, fprintf, sscanf

EXAMPLE CODE RESULT

sprintf('A:%10.4d',12) A: 0012

sprintf('A: %-+10.2f
',[10.045,1.02])

A: +10.05 A: +1.02

sprintf('g1: %.2g g2: %.3g
',100,100)

g1: 1e+002 g2: 100

sprintf('%%Hello \n World%%') %Hello

 World%

sprintf('%s: %f','X',12.141) X: 12.141000

sprintf('f: %.3f g: %.3g ',pi,pi) f: 3.142 g: 3.14

sprintf('f: %-10.3f g: %-10.6g
(m)',100.000,100.000)

f: 100.000 g: 100
(m)

sprintf('A: %.1f B: %.3e\n',

[1.01 1.00001,1.1],[1e4 1e-4 1])

A: 1.0 B: 1.000e+000

A: 1.1 B: 1.000e+004

A: 0.0 B: 1.000e+000
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

spy
spyPurpose Show sparsity pattern in a sparse matrix.

Synopsis spy(x)

Description spy(x) plots a small dot in positions where entries in x are nonzero. This can be
used to visualize the sparsity pattern of sparse matrices.
471

sqrt

472 | C H A P T
sqrtPurpose Square root.

Syntax b = sqrt(a)

Description b = sqrt(a) returns the pointwise square root of a.

See also sqrtm
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sqrtm
sqrtmPurpose Matrix square root

Synopsis X = sqrtm(A)
[X,r] = sqrtm(A)
[X,alpha,CX] = sqrtm(A)

Description X = sqrtm(A), where A is a square matrix, returns a matrix X such that X * X = A.

 [X,r] = sqrtm(A) also returns the residual r = norm(A - X^2,'fro') /
 norm(A,'fro').

 [X,alpha,CX] = sqrtm(A) returns alpha, a stability factor, and CX, an estimate
of the matrix square root condition number of X.

See also expm, funm, sqrt
473

squeeze

474 | C H A P T
squeezePurpose Remove the unit dimensions.

Synopsis m = squeeze(a)

Description m = squeeze(a) returns a matrix with the same contents as a but where interior
unit dimensions have been removed and the elements shifted accordingly.

Example squeeze(ones(4, 1, 3, 1, 1, 5)) is ones(4, 3, 5).

See also reshape, shiftdim
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sscanf
sscanfPurpose Read formatted data from a string.

Synopsis a = sscanf(s,format)
a = sscanf(s,format,size)
[a,count,error,nextindex] = sscanf(...)

Description a = sscanf(s,format) converts a string s into a matrix a according to a specific
format string format. Formats are defined by a '%' character followed by the type
identifier (d,e,f,g,s). (For information about the identifiers, see sprintf.) Several
different formats can be used in the format string, either one after the other or
separated by string tokens or white-space characters. (These tokens must be
matched exactly in the base string s. A format string of '%d;', for example, will read
integers separated by ';'.)

 a = sscanf(s,format,size) reads data according to size, which can be a scalar
n, in which case sscanf reads n elements into a column vector. If n is Inf, sscanf
reads all elements. size can also be a matrix [m,n], in which case a will be an mxn
matrix filled in column order. n may be Inf, but not so m.

 [a,count,error,nextindex] = sscanf(...) also returns count, the number
of successfully read elements, and nextindex, one more than the characters read in
s. error is unused.

Examples sscanf('12 Inf -1 12 5 20 0.12 8 10 NaN','%f',[2,3]) returns [12, -1,
5 ; Inf, 12, 20].

 sscanf('12.2 13.1 0.1 ','%d%f %f') returns [12 ; 13.1 ; 0.1].

 sscanf('1:13,0.1 ','%d:%d,%f') returns [1; 13; 0.1].

See also fscanf, sprintf
475

stairs

476 | C H A P T
stairsPurpose Stairstep plot

Synopsis stairs(y)
stairs(x,y)
stairs(...,linespec)
h = stairs(...)
[xdata,ydata] = stairs(x,y)

Description stairs(x,y) plots a stairstep plot of y versus x. If the inputs are matrices, one line
of stairs is drawn for each column.

stairs(y) plots y versus default x, which is 1:length(y) if y is a vector and
1:size(y,1) if y is a matrix.

stairs(...,linespec) can be used to control line color and line style. See plot
for allowed values.

h = stairs(...) returns a handle to the drawn lines.

[xdata,ydata] = stairs(x,y) does not actually plot the stairs, but instead
returns the vectors xdata and ydata that defines it. (Use for example
plot(xdata,ydata) to actually plot the stairs.)

The property values for line can be passed at the end of the command to further
control the plot.

Examples % Stairstep plot of the sine function, with red
% linecolor and markers
x = 1:0.5:10;
y = sin(x);
stairs(x,y,'ro');

% Plot two functions
x = 1:0.1:10;
y1 = sin(x); y2 = cos(x);
stairs([x(:),x(:)],[y1(:),y2(:)],'linewidth',2);

See also stem, plot
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

std
stdPurpose Compute standard deviation.

Synopsis y = std(x)
y = std(x,0)
y = std(x,1)
y = std(x,w)
y = std(x,dim)

Description y = std(x) and y = std(x,0) compute the standard deviation of x, normalizing
y by n-1, where n is the sample size.

y = std(x,1) computes the standard deviation of x, normalizing y by n.

When x is a vector, y is the standard deviation of x. When x is a matrix, y is a row
vector where each element is the standard deviation of the corresponding column
of x. When x is an n-dimensional array, y is the standard deviation along the first
nonsingleton dimension of x.

y = std(x,w) computes the standard deviation of x using the weight vector w,
which std normalizes to sum to one. w must contain only nonnegative elements and
must be of the same length as x along the dimension the standard deviation is
computed.

y = std(x,w,dim) computes the standard deviation along the dimension dim.

Examples x = [0 4 1;2 9 2;4 -1 0];
x2 = [-3 4 1;3 2 0;-1 8 1];
y(:,:,1)=x;y(:,:,2)=x2;
std(x) returns [2, 5, 1].
std(x,[1 1 3]) returns [1.6, 4, 0.8].
std(x,[],2) returns [2.0817; 4.0415 ; 2.6458].
std(y,[],3) returns
[2.121,0,0; 0.707,4.950,1.414; 3.536,6.364,0.707].

See also corrcoef, cov, var
477

stem

478 | C H A P T
stemPurpose Stem plot in 2D

Synopsis stem(y)
stem(x,y)
stem(...,linespec)
h = stem(...)

Description stem(x,y) plots y versus x as stems. If the inputs are matrices, one line with stems
is drawn for each column.

stem(y) plots y versus default x, which is 1:length(y) if y is a vector and
1:size(y,1) if y is a matrix.

stem(..., linespec) can be used to control line color and line style. See plot
for allowed values.

h=stem(...) returns handles to the drawn lines.

The property values for line can be passed at the end of the command to further
control the plot.

Examples % Plot ten red, dotted stems from the sine function
x = 1:10;
y = sin(x);
stem(x,y,'r--');

% Plot two functions and modify the plot afterwards
x1 = 1:10; x2 = x1+0.3;
y1 = sin(x1); y2 = cos(x2);
h=stem([x1(:),x2(:)],[y1(:),y2(:)],'linewidth',2);
set(h(2),'marker','cycle')

See also stem3, plot
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

stem3
stem3Purpose Stem plot in 3D

Synopsis stem3(z)
stem3(x,y,z)
stem(...,linespec)
h = stem(...)

Description stem3(x,y,z) plots z versus x and y as stems. The stems are created by placing grid
points in x(i,j), y(i,j) and z(i,j) for each element in the matrices. x and y can
also be vectors. In that case length(x), must equal the number of columns in z,
and length(y) must equal the number of rows in z. The grid points are then
created as x(j), y(i) and z(i,j).

stem3(z) plots z versus default x and y, which are 1:size(z,2) and 1:size(z,1),
respectively.

stem3(...,linespec) can be used to control line color and line style. See plot
for allowed values.

h = stem3(...) returns handles to the drawn lines.

The property values for line can be passed at the end of the command to further
control the plot.

Examples % Create a stem plot of the function x*y.
x=0:10; y=0:10;
z = x'*y;
stem3(x,y,z)

See also stem, plot
479

storedata

480 | C H A P T
storedataPurpose Store application data in a frame or a dialog box.

Synopsis storedata(f,data)

Description storedata(f,data) stores the data data in f. f can be a frame or a dialog box.
The data can be any of the data types available in COMSOL Script. It can be
retrieved later on using the getdata function.

See also getdata
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

str2num
str2numPurpose String to number conversion.

Synopsis x = str2num(str)

Description x = str2num(str) converts a string str to a numeric value or a matrix. str must
contain a valid expression representing a number or a matrix, but you can omit the
enclosing brackets.

Example str2num('1 2;3 4') returns [1 2; 3 4]

See also num2str, sscanf
481

strcat

482 | C H A P T
strcatPurpose Concatenate strings.

Synopsis s = strcat(s1,...)

Description s = strcat(s1,...) concatenates input arguments horizontally. The input can be
strings, character arrays, or cell arrays of strings.

With the exception of cell arrays, strcat ignores trailing blanks at the end of each
string. To retain these blanks in the output, use horzcat.

Example strcat({'one','two'},'abc','def') gives {'oneabcdef','twoabcdef'}.

strcat({'one';'two'},['abc';'def'],'ghi') gives
{'oneabcghi';'twodefghi'}

See also strvcat, horzcat
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strcmp
strcmpPurpose Compare strings.

Synopsis r = strcmp(s1,s2)

Description r = strcmp(s1,s2) compares s1 and s2, both of which can be strings or cell arrays
of strings. If both are cell arrays, they must be of equal size.

When s1 and s2 are both strings, r is logical true if they are identical and false
otherwise. When one or both are cell arrays, strcmp compares corresponding
elements and returns an array r containing true for matching elements and false
otherwise.

Examples strcmp('blue',{'blue','Blue','red'}) returns [true false false].

strcmp({'blue','Blue','Red'},{'blue','Blue','red'}) returns
[true true false].

See also strcmpi, strncmp, strread, textread
483

strcmpi

484 | C H A P T
strcmpiPurpose Compare strings ignoring case.

Synopsis r = strcmpi(s1, s2)

Description r = strcmpi(s1, s2) compares s1 and s2 ignoring case. s1 and s2 can be strings
or cell arrays of strings. If both are cell arrays, they must be of equal size.

When s1 and s2 are both strings, r is logical true if they are identical except for
case, and false otherwise. When one or both are cell arrays, strcmpi compares
corresponding elements and returns an array r containing true for elements that
match except for case, and false otherwise.

Examples strcmpi('blue',{'blue','Blue','bluer'}) returns [true true false].

strcmpi({'blue','Blue','green'},{'blue','Blue','red'}) returns
[true true false].

See also strcmp, strncmp, strncmpi
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strfind
strfindPurpose Find one string within another.

Synopsis ind = strfind(s,pattern)

Description ind = strfind(s,pattern) returns the first index of each occurrence of a string
pattern in s. s can be either a string, in which case ind is the index array indicating
occurrences of pattern in s, or a cell array of strings, in which case ind is a cell array
of index arrays.

Example strfind('blue yellow green red','e') returns [4, 7, 15, 16, 20].

See also findstr, strmatch, strcmp
485

strjust

486 | C H A P T
strjustPurpose Justify a character array.

Synopsis r = strjust(s)
r = strjust(s,alignment)

Description r = strjust(s) returns a right-justified copy of s, where s must be a string or a
character array.

r = strjust(s,alignment) returns a justified copy of s with a specific alignment:
'right', 'left', or 'center'.

Examples strjust(' red ') returns ' red'.
strjust(' red ','left') returns 'red '.
strjust(' red ','center') returns ' red '.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strmatch
strmatchPurpose Find string matches.

Synopsis r = strmatch(s,strs)
r = strmatch(s,strs,'exact')

Description r = strmatch(s,strs) finds strings in strs that begin with s and returns the
index of each match. strs can be a character arrray, in which case strmatch returns
row indices of the matches, or a cell array of strings, in which case strmatch returns
the linear index of each match.

r = strmatch(s,strs,'exact') returns the exact matches of s and the strings in
strs. Note however that trailing blanks in strs are ignored.

Examples strmatch('abc',{'abcde','abdde','bcd','abc'}) returns [1 ; 4].
strmatch('abc',{'abcde','abdde','bcd','abc'},'exact') returns 4.

See also strtok, strfind, findstr, strcmp
487

strncmp

488 | C H A P T
strncmpPurpose Compare a specific number of characters in two strings.

Synopsis r = strncmp(s1,s2,n)

Description r = strncmp(s1,s2,n) compares the first n characters of s1 and s2. s1 and s2
can be strings or cell arrays of strings. If both are cell arrays, they must be of equal
size.

When s1 and s2 are both strings, r is logical true if the first n characters are
identical and false otherwise. When one or both are cell arrays, strncmp compares
corresponding elements and returns an array r containing true for elements whose
first n characters match and false otherwise.

Examples strncmp('blue',{'black','Black','red'},2) returns [true false false].

 strncmp({'blue','Blue','green'},{'black','Black','red'},2) returns
[true true false].

See also strncmpi, strcmp, strcmpi
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strncmpi
strncmpiPurpose Compare a specific number of characters in two strings ignoring case.

Synopsis r = strncmpi(s1,s2,n)

Description r = strncmpi(s1,s2,n) compares the first n characters of s1 and s2 ignoring
case. s1 and s2 can be strings or cell arrays of strings. If both are cell arrays, they
must be of equal size.

When s1 and s2 are both strings, r is logical true if the first n characters are
identical except for case and false otherwise. When one or both are cell arrays,
strncmpi compares corresponding elements and returns an array r containing true
for elements whose first n characters match except for case and false otherwise.

Examples strncmpi('blue',{'black','Black','red'},2) returns [true true false].

 strncmpi({'blue','Blue','green'},{'black','blue','red'},3) returns
[false true false].

See also strncmp, strcmp, strcmpi
489

strread, textread

490 | C H A P T
strread, textreadPurpose Read formatted text.

Syntax d = strread(str)
d = textread(filename)

[d1, ...] = strread(str, format, ...)
[d1, ...] = textread(filename, format, ...)

[d1, ...] = strread(str, format, n, ...)
[d1, ...] = textread(filename, format, n, ...)

Description d = strread(str) reads a numerical matrix from the string str. Each nonempty
line corresponds to one line in the output. All lines of str must contain the same
number of columns.

 d = textread(filename) reads a numerical matrix from the file called filename.
Each nonempty line corresponds to one line in the output. All lines of the file must
contain the same number of columns.

 [d1, ...] = strread(str, format, ...) reads data from the string str
interpreted using the format string format. Options to control how the data is read
can be given in optional parameter pairs using the syntax strread(str, format,
par1, val1, ...).

 [d1, ...] = textread(filename, format, ...) reads data from the file
called filename interpreted using the format string format. Options to control
how the data is read can be given in optional parameter pairs using the syntax
textread(filename, format, par1, val1, ...).

 [d1, ...] = strread(str, format, n, ...) uses the format string at most n
times. The default is to read to the end of the string.

 [d1, ...] = textread(filename, format, n, ...) uses the format string at
most n times. The default is to read to the end of the file.

The syntax of the format string is a subset of the syntax accepted by the function
sscanf in the C programming language. The number of '%' elements in the format
string must be identical with the number of outputs.

TABLE 1-43: STRREAD/TEXTREAD FORMAT STRING

FORMAT MATCHES

Literal string The same literal string

'%d' Integer.

'%f' Floating-point number.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strread, textread
The tokens read using the format string are separated by white space except for
quoted strings read with '%q'; they are read until the end of the string.

For the numerical format strings '%d' and '%f', the output is real matrices. For the
other format strings, the output is cell arrays of strings.

The following property-value pairs can be used to set options:

Examples Suppose the file 'elements' has the following contents:

 Hydrogen 1 1.008
 Oxygen 8 16.000
...

Then [name nr wt] = textread('elements', '%s %f %f') reads the names
into the cell array name and the numbers and weights into the matrices nr and wt
respectively.

Suppose that the file 'magic' has the following contents:

8 1 6
3 5 7
4 9 2

Then m = textread('magic') reads from the file into a 3-by-3-matrix.

'%q'’ String quoted within “ characters.

'%s' Sequence of characters.

'[...]' Sequence of characters from the bracketed list.

'[^...]'’ Sequence of characters not from the bracketed list

'%*...' Matches using the above rules but does not return the
matched characters.

TABLE 1-44: STRREAD/TEXTREAD PROPERTIES AND VALUES

PROPERTY VALUE

'headerlines' Number of lines at beginning of files that are skipped.

'delimiter' Delimiter character.

'commentstyle' 'matlab' ignores text after % on each row, 'shell'
ignores text after # on each row, 'c'ignores text
between /* and */, 'c++'ignores text after // on each
row.

TABLE 1-43: STRREAD/TEXTREAD FORMAT STRING

FORMAT MATCHES
491

strread, textread

492 | C H A P T
See also dlmread
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strrep
strrep
strrepPurpose Search and replace strings.

Synopsis s = strrep(str,pattern,replacement)

Description s = strrep(str,pattern,replacement) replaces all occurrences of pattern in
str with replacement. The input can be strings or cell arrays of strings, in any mix.
In the case of cell arrays, strrep works on corresponding elements, and s is a cell
array of the same size as the input.

Example strrep('abc','bc','de') returns 'ade'.

 strrep({'abc','bcd'},'bc',{'de','ef'}) returns {'ade','efd'}.

See also strtok, strfind, findstr, strcmp
493

strtok

494 | C H A P T
strtokPurpose Retrieve first token.

Synopsis token = strtok(s)
token = strtok(s,delimiter)
[token,remainder] = strtok(...)

Description token = strtok(s) finds the first token using white-space characters as delimiters.
(See isspace for the definition of white-space characters.) When s is a string, token
is the first token of s. When s is a cell array of strings, token is a cell array of the
first tokens of the elements of s.

token = strtok(s, delimiter) finds the first token using the delimiter characters
in delimiter, which can be a string or a cell array of strings.

Note that delimiter characters are not considered tokens.

[token, remainder] = strtok(...) also returns the remainder of s. When s is
a string, remainder is the remainder of s. When s is a cell array of string, remainder
is a cell array with the remainders of the elements of s. The remainder consists of all
characters after the token substring.

Examples strtok('yellow green') returns 'yellow'.

[tok, rem] = strtok('123.12:44.19:12.3',':') returns
tok = '123.12' and rem = ':44.19:12.3'.

A subsequent call to strtok extracts the next token:
tok2 = strtok(rem,':')

To extract all tokens from a string:
str = '123.12: 44.19:12.3:Inf:-10 000';
[tok,rem] = strtok(str,':');
while ~isempty(rem)
 [tok,rem] = strtok(rem,':');
 disp(tok)
end

See also strfind, findstr, strmatch, strcmp
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

strtrim
strtrimPurpose Remove leading and trailing white-space characters.

Synopsis r = strtrim(s)

Description r = strtrim(s) removes leading and trailing white-space characters from s. (See
isspace for the definition of white-space characters.) When s is a string, r is a copy
of s without leading and trailing white-space characters. When s is a cell array of
strings, r is a copy of s with leading and trailing white-space characters removed
from each string.

See also deblank
495

struct

496 | C H A P T
structPurpose Create a structure array.

Syntax s = struct([])
s = struct(obj)
s = struct(field, val, ...)

Description struct([]) creates an empty structure.

 s = struct(obj) converts the object obj to a structure; each visible field of obj
corresponds to a field in the returned structure.

 s = struct(field, val, ...) creates a structure from a list of pairs of field
names and values. The field names must be strings; the values can be of any data
type. If any value is a cell array, then the returned struct is an array with the same
size as the cell array. In this case, the sizes of all nonscalar values must be identical.

Examples s = struct('a', 47, 'b', 11) creates a structure with the two fields a and b.

 s = struct('a', {2 3}, 'b', 5) creates a 1 x 2 structure array.

 s = struct('a', {{5}}) creates a structure where the field a has the value {5}.

See also cell
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

struct2cell
struct2cellPurpose Convert a structure array into a cell array.

Syntax c = struct2cell(s)

Description c = struct2cell(s) returns the structure s converted to a cell array. The
returned cell array has the size [length(fieldnames(s)) size(s)], that is, the
field names are mapped to the first dimension of the cell array where the order of
the fields is that returned by fieldnames.

See also cell2struct
497

strvcat

498 | C H A P T
strvcatPurpose Concatenate strings vertically.

Synopsis s = strvcat(s1,...)
s = strvcat(cell)

Description s = strvcat(s1,...) concatenates strings or character arrays vertically. This is the
same as vertcat except that empty input arguments are ignored and nonempty
input is automatically padded with Zeros.

 s = strvcat(cell) concatenates strings or character arrays contained in a cell
array.

Example strvcat('red','green','blue','yellow') returns the character matrix:

'red '
'green '
'blue
'yellow'

See also vertcat, strcat
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

sub2ind
sub2indPurpose Convert a multidimensional index vector into an equivalent 1D matrix index.

Synopsis ix = sub2ind(sz, ix1, ...)

Description ix = sub2ind(sz, ix1, ...) returns the 1D matrix index that corresponds to
the multidimensional index vector (ix1, ...) a matrix of size sz.

Example sub2ind([3 3], 1, 2) gives 4 because M(4) and M(1, 2) refer to the same
element in a 3-by-3 matrix M.

See also ind2sub
499

subplot

500 | C H A P T
subplotPurpose Creates a grid containing multiple sets of plot axes in a figure window.

Syntax subplot(rows,cols,current)

Description subplot(rows,cols,current) Creates a grid containing multiple sets of plot axes
in a figure window.

Syntax subplot(rows,cols,current)

Description subplot(rows,cols,current) creates a grid of smaller plot axes in the specified
number of rows and columns in the current figure. The axis number current is
made the current axis. The axis numbering increases along the columns of the first
row, then along the second row, and so on. If rows and cols is the same as the
current number of rows and columns in the subplot grid, then the plots are kept and
only the current axis is changed. If either the number of rows or the number of
columns is changed, a new subplot grid with an empty axis is created.

 current can also be an array of numbers. In that case a smaller axes that covers
those positions in the grid will be created.

subplot(abc), where abc is a 3-digit number, is a alternative syntax where a is then
the same as rows, b is equivalent to cols, and c is equivalent to current in the
above syntax.

 h = subplot(...) also returns a handle to the current axis

Example Create a 2-by-2 grid with some different plots.

x=linspace(0,10,100);
y=sin(x);
subplot(2,2,1);
plot(x,y);
subplot(2,2,2);
plot(x,x.*y);
subplot(2,2,3);
plot(x,x.*y-x);
subplot(2,2,4);
plot(x,sqrt(y+2));
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

subspace
subspacePurpose Principal angle between subspaces.

Synopsis theta = subspace(F,G)

Description theta = subspace(F,G) returns the largest principal angle between two subspaces
spanned by the columns of matrices F and G. The cosine of a principal angle is the
canonical correlation.
501

sum

502 | C H A P T
sumPurpose Compute the sum of an array

Synopsis y = sum(x)
y = sum(x,dim)

Description y = sum(x) adds the values of x. When x is a vector, y is the sum of x. When x is
a matrix, y is a row vector containing the sum of each column of x. When x is an
n-dimensional array, y is the sum along the first nonsingleton dimension of x.

 y = sum(x,dim) returns the sum of x along the dimension dim.

Examples x = [0 2 3;-3 1 3;2 4 0];
sum(x) returns [-1,7,6].
sum(x,2) returns [5 ; 1 ; 6].

See also cumsum, prod, cumprod
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

super
superPurpose Run superclass constructor.

Synopsis super(...)

Description super(...), when run from the constructor of a user-defined class, runs the
constructor of the superclass, if any.

See also this
503

surf

504 | C H A P T
surfPurpose Create a colored surface of quadrilaterals.

Syntax surf(x,y,z,c)
surf(x,y,z)
surf(z,c)
surf(z)

Description surf(x,y,z,c) creates a colored surface of quadrilaterals from the given matrices.
The surface is created by placing grid points at x(i, j), y(i, j), and z(i ,j) for each
element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix c is used to color each of the grid
points by mapping the range of c to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length(y) must equal the number of rows in z. The grid points
are then created at x(j), y(i), and z(i, j).

surf(x,y,z) does the same as surf(x,y,z,c) but uses z as c.

surf(z,c) is the same as surf(x,y,z,c) where x = 1:nx, y = 1:ny, [ny,nx]
= size(z).

surf(z) does the same as surf(z,c) but uses z as c.

h = surf(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the
reference entry for patch to get details about allowed properties and corresponding
values.

Example Create a surface plot of the function x·y.

x=0:10;
y=0:10;
[xx,yy]=meshgrid(x,y);
zz=xx.*yy;
surf(xx,yy,zz)

See also mesh
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

surface
surfacePurpose Create a colored surface of quadrilaterals.

Syntax surface(x,y,z,c)
surface(x,y,z)
surface(z,c)
surface(z)

Description surface(x,y,z,c) creates a colored surface of quadrilaterals from the given
matrices. The surface is created by placing grid points at x(i,j), y(i,j), and z(i,j) for
each element in the matrices. Neighboring coordinates in the matrices are then
connected to form quadrilaterals. The matrix c is used to color each of the grid
points by mapping the range of c to the current colormap.

x and y can also be vectors. In that case, length(x) must equal the number of
columns in z, and length(y) must equal the number of rows in z. The grid points
are then created at x(j), y(i), and z(i, j).

 surface(x,y,z) does the same as surface(x,y,z,c) but uses z as c.

 surface(z,c) is the same as surface(x,y,z,c) where x = 1:nx, y = 1:ny,
[ny,nx] = size(z).

 surface(z) does the same as surface(z,c) but uses z as c.

 h = surface(...) returns a handle to the plotted surface object.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the surface is created. See the
reference entry for patch to get details about allowed properties and corresponding
values.

 surface is the same as surf except that it does not clear the axes before adding the
surface to it.

See also line, patch, surf
505

svd

506 | C H A P T
svdPurpose Singular values.

Synopsis svd(A)
[U,S,V] = svd(A)

Description svd(A) computes the singular values of a matrix A.

 [U,S,V] = svd(A) computes a singular value decomposition of A: the singular
value matrix S and the unitary matrices U and V such that A = U*S*V'.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

symvar
symvarPurpose Find identifiers in an expression.

Synopsis c = symvar(expr)

Description c = symvar(expr) parses the expression string expr and returns a cell array
containing the identifiers it contains. An identifier is a variable name not followed
by parentheses or brackets.

 symvar ignores the following common identifiers: eps, i, inf, Inf, nan, NaN, and
pi.

See also inline
507

system

508 | C H A P T
systemPurpose Run a system command.

Synopsis status = system(cmd)
[status output] = system(cmd)

Description status = system(cmd) runs the system command cmd in the operating system and
returns the exit code, which is 0 if the execution was successful and nonzero
otherwise.

 [status output] = system(cmd) runs the system command cmd and returns any
output to the standard output stream in output.

See also dos, unix
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tabbedpane
tabbedpanePurpose Create a tabbed pane.

Synopsis t = tabbedpane

Description t = tabbedpane creates a tabbed pane.

The methods in the following table can be used to add panels as tabs to a tabbed
pane.

See also component, panel

TABLE 1-45: METHODS FOR ADDING PANELS TO A TABBEDPANE.

METHOD DESCRIPTION

addTab(title,panel) Adds the given panel as a tab with the
specified title.

addTab(title,panel,pos) Inserts a tab with the given panel at the
specified position.
509

table

510 | C H A P T
tablePurpose Create a table.

Synopsis t = table(...)

Description t = table creates a table.

The property value pairs in the following table can be used to control how the table
is created.

The function returns a table object that can then be further manipulated using the
methods in the following table.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

TABLE 1-46: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

autoadd on | off off Should rows automatically be added
to the end of the table as needed
when the user enters values.

cols integer 2 The number of columns in the table.

editablecols integer
array

all Indices to the columns that should be
editable.

rows integer 10 The number of rows in the table.

titles cell array
of strings

The headings for each column.

width integer
array

The desired width of the columns.
Either a scalar specifying the same
width for all columns or a vector of
the same length as the number of
columns. If not given each column will
be given a suitable width to fit its title.

TABLE 1-47: METHODS FOR MANIPULATING A TABLE OBJECT.

METHOD DESCRIPTION

getValue Returns a matrix with all the values in the table.

getValue(rows,cols) Returns a matrix with values taken from the rows
and columns given by the index vectors rows and
cols.

setValue(data) Sets the values of a cells in the table from a numerical
matrix.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tempdir
tempdirPurpose Get a directory where temporary files can be created.

Synopsis d = tempdir

Description d = tempdir returns a directory where temporary files can be created.

See also tempname
511

tempname

512 | C H A P T
tempnamePurpose Create a temporary file name.

Synopsis f = tempname

Description f = tempname returns a file name suitable for a temporary file. Successive calls try
to return different file names, but no guarantee about this is made.

See also tempdir
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

text
textPurpose Add text at a specified location.

Synopsis text(x,y,string)
text(x,y,z,string)

Description text(x,y,string) adds the text string at the coordinates x and y. Both x and y
can also be vectors, and string a cell array of strings of the same length.

 text(x,y,z,string) adds text in 3D.

h = text(...) returns a handle to the created text.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the text is created.

The following HTML tags are supported in the text command string.

TABLE 1-48: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

color colorspec k A string or an RGB triplet specifying
the color of the text. If it is a string it
is one of the letters r, g, b, c, m, y or
k, meaning red, green, blue, cyan,
magenta, yellow and black
respectively.

parent Axes handle gca The axes to which to add the text.

TABLE 1-49: VALID HTML TAGS

HTML TAG DESCRIPTION

 Enclosed text will be rendered using a bold font style.

 Line break.

<CENTER> </CENTER> Centered text.

<I> </I> Enclosed text will be rendered using an italic font style.

 List item. When the list used is , ordered list, the LI
element will be rendered with a number. When the list
used is , unordered list, the LI element will be
rendered with a bullet.

 Ordered list (see also:).

<P> </P> Paragraph. This tag will create a line break and a space
between lines.

<PRE> </PRE> Enclosed text preserves spaces and line breaks. The text
will be rendered using a monospaced font.
513

text

514 | C H A P T
The following Greek symbol tags are supported in the text command string.

<STRIKE> </STRIKE> Enclosed text will be rendered in a strike-through
appearance.

 Enclosed text will be rendered in subscript, with the
enclosed text slightly lower than the surrounding text.

 Enclosed text will be rendered in superscript, with the
enclosed text slightly higher than the surrounding text.

<TT> </TT> Enclosed text will be rendered using a monospaced font.

<U> </U> Enclosed text will be underlined.

 Unordered list (see also:).

TABLE 1-49: VALID HTML TAGS

HTML TAG DESCRIPTION

TABLE 1-50: VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

\ALPHA Α \alpha α

\BETA Β \beta β

\GAMMA Γ \gamma γ

\DELTA ∆ \delta δ

\EPSILON Ε \epsilon ε

\ZETA Ζ \zeta ζ

\ETA Η \eta η

\THETA Θ \theta θ

\IOTA Ι \iota ι

\KAPPA Κ \kappa κ

\LAMBDA Λ \lambda λ

\MU Μ \mu µ

\NU Ν \nu ν

\XI Ξ \xi ξ

\OMICRON Ο \omicron ο

\PI Π \pi π

\RHO Ρ \rho ρ

\SIGMA Σ \sigma σ

\TAU Τ \tau τ

\UPSILON Υ \upsilon υ
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

text
The following math symbol tags are supported in the text command string.

In addition to the greek and math symbols above, you can specify additional
characters using Unicode numbers (see example below). Visit www.unicode.org for
more information about Unicode characters.

Examples Create a text object with the following text: βξ + x•y

text(0,0,'\beta^{\xi} + x\bullety')

Create a text object by using the Unicode number 00A9 (©, the copyright
character):

text(0,0,'\u00A9')

See also xlabel, ylabel, zlabel, title

\PHI Φ \phi

\CHI Χ \chi χ

\PSI Ψ \psi ψ

\OMEGA Ω \omega ω

TABLE 1-50: VALID GREEK SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

ϕ

TABLE 1-51: VALID MATH SYMBOL TAGS

TAG SYMBOL TAG SYMBOL

\approx ≈ \bullet •

\lequal \partial ∂

\gequal ≥ \nabla

\plusmin ± \sqrt √

\infinity \integral ∫

≤

∇

∞

515

textarea

516 | C H A P T
textareaPurpose Create a text area.

Synopsis t = textarea(rows,cols,...)

Description t = textarea(rows,cols) creates a text area to hold the specified number of rows
and columns of text.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, textfield

TABLE 1-52: METHODS FOR MANIPULATING A TEXTAREA OBJECT.

METHOD DESCRIPTION

getValue Returns the text in the text area.

setValue(text) Sets the text in the text area.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

textfield
textfieldPurpose Create a text field.

Synopsis t = textfield(width, ...)

Description t = textfield(width) creates a text field wide enough to hold width characters.

See also the reference entry for component for property-value pairs and methods
that are valid for all components.

See also component, textarea

TABLE 1-53: METHODS FOR MANIPULATING A TEXTFIELD OBJECT.

METHOD DESCRIPTION

getValue Returns the text in the text field.

setValue(text) Sets the text in the text field.
517

this

518 | C H A P T
thisPurpose Get the instance for which an instance method is run.

Synopsis obj = this

Description obj = this, when called from an instance method of a user-defined class, returns
the instance for which the method is run.

See also clone, super
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tic, toc
tic, tocPurpose Start or stop timer.

Synopsis tic
toc
t = toc

Description tic starts a timer.

toc displays the time elapsed since the timer was started with tic.

t = toc returns the time in seconds elapsed since the timer was started with tic.
519

times

520 | C H A P T
timesPurpose Multiply matrices pointwise.

Synopsis d = times(a, b)

Description d = times(a, b) computes the pointwise product of the two matrices a and b. For
each dimension, a and b must have the same size or either of them must have size 1.
In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

times(a, b) is equivalent to a.*b.

Examples [1 2 3].*[4 5 6]

[1 2 ; 3 4].*10

[1 2 3].*[10 20 30]'

See also plus, rdivide
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tinterp
tinterpPurpose Interpolation on delaunay triangulation.

Synopsis yi = tinterp(s,y)

Description yi = tinterp(s,y) uses a delaunay triangulation stored in the struct s and
interpolates linearly to determine yi when y = f(x1,x2,...). y must match the
size of the original points, used for the triangulation.

s is a struct as produced by the griddata functions and contains the following
fields:

Note that if s was created through a call to one of the griddata functions, then the
interpolation method was also used when creating the indexation, s.ind. Though
griddata does not perform any interpolation in this case (when a struct is
requested), the different methods are slightly different insofar that 'linear'
returns NaN for points outside the mesh whereas 'nearest' locates the nearest
element for all points.

Examples rand('state',0);
x = 4*rand(1,100)-2;y = 4*rand(1,100)-2;
ti = -2:.1:2;
[xi,yi] = meshgrid(ti,ti);
g = griddata(x,y,xi,yi, 'linear',[],'closest');

z=sin(x).*sin(y).*exp(-x.^2-y.^2);
zi1 = tinterp(g,z);
z2 = sin(x).*sin(y);

TABLE 1-54: FIELDS OF THE S STRUCT

FIELDNAME DESCRIPTION

method Interpolation method. Can be either 'linear' (denoting linear
interpolation) or 'nearest' (denoting nearest neighbor interpolation).
Nearest neighbor in this case signifies the closest vertex in the
nearest delaunay element.

strategy Search strategy. Not actually used by tinterp, but serves to indicate
whether the indexation, s.ind was created using the 'boxonly' or
'closest' search strategy. 'boxonly' means that s.ind contains
NaN for points outside the mesh, whereas 'closest' indicates that a
nearest element was located for all points. (For further details, see
griddata.)

t 2D or 3D Delaunay triangulation of original points.

ind A column vector containing row indices into t for all search points.

coord Barycentric coordinates for each search point.

size Denotes the expected size of yi.
521

tinterp

522 | C H A P T
zi2 = tinterp(g,z2);

plot3(x,y,z,'*');
hold on;
mesh(xi,yi,zi1);
hold off;
figure;
plot3(x,y,z2,'*');
hold on;
mesh(xi,yi,zi2);
hold off;

See also griddata, griddata3, griddatan, tsearch, tsearchn, delaunay, delaunay3
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

title
titlePurpose Add a title above a plot.

Synopsis title(string)

Description title(string) sets the text string as a title above the plot in the current axes.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text, xlabel, ylabel, zlabel
523

togglebutton

524 | C H A P T
togglebuttonPurpose Create a toggle button.

Synopsis t = togglebutton(text,...)
t = togglebutton(...)

Description t = togglebutton(text) creates a toggle button with the specified text.

To make the toggle button synchronize its state with other toggle buttons, you can
add them all to the same buttongroup.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command to further control how the button is created.

The function returns a togglebutton object that can then be further manipulated
using the methods in the following table.

TABLE 1-55: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

image iconimage An image to display on the toggle button.

text string A text to display on the toggle button.

TABLE 1-56: METHODS FOR MANIPULATING A TOGGLEBUTTON OBJECT.

METHOD DESCRIPTION

addActionListener(name) Specifies that the function with the given
name should be run when the button is
clicked.

addActionListenerThread(name) Specifies that the function with the given
name should be run when the button is
clicked. The function will be run in a
separate thread. This can be used for
operations that run for a long time and
need to update graphics while running.

getSelected Returns the selected state of the toggle
button as a logical.

getText Returns the text on the button.

getValue Returns the selected state of the toggle
button as the string 'on' or 'off'.

setSelected(sel) Sets the selected state of the toggle
button as a logical.

setText(text) Sets the text on the button.

setValue(val) Sets the selected state of the toggle
button using the string 'on' or 'off'.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

togglebutton
See also the reference entry for component for property value pairs and methods
that are valid for all components.

See also checkbox, radiobutton
525

tprod

526 | C H A P T
tprodPurpose Tensor product and contraction.

Synopsis C = tprod(A, B, IA, IB)

Description C = TPROD(A, B, IA, IB) computes the tensor product of the arrays A and B,
optionally followed by contractions and setting some indices equal. The mapping
from input indices to output indices, as well as how to contract, is described by the
vectors IA and IB.

This function is best explained by an example: Let A be a 4-dimensional array, and
B a 3-dimensional array. Then

C = TPROD(A, B, [2 -1 1 -2], [-2 2 -1])

creates a 2-dimensional array (matrix) C in the following way. First, the product
D(%-2, %-1, %1, %2) = A(%2, %-1, %1, %-2)*B(%-2, %2, %-1) is formed.
This is a 4-dimensional array D, where %-1, %-2, %1, %2 denote index variables. D is
the tensor (outer) product of A and B, followed by a permutation of the indices and
setting some indices equal. It is assumed that SIZE(A,1)=SIZE(B,2),
SIZE(A,2)=SIZE(B,3), and SIZE(A,4)=SIZE(B,1). Secondly, we sum over the
index variables corresponding to negative numbers (%-1 and %-2): C(%1, %2) =
sum of D(%-2, %-1, %1, %2) where the indices %-1 and %-2 (independently) run
through all their possible values.

The arguments are assumed to have the following format:

• A and B are real or complex arrays.

• IA and IB are vectors of doubles, containing nonzero integers.

• The length of IA (IB) has to be equal to the number of dimensions of A (B).

• A is padded with singleton dimensions if the number of dimensions of A is less
than the length of IA (and similarly for B).

• The numbers in IA (IB) have to be distinct.

• If a number occurs both in IA and IB, it is required that the corresponding
dimensions in A and B have the same size.

• If a negative number occurs in A (B), it must also occur in B (A).

• It is assumed that the union of the numbers in IA and IB together with 0 form a
contiguous sequence of integers.

Examples C = TPROD(A, B, [1 2], [3 4]) is the tensor (outer) product of the matrices A
and B.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tprod
 C = TPROD(A, B, [1 -1], [-1 2]) is the ordinary matrix product of the matrices
A and B.

 C = TPROD(A, 1, [2 1], [3 4]) is the transpose of the matrix A. Note that
trailing singleton dimensions are removed, so C is a matrix.

 C = TPROD(A, ONES(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all entries in
the matrix A.

 C = TPROD(A, EYE(SIZE(A)), [-1 -2], [-1 -2]) is the sum of all diagonal
entries in the matrix A (the trace).
527

trace

528 | C H A P T
tracePurpose The trace of a matrix.

Synopsis trace(A)

Description trace(A) computes the sum of the diagonal elements of A.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

transpose
transposePurpose Transposes a matrix.

Synopsis d = transpose(a)

Description d = transpose(a) computes the transpose of the matrix a.

 transpose(a) is equivalent to a.'.

See also ctranspose
529

trapz

530 | C H A P T
trapzPurpose Trapezoidal numerical integration.

Synopsis z = trapz(y)
z = trapz(x,y)
z = trapz(y,dim)
z = trapz(x,y,dim)

Description z = trapz(y) computes the integral of y using the trapezoidal method with unit
spacing. (To compute the integral for different spacing, multiply z by the spacing
increment.) When y is a vector, z is the integral of y. When y is a matrix, z is a row
vector containing the integral over each column of y. When y is an n-dimensional
array, z is the integral along the first nonsingleton dimension of y.

z = trapz(x,y) computes the integral of y with respect to x, which must be a
vector with the same length as the first nonsingleton dimension of y. Alternatively,
both x and y must be vectors of equal length.

z = trapz(y,dim) or z = trapz(x,y,dim) integrate across the dimension dim
of y. x, if given, must be a vector with the same length as y along the dimension dim.

Examples y = reshape(0:11,3,4);
trapz(y) returns [2 8 14 20]
trapz(y,2) returns [13.5 ; 16.5 ; 19.5].

See also cumtrapz
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tril, triu
tril, triuPurpose Extract elements above or below the main diagonal of a matrix.

Synopsis l = tril(a)
u = triu(a)

l = tril(a, n)
u = triu(a, n)

Description l = tril(a) returns a matrix containing the elements on or below the main
diagonal of a.

 u = triu(a) returns a matrix containing the elements on or above the main
diagonal of a.

 l = tril(a, n) returns a matrix containing the elements on or below the nth
superdiagonal of a.

 u = triu(a, n) returns a matrix containing the elements on or above the nth
superdiagonal of a.

See also diag
531

trimesh

532 | C H A P T
trimeshPurpose Create a mesh plot with triangles.

Synopsis trimesh(tri, x, y, z, c)
trimesh(tri, x, y, z)
trimesh(tri, x, y)
h=trimesh(...)

Description trimesh(tri, x, y, z, c) creates a mesh plot with triangles. tri is a N-by-3
matrix where each row corresponds to a triangle. The entries in tri are indices into
x, y, z and c.

trimesh(tri, x, y, z) uses c=z.

trimesh(tri, x, y) displays the mesh in 2D using line.

h = trimesh(...) returns a handle to the created object.

Additional property values from patch or line can be given at the end of the
command to further control the created object.

See also trisurf
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

trisurf
trisurfPurpose Create a surface plot with triangles.

Synopsis trisurf(tri, x, y, z, c)
trisurf(tri, x, y, z)
h=trisurf(...)

Description trisurf(tri, x, y, z, c) creates a surface plot with triangles. tri is a N-by-3
matrix where each row corresponds to a triangle. The entries in tri are indices into
x, y, z and c.

trisurf(tri, x, y, z) uses c=z.

h = trisurf(...) returns a handle to the created patch object.

Additional property values from patch can be given at the end of the command to
further control the created object.

See also trimesh
533

true

534 | C H A P T
truePurpose Create an all-true logical matrix.

Synopsis f = true
f = true(n)
f = true(m, n, ...)
f = true(sz)

Description In all cases, an all-true logical matrix is returned. Its size is determined as follows:

f = true returns a scalar.

f = true(n), where n is a nonnegative integer, returns an n x n matrix.

f = true(m, n, ...), where m, n, ... are nonnegative integers, returns an m x n x
...-matrix.

f = true(sz), where sz is an integer vector, returns a matrix of size sz.

See also false
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

tsearch
tsearchPurpose Find Delaunay element.

Synopsis ind = tsearch(x,y,t,xi,yi)

Description ind = tsearch(x,y,t,xi,yi) finds the Delaunay element for each point (xi,
yi). ind is a column vector containing row indices into t (or NaN for points outside
the mesh), where t is a triangulation of x and y as returned by delaunay.

To get the barycentric coordinates for xi and yi, use tsearchn:
[ind,coord] = tsearchn([x(:),y(:)],t,[xi(:),tiyi(:)])

Example x = rand(20,1);y = rand(20,1);
tri = delaunay(x,y);
xi = rand(5,5); yi = rand(5,5);
tsearch(x,y,tri,xi,yi)

See also delaunay, delaunay3, tsearchn, griddata, griddata3, griddatan
535

tsearchn

536 | C H A P T
tsearchnPurpose Find Delaunay element in nD.

Synopsis ind = tsearchn(pts,t,ptsi)
[ind,coord] = tsearchn(pts,t,ptsi)

Description ind = tsearchn(pts,t,ptsi) finds the Delaunay element for each point in ptsi.
ind is a column vector containing row indices into t (or NaN for points outside the
mesh), where t is a triangulation of pts as returned by delaunay or delaunay3.
pts and ptsi are nx2 or nx3 matrices, for 2D and 3D space respectively.

[ind,coord] = tsearchn(pts,t,ptsi) also returns the barycentric or area
coordinates for all points in ptsi.

Example pts = [0 0 0;0 0 1;0 1 0; 0 1 1; 1 0 0;1 0 1; 1 1 0; 1 1 1];
tri = delaunay3(pts(:,1),pts(:,2),pts(:,3));
t = 0:0.1:1;
[xi,yi,zi] = meshgrid(t,t,t);
ptsi = [xi(:),yi(:),zi(:)];
[ind,coord] = tsearchn(pts,tri,ptsi);

See also delaunay, delaunay3, tsearch, griddata, griddata3, griddatan
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

type
typePurpose Display the contents in a text file on the command line.

Synopsis type(filename)

Description type(filename) displays the contents of the file filename on the command line.
filename can be an absolute file name or an M-file on the path.
537

uint8, uint16, uint32, uint64

538 | C H A P T
uint8, uint16, uint32, uint64Purpose Convert matrix to an unsigned integer matrix.

Synopsis m = uint8(a)
m = uint16(a)
m = uint32(a)
m = uint64(a)

Description m = uint8(a)converts the real matrix a to an unsigned integer matrix by rounding
each element to the closest unsigned 8-bit integer. Elements too large or too small
to be represented using unsigned 8-bit integers are rounded to the largest and
smallest 8-bit integers, respectively.

 uint16, uint32, and uint64 instead round to 16-, 32-, and 64-bit unsigned
integers, respectively.

The maximum and minimum values of n-bit unsigned integers are as follows:.

See also int8, int16, int32, int64

TABLE 1-57:

FUNCTION MIN MAX

uint8 0 255

uint16 0 65535

uint32 0 4294967295

uint64 0 18446744073709551615
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

uminus
uminusPurpose Compute the unary negation of a matrix.

Synopsis d = uminus(a)

Description d = uminus(a) computes the unary negation of the matrix a.

uminus(a) is equivalent to -a.

See also uplus
539

union

540 | C H A P T
unionPurpose Set union.

Synopsis c = union(a,b)
c = union(a,b,'rows')
[c,ai,bi] = union(...)

Description c = union(a,b) returns the set union of a and b. a and b can be either arrays or
cell arrays of strings.

c = union(a,b,'rows'), where a and b must be 2D matrices, returns the row set
union, that is, the unique rows of a and b combined. a and b must have the same
number of columns.

[c,ai,bi] = union(...) also returns the index vectors ai and bi, where ai
contains the linear indices of the elements of c that belong to a, and bi contains the
linear indices of the elements of c that belong to b. Elements that occur in both a
and b are indexed in bi.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command.

Examples a = [1 2 0 1 2 3];
b = [2 4 5 7 0 8];
c= union(a,b) returns [0, 1, 2, 3, 4, 5, 7, 8].

c1 = union(a,b,'sort','off') returns the same result unsorted.

a = [1 2 3; 2 3 1; 3 4 5; 5 4 3; 4 3 5;1 3 3];
b = [3 4 5; 3 4 5; 1 2 2; 4 3 5];
union(a,b,'rows') returns
[1, 2, 2 ; 1, 2, 3 ; 1, 3, 3 ; 2, 3, 1 ; 3, 4, 5 ; 4, 3, 5 ; 5, 4, 3].

a = {'green','yellow','blue','green'};
b = {'red','purple','yellow'};
union(a,b) returns {'blue', 'green', 'purple', 'red', 'yellow'}.

.See also intersect, ismember, setdiff, setxor, unique

TABLE 1-58: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off' 'on' Controls whether or not
output should be sorted.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

unique
uniquePurpose Retrieve unique elements.

Synopsis b = unique(a)
b = unique(a,'rows')
[b,m,n] = unique(...)

Description b = unique(a) returns a copy of a without repetitions. a can be either an array or
a cell arrays of strings.

b = unique(a,'rows'), where a must be a 2D matrix, returns the unique rows of
a.

[b,ai,bi] = unique(...) also returns the index vectors ai and bi. ai contains
the linear indices of the last occurrence of each element in a, while bi contains the
linear indices of where each element of a is in b.

In addition to the fixed arguments, additional property-value pairs can be given at
the end of the command.

Examples a = [1 2 0 1 2 3];
unique(a) returns [0, 1, 2, 3].

a = [1 2 3; 2 3 1; 3 4 5; 3 4 5; 4 3 5;1 2 3];
[b,ai,bi] = unique(a,'rows') returns
b = [1, 2, 3 ; 2, 3, 1 ; 3, 4, 5 ; 4, 3, 5],
ai = [6 ; 2 ; 4 ; 5] and bi = [1 ; 2 ; 3 ; 3 ; 4 ; 1].

[b1,ai1,bi1] = unique(a,'rows','sort','off') returns the same result
unsorted.

a = {'green','yellow','blue','green', 'blue'};
unique(a) returns {'blue', 'green', 'yellow'}.

See also intersect, ismember, setdiff, setxor, union

TABLE 1-59: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

sort 'on' | 'off' 'on' Controls whether or not
output should be sorted.
541

unix

542 | C H A P T
unixPurpose Run a system command.

Synopsis status = unix(cmd)
[status output] = unix(cmd)

Description unix is a synonym for system.

See also dos, system
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

unmkpp
unmkppPurpose Extract details from piecewise polynomial.

Synopsis [breaks,coefs,pieces,order,dim] = unmkpp(pp)

Description [breaks,coefs,pieces,order,dim] = unmkpp(pp) returns the breaks,
coefficients, number of pieces, order and dimension of the piecewise polynomial
pp, represented by a structure (described in ppval).

See also ppval, mkpp, pchip, spline
543

unwrap

544 | C H A P T
unwrapPurpose Remove phase jumps.

Synopsis b = unwrap(a)
b = unwrap(a, tol)
b = unwrap(a, tol, dim)

Description b = unwrap(a), for a matrix a, returns a matrix with the same size as a but where
jumps along the first nonunit dimension larger than pi have been replaced with the
equivalent angle closest to 0.

 b = unwrap(a, tol) replaces only jumps larger than tol.

 b = unwrap(a, tol, dim) unwraps along the dimension dim.

Example unwrap([0 1 2 2+1.5*pi]) is [0 1 2 2-0.5*pi].
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

uplus
uplusPurpose Compute the unary plus of a matrix.

Synopsis d = uplus(a)

Description d = uplus(a) computes the unary plus of the matrix a.

 uplus(a) is equivalent to +a.

See also uminus
545

upper

546 | C H A P T
upperPurpose Convert string to upper case

Synopsis s2 = upper(s1)

Description s2 = upper(s1) converts the characters in the string s1 to upper case. s1 can also
be a cell array of strings. In that case, a new cell array is returned where each of the
strings has been converted to upper case.

See also lower
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

var
varPurpose Compute variance.

Synopsis y = var(x)
y = var(x,w)
y = var(x,w,dim)

Description y = var(x) and y = var(x,0) compute the variance of x using normalization by
n-1, where n is the sample size.

y = var(x,1) computes the variance of x using normalization by n.

When x is a vector, y is the variance of x. When x is a matrix, y is a row vector where
each element is the variance of the corresponding column of x. When x is an
n-dimensional array, y is the variance along the first nonsingleton dimension of x.

y = var(x,w) computes the variance of x using the weight vector w, which var
normalizes to sum to one. w must contain only nonnegative elements and must be
of the same length as x along the dimension the variance is computed.

y = var(x,w,dim) computes the variance along the dimension dim.

Examples x = [0 4 1;2 9 2;4 -1 0];
x2 = [-3 4 1;3 2 0;-1 8 1];
y(:,:,1)=x;y(:,:,2)=x2;
var(x) returns [4,25,1].
var(x,[1 1 3]) returns [2.56,16,0.64].
var(x,[],2) returns [4.333; 16.333 ; 7].
var(y,[],3) returns
[4.5,0,0; 0.5,24.5,2; 12.5,40.5,0.5].

See also corrcoef, cov, std
547

varargin

548 | C H A P T
vararginPurpose Retrieve arguments to a function that has a variable number of input arguments.

Synopsis c = varargin

Description c = varargin returns a cell array containing the last arguments to a function that
has a variable number of input arguments. This can be done only in a function where
the last input argument is varargin.

Example Suppose that a function func has the following declaration:

 function out = func(x, varargin)

and that it is called with func(2, 3, 5, 7). Then varargin returns {3 5 7}.

See also varargout
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

varargout
varargoutPurpose Set the outputs from a function that has a variable number of outputs.

Synopsis varargout

Description After execution of a function where the last output argument is varargout, the
value of the cell array varargout is used to determine the values of the last output
arguments.

Example Suppose that a function func has the following declaration:

 function varargout = func(x)

and that it is called with [a b c] = func(10). If varargout is a cell array with the
contents {2 3 5} when func has executed, then the assignments a = 2, b = 3,
and c = 5 are made.

See also varargin
549

vectorize

550 | C H A P T
vectorizePurpose Vectorize an expression.

Synopsis r = vectorize(s)

Description r = vectorize(s) returns a copy of a string s where every occurrence of '*', '/
' and '^' are replaced with '.*', './', and '.^'.

Example vectorize('x*y - x.^2/y.^2 + 12') returns 'x.*y - x.^2./y.^2 + 12'.
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

version
versionPurpose Return the current version as a string.

Synopsis version
version java

Description version returns the current version of COMSOL Script as a string.

version java returns the Java version used in COMSOL Script as a string.
551

vertcat

552 | C H A P T
vertcatPurpose Concatenate matrices or cell arrays vertically.

Synopsis c = vertcat(arg1, ...)

Description c = vertcat(arg1, ...) returns the vertical concatenation of its input
arguments. The arguments need not be of the same type; if they differ, the result is
the common base type of all arguments.

vertcat(arg1, ...) is equivalent to [arg1 ; ...] or cat(1, arg1, ...).

See also cat, horzcat
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

view
viewPurpose Control position of view point.

Synopsis view(2)
view(3)
view('xy')
view('yz')
view('zx')
view(az,elev)
view(ax,...)

Description view(2) specifies that the plot should be viewed as a 2-D plot.

view(3) specifies that the plot should be viewed from the default 3D view.

view('xy') specifies that the plot should be viewed in the xy-plane.

view('yz') specifies that the plot should be viewed in the yz-plane.

view('zx') specifies that the plot should be viewed in the zx-plane.

view(az,elev) sets the view point at the azimuth az and the elevation elev. az is
the horizontal rotation and elev is the vertical elevation. Both are given in degrees.

view(ax,...) controls the view in the axes ax instead of in the current axes.
553

warning

554 | C H A P T
warningPurpose Display a warning.

Synopsis warning(msg)
warning(msg, id)

warning('on')
warning('off')

s = warning('on', id)
s = warning('off', id)

Description warning(msg) displays the warning message msg.

 warning(msg, id) displays the warning message msg belonging to the
category id.

 warning('on') and warning('off') enable and disable, respectively, display of
warnings.

 s = warning('on', id) and s = warning('off', id) enable and disable,
respectively, display of warnings belonging to the category id. It returns a structure
containing the previous state of the warning category id.

See also error
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

wavemap
wavemapPurpose Create a colormap suitable for wave phenomena.

Synopsis wavemap(n)

Description wavemap(n) returns a colormap with n colors. It is a matrix with n rows and 3
columns with RGB values for the colors in the colormap. The colors are blue to
white and white to blue, suitable for wave phenomena.

See also colormap, bone, cool, gray, grayprint, jet, hot, hsv, pink
555

wavread

556 | C H A P T
wavreadPurpose Read a .wav sound file.

Synopsis data = wavread(name)
data = wavread(name, sz)
[data, rate] = wavread(name)
[data, rate] = wavread(name, sz)
[data, rate, nbits] = wavread(name)
[data, rate, nbits] = wavread(name, sz)
[data, rate, nbits, desc] = wavread(name)
[data, rate, nbits, desc] = wavread(name, sz)

[nframes, nchannels] = wavread(name, 'size')

Description data = wavread(name) reads and returns pulse-code modulated signal data from
the .wav file name. The number of bits per sample must be 8 or 16. For a mono
signal, a column vector is returned, and for a stereo signal, an N-by-2 matrix is
returned.

[data, rate] = wavread(name) also returns the sample rate.

[data, rate, nbits] = wavread(name) also returns the sample rate and the
number of bits per sample.

[data, rate, nbits, desc] = wavread(name) also returns the sample rate, the
number of bits per sample, and a structure containing a further description of the
data (if available).

 wavread(..., sz) only reads a part of the signal: If sz is a scalar, then the first sz
signal values are read. If sz is a vector of length 2, then the signal values for positions
sz(1)..sz(2) are read.

 [nframes, nchannels] = wavread(name, 'size') returns the number of
frames and channels but ignores the signal.

See also sound, soundsc, wavwrite
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

wavwrite
wavwritePurpose Write a .wav sound file.

Synopsis wavwrite(data, name)
wavwrite(data, rate, name)
wavwrite(data, rate, nbits, name)

Description wavwrite(data, name) writes the pulse-code modulated signal data to the
.wav-file name using a sample rate of 8000Hz and 16 bits per sample. For a mono
signal, data is a column vector, and for a stereo signal, data is an N-by-2 matrix.
Signal values outside [-1,1] are clipped.

 wavwrite(data, rate, name) writes the pulse-code modulated signal data to
the .wav-file name using a sample rate of rate and 16 bits per sample.

 wavwrite(data, rate, nbits, name) writes the pulse-code modulated signal
data to the .wav-file name using a sample rate of rate and nbits bits per sample
(must be 8 or 16).

See also wavread
557

which

558 | C H A P T
whichPurpose Display the function or variable to which a name is mapped.

Synopsis which(name)
w = which(name)

which(..., '-all')
which(..., '-subfun')

Description which(name) displays the function, variable, or built-in function to which name is
mapped.

 w = which(name) returns the name of the function, variable, or built-function to
which name is mapped.

 which(..., '-all') displays or returns all candidate maps listed in order of
decreasing priority.

 which(name, '-subfun') displays or returns all subfunctions in the function
called name.

See also exist
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

who
whoPurpose Get the names of variables in the workspace.

Synopsis who
v = who

who(name1, ...)
v = who(name1, ...)

Description who displays the names of all workspace variables.

 v = who returns a cell array containing the names of all workspace variables.

 who(name1, ...) displays the names of all workspace variables matching any of the
namei. The variable names may contain the wildcard *, which matches any character
sequence.

 v = who(name1, ...) returns a cell array containing the names of all workspace
variables matching any of the namei.

See also whos
559

whos

560 | C H A P T
whosPurpose Get information about variables in the workspace.

Synopsis whos
v = whos

whos(name1, ...)
v = whos(name1, ...)

Description whos displays information about the variables in the workspace.

 v = whos returns a structure array with one element for each variable in the
workspace. It contains the following fields:.

 whos(name1, ...) displays information about the variables in the workspace with
names matching any of the namei. The variable names may contain the wildcard *,
which matches any character sequence.

 v = whos(name1, ...) returns a structure array with one element for each
workspace variable matching any of the namei.

See also who

FIELD CONTENTS

name variable name

size dimensions

bytes approximate number of bytes occupied

class class
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

xlim, ylim, zlim
xlim, ylim, zlimPurpose Controls axis limits.

Synopsis lim = xlim
mode = xlim('mode')
xlim(limits)
xlim(mode)
xlim(ax,...)

Description lim = xlim returns the x-axis limits for the current axes.

mode = xlim('mode') returns 'auto' or 'manual' for the x-axis limits mode.

xlim(limits) sets the x-axis limits to the limits given by the 2-element vector
limits.

xlim(mode), where mode is the string 'auto' or 'manual', sets the x-axis limits
mode.

xlim(ax,...) uses the axes ax instead of the current axes.

The ylim and zlim functions have the same functionality as xlim but operate on
the y- and z-axis, respectively.
561

xlabel

562 | C H A P T
xlabelPurpose Specify an x-axis label.

Synopsis xlabel(string)

Description xlabel(string) places the text string as the label on the x-axis.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

xlsread
xlsreadPurpose Read from .xls file

Synopsis num = xlsread(filename,sheet)
[num,txt] = xlsread(filename,sheet)
[num,txt,raw] = xlsread(filename,sheet)
[num,txt,raw] = xlsread(filename,range)
[num,txt,raw] = xlsread(filename,sheet,range)
xlsread(filename,...)

Description [num,txt,raw] = xlsread(filename) reads all entries from the first sheet of an
.xls file filename and returns numerical data in matrix num, strings in cell array txt
and mixed output in cell array raw. Excel cells containing string values will appear
as NaN in num while numerical values will appear as empty strings in txt. Likewise
for empty or unreadable cells (such as error codes, images etc). Empty leading rows
or columns will be ignored.

 xlsread(filename,sheet), xlsread(filename,range) and
xlsread(filename,sheet,range) read from a specific sheet and/or range.
sheet must be given either as a number or a string containing the sheet’s name.
range must be a string in Excels A1-notation, for example 'A1:F24'.

 xlsread(filename,...) supports property value pairs as follows:

TABLE 1-60: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

out 'num' |
'raw' |
'text'

{'num',
'text',
'raw'}

Output variables.

range string ':' Range to read from.
563

xlsread

564 | C H A P T
 xlsread supports Excel 97 format and later.

Note: Excel cells stored in date format will be returned as numbers or strings
depending on the format in which they were stored in the xls file. Numerical dates
are based on the number of serial days elapsed since January 1, 1900.

See also xlswrite

sheet string or
positive
integer

1 Sheet to read from.

trim 'on' |
'off'

'on' If 'on', xlsread trims leading and
trailing rows/columns of NaNs (for
num, raw) or empty strings (for
text). For example, a leading row
containing only strings will
automatically be removed from num,
as opposed to appearing as a row of
NaN's.
Note that if range has been given,
setting trim to 'off' does not
guarantee output of corresponding
size, as completely empty trailing
rows and columns will still not be
read.

TABLE 1-60: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

xlswrite
xlswritePurpose Write to .xls file

Synopsis xlswrite(filename,data)
xlswrite(filename,data,sheet)
xlswrite(filename,data,range)
xlswrite(filename,data,sheet,range)
xlswrite(filename,data,...)

Description xlswrite(filename, data) writes entries in data to the first sheet of an .xls file
filename. data can be a real matrix or a cell array. In the latter case, only numerical
and string entries are printed to filename. Empty strings or NaN entries are ignored.

xlsread(filename,data,sheet), xlsread(filename,data,range) and
xlsread(filename,data,sheet,range) write to a specific sheet and/or range.
sheet must be given either as a number or a string containing the sheet’s name.
range must be a string in Excels A1-notation, for example 'A1:F24'.

xlswrite(filename,data,...) supports property value pairs as follows:

Examples mat = [1:10; sin(1:10); exp(1:10)]';
xlswrite('myfile.xls',mat,'range','A1:B5');

c = [{'Header 1','Header 2','Header 3'};num2cell(mat)];
xlswrite('myfile.xls',c,'My sheet');

See also xlsread

TABLE 1-61: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

range string ':' Range to write to.

sheet string
or
positive
integer

1 Sheet to write to.
565

ylabel

566 | C H A P T
ylabelPurpose Specify a y-axis label.

Synopsis ylabel(string)

Description ylabel(string) places the text string as the label on the y-axis.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

xor
xorPurpose Compute the logical XOR of two matrices pointwise.

Synopsis d = xor(a, b)

Description d = xor(a, b) computes the pointwise logical XOR of the two matrices a and b.
For each dimension, a and b must have the same size or either of them must have
size 1. In the latter case, the unit dimension is expanded to the size of the nonunit
dimension.

Examples xor([0 0 1 1], [0 1 0 1])

 xor([0 1], 0)

 xor([0 1], [1 ; 0])

See also and, not, or
567

zeros

568 | C H A P T
zerosPurpose Create an all-zero matrix.

Synopsis m = zeros(n)
m = zeros(sz)
m = zeros(n1, n2, ...)

Description m = zeros(n), where n is an integer, returns an n-by-n all-zero matrix.

 m = zeros(sz), where sz is a vector of integers, returns an all-zero matrix of
size sz.

 m = zeros(n1,n2,...), where ni are integers, returns an n1xn2x ... all-zero
matrix.

See also eye, ones, repmat, zeros
E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

zlabel
zlabelPurpose Specify a z-axis label.

Synopsis zlabel(string)

Description zlabel(string) places the text string as the label on the z-axis.

See the text command for a list of valid Greek symbols and HTML formatting
syntax.

See also text
569

zlabel

570 | C H A P T
 E R 1 : C O M S O L S C R I P T C O M M A N D R E F E R E N C E

I N D E X

3D contour plots 88

A Airy functions 19

axes object

for new plots 371

handle to current 212

axes objects 27

clearing contents of current 68

axis limits 561

axis properties 28

B bar graph 29

base-2 logarithm 326

beta function 33

natural logarithm of 35

binary data 195

binary file

writing data to 207

bitwise complement 38

bitwise functions 37

block-diagonal matrices 44

breakpoints 307

built-in functions, evaluating 47

button groups 49, 524

buttons 48

C check box 65

Cholesky factorization 66

class of an object 70

colormap

assigning to plots 78

bone 45

cool 94

gray 222, 223, 555

hot 241, 242

jet 306

pink 398

combo box 79

command window

clearing contents of 71

closing 421

complementary error function 150

scaled 151

complex conjugate transpose 99

condition numbers 85, 86

contour data 89

contour plots 87

converting

cell array to matrix 60

cell array to structure 61

character array to cell array of strings

63

integers to strings 260

numbers to strings 378

strings to numbers 481

structure array to cell array 497

value to character array 64

convolution of matrices 92, 93

convolution of vectors 91

coordinate transformations

Cartesian to polar 54

Cartesian to spherical 55

polar to Cartesian 404

spherical to Cartesian 463

cross product 98

cumulative product 100

cumulative sum 101

current directory 58

D DAEs 103

DASPK 103

date 104

determinant 126

diagonal matrix 127

dialog boxes 128
I N D E X | 571

572 | I N D E X
difference of an array 131

digamma function 416

digital filtering 180

direct form II transposed form 180

directory

list of files in 132

removing from search path 439

E eigenvalues 143, 144

eigenvectors 143, 144

elapsed time 155

end-of-file 167

error exceptions 153, 154

error messages

rethrowing 436

retrieving or setting 310, 311

evaluating

functions 169

polynomials 409

evaluating built-in functions 47

evaluating expressions 156

F factorial 164

fast Fourier transform 170, 171

inverse 244

inverse 2D 245

inverse n-dimensional 246

n-dimensional 172

shifting frequency spectrum of 173

FFT 170, 171, 172

inverse 244, 245

inverse n-dimensional 246

shifting frequency spectrum of 173

undo frequency-spectrum shift 247

fgetl 174

figure window

clearing contents of current 73

closing 76

handle to current 214

figure windows

creating 177

file names

temporary 512

file pointer

moving 201

position of 202

files

closing 166

list of 132

opening 189

reading binary data from 195

reading formatted data from 200

rewinding 199

filled contour plots 90

filtering 180

flushing drawing 141

formatted data

reading from a string 475

reading from files 200

formatted output 193

formatted string

converting data to 469

formatted text

reading 490

frame objects 194

frequency range 198

frequency-spectrum shift

undoing 247

functions

clearing from workspace 72

G gamma function 209

logarithm of 211

gradient 220

graphics objects

getting data from 217

setting values of 449

greatest common divisor 213

Greek symbols 514

grid lines 224

GridBagLayout 387

grids 345

n-dimensional 368

H handle

to current axes object 212

to current figure window 214

help texts 232

Hessenberg form 233

histogram counts 238

histograms 237

HTML formatting 513

I image icons 250

imaginary unit 243, 301

infinite value 256

inline functions

argument names for 24

creating 257

formula computed by 192

input arguments

variable number of 548

interpolation

1D 262

2D 263

3D 264

inverse error function 152

inverse fast Fourier transform 244

for matrix 245

inverse n-dimensional fast Fourier trans-

form 246

J Java methods, invoking 303, 304

Java objects

creating 305

creating array of 302

K Kronecker tensor product 308

L labels 309

for x-axis 562

for y-axis 566

Laplacian 121

least common multiple 312

legends 315

light objects 317

lighting 317, 318

line plots 400

in 3D 401

linear system of equations 354, 359

lines 319

list boxes 321

loading workspace contents 323

Lobatto quadrature 420

logarithm

base-2 326

logarithmic scales 328

logarithmic scales in plots 447, 448

logarithmically spaced values 330

LU factorization 335

M machine type 84

math symbols 515

matrix exponential 161

matrix inverse 267

matrix power 358, 411

matrix product 360

menu items 343

menus 342

mesh plots

hidden lines in 236

modulus of matrices 356

movies 357

multidimensional index vector 499

multidimensional index vectors 255

N NaNs 363

Nelder-Mead simplex algorithm 188

nonzero elements 372

norms 373

not-a-numbers 363
I N D E X | 573

574 | I N D E X
null space 375

number of input arguments 365

checking 364

number of output arguments 366

checking 367

numerical integration

trapezoidal 102, 530

using Lobatto quadrature 420

using Simpson quadrature 419

O ODE options

creating structure for 382

getting values of 381

ordinary differential equations 103

orthonormal basis 375, 386

output arguments

variable number of 549

output formats 191

P panel for GUI components 387

patches of triangles or quadrilaterals 390

path

for M-files 392

path separator 393

phase jumps, removing 544

pi 397

plots

3D contour 88

contour 87

filled contour 90

getting axes object ready for 371

log-log 328

multiple in on figure window 500

saving as images 444

surface of quadrilaterals 504

titles in 523

using wireframe surface 344, 346

with semilog axes 447, 448

y versus x 400

points 403

polynomials 405

differentiating 406

evaluating 409

fitting to data 407

integrating 408

roots of 440

prime factors 163

prime numbers

generating 413

testing for 291

pseudoinverse 399

psi function 416

Q QR factorization 418

quadrature

Lobatto 420

Simpson 419

quadrilaterals, in mesh plots

mesh plots 344, 346

R radio buttons 422

random numbers

uniformly distributed 423

random permutation 424

range of a matrix 386

rank of a matrix 425

remainder 433

root workspace 25

roots of polynomials 440

S scene lights 318

Schur decomposition 445

scripts, running 442

scroll panes 446

set difference 450

set intersection 265

set members 286

set union 540

shading 453

Simpson quadrature 419

singular value decomposition 506

size of an array 456

solving linear equation systems 354, 359

sorting an array 457

sorting rows 458

sparse matrix

converting to full 203

creating 460

identity matrix 462

testing for 295

standard deviation 477

standard difference equation

direct form II transposed form 180

structure

creating 496

removing fields from 438

structure fields

getting values from 219

structures

setting value of fields in 451

subplots 500

surface of quadrilaterals 504

surface reflectance 338

T tabbed panes 509

tables 510

text areas 516

text fields 517

text files, typing contents of 537

text symbols 515

texts 513

time 74

timer 519

titles 523

toggle buttons 524

trace of a matrix 526, 528

transpose

complex conjugate 99

of a matrix 529

trapezoidal numerical integration 102,

530

U unicode 515

unique elements 541

user inputs 258

user interface components

properties for 83

V variable names

test if string is valid as 299

variables

clearing from workspace 72

variables in workspace

information about 560

name of 559

variance 547

vectorizing an expression 550

view point 553

W warnings, displaying 554

white-space characters 495

wireframe plots 344, 346

working directory 417

workspaces

evaluating in specific 158

loading from file 323

saving to file 443
I N D E X | 575

576 | I N D E X

	CONTENTS
	Chapter 1: COMSOL Script Command Reference
	Summary of Commands 2

	COMSOL Script Command Reference
	Summary of Commands
	Elementary functions
	addpath
	airy
	all
	and
	ans
	any
	argnames
	assignin
	atan2
	axes
	axis
	bar
	base2dec
	bessel, besselh, besseli, besselj, besselk, bessely
	beta
	betainc
	betaln
	bin2dec
	bitand, bitor, bitxor
	bitcmp
	bitget
	bitmax
	bitset
	bitshift
	blanks
	blkdiag
	bone
	box
	builtin
	button
	buttongroup
	campos
	camtarget
	camup
	camva
	cart2pol
	cart2sph
	cat
	caxis
	cd
	cell
	cell2mat
	cell2struct
	cellfun
	cellstr
	char
	checkbox
	chol
	circshift
	cla
	clabel
	class
	clc
	clear
	clf
	clock
	clone
	close
	colon
	colormap
	combobox
	compile
	complex
	component
	computer
	cond
	condeig
	contour
	contour3
	contourc
	contourf
	conv
	conv2
	convn
	cool
	corrcoef
	cov
	cputime
	cross
	ctranspose
	cumprod
	cumsum
	cumtrapz
	daspk
	date
	dbclear
	dbcont
	dbdown
	dbquit
	dbstack
	dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	deal
	deblank
	dec2base
	dec2bin
	dec2hex
	deconv
	del2
	delaunay
	delaunay3
	delete
	det
	diag
	dialog
	diary
	diff
	dir
	disp
	display
	dlmread
	dlmwrite
	dlsim
	dos
	dot
	double
	drawnow
	echo
	eig
	eigs
	encrypt
	eps
	eq
	erf
	erfc
	erfcx
	erfinv
	error
	errorbar
	etime
	eval
	evalc
	evalin
	exist
	exit
	expm
	eye
	factor
	factorial
	false
	fclose
	feof
	ferror
	feval
	fft
	fft2
	fftn
	fftshift
	fgetl
	fgets
	fieldnames
	figure
	fileparts
	filesep
	filter
	find
	findobj
	findstr
	flipdim
	fliplr
	flipud
	fminsearch
	fopen
	format
	formula
	fprintf
	frame
	fread
	freqspace
	frewind
	fscanf
	fseek
	ftell
	full
	fullfile
	funm
	fwrite
	fzero
	gamma
	gammainc
	gammaln
	gca
	gcd
	gcf
	ge
	genpath
	get
	getdata
	getfield
	gradient
	gray
	grayprint
	grid
	griddata
	griddata3
	griddatan
	gt
	help
	hess
	hex2dec
	hex2num
	hidden
	hist
	histc
	horzcat
	hold
	hot
	hsv
	i
	ifft
	ifft2
	ifftn
	ifftshift
	imag
	image
	imageicon
	imagesc
	imread
	imshow
	imwrite
	ind2sub
	inf
	inline
	input
	inputname
	int2str
	int8, int16, int32, int64
	interp1
	interp2
	interp3
	intersect
	intmax, intmin
	inv
	isa
	iscell
	iscellstr
	ischar
	isdir
	isempty
	isequal
	isequalwithequalnans
	isfield
	isfinite
	isglobal
	ishandle
	ishold
	isinf
	isjava
	iskeyword
	isletter
	islogical
	ismember
	isnan
	isnumeric
	isobject
	ispc
	isprime
	isreal
	isscalar
	isspace
	issparse
	isstr
	isstruct
	isunix
	isvarname
	isvector
	j
	javaArray
	javaDeclare
	javaMethod
	javaObject
	jet
	keyboard
	kron
	label
	lasterr
	lasterror
	lcm
	ldivide
	le
	legend
	length
	light
	lighting
	line
	linspace
	listbox
	load
	log
	log10
	log2
	logical
	loglog
	logm
	logspace
	lookfor
	lower
	ls
	lt
	lu
	mat2cell
	mat2str
	material
	max
	mean
	median
	menu
	menuitem
	mesh
	meshgrid
	meshz
	methods
	mfilename
	min
	minus
	mislocked
	mkdir
	mkpp
	mldivide
	mlock
	mod
	movie
	mpower
	mrdivide
	mtimes
	munlock
	namelengthmax
	nan
	nargchk
	nargin
	nargout
	nargoutchk
	ndgrid
	ndims
	ne
	newplot
	nnz
	norm
	not
	null
	num2cell
	num2hex
	num2str
	numel
	nzmax
	odeget
	odeset
	ones
	or
	ordschur
	orth
	panel
	patch
	path
	pathsep
	pause
	pchip
	permute, ipermute
	pi
	pink
	pinv
	plot
	plot3
	plus
	point
	pol2cart
	poly
	polyder
	polyfit
	polyint
	polyval
	pow2
	power
	ppval
	primes
	prod
	profile
	psi
	pwd
	qr
	quad
	quadl
	quit
	radiobutton
	rand
	randperm
	rank
	rat
	rats
	rdivide
	real
	realmin, realmax
	realpow
	rehash
	rem
	repmat
	reshape
	rethrow
	rmdir
	rmfield
	rmpath
	roots
	rot90
	run
	save
	saveimage
	schur
	scrollpane
	semilogx
	semilogy
	set
	setdiff
	setfield
	setxor
	shading
	shiftdim
	single
	size
	sort
	sortrows
	sound, soundsc
	sparse
	spdiags
	speye
	sph2cart
	spline
	spones
	sprand
	sprandn
	sprandsym
	sprintf
	spy
	sqrt
	sqrtm
	squeeze
	sscanf
	stairs
	std
	stem
	stem3
	storedata
	str2num
	strcat
	strcmp
	strcmpi
	strfind
	strjust
	strmatch
	strncmp
	strncmpi
	strread, textread
	strrep
	strrep
	strtok
	strtrim
	struct
	struct2cell
	strvcat
	sub2ind
	subplot
	subspace
	sum
	super
	surf
	surface
	svd
	symvar
	system
	tabbedpane
	table
	tempdir
	tempname
	text
	textarea
	textfield
	this
	tic, toc
	times
	tinterp
	title
	togglebutton
	tprod
	trace
	transpose
	trapz
	tril, triu
	trimesh
	trisurf
	true
	tsearch
	tsearchn
	type
	uint8, uint16, uint32, uint64
	uminus
	union
	unique
	unix
	unmkpp
	unwrap
	uplus
	upper
	var
	varargin
	varargout
	vectorize
	version
	vertcat
	view
	warning
	wavemap
	wavread
	wavwrite
	which
	who
	whos
	xlim, ylim, zlim
	xlabel
	xlsread
	xlswrite
	ylabel
	xor
	zeros
	zlabel

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

