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 1
I n t r o d u c t i o n
Welcome to the Optimization Lab! This User’s Guide details features and 
techniques to help you use this powerful package for all kinds of optimization. 
Through examples and code samples you will get an understanding of the 
optimization problems it is possible to solve and also learn about the solvers and 
algorithms that the Optimization Lab contains.

This introductory chapter provides an overview of the Optimization Lab.
 1



2 |  C H A P T E R  1
Th e  Do cumen t a t i o n  S e t

The documentation for the Optimization Lab consists of this book, the Optimization 
Lab User’s Guide, which provides full information about the product and its 
applications for optimization tasks. In addition, the Optimization Lab includes the 
SQOPT User’s Guide and SNOPT User’s Guide in PDF versions. For the general use 
of the COMSOL Script language and for installation of the software, the following 
resources provide additional information:

• COMSOL Quick Installation Guide—basic information for installing the 
COMSOL software and getting started. Included in the DVD/CD package.

• COMSOL New Release Highlights—information about new features and models 
in the 3.4 release. Included in the DVD/CD package.

• COMSOL License Agreement—the license agreement. Included in the DVD/CD 
package.

• COMSOL Installation and Operations Guide—besides covering various 
installation options for COMSOL Script, this manual describes the system 
requirements and options for running various COMSOL software products.

• COMSOL Script User’s Guide—explains how to use the vast range of functions in 
the COMSOL Script language. This guide also describes COMSOL Script’s 
programming-language features and the powerful graphics capabilities and tools it 
provides for creating custom graphical user interfaces.

• COMSOL Script Command Reference—provided only as online documentation as 
a PDF and in HTML format, it reviews each function in the COMSOL Script 
environment with syntax descriptions and examples.

Note: Following installation, the full documentation set is available on your 
computer in electronic versions—as PDF files and in HTML format.

Typographical Conventions

All COMSOL manuals use a set of consistent typographical conventions that should 
make it easy for you to follow the discussion, realize what you can expect to see on the 
:  I N T R O D U C T I O N



screen, and know which data you must enter into various data-entry fields. In 
particular, you should be aware of these conventions:

• A boldface font of the shown size and style indicates that the given word(s) appear 
exactly that way on the COMSOL graphical user interface (for toolbar buttons in 
the corresponding tooltip). For instance, we often refer to the Model Navigator, 
which is the window that appears when you start a new modeling session in 
COMSOL; the corresponding window on the screen has the title Model Navigator. 
As another example, the instructions might say to click the Multiphysics button, and 
the boldface font indicates that you can expect to see a button with that exact label 
on the COMSOL user interface.

• The names of other items on the graphical user interface that do not have direct 
labels contain a leading uppercase letter. For instance, we often refer to the Draw 
toolbar; this vertical bar containing many icons appears on the left side of the user 
interface during geometry modeling. However, nowhere on the screen will you see 
the term “Draw” referring to this toolbar (if it were on the screen, we would print 
it in this manual as the Draw menu).

• The symbol > indicates a menu item or an item in a folder in the Model Navigator. 
For example, Physics>Equation System>Subdomain Settings is equivalent to: On the 
Physics menu, point to Equation System and then click Subdomain Settings. 
COMSOL Multiphysics>Heat Transfer>Conduction means: Open the COMSOL 

Multiphysics folder, open the Heat Transfer folder, and select Conduction.

• A Code (monospace) font indicates keyboard entries in the user interface. You might 
see an instruction such as “Type 1.25 in the Current density edit field.” The 
monospace font also indicates COMSOL Script codes.

• An italic font indicates the introduction of important terminology. Expect to find 
an explanation in the same paragraph or in the Glossary. The names of books in the 
COMSOL documentation set also appear using an italic font.
T H E  D O C U M E N T A T I O N  S E T  |  3



4 |  C H A P T E R  1
Abou t  t h e  Op t im i z a t i o n  L ab

The Optimization Lab extends the COMSOL Script environment—an open and 
extensible language for technical computing of any kind—with a suite of tools for 
solving optimization problems.

The optimization algorithms in this product build on the proven SNOPT package 
developed by Prof. Philip Gill (University of California, San Diego) along with Profs. 
Walter Murray and Michael Saunders (Stanford University). SNOPT is a 
general-purpose system for large-scale nonlinearly constrained optimization.

The Optimization Lab builds on a flexible data structure, the Opt structure, which 
contains the entire optimization problem within a single variable. The main 
optimization function, optim, selects the proper solver algorithm depending on 
properties of the objective function and the constraints. Linearity, for example, allows 
optim to take appropriate shortcuts.

For optimization involving fields of physics and geometric properties, such as shape 
optimization, you can connect the Optimization Lab to COMSOL Multiphysics to 
perform optimization on a finite element model.

This documentation set introduces you to the full range of functionality in the 
Optimization Lab. We are certain that you will come up with some very creative uses 
of the powerful optimization tools it provides. We are anxious to hear about them and 
invite you to get in touch with us with any feedback whatsoever. We plan on 
developing the Optimization Lab even further, so let us know what kinds of 
functionality would serve you best. Contact us at suggest@comsol.com with any 
questions or comments you might have.
:  I N T R O D U C T I O N



Ove r v i ew

What Can the Optimization Lab Do?

The Optimization Lab is a powerful collection of optimization solvers based on the 
proven SNOPT and SQOPT codes developed by Philip Gill, Walter Murray, and 
Michael Saunders. You can use the Optimization Lab to solve large-scale linear and 
nonlinear optimization problems. It is especially effective for nonlinear problems, 
where functions and gradients can be expensive to evaluate. A solver routine that is 
common to all problem types, optim, chooses the best solver type for the optimization 
problem that you specify, and it uses a convenient structure variable, the Opt structure. 

The Optimization Lab includes solvers for the following classes of problems:

• Linear optimization 

• Quadratic optimization 

• Nonlinear optimization 

• Linear least squares 

• Nonlinear least squares 

• Unconstrained nonlinear optimization (Nelder-Mead search algorithm)

The Optimization Lab is fully integrated within the COMSOL Script 
technical-computing environment, which provides an open and extensible scripting 
tool for further data analysis and visualization.

By using this software together with other members of the COMSOL Multiphysics 
product family, you can perform optimization of space-dependent multiphysics 
problems.

Which Problems Can it Solve?

The Optimization Lab provides tools for solving optimization problems within a wide 
range of applications:

• General-purpose linear programming, quadratic programming, and nonlinear 
programming

• Optimization problems in engineering, economics, and finance
O V E R V I E W  |  5



6 |  C H A P T E R  1
• Trajectory optimization, optimal control, engineering design, nonlinear networks, 
trade models, and the like

• Multiphysics applications together with COMSOL Multiphysics and COMSOL 
Script
:  I N T R O D U C T I O N
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U s i n g  t h e  O p t i m i z a t i o n  L a b
This chapter describes how to use the Optimization Lab to solve different types of 
optimization problems. It also shows how to define an optimization problem using 
the Opt structure—the data structure that you use to define all types of 
optimization problems in the Optimization Lab. Finally it describes the solvers and 
their properties, concluding with a small quadratic optimization example that puts 
all this information together.
 7
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Fo rmu l a t i n g  Op t im i z a t i o n  P r ob l em s

Basic Concepts in Optimization

Optimization deals with minimizing (or maximizing) the value of a function. The 
function that you want to minimize, f(x), is usually called the objective function or cost 
function. In addition to the objective function, optimization problems often include 
constraints. The Optimization Lab solves optimization problems in the form

Here, f(x) is the objective function, which you can specify in a number of different 
formats. In addition, there are three types of constraints:

• The matrix A defines the linear constraints  together with the vectors  blb and bub, 
which are the lower and upper bounds, respectively.

• The vector function c(x) defines the nonlinear constraints with the lower and 
upper bounds dlb and dub (vectors), respectively.

• The vectors xlb and xub define the lower and upper bounds for the variables x, 
respectively.

Note: These are inequality constraints. You can define an equality constraint by 
setting the upper bound equal to the lower bound. For example, to define the j th 
linear constraint as an equality, set blb( j ) = bub(  j ).

For a specific optimization problem, some of the available constraints might not apply. 
For an unconstrained minimization there are no constraints.

If x satisfies the constraints, then x is called feasible. The “optimal value” p* of the 
problem is defined as if no x satisfies the constraints and as if f is unbounded 
from below. Otherwise p* is the GLB (greatest lower bound) of f over the feasible set. 
If there is a feasible x that makes f(x) = p*, then x belongs to a set of optimal points. A 
feasibility problem deals with finding the x satisfying the constraints.

minimize
x

f x( )

subject to blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤

+∞ ∞–
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M A X I M I Z I N G  I N S T E A D  O F  M I N I M I Z I N G

The functions in the Optimization Lab solve minimization problems. To instead find 
the maximum of the objective function, set the solver property 'maximize' to 'on' 
for the gradient-based solvers. For optnm, to maximize f(x), provide −f(x) as the 
objective function.

Types of Optimization Problems

The most demanding problems have a nonlinear objective function and nonlinear 
constraints. For important subclasses of problems, the algorithms might take shortcuts 
to improve speed and robustness. For these reasons, the Optimization Lab 
distinguishes between linear and quadratic problems, also called linear programming 
(LP) and quadratic programming (QP) problems.

Because the constraints are linear, the feasible set is convex, that is, the entire line 
between two feasible points is feasible. Additionally, the objective function is convex 
for the linear problem and also for quadratic problems with a semidefinite matrix H.

L I N E A R  O P T I M I Z A T I O N  P R O B L E M S

A linear optimization problem has a linear objective function and only linear 
constraints:

The objective function cTx is the dot product of the vector c and the vector of variables 
x. In addition, there are two types of constraints:

• The matrix A defines the linear constraints  together with the vectors  blb and bub, 
which are the lower bounds and upper bounds, respectively. The number of rows in 
A corresponds to the number of constraints. The number of columns must match 
the number of variables. The number of elements in the bounds blb and bub 
corresponds to the number of constraints.

• The vectors xlb and xub define the bound constraints, that is, the lower and upper 
bounds for the variables x. The number of elements in the bounds xlb and xub must 
match the number of variables.

minimize
x

cTx

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤
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If an optimization problem appears to be more general than the linear optimization 
problem, it is wise to examine the quadratic and nonlinear optimization problems in 
the following sections.

Q U A D R A T I C  O P T I M I Z A T I O N  P R O B L E M S

A quadratic problem (or convex quadratic programming problem) has a quadratic 
objective function and only linear constraints:

The matrix H (the Hessian) defines the quadratic term, and the vector c defines the 
linear part. For the unconstrained problem to have a local minimum, the Hessian must 
be positive semidefinite, that is, xTHx ≥ 0 for all x. If H = 0 the problem is linear. The 
Optimization Lab always treats problems with quadratic constraints as nonlinear.

The linear constraints are exactly the same as for the linear problem as outlined in the 
previous section.

If an optimization problem appears to be more general than the quadratic 
optimization problem, it is wise to examine the nonlinear optimization problem type 
in the following section. In particular, if H is indefinite you must treat the objective 
function as a general nonlinear function and accept that the solution might be just a 
local minimizer.

N O N L I N E A R  O P T I M I Z A T I O N  P R O B L E M S

A nonlinear optimization problem has a nonlinear objective function, nonlinear 
constraints, or both:

The objective function f(x) can be a nonlinear function, and the constraint function 
c(x) defines the nonlinear constraints . The number of elements in the 
bounds dlb and dub must match the number of nonlinear constraints.

minimize
x

1
2
---x

T
Hx c+

T
x

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤

minimize
x

f x( )

subject to blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤

dlb c x( ) dub≤≤
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The general nonlinear optimization solver in the Optimization Lab is gradient based, 
that is, it uses the gradient of the objective function and the Jacobian of the constraint 
function. The gradient is the column vector of derivatives of the objective function 
with respect to the variables

,  (2-1)

and the Jacobian of the constraint function is the matrix of derivatives of constraint 
functions with respect to the variables

.  (2-2)

In addition to the nonlinear constraints, the problem description can include linear 
constraints, which are in the same form as in the previous sections.

L I N E A R  L E A S T - S Q U A R E S  P R O B L E M S

A constrained linear least-squares problem is a particular type of quadratic problem,

which is always convex. C is an m-by-n matrix, where m is the length of the column 
vector d, and n is the length of the vector x. When the columns of C are linearly 
dependent, the Hessian is semidefinite, but it is still possible to find a local minimizer, 
albeit nonunique.

The constraints of the linear least-squares problem are the same as for the linear and 
quadratic optimization problems.

N O N L I N E A R  L E A S T - S Q U A R E S  P R O B L E M S

The Optimization Lab also treats constrained nonlinear least-squares problems of the 
form

gi xi∂
∂f

=

Jij xj∂
∂ci=

minimize
x

1
2
--- Cx d–

2

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤
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where the vector-valued function F(x) can be a nonlinear function of the variables. The 
constraints of the nonlinear least-squares problem are the same as for the nonlinear 
optimization problem.

Optimization Algorithms

Starting at a feasible point (possibly after locating one, if none are known), an 
optimization algorithm works iteratively by sampling the objective function and 
constraints in the vicinity, then it moves to decrease the objective function without 
violating the constraints. The gradient g(x) is the n-vector of first derivatives, and the 
Hessian H(x) is the n-by-n matrix of second derivatives of the objective,

.

If the objective is differentiable, it is well approximated by

,

and a move in the gradient direction changes the objective most rapidly. For 
twice-differentiable functions,

furnishes a much more accurate local approximation, the basis for the effective 
algorithms in the Optimization Lab, based on quadratic programming (QP). The 
Optimization Lab also provides a search algorithm (optnm) for unconstrained 
minimization of nonsmooth functions, which does not rely on any derivative 
information at the expense of using many samples.

The search stops when the estimated improvement that is possible—as judged by, for 
example, the magnitude of the “reduced” gradient (see “Reduced-Gradient Methods” 
on page 14) or the change over the last iteration—becomes small enough.

minimize
x

1
2
--- F x( ) 2 1

2
--- Fi

i
∑ x( )

2
=

subject to blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤

gi xi∂
∂ f x( )= Hij xj∂

∂ gi x( )=,
xj∂
∂

xi∂
∂ f x( )= i j, , 1 … n, ,=

f x h+( ) f x( ) g x( )Th+≈

f x h+( ) f x( ) g x( )Th 1
2
---hTH x( )h+ +≈
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Problems with nonlinear constraints are solved with a sequential quadratic 
programming (SQP) method in which a reduced-gradient method solves each QP 
subproblem.

O P T I M A L I T Y  C O N D I T I O N S  A N D  L A G R A N G E  M U L T I P L I E R S

Consider an inequality constraint . If  at a point , then the 
constraint is called active at ; otherwise it is inactive. Constraints that are inactive at 
the optimum can be disregarded, and the active constraints can be replaced by 
equalities. Note that it is not possible to know beforehand which will be the active set 
of constraints.

Note: The next section assumes that all constraints, whether linear, nonlinear, or 
bound constraints, are included in c(x).

A local optimum of the equality-constrained problem

 (2-3)

is characterized by the 1st-order optimality conditions

which say that a perturbation to x that does not violate any of the constraints (to first 
order) produces no 1st-order change to the objective. The Lagrangian,

,

is the sum of the objective function and a sum of the constraint functions weighted by 
the Lagrange multipliers, y. L(x, y) has a stationary point at a minimum in 
Equation 2-3.

For a problem involving inequality constraints

c x( ) 0≤ c x( ) 0= x
x

minimize
x

f x( )

subject to c x( ) 0=

g JTy+ 0=

c x( ) 0=

L x y,( ) f x( ) yTc x( )+=

minimize
x

f x( )

subject to c x( ) 0≤
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the 1st-order optimality conditions are

Only the active constraints have a corresponding nonzero Lagrange multiplier. These 
conditions are known as the Kuhn-Tucker necessary conditions.

To see how the Lagrange multipliers enter into the problem formulation of the 
Optimization Lab, consider the most general optimization problem definition

The 1st-order optimality conditions are

.

Note: Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

Reduced-Gradient Methods
Multipliers convey useful information: nonzero values are the costs in 
objective-function units of satisfaction of the constraint. Algorithms for constrained 
problems predict the active set, solve the equality-constrained problem, and check for 
violation of the (presumedly) inactive constraints and possible release of the active 
constraints. The active set strategy selects the active set for the next step. The 
reduced-gradient algorithms for linear constraints choose an active set and optimize 
within the associated subspace, perhaps adding constraints one by one to the active set 
if they are encountered before the objective is sufficiently optimized. They then 
consider releasing an active constraint and continuing as before. The Optimization Lab 

g JTy+ 0=

c x( ) 0≤
y 0≥

minimize
x

f x( )

subject to blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤

g x( ) AT ylcub
ylclb

+( ) JT yncub
ynclb

+( ) ybcub
ybclb

+ + + + 0=

ylcub
0 yncub

0 ybcub
0≥,≥,≥

ylclb
0≤ ynclb

0≤ ybclb
0≤,,

blb Ax bub≤ ≤ dlb c x( ) dub≤ ≤ xlb x xub≤ ≤, ,
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algorithms are reduced-gradient methods. They use the active constraints to eliminate 
some of the variables, effectively reducing the dimension of the search space and 
eliminating the constraints. Gradients in this space are called reduced gradients.

For problems with nonlinear constraints, the SQP algorithm ultimately solves a QP 
subproblem defined at the optimal point. The reduced-gradient notion therefore still 
applies.
F O R M U L A T I N G  O P T I M I Z A T I O N  P R O B L E M S  |  15
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C r e a t i n g  t h e  Op t  S t r u c t u r e

The Opt Structure

The Opt structure contains a complete representation of an optimization problem and 
its solution. To define a problem, you define its objective function in the Opt 
structure’s opt.obj field, the nonlinear constraints in the opt.nc field, the linear 
constraints in the opt.lc field, and finally the bound constraints in the opt.bc field.

The Opt structure can also provide initial values of the variables to the optimization 
solvers in the opt.init field. The solvers store the solution to the optimization 
problem in the opt.sol field.

Defining the Objective Function

You specify the objective function in the Opt structure’s opt.obj field. In addition to 
the description below, the entry optim on page 77 in the chapter “Command 
Reference” contains a table with information about the ways you can specify the 
objective function.

L I N E A R  O P T I M I Z A T I O N  P R O B L E M S

For linear optimization problems, you need specify only the vector c in the objective 
function . Use the opt.obj.c field for this vector, which must have the 
same number of elements as the number of variables. Strictly speaking, c should be a 
column vector, but you can enter a row vector as well. In addition, it is good practice 
to specify that the problem is linear: opt.obj.form='lin'.

Q U A D R A T I C  O P T I M I Z A T I O N  P R O B L E M S

For quadratic optimization problems you specify the Hessian H and the vector c of the 
objective function . Use the opt.obj.c field for the vector and 
the opt.obj.H field for the matrix. The number of elements in c as well as the number 
of rows and columns in H must be the same as the number of variables.

Alternatively, you can specify the Hessian as the name of a function that computes the 
matrix-vector product Hx for any given vector x. This allows you to exploit structure 
or sparsity in H.

f x( ) cTx=

f x( ) 1
2
---x

T
Hx cTx+=
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You must specify at least one of the fields opt.obj.H or opt.obj.c. Strictly speaking, 
c should be a column vector, but you can enter a row vector, as well. In addition, it is 
good practice to specify that the problem is quadratic: opt.obj.form='quad'.

N O N L I N E A R  O P T I M I Z A T I O N  P R O B L E M S

Specify the objective function in the opt.obj.f field of the Opt structure. You can 
give the function either as a string, denoting the function name, or as an inline 
function. Similarly, you specify the gradient of the objective function in the field 
opt.obj.g. You can omit the gradient, but it is good practice to include it, when 
available, for performance reasons. 

If you provide the same function name in the fields opt.obj.f and opt.obj.g, the 
function must compute both, with the first output argument being the objective 
function and the second its gradient. The definition of the gradient appears in 
Equation 2-1.

Normally, the solver tries to estimate the gradient sparsity pattern through repeated 
objective function evaluations. This process can be very expensive, but you can avoid 
it by providing the sparsity pattern explicitly as a sparse matrix in the field 
opt.obj.ptrn. In addition, it is good practice to specify that the problem is nonlinear: 
opt.obj.form = 'nlin'.

L I N E A R  L E A S T - S Q U A R E S  O P T I M I Z A T I O N  P R O B L E M S

For linear least-squares problems, the objective function looks like

.

Specify C and d in opt.obj.C and opt.obj.d, respectively. The number of columns 
in C must match the number of variables, and the number of rows must match the 
length of d. In addition, it is good practice to specify that the problem is a linear 
least-squares problem: opt.obj.form = 'linlsq'.

N O N L I N E A R  L E A S T - S Q U A R E S  O P T I M I Z A T I O N  P R O B L E M S

For nonlinear least-squares problems the objective function looks like

.

1
2
--- Cx d–

2

f x( ) 1
2
--- F x( ) 2 1

2
--- Fi

i
∑ x( )

2
= =
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Specify F by providing the name of a function that returns the vector Fi (not the sum 
of squares) in the field opt.obj.F. Optionally, provide the name of a function that 
returns the Jacobian of F( x), that is, the matrix

in the field opt.obj.J. The solver by default tries to evaluate a sparsity pattern for J 
through repeated evaluations of F. To avoid this expensive process, you can provide 
the pattern explicitly as a sparse matrix in opt.obj.ptrn. In addition, it is good 
practice to specify that the problem is a nonlinear least-squares problem: 
opt.obj.form='nlinlsq'.

Defining Constraints

B O U N D  C O N S T R A I N T S

Use the fields opt.bc.lb and opt.bc.ub to specify lower and upper bounds, 
respectively, on the variables. Both fields should be column vectors whose length 
matches the number of variables, but you can use row vectors, as well. Instead of using 
vectors you can also specify a single value that sets the default for all constraints.

If a problem does not contain any bound constraints, you can omit the opt.bc field.

L I N E A R  C O N S T R A I N T S

Use the field opt.lc.A to specify the matrix A of the linear constraints, and use the 
fields opt.lc.lb and opt.lc.ub for their lower and upper bounds, respectively. The 
number of rows in A must correspond to the number of constraints, and the number 
of rows must match the number of variables. Both opt.lc.lb and opt.lc.ub should 
be column vectors whose length matches the number of variables, but you can use row 
vectors, as well. Instead of vectors you can also specify a single value that sets the 
default for all constraints.

If a problem does not contain any linear constraints, you can omit the opt.lc field. 

N O N L I N E A R  C O N S T R A I N T S

Specify the function that computes the nonlinear constraints in the opt.nc.c field of 
the Opt structure. The function should compute the values of all nonlinear constraints 
and can be given either as a string denoting the function name or as an inline function. 
Similarly, specify the Jacobian of the constraint function in the field opt.nc.J. You can 
omit the Jacobian, but it is good practice to provide it, when available, for performance 

Jij xj∂
∂Fi=
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reasons. Also for performance reasons, it is a good idea to provide the Jacobian sparsity 
pattern as a sparse matrix in the field opt.nc.ptrn. Otherwise, the solver will try to 
estimate the sparsity pattern through repeated evaluations of the constraint residual.

If you provide the same function name in the fields opt.nc.c and opt.nc.J, the 
function must compute both, with the first output argument being the constraints and 
the second its Jacobian.
C R E A T I N G  T H E  O P T  S T R U C T U R E  |  19
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S o l v i n g  Op t im i z a t i o n  P r ob l em s

General

All Optimization Lab solvers except optnm share a common interface function, 
optim, which solves optimization problems of all available types. It automatically 
dispatches an optimization problem to the least general optimization solver that can 
handle the problem.

To run the optim solver on an optimization problem that you have set up in the Opt 
structure opt, use the call

opt.sol=optim(opt);

Upon successful completion, the solver puts the result in the opt.sol field.

Providing Initial Values

All solvers benefit from getting an initial guess for the variables. You can provide it in 
the Opt structure as a vector in the opt.init.x field. Make sure that its length 
matches the number of variables. Formally it should be a column vector, but the 
Optimization Lab allows you to enter a row vector, as well.

For the nonlinear solver you might want to specify initial values for the Lagrange 
multipliers, too. See optnlin and optnlinlsq in the “Command Reference” chapter 
for details.

Interpreting the Solution

The field opt.sol contains output information from the solver. The optimal values for 
the variables appears in the opt.sol.x field, the extremum appears in the 
opt.sol.eval.f field, and the value of the constraints, if any, appears in the 
opt.sol.eval.bc, opt.sol.eval.lc and opt.sol.eval.nc fields.

In addition, you can find information about the success of the computation in 
opt.sol.exit. A value of 1 indicates success, and a value of 0 indicates failure. 
Further, opt.sol.msg gives a more descriptive text for the result of the computation. 
(The corresponding SQOPT/SNOPT output code is available in the field 
opt.sol.info.) The name of the algorithm ultimately called by optim is available in 
the field opt.sol.algorithm. 
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Auxiliary information on the computation is available in the field opt.sol.xinfo. See 
the entry for optim on page 77 in the “Command Reference” chapter for more 
information.

You can also find the values of the Lagrange multipliers for the constraints in the 
opt.sol.y structure. The opt.sol.y.bc field contains the Lagrange multipliers for 
the bound constraints, the opt.sol.y.lc field contains the Lagrange multipliers for 
the linear constraints, and the opt.sol.y.nc field contains the Lagrange multipliers 
for the nonlinear constraints.

The Optimization Lab Solvers

The following list describes the various solvers in the Optimization Lab. 

T H E  L I N E A R  O P T I M I Z A T I O N  S O L V E R

The linear optimization solver, optlin, is based on the SQOPT solver (Ref. 1) and 
uses a sparse implementation of the primal simplex method.

T H E  Q U A D R A T I C  O P T I M I Z A T I O N  S O L V E R

The solver for quadratic optimization problems, optquad, is also based on the SQOPT 
solver (Ref. 1), which uses a reduced-Hessian active-set method, also known as a 
reduced-gradient method.

T H E  N O N L I N E A R  O P T I M I Z A T I O N  S O L V E R

The solver for nonlinear optimization problems, optnlin, is based on the SNOPT 
solver (Ref. 2), which uses a sparse sequential quadratic programming (SQP) method, 
with SQOPT as the QP subproblem solver.

T H E  L I N E A R  L E A S T - S Q U A R E S  O P T I M I Z A T I O N  P R O B L E M  S O L V E R

To solve linear least-squares optimization problems, the Optimization Lab’s 
optlinlsq solver uses the SQOPT package with the following objective function:

.

The implementation of the Hessian-vector products is as CT(Cx), without forming 
CTC explicitly.

f x( ) 1
2
---xTCTCx dTCx–

1
2
---d

T
d+=
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NLINEAR 
NSTRAINT
T H E  N O N L I N E A R  L E A S T - S Q U A R E S  O P T I M I Z A T I O N  P R O B L E M  S O L V E R

To solve nonlinear least-squares optimization problems, the Optimization Lab’s 
optnlinlsq solver uses the SNOPT package with the following objective function and 
gradient:

T H E  N E L D E R - M E A D  S O L V E R  F O R  U N C O N S T R A I N E D  P R O B L E M S

The Optimization Lab contains a simple solver for nonlinear unconstrained 
optimization problems (those where there are no constraints on the variables). The 
optnm solver uses the Nelder-Mead simplex algorithm as defined in Ref. 3. Because this 
is not a gradient-based method, it is particularly useful for the minimization of 
nonsmooth functions.

Solver Compatibility Chart

The solvers in the Optimization Lab cover many types of optimization problems. 
There is also a general optimization solver, optim, which solves an optimization 
problem by looking at the fields of the opt structure and calling the most appropriate 
solver among optlin, optquad, optnlin, optlinlsq, and optnlinlsq. For 
example, a general nonlinear objective function or a quadratic objective function with 
nonlinear constraints results in optnlin being called. To control the solver selection 
in optim, you can specify the problem type in the opt.obj.form field (see the 
reference entry for optim on page 77 for more information).

The following table shows the compatibility among the solvers and the types of 
optimization problems you can solve with the Optimization Lab.

f x( ) 1
2
--- Fi

i
∑ x( )

2
=

g x( ) JTF=

TABLE 2-1:  OPTIMIZATION SOLVER/OPTIMIZATION PROBLEM COMPATIBILITY CHART

SOLVER LINEAR 
PROBLEMS

QUADRATIC 
PROBLEMS

NONLINEAR 
PROBLEMS

LINEAR 
LEAST- 
SQUARES

NONLINEAR 
LEAST- 
SQUARES

LINEAR 
CONSTRAINT

NO
CO

optlin √ √
optquad √ √ √
optnlin √ √ √ √ √
optlinlsq √ √
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NLINEAR 
NSTRAINT
In general, it is possible to use a nonlinear or quadratic solver also for linear problems 
of the same type.

For more information about the syntax and properties for each solver, see the sections 
“Command Reference” on page 73 and “Solver Properties” on page 119.

The following section provides an introductory example of solving an optimization 
problem using the Optimization Lab. More illustrations are available in the sections 
“Optimization Examples” on page 29 and “Multiphysics Optimization” on page 49. 
This latter section focuses on the optimization of multiphysics models created using 
COMSOL Multiphysics products.

optnlinlsq √ √ √ √
optnm √ √ √

TABLE 2-1:  OPTIMIZATION SOLVER/OPTIMIZATION PROBLEM COMPATIBILITY CHART

SOLVER LINEAR 
PROBLEMS

QUADRATIC 
PROBLEMS

NONLINEAR 
PROBLEMS

LINEAR 
LEAST- 
SQUARES

NONLINEAR 
LEAST- 
SQUARES

LINEAR 
CONSTRAINT

NO
CO
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A F i r s t  Op t im i z a t i o n  Examp l e

This first example shows how to create the Opt structure with the objective function 
and constraints for a quadratic optimization problem and then solve it.

The Optimization Problem

For a given value of n, find the n-vector x that is closest in Euclidean norm to a given 
vector x0, which in this case is equal to the vector [1, 2, 3]' (using COMSOL Script 
notation).The complication is that not only must x lie in the set

,

but its components must also be nonincreasing: . It is possible to write this 
situation in the form of a quadratic problem:

You can now write the objective function to be minimized as

,

which is a quadratic problem with H = I (the identity matrix) and c = −x0. The 
additional constant term, , is not part of the optimization problem that you pass 
to the optimization function. Instead you add it to the solution that the optimization 
routine returns.

To implement the constraints, write them for the nonincreasing components as 
. These n−1 constraints, together with the restriction that the sum 

of all variables must be 1, define m so-called range constraints, , in this 
case with m equal to n. For n = 3,

S x: xj

j 1=

n

∑ 1 x 0≥,=

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

xj xj 1+≤

minimize
x1, x2

1
2
--- xj x0( )j–( )2

j 1=

∑
subject to xj xj 1+– 0  j 1 2 … n 1–, , ,=,≤

xj

j 1=

n

∑ 1 x 0≥,=
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.

In addition, the nonnegativity constraints on the variables x form bounds constraints 
on x: , where

.

Creating the Opt Structure and Solving the Problem

Perform the following steps to create the Opt structure and solve the optimization 
problem:

1 First create a function that returns the matrix for the quadratic term of the objective 
function as a symmetric matrix or Hx. The following function, objhx, implements 
the later case, which is simply x, because H is the identity matrix in this optimization 
problem:

function Hx = objhx(x)
Hx = [x(1), x(2), x(3)]';

The function that defines Hx takes the present vector of variables as the first input 
argument. It is possible to add extra input arguments using the param solver option 
(see optprop on page 99 for details). This is not necessary in this example.

2 Next define the vector for the linear part, c, which in this case is −xo:

c = -[1 2 3]';

3 Start defining the Opt structure:

clear opt;
opt.obj.H = 'objhx';
opt.obj.c = c;

4 Next define the constraint matrix A plus the lower and upper bounds (blb and bub) 
for the linear constraints:

opt.lc.A = [-1 1 0; 0 -1 1; 1 1 1];
opt.lc.lb = [-Inf -Inf 1]';

blb

∞–

∞–

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

A,
1– 1 0
0 1– 1
1 1 1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

bub,
0
0
1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= = =

xlb x xub≤ ≤

xlb

0
0
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

xub

∞
∞
∞⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=,=
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opt.lc.ub = [0 0 1];

Instead of defining A directly, writing a small script function that creates A for an 
arbitrary column dimension would provide an extensible code.

Notice that the lower and upper bounds are equal for the third row, which sums the 
variables, making it an equality constraint.

5 Define the range for the variables through the lower and upper bounds for x (xlb 
and xub, respectively):

opt.bc.lb = 0;
opt.bc.ub = Inf;

6 Finally define an initial guess and solve the optimization problem using the general 
optimization routine optim.

opt.init.x = ones(3,1);
opt.sol = optim(opt);

You could also use the dedicated function for solving quadratic optimization problems, 
optquad (see optquad on page 107 in the “Command Reference” chapter for more 
information).
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 3
O p t i m i z a t i o n  E x a m p l e s
This chapter reviews a series of solved optimization problems that make use of the 
suite of solvers in the Optimization Lab. A first introductory set of examples deals 
with circumscribing points on a plane or inscribing a circle on a polytope and uses 
several approaches to solving the problems.
 29
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Ove r v i ew

Table 3-1 lists the examples in this and the next chapter in their order of appearance 
and also categorizes them by the solver each uses. The introductory “circle” models 
have nice geometric interpretations and take you through the modeling procedure 
with the least effort. They also illustrate the gains possible by refining the problem 
formulation when problems are large or when minimizing computing time is 
important, or inversely, the gains to be made by selecting the simplest problem 
formulation and leaving the work to the computer. The Rosenbrock problem is a 
classic example of an unconstrained optimization.

Examples using COMSOL Multiphysics appear in the next chapter, “Multiphysics 
Optimization” on page 49.

a. Requires COMSOL Multiphysics.
b. Requires COMSOL Multiphysics and the Structural Mechanics Module.

TABLE 3-1:  OPTIMIZATION EXAMPLES CHART

EXAMPLE MODEL LIN QUAD NLIN NM LINLSQ NLINLSQ GRADIENT PAGE

circlenm.m √ none 31

circlenlin.m √ supplied 35

circlequad.m √ supplied 39

circlelin.m √ supplied 43

rosenbrock.m √ none 47

diode.ma √ numeric 51

spinning_gear.mb √ √ numeric 63
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C i r c ums c r i b i n g  Po i n t s  on a P l a n e

This example shows how to set up the same optimization problem for different solvers 
in the Optimization Lab, and also touches upon the importance of the problem 
formulation.

Introduction

The goal is to find the smallest circle enclosing all the points  on 
a plane. If  is the circle’s center, the distance from the center to point x(i) 
is given by the norm || x(i) − x ||2. Then you can express the optimization problem as 
“minimize, by choice of x, the maximum distance from x to any of the points x(i):”

.

There are no constraints on x (except, of course, that ). The objective function 
is a strictly convex function of x. It follows that there is a single, global minimum. The 
only potential problem is that although the objective function is continuous, it is not 
differentiable. The adaptive search method optnm (see page 95 in the “Command 
Reference” chapter) does not require the objective to be differentiable, so try it first. 
Next you can reduce the number of iterations by reformulating the problem with 
differentiable but nonlinear constraints and use the nonlinear solver optnlin. 
Recognizing that the problem can be stated with a quadratic objective function with 
linear constraints, you can further reduce the number of iterations with the quadratic 
solver optquad.

Unconstrained Optimization

The distance from x to x(i) is given by the norm || x(i) − x ||2. Then the distance to the 
furthest point is the radius of the smallest circle enclosing all the points for that x.

M O D E L  D E F I N I T I O N

Minimize, by choice of x, the square of the maximum distance from x to any of the 
points x(i)

.

x i( ){ } i, 1 2 …n, ,=

x x1 x2,( )T∈

minimize
x

max 
i 1 … n, ,=

x i( ) x– 2

x R2∈

min
x

max 
i 1 … n, ,=

x i( ) x–( )
T

x i( ) x–( )
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R E S U L T S

For the set of points 

the smallest circle containing all the points has its center at x = [ 6.5000 2.0000 ]T and 
has a radius r = 6.8007. The results appear in Figure 3-1.

Figure 3-1: The smallest circle circumscribing all the points. Notice that the top left point 
lies inside, rather than on, the circle.

X x 1( ) … x 5( ) 0 9 13 7 2
0 2– 4 8 7

= =
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Figure 3-2: With an initial guess of x = [20 40]T, the software reaches the solution in 93 
iterations using 179 function evaluations. This can be improved by refining the problem 
formulation.

S T E P - B Y - S T E P  I N S T R U C T I O N S

1 Create a function file circlenm_obj.m that returns the objective function, and save 
it in a directory that is on the COMSOL Script path.

function f = circlenm_obj(x)
global X IND xLIST
[m,n]=size(X);

% Help variable
y = X - x*ones(1,n);

% Objective function
f = max(y(1,:).^2 + y(2,:).^2);

% Solution history
xLIST(:,IND) = x;
IND = IND+1;

2 Either from the command line or in another file, for example, circlenm.m, define 
the point matrix X and declare it global.
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clear opt;
global X IND xLIST

% Points
X = [0 9 13 7 2;
     0 -2 4 8 7];
  
% Solution history
IND = 1;   
xLIST = zeros(2,100);

% Objective
opt.obj.f = 'circlenm_obj';

% Initial guess
opt.init.x = [20;40];

% Solve
opt.sol = optnm(opt,'report','on','dtol',1e-6);

% Postprocessing
if(opt.sol.exit==1)
  fprintf(['Optimality conditions satisfied.\n'])
end
x = opt.sol.x
r = sqrt(max(sum((X-x).^2)))

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
theta = linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal

% Solution history
figure
plot(xLIST(1,1:IND-1),xLIST(2,1:IND-1),xLIST(1,1:IND-1),xLIST(2,1
:IND-1),'ob')
axis equal

3 Here you have just set up the problem using the opt structure. When working with 
the Nelder-Mead Simplex solver, optnm, you can also use the shortcut command 

[x,f,exit] = 
optnm('circlenm_obj',[20;40],'report','on','dtol',1e-6).
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Nonlinear Optimization

By reformulating the optimization problem as a constrained optimization problem, 
you can solve it with considerably less computational effort. By minimizing over both 
the circle center x and the radius r, it is possible to write the problem as

M O D E L  D E F I N I T I O N

By introducing the auxiliary 1D variable s representing the square of the radius, you 
can state the problem with nonlinear constraints:

By comparing it to optnlin on page 86 of the “Command Reference” it is possible to 
identify the components of the Opt structure.

By introducing  in the objective and constraint functions you can 
enter the problem using

, , and 

There are no linear constraints, and the remaining bounds are  and , which are 
set by default.

You should also supply the gradient of the objective function and the Jacobian of the 
constraints function whenever possible. Shortly this discussion examines how 
performance decreases as the amount of information decreases. In this case the 
gradient is simply  and the Jacobian is this 5-by-3 matrix:

minimize
x r,

subject to

r

r x x i( )
– 2≥ i 1 … n, ,=

minimize
x s,

subject to

s

s 2x i( )Tx xTx–+ x i( )Tx i( )≥ i 1 … n, ,=

minimize
x

f x( )

subject to blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤

y s x1 x2

T
=

f s y 1( )= = c y( )
s...
s

2x 1( )Tx...

2x 5( )Tx

xTx...

xTx

–+= dlb

x 1( )Tx 1( )
...

x 5( )Tx 5( )

=

∞– +∞

g 1 0 0
T

=
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R E S U L T S

The result is, of course, the same as before, but the way and speed the software reaches 
it is rather different (see Figure 3-3).

Figure 3-3: With an initial guess s = 1 and x = (20, 40), the solver reaches a solution after 
31 function evaluations. This can also be improved by further refining the problem 
formulation.

You could, as noted earlier, solve the optimization problem without supplying the 
Jacobian of the constraints function or the gradient of the objective. The Optimization 
Lab then approximates them numerically; this can be useful for cases when these are 

J
1 2 x1

1( ) x1–( ) 2 x2
1( ) x2–( )

... ... ...

1 2 x1
5( ) x– 1( ) 2 x2

5( ) x2–( )

=
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difficult or impossible to provide analytically. The tradeoff, of course, is slower 
convergence as shown in Table 3-2.

S T E P - B Y - S T E P  I N S T R U C T I O N S

1 Create a function file circlenlin_obj.m that returns the objective function and 
the gradient of the objective function with respect to the auxiliary variable, s, and 
the circle center, x:

function [f,g]= circlenlin_obj(y)
global X IND xLIST

% Variables
s = y(1);
x = [y(2);y(3)];

% Objective function
f = s;

% Gradient
g = [1,0,0];

% Solution history
xLIST(:,IND) = [s; x];
IND = IND+1;

2 Create another function file circlenlin_con.m that returns the nonlinear 
constraints function and the gradient of the constraints function.

function [c,J] = circlenlin_con(y)
global X IND xLIST

% Variables
s = y(1);
x = [y(2);y(3)];
[m,n]=size(X);

% Constraints function
c = s*ones(n,1)+2*X'*x-x'*x*ones(n,1);

% Jacobian of constraints function

TABLE 3-2:  COMPUTATIONAL COST OF OMITTING THE GRADIENT AND JACOBIAN

INFORMATION SUPPLIED OBJECTIVE FUNCTION EVALUATIONS NEEDED

Both gradient g and Jacobian J 31

No gradient 57

No Jacobian 80

Neither gradient nor Jacobian 120
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J = [ones(n,1),2*(X'-ones(n,1)*x')];

3 Finally, either create a file circlenlin.m or run the optimization from the 
command line:

clear opt;
global X IND xLIST

% Points
X = [0 9 13 7 2;
     0 -2 4 8 7];
[m,n] = size(X);
  
% Solution history
IND = 1;   
xLIST = zeros(3,1);

% Objective
opt.obj.f = 'circlenlin_obj';
opt.obj.g = 'circlenlin_obj';

% Nonlinear constraints
opt.nc.c = 'circlenlin_con';
opt.nc.J = 'circlenlin_con';

% Bounds for nonlinear constraints
opt.nc.lb = X(1,:).^2+X(2,:).^2;
opt.nc.ub = Inf*ones(1,n);

% Initial guess
opt.init.x = [1;20;40];

% Solve
opt.sol = optnlin(opt);

% Postprocessing
fprintf([opt.sol.msg '\n'])
s = opt.sol.x(1)
x = opt.sol.x(2:3)
r = sqrt(s)

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
theta = linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
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plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal

% Solution history
figure
plot(xLIST(2,1:IND-1),xLIST(3,1:IND-1),xLIST(2,1:IND-1),xLIST(3,1
:IND-1),'ob')
axis equal

Note: The solution vector in the opt structure is still named opt.sol.x no matter 
what you choose to call the variables in the objective and constraints functions. You 
can see this in the previous postprocessing section.

Quadratic Optimization

A close look at the problem formulation in “Unconstrained Optimization” on page 31 
shows that you can rewrite the problem as

M O D E L  D E F I N I T I O N

By introducing the auxiliary 1D variable t you can state the problem with linear 
constraints:

This is a convex quadratic problem, that is, a convex problem with quadratic objective 
and linear constraints. By comparing the problem to optquad on page 107 of the 
“Command Reference” it is once again possible to identify the components of the opt 
structure:

You can see that

minimize
x

xTx max
i 1 … n, ,=

x i( )Tx i( ) 2x i( )Tx–( )+

minimize
x

xTx t+

subject to x i( )Tx i( ) 2x i( )Tx t+≤ i = 1 … n, ,

minimize
x

1
2
---xTHx cTx+

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤
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, , , , and 

The remaining bounds are  and , which are set by default.

R E S U L T S

Yet again you have improved the method of solving the problem. Now it takes just 10 
function evaluations compared to the 179 evaluations for the unconstrained problem.

Figure 3-4: With an initial guess of t = 0 and x = (20, 40), the software reaches a solution 
after10 objective function evaluations.

Reworking this example by preparing and reformulating the problem shows that you 
can gain considerable efficiency by using more specialized solvers. The cost is the 
preparation time. For a small problem, just setting it up the first way you think of 

x
t

x1

x2

= H
0 0 0
0 2 0
0 0 2

= c
1
0
0

= A
1 2x1
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probably minimizes the time to solution, whereas for large problems more care is 
needed.

S T E P - B Y - S T E P  I N S T R U C T I O N S

1 Create a function file circlequad_Hx.m that returns the Hx part of the objective 
function. In this example it would be easier to instead supply only the matrix H, but 
then you could not use the trick with global variables in the objective function to 
see how the solution was reached.

function Hx = circlequad_Hx(x)
global IND xLIST

% Variables
Hx = 2*x;
Hx(1) = 0;

% Solution history
xLIST(:,IND) = x;
IND = IND+1;

2 Create a file circlequad.m or run this code from the command line:

clear opt;
global IND xLIST

% Points
X = [0 9 13 7 2;...
     0 -2 4 8 7];
[m,n] = size(X);

% Solution history
IND = 1;
xLIST = zeros(3,1);

% Objective
opt.obj.H = 'circlequad_Hx';
opt.obj.c = [1 0 0]';

% Linear constraints:
opt.lc.A  = [ones(n,1), 2*X(1,:)', 2*X(2,:)'];

% Bounds for linear constraints
opt.lc.ub = inf*ones(n,1);
opt.lc.lb = (X(1,:).^2+X(2,:).^2)';

% Initial guess
opt.init.x = [0;20;40];

% Solve
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opt.sol = optquad(opt);

% Postprocessing
fprintf([opt.sol.msg '\n'])
t = opt.sol.x(1)
x = opt.sol.x(2:3)
r = sqrt(t+x'*x)

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
theta=linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal

% Solution history
figure
plot(xLIST(2,1:IND-1),xLIST(3,1:IND-1),xLIST(2,1:IND-1),xLIST(3,1
:IND-1),'ob')

Note: The function call to solve the quadratic optimization problem is made to 
optim rather than optquad. The Optimization Lab automatically detects the 
problem’s form and applies the most specialized solver.
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I n s c r i b i n g  a C i r c l e  i n  a  Po l y t o p e

As an extension of the previous problem, consider the irregular pentagon that was 
plotted in the solution in Figure 3-1 on page 32. This model exemplifies linear 
optimization by inscribing a circle in that pentagon.

Linear Optimization

The pentagon is a convex polytope formed by five points. It is an important restriction 
that the polytope be convex; if it were not, you would have to keep track of where the 
facets end, which certainly complicates matters.

Let the set of points  be ordered clockwise in the plane, and append 
the first point x(1) at the end so that the set consist of n+1 points.

Then you can compute the normalized normal vector to the ith facet as

The distance from the circle center to the ith facet is , which means that 
the constraint on the radius of a circle inscribed in the polytope is

.

M O D E L  D E F I N I T I O N

Following these definitions, you can formulate the problem as the linear optimization 
problem

By comparing the problem to optlin on page 82 (and notice the similarity to the 
quadratic problem)

x i( ){ } i=1 … n, ,

v i( ) 1
x i 1+( ) x i( )–

-----------------------------------
x2

i 1+( ) x2
i( )

–

x1
i 1+( ) x1

i( )
–( )–

=

x i( ) x–( )
T

v i( )

r x i( ) x–( )
T

v i( )≤ , i=1 … n, ,

minimize
x r,

r–

subject to v i( )Tx r v i( )Tx i( )≤+ i = 1 … n, ,
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you can identify how to set up the problem. Call the parameter vector x instead of y 
because there are no constraints or objective functions this time, only matrices that you 
enter directly into the Opt structure:

, , , and 

R E S U L T S

The largest radius is 4.4801 and the circle center is (6.0589, 3.2429).

Figure 3-5: The largest circle inscribed in the pentagon.

Typing help optprop on the command line shows the solver properties and their 
default values, and you can see that both feastol and opttol are 1e-6. Looking at 

minimize
x

cTx

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤

x
r
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x2

= c
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0
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= A
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... ... ...
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5( ) v2
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= bub
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=
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opt.sol.xinfo.state.lc note that constraints 1, 3, and 4 are active. Also, from the 
tolerances and from the fact that optimality was reached, you know that the error is 
smaller than 1e-6. You can also easily check the actual error by typing in 

opt.lc.ub'-opt.lc.A*opt.sol.x 

Where the constraints are active, the distance is approximately 1e-14.

S T E P - B Y - S T E P  I N S T R U C T I O N S

1 Create a file circlelin.m or run this code from the command line:

clear opt;

% Points
X = [0 9 13 7 2 0;
     0 -2 4 8 7 0];
[m,n] = size(X);

% Normal vectors
V = 1./sqrt(sum(diff(X,1,2).^2,1)).*([0 1;-1 0]*diff(X,1,2));

% Objective
opt.obj.c = [-1,0,0];

% Linear constraints
opt.lc.A = [ones(1,n-1);V]';

% Bounds for linear constraints
opt.lc.lb = -Inf*ones(1,n-1);
opt.lc.ub = sum(V.*X(:,1:n-1));

% Initial guess
opt.init.x = [1;20;40];

% Solve
opt.sol = optlin(opt);

% Postprocessing
fprintf([opt.sol.msg '\n'])
r = opt.sol.x(1)
x = opt.sol.x(2:3)

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
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theta = linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal
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Th e  Ro s e nb r o c k  Fun c t i o n

The Rosenbrock function is a common test bed for solving unconstrained 
optimization problems:

.

This function is sometimes called a “banana function” due to the shape of the contours 
(see Figure 3-6 below). This flat shape with a narrow valley makes a steepest-descent 
approach converge slowly toward the minimum value of 0 at (1, 1), which is easy to 
see from the function itself. To compute the minimum using optnm:

1 Create a COMSOL Script function rosenbrock.m that computes the value of the 
Rosenbrock function:

function f = rosenbrock(x)
f = (1-x(1))^2+100*(x(2)-x(1)^2)^2;

2 Compute the minimum of the function and the values of x1 and x2 at the minimum, 
using 0 as the starting guess for both variables:

[x,f]=optnm('rosenbrock',[0 0]);

Figure 3-6: Contour plot of the Rosenbrock function, where the lower (green) dot indicates 
the starting point and the upper (blue) dot indicates the optimal solution.

f x1 x2,( ) 1 x1–( )2 100 x2 x1
2

–( )
2

+=
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Figure 3-7: The Rosenbrock function where z = f (x, y) = (1−x)2+100( y−x2 )2.
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M u l t i p h y s i c s  O p t i m i z a t i o n
This chapter shows how to combine the Optimization Lab with COMSOL 
Multiphysics to optimize physics models. Thus the following examples require both 
software packages.
 49
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Ove r v i ew

By combining the Optimization Lab with COMSOL Multiphysics it is possible to 
perform various optimizations using parameters from a physics model. To illustrate this 
concept, the two examples in this chapter include:

• a diode model, which shows how the Optimization Lab can extract SPICE 
parameters for the equivalent circuit of a diode modeled in COMSOL Multiphysics

• a spinning-gear model, which uses the Optimization lab to locate the separation 
frequency of a spinning gear.

In general, optimization of models from COMSOL Multiphysics includes the 
following steps:

1 Set up the model in COMSOL Multiphysics. 

2 Whenever possible, make sure to define the parameters you intend to optimize in 
the Options>Constants dialog box. This makes them readily available to pass back 
and forth between the Optimization Lab routines and the COMSOL Multiphysics 
solvers (the fem.const field). 

3 Export the FEM structure to the Script prompt. 

4 Write a script or function that defines the problem in the Opt structure.

5 Write the callback routines, including the FEM structure as an additional input 
argument, and make sure to update the fem.const field at each iteration.

6 Call optim to solve the problem using the 'param' option to pass along the FEM 
structure and any additional arguments to the callback routines. Use the 
persistent (or global) modifier to retain variables across calls.
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S P I C E  Pa r ame t e r  E x t r a c t i o n  f o r  a  
S em i c ondu c t o r  D i o d e

This model shows how the Optimization Lab can extract SPICE parameters from the 
model of a semiconductor diode for use in an equivalent circuit.

Introduction

In the design of a semiconductor device, it is often desirable to develop a compact 
model to use when analyzing its behavior in larger systems. SPICE models are compact 
descriptions of electronic circuits, where a set of SPICE parameters determines the 
device’s behavior in static, transient, and time-harmonic analysis. In developing such a 
compact model, the extraction of the SPICE parameters usually requires several 
different characteristics that show how the device behaves for a range of operating 
conditions. The characteristics can either be the result of measurements or come from 
simulations of a more-detailed reference model.

This example reviews the development of a compact model for a semiconductor diode. 
The reference finite-element model is “Semiconductor Diode” on page 442 of the 
COMSOL Multiphysics Model Library. From this model it is possible to extract the 
forward characteristics where the diode is biased from 0 V up to 1.5 V. Six SPICE 
parameters control the forward characteristics of the compact model. This sets a lower 
limit on the number of reference data required to extract the compact model.

Model Definition

S E M I C O N D U C T O R  M O D E L

The previously mentioned example in the Model Library solves for a forward bias of 
only up to 1 V. This level is not high enough to extract all the needed parameters, 
especially the resistor parameter, so the characteristics must go a bit further. As a result, 
the first part of this example solves the extra steps for the semiconductor diode with a 
bias reaching 1.5 V.
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E Q U I V A L E N T  D I O D E  C I R C U I T

A diode is an electrical rectifier that conducts current for positive voltages and insulates 
for negative voltages. The current-voltage characteristics (or IV characteristics) for an 
ideal semiconductor diode follow the relationship

where VT is the thermal voltage. The compact model of a real diode actually consists 
of two ideal diodes in parallel and a resistor in series (see nearby figure). Furthermore, 
a parameter called the ideality factor, N, is introduced into the ideal diode equation so 
that

.

One of the ideal diodes also has a parameter for high-level injection, which is a change 
in its characteristics for high currents.

The following image shows the complete equivalent circuit for a real diode with the 
SPICE parameters next to each device.

You cannot express the compact model as an explicit relationship between its current 
and voltage, so to obtain its characteristics, it is necessary to solve an implicit nonlinear 
problem. An easy way to set up this equivalent circuit is to use the spiceimport script 
available in the AC/DC Module. With a simple circuit file, the script automatically 
generates ODE expressions that model the equivalent diode circuit. In this case the 
ODE representation does not involve any time derivatives, so from the mathematical 
viewpoint you have the special case of static, algebraic equations. The solve command 
femstatic can then solve the ODEs and give the current for a predefined list of 
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voltages. The SPICE parameters are given as constants in the equivalent circuit model 
according to the following table:

T H E  O P T I M I Z A T I O N

The Optimization Lab searches for values for the six SPICE parameters shown in the 
equivalent circuit such that the IV characteristics from the ODE circuit simulations 
match the IV characteristics extracted from the reference finite-element diode model. 
This is an optimization problem of six unknowns that enter the objective function in a 
nonlinear fashion. The initial guess for the parameters are crucial to reduce the search 
time.

It is also necessary to define a couple of constraints in the search because otherwise the 
two diodes in parallel become hard to distinguish. These diodes have a physical 
interpretation, where the upper one controls the main diode characteristics. The 
ideality factor of the main diode should lie close to one. The lower diode is responsible 
for the recombination effects in the semiconductor, and that effect shows an ideality 
factor close to 2. Therefore, a proper constraint is to force the ideality factor N to be 
less than the ideality factor NR. A high ideality factor also results in a high saturation 
current, ISR, so the same constraint can be used for the saturation currents. That is,

In addition, it is also necessary to set lower and upper bounds to all parameters and to 
use the logarithmic values for the parameters, IS, ISR, RS, and IKF because they usually 
span several orders of magnitude.

To summarize, the optimization problem is

PARAMETER CONSTANT DESCRIPTION

 IS IS_ID_D1_cir Saturation current

 N N_ID_D1_cir Ideality factor

 IKF IKF_ID_D1_cir High-injection knee current

 ISR ISR_IR_D1_cir Recombination current

 NR NR_IR_D1_cir Ideality factor for recombination current

 RS R_RS_D1_cir Series resistance

N NR<

IS ISR<
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where

.

The objective is to determine the SPICE parameters (x) so that the equivalent circuit 
matches the original diode with respect to the IV characteristics in a least-squares 
sense. Again, using a logarithmic scale:

.

Because Icir depends implicitly on the SPICE parameters, the system of algebraic 
equations describing the IV relationship of the equivalent circuit must be solved by 
femstatic for each voltage in the range of the characteristic you wish to match. This 
must be done every time the optimization solver evaluates the objective function with 
updated SPICE parameters.

Initial Guess
The initial guess for the parameter values is very important in order to speed up the 
search, and in some cases also to get convergence. You can easily extract proper 
parameter values directly from the IV characteristics of the semiconductor diode. In 
the following figure you can see some straight lines that represents the diode equations 
presented earlier, one for each diode in the equivalent circuit.

minimize
x
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The intersections between these lines and the y-axis serve as good initial guesses for 
the parameters IS and ISR. Next, the ideality factors usually have values close to one 
and two, so use those values as initial guess. The parameter IKF determines where the 
curve has its knee for large currents, so the current value where this appears is suitable 
as an initial guess. The final parameter, RS, also controls the flat region of the curve, 
so approximately the maximum voltage divided by the maximum current is a good 
guess. The initial parameters from this simple analysis are summarized in this table:

The unit for current is A/m because the circuit is compared to a 2D simulation in SI 
units.

PARAMETER VALUE INITIAL VALUE IN X DESCRIPTION

 IS 10-16 A/m -16 Saturation current

 N 1 1 Ideality factor

 ISR 10-14 A/m -14 Recombination current

 NR 2 2 Ideality factor for recombination current

 RS 104 Ωm 4 Series resistance

 IKF 10-6 A/m -6 High injection knee current
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Results and Discussion

You export the finite element model from COMSOL Multiphysics to the COMSOL 
Script command line, where the optimization takes place using the Optimization Lab. 
Fitting the parameters takes a few minutes on a modern PC, and the resulting compact 
model characteristics appear as crosses in the next figure, which plots the IV 
characteristics from the finite element reference model as a solid line. The agreement 
is quite good over the entire voltage range up to 1.5 V.

Figure 4-1: The crosses show the IV characteristics of the equivalent circuit, the blue (solid) 
line is that from the COMSOL Multiphysics Model Library model semiconductor_diode.

PARAMETER OPTIMIZED VALUE DESCRIPTION

IS 4.9·10-17 A/m Saturation current

N 1.1 Ideality factor

ISR 8.6·10-15 A/m Recombination current

NR 2.0 Ideality factor for recombination current

RS 5.21·102 Ωm Series resistance

IKF 1.7·10-6 A/m High injection knee current
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Modeling in the Graphical User Interface

First start COMSOL Multiphysics and open the semiconductor diode example and 
export it to COMSOL Script.

1 In the Model Navigator, click the Model Library tab.

2 Browse to the model 
COMSOL Multiphysics>Semiconductor Devices>semiconductor diode.

3 Select it and click OK.

4 Export the model to COMSOL Script by choosing 
File>Export>Export FEM structure as 'fem'. COMSOL Script opens automatically.

Modeling in COMSOL Script

If you followed the previous instructions, the semiconductor diode model should now 
be present in the workspace as the variable fem. The optimization procedure involves 
solving the equivalent circuit model for the list of voltages used in the reference model, 
and then comparing the values of the current from the circuit model with those from 
the reference model. 

1 Start by creating a function called diode_obj.m by entering the following lines of 
code:

function F = diode_obj(x,fem,V,I,logind)

global ITER

% Update iterations counter
if isempty(ITER)==0
  ITER = ITER+1;
end  

% Default parameter values
values = [-16 1.0 -13 2 4 -5];

% SPICE parameter map
params = {'IS_ID_D1_cir','N_ID_D1_cir','ISR_IR_D1_cir', ...
          'NR_IR_D1_cir','R_RS_D1_cir','IKF_ID_D1_cir'};
params_name = {'IS','N','ISR','NR','RS','IKF'};

% Replace values
values(1:length(x)) = x;

% Replace logarithmic values
values(logind) = 10.^(values(logind));
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% Update constant list in fem
for ind=1:length(values)
    ic = 2*strmatch(params{ind},fem.const(1:2:end),'exact');
    fem.const{ic} = values(ind);
end

% Output values on screen
if (mod(ITER,10)==0)
  fprintf('It.  IS     N     ISR      NR        RS        IKF \n')
end
fprintf('%3d  %2.6e  %2.6f  %2.6e  %2.6f  %e  %2.6e \n', ...
       ITER,values(1),values(2),values(3),values(4),values(5),... 
       values(6))

em.xmesh = meshextend(fem);

% Solve circuit model
fem.sol = femstatic(fem,'pname','value_VIN_cir','plist',V);

% Evaluate the current of equivalent circuit
data = postglobaleval(fem,{'-I_VIN_cir'});
I_cir = data.y;

% Compare with real data in a logarithmic scale
F = log10(I)-log10(I_cir);

The arguments to this function are explained in the following table.

The function diode_obj.m first defines some default values that it uses if you do 
not search for all parameters. Next the code replaces the parameters in the FEM 
structure with the supplied parameters in the argument x. Before passing the 
parameter to the FEM structure, the function converts the variables that contain the 
logarithm of the true parameter into the true parameter value. After the for loop, 
it prints the parameter values to make it easy to follow the search. Then it updates 
the FEM structure with the new values and calculates the solution. Finally, it extracts 

ARGUMENT DESCRIPTION

x Array with the current parameter values in the order 
specified in the params cell array

fem FEM structure containing the equivalent circuit model

V List of voltages to solve for

I Values of current from the semiconductor diode model

logind Indices to parameters in x that are the logarithm of the 
actual value in the equivalent circuit model
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the IV characteristics of the equivalent circuit and compares them to the supplied 
IV characteristics from the reference model. Note that the code uses the logarithm 
of the current in the comparison because the highest and lowest values differ by 
several orders of magnitude.

2 Next either run the following code from the command line or from an m-file 
diode.m. A detailed explanation of each step follows.

Note: The following example requires the SPICE import feature of the AC/DC 
Module. Replace the line fem = spiceimport(diode_cir_path) below with 
flload diode_spicefem if you do not have this module. This will load the 
pre-saved FEM structure into the workspace.

global ITER

% Initialize iteration counter
ITER = 0;

% Solve up to 1.5 V to see more resistive effects
fprintf('Solving diode model from 1.0 to 1.5 V to see more resistive 
effects...\n')
sol = femstatic(fem,'init',fem.sol.u(:,end),'pname','Va',...
                    'plist',1.025:0.025:1.5);

% Concatenate solutions
fprintf('Concatenating solutions 0 to 1.5 V.\n')
sol = femsol(cat(2,fem.sol.u,sol.u),'plist',...
             cat(2,fem.sol.plist,sol.plist));

% Extract the IV-characteristics (avoid low V)
IV = postglobaleval(fem,{'Ic'},'u',sol,...
                    'solnum',4:length(sol.plist));

% Create equivalent circuit
fprintf('Setting up equivalent circuit equations from SPICE model 
diode.cir...\n')
clear fem;
diode_cir_path = which('diode.cir');
fem = spiceimport(diode_cir_path);

% Optimization
fprintf('Minimizing 1/2*|log(I)-log(I_cir)|^2 by fitting the SPICE 
parameters IS, N, ISR, NR, RS, IKF...\n')
% Start parameter extraction
clear opt;
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% Objective function
opt.obj.F = 'diode_obj';

% Parameters: log(IS), N, log(ISR), NR, log(RS), log(IKF)
% Parameter bounds
opt.bc.lb = [-20 ; 1 ; -20 ; 1 ; 2 ; -7];
opt.bc.ub = [-10 ; 2 ; -10 ; 2 ; 6 ; -4];

% Indices to logarithmic parameters: IS, ISR, RS, IKF
logind = [1 3 5 6];

% Linear constraints: IS<ISR, N<NR
opt.lc.A = [-1 0 1 0 0 0 ; 0 -1 0 1 0 0];
opt.lc.lb = [0 ; 0];

% Initial guess
opt.init.x = [-16 1 -14 2 4 -6];

% Find parameters
opt.sol = optnlinlsq(opt,'opttol',1e-2,...
                     'param',{fem,IV.x,IV.y,logind});

% Plot parameters
I_log = -diode_obj(opt.sol.x,fem,IV.x,ones(size(IV.x)),logind);
semilogy(IV.x,IV.y,'r+',IV.x,10.^(I_log),'b');

Now take a closer look at the steps in the optimization. Start by solving the extra 
steps up to 1.5 V with the following command:

sol = femstatic(fem,'init',fem.sol.u(:,end),'pname','Va',...
                'plist',1.025:0.025:1.5);

Then merge the solutions so you have one solution where the parameter Va ranges 
from 0 to 1.5:

sol = femsol(cat(2,fem.sol.u,sol.u),'plist',...
             cat(2,fem.sol.plist,sol.plist));

From this solution you extract the IV characteristics:

IV = postglobaleval(fem,{'Ic'},'u',sol,'solnum',...
                    4:length(sol.plist));

The voltage and current values are now stored in the fields IV.x and IV.y, 
respectively. Note that the lowest voltages are not included because they contain 
singularities and noisy results. You no longer need the semiconductor diode model, 
so you can use the same variable for the equivalent circuit. The following commands 
produce an FEM structure containing ODEs and expressions that models the 
circuit:
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clear fem;
diode_cir_path = which('diode.cir');
fem = spiceimport(diode_cir_path);

The file diode.cir is the SPICE netlist for a diode and contains the following text:

Vin 1 0 1
D1 1 0 diode
.MODEL diode D IS=1e-13 ISR=1e-10 N=1.1 NR=2.0 RS=1e1 IKF=1e-5

The first line defines a voltage of 1 V between nodes 1 and 0. The second line 
specifies that you place a diode between these two nodes, and the final line specifies 
some diode parameters for the SPICE model. These parameters are the ones that 
you optimize later on, and they are available as constants in the created FEM 
structure.

The following code sets up an optimization structure for the objective function:

clear opt;
opt.obj.F = 'diode_obj';

Then you set up the bounds for all the parameters. Note that some parameters are 
in log scale:

opt.bc.lb = [-20 ; 1 ; -20 ; 1 ; 2 ; -7];
opt.bc.ub = [-10 ; 2 ; -10 ; 2 ; 6 ; -4];

The variable in log scale are specified by the logind variable that contains indices to 
the parameter in the x argument to the objective function:

logind = [1 3 5 6];

You also need some linear constraints to separate the parameter range for the ideality 
factor and saturation currents:

opt.lc.A = [-1 0 1 0 0 0 ; 0 -1 0 1 0 0];
opt.lc.lb = [0 ; 0];

Before you start the parameter search, it is necessary to specify the initial guess that 
you can estimate from the IV characteristics of the semiconductor diode:

opt.init.x = [-16 1 -14 2 4 -6];

The setup is now complete, and the next step is to search for the optimum 
parameters in a least-square sense. The following command starts the search:

opt.sol =  optnlinlsq(opt,'opttol',1e-2,...
                      'param',{fem,IV.x,IV.y,logind});

The optol option specifies the tolerance, and the param option lists the extra 
argument that you pass to the objective function. The routine prints out a long list 
of parameter values during the search process. When the search is finished, you can 
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plot the IV characteristics from both the semiconductor diode and the equivalent 
circuit in the same figure with the following commands:

I_log = -diode_obj(opt.sol.x,fem,IV.x,ones(size(IV.x)),logind);
semilogy(IV.x,IV.y,'r+',IV.x,10.^(I_log),'b');

You should now see the following plot.
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S p i n n i n g  Gea r

Introduction

Figure 4-2: Stresses and deformation at 1600 Hz.

One way to fasten a gear to a shaft is by thermal interference. In the preparation of the 
assembly, the shaft diameter is oversized and the gear is thermally expanded in a 
heat-treating oven. At an appropriate state of expansion, the gear is removed from the 
oven, slid onto the shaft, and allowed to cool. As the gear’s temperature drops, that 
component shrinks and comes into contact with the shaft before it can reach its 
original shape. From this point on, additional gear shrinkage results in hoop stresses in 
the gear as well as normal compression of the shaft. At thermal equilibrium, an intimate 
bond between the two components is reached.

Such an assembly can operate safely in many situations. However, there are operating 
conditions under which the fastening stresses become insufficient—for instance, when 
spinning the assembly at high rpm.

The goal of this analysis is to determine the critical spinning frequency at which the 
gear and shaft separate.
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Model Definition

The model computations consist of two initial steps in COMSOL Multiphysics: one 
for the thermal interference fit, and one for spinning the shaft-gear assembly (for 
details see Chapter 3, “Spinning Gear,” on page 80 of the Structural Mechanics 
Module Model Library.) 

The resulting physics model describes the spinning gear at any frequency. The 
optimization problem is the inverse: find the frequency at which the gear and shaft 
separate. The optimization equation is

where intdisp is the displacement integral (a COMSOL Multiphysics integration 
coupling variable). 

The optimization routine does not need to know the details of the physics model, it 
simply queries for the distance between shaft and gear at any given frequency.

Reference

1. http://claymore.engineer.gvsu.edu/~schmitte/assign5.html

Model Library path:  
Structural_Mechanics_Module/Automotive_Applications/spinning_gear

Note: The following section requires COMSOL Multiphysics and the Structural 
Mechanics Module.

Modeling using the Graphical User Interface

M O D E L  N A V I G A T O R

First open the spinning gear model and export it to COMSOL Script.

1 In the Model Navigator click the Model Library tab.

minimize
x

        intdisp x( )
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2 Browse to the model COMSOL Multiphysics>Structural Mechanics Module>Automotive 

Applications>spinning gear.

3 Select it and click OK.

4 Export the model to COMSOL Script by choosing 
File>Export>Export FEM structure as 'fem'. COMSOL Script opens automatically.

Modeling using COMSOL Script

Now you can determine the separation frequency. The spinning gear model should 
now be present in the workspace as the variable fem. 

Note: All the functions in the following discussion are available in COMSOL Script.

1 Start by creating a function called spinning_gear_obj.m. It defines the value of 
the objective at a given frequency.

function f = spinning_gear_obj(x,fem,arclength)

persistent ITER;
global SPG_ITER

% The solver is calling this function for the first time
if isequal(optgetstatus,1)
  ITER = 1;
else
  ITER = ITER+1;
end

% Solve the problem at frequency x
fem.sol=femlin(fem, ...
               'solcomp',{'u2','v3','v2','u3'}, ...
               'outcomp',{'u2','v3','u','v2','u3','v'}, ...
               'pname','f', ...
               'plist',x, ...
               'nonlin','off');

% Pick up displacement integral
pd = posteval(fem,'int_disp','edim',0,'dl',1);

% Normalize
f = pd.d/arclength;

% Print progress
if (mod(ITER-1,10)==0)
  fprintf('Iteration   Frequency     Displacement \n')
end
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fprintf('%3d         %8.3f       %8.4e\n',ITER,x,f)
SPG_ITER(ITER)=x;

2 Create a function called spinning_gear.m. This is the main function that defines 
the optimization problem and calls the solver.

function [opt,fem] = spinning_gear(fem, arclength)

global SPG_ITER;

clear opt;
opt.obj.f = 'spinning_gear_obj';

% Start from first existing solution
% (e.g. opt.init.x = 1000;)
opt.init.x = fem.sol.plist(1);

% Solution history
SPG_ITER = 0;

% Solve
opt.sol = optim(opt,'param',{fem,arclength},'opttol',1e-8);

freq = opt.sol.x;
fprintf('Separation Frequency = %8.3f [Hz] \n',freq);

% Plots
figure, plot(1:numel(SPG_ITER),SPG_ITER,'-o')
ylim([800,3200]);
title('Convergence')
xlabel('Iterations')
ylabel('frequency f [Hz]')
grid

% Plot solution
figure; 
postplot(fem, ...
         'tridata',{'mises_all','cont','internal','unit',...
         'N/m^2'}, ...
         'trimap','jet(1024)', ...
         'deformsub',{'u_all','v_all'}, ...
         'solnum',1, ...
         'title',['f =' sprintf('%8.3f',freq),...
         '   Surface: mises_all [N/m^2]   Subdomain',...
         ' deformation: [u_all, v_all] [m]   Boundary',...
         'deformation: Displacement [m]']);

figure; 
postplot(fem, ...
         'tridata',{'mises_all','cont','internal'}, ...
         'triz','mises_all', ...
         'trimap','jet(1024)', ...
         'solnum',1, ...
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         'title',['f =' sprintf('%8.3f',freq),...
         ' Surface: mises_all, Height: mises_all'], ...
         'refine',2, ...
         'grid','on', ...
         'camlight','on');

For the initial solution, this script uses the first solution among those in the physics 
model although it is not the best one. This is for demonstration purposes only; it is 
always advisable to start with the best available solution. (In this case, the initial 
sweep range happens to have hit very close to the optimum at a frequency of 1550 
Hz; this would normally be the solution from which to begin optimization.) 

3 To run the optimization call the spinning_gear function:

[opt,fem]=spinning_gear(fem,(2*pi*0.015)/4)

This prints the frequency and distance during the iterations and returns an optimal 
solution of 1550.185 Hz. (The second argument, (2*pi*0.015)/4, is the length of 
the circle segment and is used in spinning_gear_obj to normalize the displacement 
integral.)

Note that the first few iterations indicate that the solver is preparing to estimate the 
gradient through finite differences. (During this step, the solver determines the 
sparsity pattern for the Jacobian and identifies the constant elements automatically): 

Iteration   Frequency     Displacement 
  1         1000.000       7.2929e-005
  2          242.516       1.2185e-004
  3         1666.588       1.9463e-005
  4         1803.304       4.4120e-005
  5          485.031       1.1268e-004
  6         4999.764       1.1744e-003
  7         7213.217       2.5795e-003

In problems where the derivatives are known, this step is not included.

Because this problem is unconstrained, you could also solve it using the optnm 
function. In that case, replace the line

opt.sol = optim(opt,'param',fem,'opttol',1e-6);

with

opt.sol = optnm(opt,'param',fem);

You also need to remove optgetstatus call from spinning_gear_obj, either by 
checking if ITER is empty or by making ITER a global variable and resetting it before 
each call to the solver. 
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Note that spinning_gear outputs three plots: the separation frequency during 
optimization (Figure 4-3), and the stress distribution at separation as a 2D 
(Figure 4-4) and 3D plot (Figure 4-5).

Figure 4-3: Convergence of the separation frequency during optimization.
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Figure 4-4: Stress distribution at separation.

Figure 4-5: Stress distribution at separation.
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E X P L O I T I N G  M O D E L  S Y M M E T R Y

To reduce the required computation time, you can exploit the remaining model 
symmetries instead of solving the complete model as above. Figure 4-6 illustrates the 
stresses superimposed on the minimal model at the separation frequency.

Figure 4-6: Von Mises stresses superimposed on the minimal model.

To run the example on the minimal model, load the modified FEM structure, then 
proceed as before.

1 At the Script prompt, type:

fem = cl_gear_minimal(1000);

This solves the reduced physics problem at an initial frequency of 1000 Hz.

2 Solve the optimization problem as before, but normalizing with the reduced 
segment length (1/32 of the full circle). Type: 

[opt,fem]=spinning_gear(fem,(2*pi*0.015)/32);

Figure 4-7 shows the resulting stress distribution plot.
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Figure 4-7: Stress distribution at separation.
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S umma r y  o f  C ommand s
optgetstatus on page 76

optim on page 77

optlin on page 82

optlinlsq on page 84

optnlinlsq on page 90

optnlin on page 86

optnm on page 95

optprop on page 99

optpropnlin on page 103

optquad on page 107

optsetstatus on page 110
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Command s  G r oup ed b y  Fun c t i o n

General Optimization Functions

Minimization Functions

Least-Squares Functions

Solver Properties

Miscellaneous Functions

FUNCTION PURPOSE

optim Solve a general optimization problem

FUNCTION PURPOSE

optlin Solve a linear optimization problem

optnlin Solve a nonlinear optimization problem

optnm Solve an unconstrained nonlinear optimization problem using the 
Nelder-Mead simplex algorithm

optquad Solve a quadratic optimization problem

FUNCTION PURPOSE

optlinlsq Solve a linear least-squares problem

optnlinlsq Solve a nonlinear least-squares problem

FUNCTION PURPOSE

optprop Common solver property/value pairs for the linear and quadratic 
solvers in the Optimization Lab

optpropnlin Common solver property/value pairs for the nonlinear solvers in 
the Optimization Lab

FUNCTION PURPOSE

optgetstatus Check solver status during callback

optsetstatus Set solver status during callback
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optgetstatusPurpose Get solver status during callback.

Syntax s = optgetstatus

Description s = optgetstatus is intended for use in the callback functions in the Optimization 
Lab and returns specific information about the call. 

If s = 0, there is nothing special about the current call.

If s = 1, SNOPT/SQOPT is calling your function(s) for the first time. 

If s ≥ 2, SNOPT/SQOPT is calling your function(s) for the last time. 

For more information see the documentation for the SQOPT and SNOPT 
packages.

See Also optsetstatus
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optimPurpose Solve a general optimization problem.

Syntax opt.sol = optim(opt,...)
opt.sol = optim(opt,options)

Description optim solves an optimization problem by examining the fields in the Opt structure 
and then calling the most appropriate solver among optlin, optquad, optnlin, 
optlinlsq, and optnlinlsq. For example, a general nonlinear objective function 
or a quadratic objective function with nonlinear constraints results in optnlin being 
called.

optim uses the problem formulation

where  f(x) can be one the following forms:

TABLE 5-1:  THE OPT.OBJ SUBSTRUCTURE

OBJ.FORM OBJECTIVE FUNCTION

min f(x)
FIELDS INTERPRETATION

'lin' obj.c Coefficient vector for the linear 
term of the objective function 
(numeric vector)

'quad' obj.H Coefficient matrix for the 
quadratic terms of the objective 
function (symmetric matrix or 
function returning Hx), default 
zero

obj.c Coefficient vector for the linear 
term of the objective function 
(numeric vector), default vector 
of zeros

'nlin' f(x) obj.f Objective function (function)

obj.g (optional) Gradient of objective 
function (function)

obj.ptrn (optional) Gradient sparsity 
pattern (matrix)

min f x( )
blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤

f x( ) cTx=

f x( ) 1
2
---x

T
Hx cTx+=
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Aside from the objective function, the Opt structure can contain the following 
(optional) fields:

'linlsq' obj.C Objective function matrix 
(matrix)

obj.d Objective function vector 
(numeric vector), default vector 
of zeros

'nlinlsq' obj.F Objective function (function). 
Note that the function should 
return the vector of  Fi to be 
summed, not the sum of 
squares

obj.J (optional) Jacobian of F (matrix)

obj.ptrn (optional) Jacobian sparsity 
pattern (matrix)

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints 
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints 
(vector or scalar), default Inf

opt.nc.c c Nonlinear constraints (function)

opt.nc.J Jacobian of nonlinear constraints 
(function)

opt.nc.ptrn Constraint Jacobian sparsity pattern 
(matrix)

opt.nc.lb dlb Lower bounds for nonlinear constraints 
(vector or scalar), default -Inf

opt.nc.ub dub Upper bounds for nonlinear constraints 
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or 
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or 
scalar), default Inf

TABLE 5-1:  THE OPT.OBJ SUBSTRUCTURE

OBJ.FORM OBJECTIVE FUNCTION

min f(x)
FIELDS INTERPRETATION

f x( ) 1
2
--- Cx d–

2
=

f x( ) 1
2
--- F x( ) 2

=

1
2
--- Fi

i
∑ x( )

2
=
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optim
Functions can be given either as strings, denoting the function name, or as inline 
functions. By specifying the same function name for the objective function and its 
gradient, it is possible to use one function to compute both. The gradient must then 
be returned as a second output argument. The same strategy applies to constraints. 
If the gradient or Jacobian field for the objective or constraints is not assigned, the 
solvers estimate the missing derivatives by finite differences.

The sparsity patterns for the objective function gradient and the constraint Jacobian 
may be given as sparse matrices. If they are not provided, the solver will estimate a 
sparsity pattern of a nonlinear problem through repeated objective function and 
constraint residual evaluations.

User-defined functions take the present vector x as their input, but it is possible to 
supply extra arguments by using the param solver option. The solver then passes 
these additional arguments at each callback.

opt.init.x Initial guess (vector), default vector of 
zeros

opt.init.y Initial guess for Lagrange multipliers of the 
linear and nonlinear constraints 
(structure), default zero for all multipliers

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of objective 
function and constraints, if any

opt.sol.y Lagrange multipliers in solution 
(structure)

opt.sol.xinfo Information about the solution (structure)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.algorithm Indicates which function was ultimately 
called. Can be either 'optlin', 
'optquad', 'optnlin', 'optlinlsq', 
or 'optnlinlsq'

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION
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Note: All fields in the Opt structure are optional except opt.obj, but if a specific 
constraint type is supplied, it is necessary to include the main field of that type (for 
example, opt.lc.A for the linear constraints and opt.nc.c for the nonlinear 
constraints) and at least one of the upper or lower bounds. In some cases, when the 
solver cannot determine the number of variables from the Opt structure, it is 
necessary to supply an initial guess (the default is zero for all variables). An example 
of this would be an unconstrained nonlinear problem. 

sol.eval is a structure with the following fields:

y is a structure with the following fields:

Note: The initial guess for the Lagrange multipliers cannot be supplied for some 
solvers and, when available, it is for the linear and nonlinear constraints only. See 
documentation about the specific solver for details.

Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

TABLE 5-2:  THE EVAL STRUCTURE

FIELD NAME INTERPRETATION

f Final value of objective function (scalar)

lc Final value of linear constraints, if any (vector)

nc Final value of nonlinear constraints, if any (vector)

TABLE 5-3:  THE Y STRUCTURE

FIELD NAME INTERPRETATION

bc Lagrange multipliers for the bounds on the variables

lc Lagrange multipliers for the linear constraints

nc Lagrange multipliers for the nonlinear constraints
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optim
xinfo is a structure with the following fields:

For further details regarding the xinfo fields, see the SNOPT documentation.

optim accepts the solver properties for the respective functions as given by optprop 
and optpropnlin. These can be given either in the options structure or as 
property/value pairs.

See Also optlin, optnlin, optquad, optlinlsq, optnlinlsq

TABLE 5-4:  THE XINFO STRUCTURE

FIELD NAME INTERPRETATION

xinfo.state.bc Vector containing the final state of the variables.  
state(j) = 0 means that x(j) is nonbasic and usually equals 
bc.xlb(j).  
state(j) = 1 means that x(j) is nonbasic and usually equals 
bc.xub(j).  
state(j) = 2 means that x(j) is superbasic and usually between 
bc.xlb(j) and bc.xub(j).  
state(j) = 3 means that x(j) is basic and usually between 
bc.xlb(j) and bc.xub(j). 

Basic and superbasic variables might be outside their bounds 
by as much as the feasibility tolerance (or minor feasibility 
tolerance in the case of a nonlinear problem). Note that if 
scaling is specified, the feasibility tolerance applies to the 
variables of the scaled problem. In this case, the variables of 
the original problem might be as much as 0.1 outside their 
bounds, but this is unlikely unless the problem is very badly 
scaled. Very occasionally, some nonbasic variables might be 
outside their bounds by as much as the feasibility tolerance, 
and there might be some nonbasics for which x(j) lies strictly 
between its bounds.  
If nInf > 0, some basic and superbasic variables might be 
outside their bounds by an arbitrary amount (bounded by 
sInf if scaling was not used)

xinfo.state.lc Analogous to xinfo.state.bc but for the linear constraints

xinfo.state.nc Analogous to xinfo.state.bc but for the nonlinear 
constraints.

xinfo.ns The final number of superbasic variables

xinfo.ninf The number of infeasibilities

xinfo.sinf The sum of infeasibilities
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optlinPurpose Solve a linear optimization problem.

Syntax opt.sol = optlin(opt,...)
opt.sol = optlin(opt,options)

Description optlin solves the linear optimization problem

which corresponds to the following fields in the Opt structure (for information 
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

opt.obj.c c Coefficient vector for the linear term of 
the objective function (numeric vector)

opt.obj.form Specifies the form of the objective 
function. If it is not included, optlin 
assumes the general linear formulation, 
'lin' (the one given in this table). It is 
also possible to call optlin with an 
objective of the 'quad' form, in which 
case the quadratic terms are ignored. 
(For more information on objective 
function forms, see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints 
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints 
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or 
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or 
scalar), default Inf

opt.init.x Initial guess (vector), default vector of 
zeros

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of 
objective function and constraints, if any

min cTx
blb Ax bub≤ ≤

xlb x xub≤ ≤
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optlin ignores any nonlinear constraints present in the Opt structure.

y is a structure with the following field:

Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

For information about eval and xinfo, see optim.

Parameters to the solvers can be given either as property/value pairs or in the 
options structure. For a list of solver properties see optprop. 

Algorithm optlin uses the SQOPT package. For further details, see User’s Guide for SQOPT: 
A Fortran Package for Large-Scale Linear and Quadratic Programming (Philip 
E. Gill, Walter Murray, and Michael A. Saunders).

See Also optquad, optnlin

opt.sol.y Lagrange multipliers in solution 
(structure)

opt.sol.xinfo Information about the solution 
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SQOPT. (See the 
SQOPT User’s Guide for further details.)

opt.sol.msg Message corresponding to the info flag as 
specified by SQOPT. (See the SQOPT 
User’s Guide for further details.)

opt.sol.algorithm 'optlin', to indicate solver used

TABLE 5-5:  THE Y STRUCTURE

FIELD NAME INTERPRETATION

lc Lagrange multipliers for the linear constraints

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION
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optlinlsqPurpose Solve a linear least-squares problem.

Syntax opt.sol = optlinlsq(opt,...)
opt.sol = optlinlsq(opt,options)

Description oplinlsq solves the linear least-squares problem

which corresponds to the following fields in the Opt structure (for information 
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

opt.obj.C C Objective function matrix (matrix)

opt.obj.d d Objective function vector (numeric 
vector), default vector of zeros

opt.obj.form Specifies the form of the objective 
function. If it is not included, optlinlsq 
assumes the linear least squares 
formulation, 'linlsq' (the one given in 
this table). This is the only form allowed 
for the optlinlsq solver. (For more 
information on objective function forms, 
see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints 
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints 
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or 
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or 
scalar), default Inf

opt.init.x Initial guess (vector), default vector of 
zeros

opt.sol.x Solution (vector)

min 1
2
--- Cx d–

2

blb Ax bub≤ ≤

xlb x xub≤ ≤
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optlinlsq ignores any nonlinear constraints present in the Opt structure. 

y is a structure with the following field:

Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

For information about eval and xinfo, see optim.

Parameters to the solvers can be given either as property/value pairs or in the 
options structure. For a list of solver properties see optprop. 

Algorithm optlinlsq uses the SQOPT package with the following objective function:

For further details about SQOPT, see User’s Guide for SQOPT: A Fortran 
Package for Large-Scale Linear and Quadratic Programming (Philip E. Gill, 
Walter Murray, and Michael A. Saunders).

See Also optnlinlsq

opt.sol.eval Substructure containing value of objective 
function and constraints, if any

opt.sol.y Lagrange multipliers in solution 
(structure)

opt.sol.xinfo Information about the solution 
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SQOPT. (See the 
SQOPT User’s Guide for further details.)

opt.sol.msg Message corresponding to the info flag as 
specified by SQOPT. (See the SQOPT 
User’s Guide for further details.)

opt.sol.algorithm 'optlinlsq', to indicate solver used

TABLE 5-6:  THE Y STRUCTURE

FIELD NAME INTERPRETATION

lc Lagrange multipliers for the linear constraints

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

f x( ) 1
2
---xTCTCx 2dTCx–

1
2
---d

T
d+=
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optnlinPurpose Solve a nonlinear optimization problem.

Syntax opt.sol = optnlin(opt,...)
opt.sol = optnlin(opt,options)

Description optnlin solves the nonlinear optimization problem

which corresponds to the following fields in the Opt structure (for information 
about which fields are optional, see optim): 

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

opt.obj.f f Objective function (function)

opt.obj.g Gradient of objective function 
(function)

opt.obj.ptrn Gradient sparsity pattern (matrix)

opt.obj.form Specifies the form of the objective 
function. If it is not included, 
optnlin assumes the general 
nonlinear formulation, 'nlin' (the 
one given in this table). It is also 
possible to call optnlin with an 
objective of the 'lin' or 'quad' 
forms. (For more information on 
objective function forms, see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints 
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints 
(vector or scalar), default Inf

opt.nc.c c Nonlinear constraints (function)

opt.nc.J Jacobian of nonlinear constraints 
(function)

opt.nc.lb dlb Lower bounds for nonlinear 
constraints (vector or scalar), default 
-Inf

min f x( )
blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤
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optnlin
Functions can be given either as strings, denoting the function name, or as inline 
functions. By specifying the same function name for the objective function and its 
gradient, it is possible to use one function to compute both. The gradient must then 
be returned as a second output argument. The same strategy applies to constraints. 

opt.nc.ub dub Upper bounds for nonlinear 
constraints (vector or scalar), default 
Inf

opt.nc.ptrn Constraint Jacobian sparsity pattern 
(matrix)

opt.bc.lb xlb Lower bounds for variables (vector 
or scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector 
or scalar), default Inf

opt.init.x Initial guess (vector), default vector 
of zeros

opt.init.y Initial guess for Lagrange multipliers 
(structure), default zero for all 
multipliers

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of 
objective function and constraints, if 
any

opt.sol.y Lagrange multipliers in solution 
(structure)

opt.sol.xinfo Information about the solution 
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SNOPT. (See 
the SNOPT user’s manual for further 
details.)

opt.sol.msg Message corresponding to the info 
flag as specified by SNOPT. (See the 
SNOPT user’s manual for further 
details.)

opt.sol.algorithm 'opntlin', to indicate solver used 

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION
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If the gradient or Jacobian field for the objective or constraints is not assigned, 
optnlin estimates the missing derivatives by finite differences.

The sparsity patterns for the objective function gradient and the constraint Jacobian 
may be given as sparse matrices. If they are not provided, the solver will estimate a 
sparsity pattern through repeated objective function and constraint residual 
evaluations.

User-defined functions take the present vector x as their input, but it is possible to 
supply extra arguments by using the param solver option. The solver then passes 
along these additional arguments at each callback.

y is a structure with the following fields:

Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

For information about eval and xinfo, see optim.

Parameters to the solvers can be given either as property/value pairs or in the 
options structure. For a list of solver properties, see optpropnlin.

Algorithm optnlin uses the SNOPT package. For further details, see User’s Guide for 
SNOPT, A Fortran Package for Large-Scale Nonlinear Programming (Philip E. 
Gill, Walter Murray, and Michael A. Saunders).

Example The code in this example defines and solves the following nonlinear optimization 
problem:

TABLE 5-7:  THE Y STRUCTURE

FIELD NAME INTERPRETATION

bc Lagrange multipliers for the bounds on the variables (Output only. 
Cannot be supplied as initial guess.)

lc Lagrange multipliers for the linear constraints

nc Lagrange multipliers for the nonlinear constraints
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optnlin
function [f,g] = exnlin_obj(x)
f = 3*x(1) + (x(1) + x(2) + x(3))^2 + 5*x(4);

g = [3 + 2*(x(1) + x(2) + x(3)),
2*(x(1) + x(2) + x(3)),
2*(x(1) + x(2) + x(3)),
5]';

function [f,g] = exnlin_con(x)
f = [x(1) + x(2)^2 + x(3)^2;
     x(2)^4 + x(3)^4 + x(4)];

g = [1 2*x(2) 2*x(3) 0;
     0 4*x(2) 4*x(3) 1];

clear opt;
opt.obj.f = 'exnlin_obj';
opt.obj.g = 'exnlin_obj';

opt.nc.c = 'exnlin_con';
opt.nc.J = 'exnlin_con';
opt.nc.lb = [2 4];
opt.nc.ub = opt.nc.lb;

opt.lc.A = [0 4 2 0];
opt.lc.lb = 0;
opt.lc.ub = Inf;

opt.bc.lb = [0,-Inf,-Inf, 0]';
opt.bc.ub = Inf;

opt.init.x = ones(4,1);
opt.sol = optnlin(opt);

See Also optlin, optquad

min 3x1 x1 x2 x3+ +( )2 5x4+ +

4x2 2x3+ 0≥

x1 x2
2 x3

2
+ + 2=

x2
4 x3

4 x4+ + 4=

x1 0 x4 0≥,≥
89



optnlinlsq

90 |  C H A P T E
optnlinlsqPurpose Solve a nonlinear least-squares problem.

Syntax opt.sol = optnlinlsq(opt,...)
opt.sol = optnlinlsq(opt,options)

Description optnlinlsq solves the nonlinear least-squares problem

which corresponds to the following fields in the Opt structure (for information 
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

opt.obj.F F Objective function (function). Note that 
the function must return the vector of 
Fi to be summed, not the sum of 
squares

opt.obj.J J Jacobian of F (matrix).

opt.obj.ptrn Objective Jacobian sparsity pattern 
(matrix)

opt.obj.form Specifies the form of the objective 
function. If it is not included, 
optnlinlsq assumes the nonlinear 
least-squares formulation, 'nlinlsq' 
(the one given in this table). It is also 
possible to call optnlinlsq with an 
objective function of the 'linlsq' 
form. (For more information on 
objective function forms, see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints 
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints 
(vector or scalar), default Inf

opt.nc.c c Nonlinear constraints (function)

min 1
2
--- F x( ) 2 1

2
--- Fi

i
∑ x( )

2
=

blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤

xlb x xub≤ ≤
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optnlinlsq
Functions can be given either as strings, denoting the function name, or as inline 
functions. By specifying the same function name for the objective function and its 

opt.nc.J Jacobian of nonlinear constraints 
(function)

opt.nc.lb dlb Lower bounds for nonlinear constraints 
(vector or scalar), default -Inf

opt.nc.ub dub Upper bounds for nonlinear constraints 
(vector or scalar), default Inf

opt.nc.ptrn Constraint Jacobian sparsity pattern 
(matrix)

opt.bc.lb xlb Lower bounds for variables (vector or 
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or 
scalar), default Inf

opt.init.x Initial guess (vector), default vector of 
zeros

opt.init.y Initial guess for Lagrange multipliers 
(structure), default zero for all 
multipliers

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of 
objective function and constraints, if 
any

opt.sol.y Lagrange multipliers in solution 
(structure)

opt.sol.xinfo Information about the solution 
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SNOPT. (See 
the SNOPT user’s manual for further 
details.)

opt.sol.msg Message corresponding to the info flag 
as specified by SNOPT. (See the 
SNOPT user’s manual for further 
details.)

opt.sol.algorithm 'opntlinlsq', to indicate solver used

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION
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Jacobian, it is possible to use one function to compute both. The Jacobian must 
then be returned as a second output argument. The same strategy applies to 
constraints. If the Jacobian field is not assigned, optnlinlsq estimates the missing 
derivatives by finite differences.

The sparsity patterns for the objective function and constraint Jacobian may be 
given as sparse matrices. If they are not provided, the solver will estimate a sparsity 
pattern through repeated objective function and constraint residual evaluations.

User-defined functions take the present vector x as their input, but it is possible to 
supply extra arguments by using the param solver option. The solver then passes 
along these additional arguments at each callback.

y is a structure with the following fields:

Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

For information about eval and xinfo see optim.

Parameters to the solvers can be given either as property/value pairs or in the 
options structure. For a list of solver properties, see optpropnlin. 

Example The code in this example defines and solves the following nonlinear optimization 
problem:

TABLE 5-8:  THE Y STRUCTURE

FIELD NAME INTERPRETATION

bc Lagrange multipliers for the bounds on the variables (Output only. 
Cannot be supplied as initial guess.)

lc Lagrange multipliers for the linear constraints

nc Lagrange multipliers for the nonlinear constraints
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(Reference: W. Hock and K. Schittkowski, “Test Examples for Nonlinear 
Programming Codes,” Lecture Notes in Economics and Mathematical Systems 
187, Springer-Verlag, 1981.)

function [F,J] = exnlinlsq_con(x)
F = [  x(1)^2 + x(2)^2;
     9*x(1)^2 + x(2)^2;
       x(1)^2 - x(2);
       x(2)^2 - x(1)];

J = [ 2*x(1), 2*x(2);
     18*x(1),2*x(2);
      2*x(1),-1;
     -1,2*x(2)];

clear opt;
opt.obj.C = eye(2);
opt.obj.form = 'linlsq';

opt.lc.A = [1 1];
opt.lc.lb = [1];

opt.nc.c = 'exnlinlsq_con';
opt.nc.J = 'exnlinlsq_con';
opt.nc.lb = [1 9 0 0];

opt.bc.lb = -50;
opt.bc.ub = 50;

% Infeasible starting point
opt.init.x = [3 0.6];
opt.sol = optnlinlsq(opt);

min 1
2
--- x1

2 x2
2

+( )

x1 x2+ 1≥

x1
2 x2

2
+ 1≥

9x1
2 x2

2
+ 9≥

x1
2 x2– 0≥

x2
2 x1– 0≥

50– x1 50≤ ≤

50– x2 50≤ ≤
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Algorithm optnlinlsq uses the SNOPT package with the following objective function and 
gradient:

For further details about SNOPT see User’s Guide for SNOPT, A Fortran Package 
for Large-Scale Nonlinear Programming (Philip E. Gill, Walter Murray, and 
Michael A. Saunders).

See Also optlinlsq

f x( ) 1
2
--- Fi

i
∑ x( )

2
=

g x( ) JTF=
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optnmPurpose Solve an unconstrained nonlinear optimization problem using the Nelder-Mead 
simplex algorithm.

Syntax opt.sol = optnm(opt,...)
opt.sol = optnm(opt,options)
x = optnm(fun,x0,...)
[x,f] = optnm(fun,x0,...)
[x,f,exit] = optnm(fun,x0,...)
optnm(fun,x0,options)

Description optnm solves the unconstrained nonlinear optimization problem min  f(x), which 
corresponds to the following fields of the Opt structure (for information about 
which fields are optional, see optim):.

Functions can be either strings, denoting the function name, or inline functions.

The user-defined function takes the present vector of variables x as its input, but it 
is possible to supply extra arguments by using the param solver option. The solver 
then passes along these additional arguments at each callback. 

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.f f Objective function (function)

opt.obj.form Specifies the form of the objective 
function. optnm expects the form to 
equal 'nlin' (assumed if form is not 
given) but also accepts 'lin' or 'quad' 
form. (For more information on objective 
function forms, see optim.)

opt.init.x Initial guess (vector)

opt.sol.x Solution (vector)

opt.sol.eval.f Value of objective function (scalar)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.algorithm 'optnm', to indicate solver used
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optnm accepts the following properties, which can be given either as property/value 
pairs or in the options structure (n is the number of variables):

TABLE 5-9:  VALID PROPERTIES FOR THE OPTNM FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

dtol numeric 1e-4 Absolute termination 
tolerance on the largest 
diameter of the simplex, 
using infinity norm

functol numeric 1e-4 Absolute termination 
tolerance on the function 
precision

funlim integer 200*n Limit on number of function 
evaluations

itlim integer 200*n Iterations limit

lscale numeric 1 Length scale used when 
creating the initial simplex, 
which is defined by the 
starting guess x0 and n more 
points 
x0 + lscale*eye(n). 

out 'sol' | 'opt' | 
'x' | 'f'| 'exit' 
| 'funs' | 'iter'

'sol' Output variables. 'sol' 
returns the opt.sol 
structure; 'opt'returns the 
complete Opt structure; 
'x', 'f', and 'exit' return 
the respective fields of the 
opt.sol structure; 'funs' 
returns the actual number of 
function evaluations; and 
'iter' returns the number 
of iterations
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optnm(fun,x0,...) is a shortcut version of the structure form. 

[x,f] = optnm(fun,x0), for example, equals the following command sequence:

opt.obj.f = fun;
opt.init.x = x0;
options.out = {'x','f'};
[x,f] = optnm(opt,options);

Examples function f = exnm_obj(x)
f = x(1)^4 + x(2)^4 - x(1)*x(2) + 1;

clear opt;
opt.obj.f = 'exnm_obj';
opt.init.x = [1 1];
opt.sol = optnm(opt);

% Vector notation:
[x,f] = optnm('exnm_obj',[1 1]);

% With inline function
[x,f] = optnm(inline('x(1)^4 + x(2)^4 - x(1)*x(2) + 1'),[1 1]);

Algorithm optnm uses the Nelder-Mead simplex algorithm as defined in “Convergence 
Properties of the Nelder-Mead Simplex Method in Low Dimensions” (J.C. 
Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright, SIAM J. Optimization, vol. 9, 
pp. 112–147, 1998).

param any empty Allows additional arguments 
to be passed along to the 
callback function. Use a cell 
array to pass along more than 
one argument. Note that the 
cell array is unpacked in the 
function call, so setting 
param to {a1,a2} results in 
the function being called with 
userfun(x,a1,a2). 

report 'on' | 'off' 'off' 'on' displays the result at 
each iteration and whether 
optnm performs a reflection, 
expansion, inner or outer 
contraction, or a shrinking 
step. 

TABLE 5-9:  VALID PROPERTIES FOR THE OPTNM FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION
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See Also optnlin, optlin, optquad
R  5 :  C O M M A N D  R E F E R E N C E



optprop
optpropPurpose Optimization Lab solver properties.

Syntax options = optprop

Description The following table lists all common property/value pairs for the linear and 
quadratic solvers in the Optimization Lab. In the table, m is the number of 
constraints, while n1 is the number of leading nonzero columns of the Hessian in 
the case of a quadratic problem and 0 in the linear case. 

options = optprop returns a struct options with all available properties, each set 
to its default value. Properties whose default depends on the input problem are not 
set (the corresponding field contains an empty matrix).

For more details on the solver properties see “Solver Properties” in Chapter 6. 

TABLE 5-10:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

checkfreq integer 60 Check frequency

elastic 0 | 1 | 2 1 Elastic mode. 

0 indicates that Elastic 
mode is never 
invoked, which causes 
the solver to 
terminate as soon as 
infeasibilities are 
detected. 

1 indicates that Elastic 
mode is entered 
when infeasibilities 
are detected. 

2 indicates that the 
solver starts and 
remains in Elastic 
mode
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elasticbc scalar or 
vector of  
0 | 1 | 2 | 3

0 Indicates which 
bound constraints can 
be elastic. 

0 indicates that 
corresponding 
constraints cannot be 
violated.

1 indicates that the 
lower bound can be 
violated.

2 indicates that the 
upper bound can be 
violated.

3 indicates that either 
bound can be 
violated. 

elasticlc scalar or 
vector of  
0 | 1 | 2 | 3

3 Indicates which linear 
constraints can be 
elastic. 

0 indicates that 
corresponding 
constraints cannot be 
violated.

1 indicates that the 
lower bound can be 
violated.

2 indicates that the 
upper bound can be 
violated.

3 indicates that either 
bound can be 
violated. 

elasticobj 0 | 1 | 2 2 Elastic objective

elasticw numeric 1.0 Elastic weight

expfreq integer 10000 Expand frequency

facfreq integer 100 (linear) 
50 (quadratic)

Factorization 
frequency

feastol numeric 1.0e-6 Feasibility tolerance

TABLE 5-10:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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hessdim integer min(1000,n1+1) Hessian dimension

infbound positive numeric 1.0e20 Infinite bound size

itlim integer 3*m Iterations limit

maximize 'on' | 'off' 'off' 'on' if objective 
should be maximized

print filename no printing Print information 
about the solver 
progress and solution 
to file

opttol numeric 1.0e-6 Optimality tolerance

out 'sol' | 'opt' | 
'x' | 'f' | 'y' | 
'xinfo' | 
'state' | 'ns' | 
'ninf' | 'sinf' | 
'exit' | 'info' | 
'msg' | 
'algorithm'

'sol' Output variables

param any empty Allows additional 
arguments to be 
passed along to the 
user callback 
functions. Use a cell 
array to pass along 
more than one 
argument. Note that 
the cell array is 
unpacked in the 
function call, so 
setting param to 
{a1,a2} results in 
functions being called 
with 
userfun(x,a1,a2). 

parprice integer 10 (linear)  
1 (quadratic)

Partial price

pivtol numeric 3.7e-11 Pivot tolerance

TABLE 5-10:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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See Also optpropnlin, optnlin, optlinlsq, optquad

print filename empty (no 
printing)

Print information 
about the solver 
progress and solution 
to file

qpsolver 'cholesky' | 
'cg' | 'qn'

'cholesky' Specifies the 
active-set algorithm 
used in the optimality 
phase. 'cholesky' 
indicates the 
Cholesky solver and 
'qn' indicates the 
quasi-Newton 
method. 'cg' uses an 
active-set method 
similar to 'qn' but 
uses the 
conjugate-gradient 
method to solve all 
systems involving the 
reduced Hessian.

scaleopt 0 | 1 | 2 2 (linear) 
1 (quadratic)

Scale option

scaletol numeric 0.9 Scale tolerance

stop 'on' | 'off' 'on' When 'on', deliver 
partial solution when 
failing

suplim integer n1+1 Superbasics limit

TABLE 5-10:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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optpropnlinPurpose Nonlinear Optimization Lab solver properties.

Syntax options = optpropnlin

Description The following table lists all common property/value pairs used in the Optimization 
Lab solvers optnlin and optnlinlsq. In the table, m is the number of constraints 
and n1 is the number of nonlinear variables, which is computed internally by the 
solvers.

options = optpropnlin returns a struct with all available properties, each set to 
its default value. Properties whose default depends on the input problem are not set 
(the corresponding field contains an empty matrix).

For more details on the solver properties, see “Solver Properties” in Chapter 6.

TABLE 5-11:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

cendiff numeric 6.0e-6 Central difference 
interval

checkfreq integer 60 Check frequency

diffint numeric 1.5e-8 Difference interval

elasticw numeric 1.0e4 Elastic weight

expfreq integer 10000 Expand frequency

facfreq integer 50 Factorization 
frequency

feastol numeric 1.0e-6 Minor feasibility 
tolerance

funcprec numeric 3.8e-11 Function precision

hessdim integer min(1000,n1+1) Hessian dimension

hessfreq integer 9999999 Hessian frequency

hessmem 'full' | 
'limited'

'limited' if 
n1 > 75 or 
qpsolver 'cg'

Hessian memory

hessupd integer 10 if hessmem 
'limited'

Hessian updates

infbound positive numeric 1.0e20 Infinite bound size

itlim integer 500 Minor iteration limit

linesearch 'derivative' |

'nonderivative'

derivative Linesearch method
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linestol numeric 0.9 Linesearch tolerance

majfeastol numeric 1.0e-6 Major feasibility 
tolerance

majitlim integer max(1000,m) Major iterations limit

majsteplim numeric 2.0 Major step limit

maximize 'on' | 'off' 'off' 'on' if objective 
should be maximized

newsuplim integer 99 New superbasics limit

opttol numeric 1.0e-6 Optimality tolerance

out 'sol' | 'opt' | 
'x' | 'f' | 'y' | 
'xinfo' | 
'state' | 'ns' | 
'ninf' | 'sinf' | 
'exit' | 'info' | 
'msg' | 
'algorithm'

'sol' Output variables

param any empty Allows additional 
arguments to be 
passed along to the 
user callback 
functions. Use a cell 
array to pass along 
more than one 
argument. Note that 
the cell array is 
unpacked in the 
function call, so 
setting param to 
{a1,a2} results in 
functions being called 
with 
userfun(x,a1,a2). 

pivtol numeric 3.7e-11 Pivot tolerance

print filename empty (no 
printing)

Print information 
about the solver 
progress and solution 
to file

TABLE 5-11:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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proxmeth 1 | 2 1 Proximal point 
method

qpsolver 'cholesky' | 
'cg' | 'qn'

'cholesky' Specifies the 
active-set algorithm 
used to solve the QP 
subproblem. 
'cholesky' 
indicates the 
Cholesky solver and 
'qn' indicates the 
quasi-Newton 
method. 'cg' uses an 
active-set method 
similar to 'qn' but 
uses the 
conjugate-gradient 
method to solve all 
systems involving the 
reduced Hessian.

scaleopt 0 | 1 | 2 1 Scale option

scaletol numeric 0.9 Scale tolerance

stop 'on' | 'off' 'on' When 'on', deliver 
partial solution when 
failing

suplim integer n1+1 Superbasics limit

totitlim integer max(10000,20*m) Iterations limit 
(absolute limit on the 
total number of 
minor iterations

TABLE 5-11:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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See Also optprop, optnlin, optnlinlsq

verify -1 | 0 | 1 | 2 | 3 0 Verification level of 
derivatives through 
finite-differences. 
Derivatives are 
checked at the first 
point that satisfies all 
bounds and linear 
constraints. 

-1 indicates that 
derivative checking is 
disabled. 

0 indicates that only a 
cheap test is 
performed, requiring 
two calls to user 
functions. 

1 indicates that 
individual gradients 
are checked with a 
more reliable test. 

2 indicates that 
individual columns of 
the problem Jacobian 
are checked.

3 indicates that both 
options 2 and 1 occur 
(in that order).

viollim numeric 10 Violation limit

TABLE 5-11:  COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
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optquadPurpose Solve a quadratic optimization problem.

Syntax opt.sol = optquad(opt,...)
opt.sol = optquad(opt,options)

Description optquad solves the quadratic optimization problem

which corresponds to the following fields in the Opt structure (for information 
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION

opt.obj.H H Coefficient matrix for the quadratic 
terms of the objective function 
(symmetric matrix or function returning 
Hx), default zero

opt.obj.c c Coefficient vector for the linear term of 
the objective function (numeric vector), 
default vector of zeros

opt.obj.form Specifies the form of the objective 
function. If it is not included, optquad 
assumes the general quadratic 
formulation, 'quad' (the one given in 
this table). It is also possible to call 
optquad with an objective of the 'lin' 
form. (For more information on objective 
function forms see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints 
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints 
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or 
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or 
scalar), default Inf

min 1
2
---x

T
Hx cTx+

blb Ax bub≤ ≤

xlb x xub≤ ≤
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When Hx is supplied as a function, it can be either a string, denoting the function 
name, or an inline function. It should take the present vector x as its input, but it is 
possible to supply extra arguments by using the param solver option. The solver 
then passes along these additional arguments at each callback.

y is a structure with the following field:

Positive and negative multipliers indicate active lower and upper bounds, 
respectively.

For information about eval and xinfo see optim.

Parameters to the solvers can be given either as property/value pairs or in the 
options structure. For a list of properties see optprop. 

Algorithm optquad uses the SQOPT package. For further details, see User’s Guide for 
SQOPT: A Fortran Package for Large-Scale Linear and Quadratic 
Programming (Philip E. Gill, Walter Murray, and Michael A. Saunders).

opt.init.x Initial guess (vector), default vector of 
zeros

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of objective 
function and constraints, if any

opt.sol.y Lagrange multipliers in solution 
(structure)

opt.sol.xinfo Information about the solution 
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for 
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SQOPT. (See the 
SQOPT User’s Guide for further details.)

opt.sol.msg Message corresponding to the info flag as 
specified by SQOPT. (See the SQOPT 
User’s Guide for further details.)

opt.sol.algorithm 'optquad', to indicate solver used

TABLE 5-12:  THE Y STRUCTURE

FIELD NAME INTERPRETATION

lc Lagrange multipliers for the linear constraints

FIELD NAME MATHEMATICAL 
NOTATION

INTERPRETATION
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See Also optlin, optnlin
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optsetstatusPurpose Set solver status during callback.

Syntax optsetstatus(s)

Description optsetstatus(s) is intended for use in the Optimization Lab’s nonlinear callback 
routines. Call optsetstatus with s = -1 to reduce the step length during a line 
search (for example, if the current point is undefined). Call optsetstatus with 
s  -2 to request a solver abort.

For more information see the SNOPT documentation.

See Also optgetstatus

≤
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Error Messages and Troubleshooting

The Optimization Lab solvers all return three pieces of information: an information 
flag (sol.info), an integer exit code or flag indicating the exit condition, and a 
message describing this particular state (sol.msg). The various states are grouped into 
more general categories such that for all problems of a specific type, the most 
significant digit of the exit code is the same. The list of general groups are:

The exit codes 0–20 appear when a solution exists (though it might not be optimal). 

Following is a description of each message and possible courses of action. Not all 
return states are possible for all types of problems; some typically occur only for the 
nonlinear solvers.

TABLE 5-13:  GROUPS OF POSSIBLE EXIT CONDITIONS

STATE GROUP DESCRIPTION

0 Finished successfully

10 The problem appears to be infeasible

20 The problem appears to be unbounded

30 Resource limit error

40 Terminated after numerical difficulties

50 Error in the user-supplied functions

60 Undefined user-supplied functions

70 User requested termination

80 Insufficient storage allocated

90 Input arguments out of range

140 System error
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S U C C E S S F U L  C O M P L E T I O N

These messages call for guarded optimism! They are certainly preferable to every other 
message, and you naturally want to believe what they say. However, in every case a 
distinct level of caution is in order. For example, if the objective value is much better 
than expected, you might have obtained an optimal solution to the wrong problem. 
Almost any item of data could have that effect if it has the wrong value. Verifying that 
you have defined the problem correctly is one of the more difficult tasks for a model 
builder.

If nonlinearities exist, you must always ask the question: could there be more than one 
local optimum? When the constraints are linear and the objective is known to be 
convex (for example, a sum of squares), then all is well if you are minimizing the 
objective—a local minimum is a global minimum in the sense that no other point has 
a lower function value. (However, many points could have the same objective value, 
particularly if the objective is largely linear.) 

Conversely, if you are maximizing a convex function, you cannot expect a local 
maximum to be global unless there are sufficient constraints to confine the feasible 
region. Similar statements could be made about nonlinear constraints defining convex 
or concave regions. However, the functions of a problem are more likely to be neither 
convex nor concave. It is good practice to specify a starting point that is as good an 
estimate as possible and then to also include reasonable upper and lower bounds on all 
variables in order to confine the solution to the specific region of interest. 

For Flag 4, the final point is a weak minimizer. (The objective value is a global 
optimum, but it might be achieved by an infinite set of points x.) This exit code applies 
to optquad only (QP problems) and arises when (i) the problem is feasible, (ii) the 
reduced gradient is negligible, (iii) the Lagrange multipliers are optimal, and (iv) the 
reduced Hessian is singular or there are some very small multipliers. This exit code 
cannot appear if H is positive definite.

TABLE 5-14:  OUTPUT AT SUCCESSFUL COMPLETION

INFO FLAG DESCRIPTION 

0 Finished successfully

1 Optimality conditions satisfied

2 Feasible point found

3 Requested accuracy could not be achieved

4 Weak QP minimizer
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One other caution about the return value 1, “Optimality conditions satisfied.” Some 
of the variables or constraints might lie outside their bounds more than desired, 
especially if scaling was requested. 

I N F E A S I B L E  P R O B L E M S

This exit code appears if the solver is unable to find a point that satisfies the constraints. 
When the constraints are linear, the output messages are based on a relatively reliable 
indicator of infeasibility. Feasibility is measured with respect to the upper and lower 
bounds. Violations as small as the (minor) feasibility tolerance (feastol) are ignored, 
but at least one component violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize 
correctly. Even if a feasible solution exists, the current linearization of the constraints 
might not contain a feasible point. In an attempt to deal with this situation, when 
solving each quadratic subproblem, the nonlinear solvers are prepared to relax the 
nonlinear bounds. 

If a quadratic subproblem proves to be infeasible or unbounded (or if the Lagrange 
multiplier estimates for the nonlinear constraints become large), the solvers enter a 
so-called Elastic mode (provided the elastic property is nonzero). The subproblem 
includes the original quadratic objective and the sum of the infeasibilities—suitably 
weighted using the elastic weight parameter. In Elastic mode, the bounds on the 
nonlinear constraints become “elastic”—that is, the constraints may violate their 
bounds. If the original problem has a feasible solution and the elastic weight is 
sufficiently large, a feasible point is eventually obtained for the perturbed constraints, 
and optimization can continue on the subproblem. If the problem has no feasible 
solution, the solvers tend to determine a “good” infeasible point if the elastic weight 
is sufficiently large. 

Unfortunately, even though the solvers locally minimize the nonlinear constraint 
violations, there might still exist other regions in which the nonlinear constraints are 

TABLE 5-15:  OUTPUT FOR INFEASIBLE PROBLEMS

INFO FLAG DESCRIPTION 

0 The problem appears to be infeasible

11 Infeasible linear constraints

12 Infeasible linear equalities

13 Nonlinear infeasibilities minimized

14 Infeasibilities minimized
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satisfied. Wherever possible, try to define nonlinear constraints in such a way that 
feasible points are known to exist when the constraints are linearized.

U N B O U N D E D  P R O B L E M S

For linear problems, unboundedness is detected by the simplex method when a 
nonbasic variable can be increased or decreased by an arbitrary amount without 
causing a basic variable to violate a bound. Consider adding an upper or lower bound 
to the variable that is unbounded. Also examine the constraints that have nonzeros in 
the associated column to see if they have been formulated as intended. Very rarely, the 
scaling of the problem could be so poor that a numerical error gives an erroneous 
indication of unboundedness. Consider using the scale option scaleopt. 

For nonlinear problems, the solvers monitor both the size of the current objective 
function and the size of the change in the variables at each step. If either of these is 
very large, the problem is terminated and declared unbounded. To avoid large 
function values, it might be necessary to impose bounds on some of the variables in 
order to keep them away from singularities in the nonlinear functions.

Flag 22 indicates an abnormal termination while enforcing the limit on the constraint 
violations. This exit code implies that the objective is not bounded below in the feasible 
region defined by expanding the bounds by the value of the violation limit viollim.

R E S O U R C E  L I M I T  E R R O R S

Either the iterations limit (itlim, see page 129) or the total iterations limit 
(totitlim, see page 138) was exceeded before the required solution could be found. 

TABLE 5-16:  OUTPUT FOR UNBOUNDED PROBLEMS

INFO FLAG DESCRIPTION 

20 The problem appears to be unbounded

21 Unbounded objective

22 Constraint violation limit reached

TABLE 5-17:  OUTPUT FOR RESOURCE LIMIT ERRORS

INFO FLAG DESCRIPTION 

30 Resource limit error

31 Iteration limit reached

32 (Major) iteration limit reached

33 The superbasics limit is too small
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Check if the solver was making progress, for example by printing out the solution in 
the callback functions. If so, restart the run using the last solution as an initial one. 

N U M E R I C A L  D I F F I C U L T I E S

Several circumstances can lead to the solvers not being able to improve on a 
non-optimal point:

• The user-supplied functions could be returning accurate function values but 
inaccurate gradients (or vice versa). This is the most likely cause. Study the 
comments for Flags 51 and 52 and do your best to ensure that the coding is correct.

• The function and gradient values could be consistent, but their precision could be 
too low. You might need to raise the default optimality tolerance (opttol) if it is 
not possible to increase the precision of the functions themselves.

• If function values are obtained from an expensive iterative process, they might be 
accurate to rather few significant figures, and gradients are probably not available. 
You should specify a function precision t and an optimality tolerance , but even 
then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same exit 
condition could occur. At present the only remedy is to increase the accuracy of the 
function calculation.

Termination because of a singular basis is highly unlikely to occur. The first 
factorization attempt finds the basis to be structurally or numerically singular. The 
modified basis is refactorized, but a singularity persists. This likely means that the 
problem is badly scaled.

If the general constraints cannot be satisfied, an LU factorization of the basis has just 
been obtained and used to recompute the basic variables. A step of “iterative 
refinement” has also been applied to increase the accuracy. However, a row check has 
revealed that the resulting solution does not satisfy the current constraints sufficiently 
well. This probably means that the current basis is very ill-conditioned. If there are 

TABLE 5-18:  OUTPUT AFTER NUMERICAL DIFFICULTIES

INFO FLAG DESCRIPTION 

40 Terminated after numerical difficulties

41 Current point cannot be improved

42 Singular basis

43 Cannot satisfy the general constraints

44 Ill-conditioned null-space basis

t
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some linear constraints and variables, try setting scaleopt to 1 if scaling has not yet 
been used.

E R R O R S  I N  U S E R - S U P P L I E D  F U N C T I O N S

This exit code implies that there might be errors in the functions that define the 
problem objective and constraints. If the objective derivatives appear to be incorrect, 
the solver has made a check on some individual elements of the objective gradient array 
at the first point that satisfies the linear constraints. At least one component in the user 
routines has been set to a value that disagrees markedly with its associated 
forward-difference estimate. (The relative difference between the computed and 
estimated values is 1.0 or more.) This exit code is a safeguard because the solvers 
usually fail to make progress when the computed gradients are seriously inaccurate. In 
the process the solver might expend considerable effort before terminating with Flag 
41 (“Current point cannot be improved”). Check the function and gradient 
computation very carefully. A simple omission, such as forgetting to divide by two, 
could explain everything. If some component is very large, then give serious thought 
to scaling the function or the nonlinear variables.

If you feel certain that the computed objective gradient is correct (and that the 
forward-difference estimate is therefore wrong), you can specify a verification level of 
0 (using the property verify; see page 138) to prevent individual elements from being 
checked. However, the optimization procedure might have difficulties.

If some constraint derivatives appear to be incorrect, then at least one of the computed 
constraint derivatives is significantly different from an estimate obtained by forward 
differences. Follow the advice given earlier for the objective function, trying to ensure 
that the constraints and their derivatives are set correctly. 

Return Flag 54 refers to the quadratic solver and indicates that an indefinite matrix was 
detected during the computation of the reduced Hessian factor R such that 
RTR = ZTHZ. This might be caused by the matrix H being indefinite, that is, there 
might exist a vector y such that yTHy < 0. In this case the QP problem is not convex 
and cannot be solved using optquad. You should check that H is correct and that all 

TABLE 5-19:  OUTPUT FOR ERRORS IN USER-SUPPLIED FUNCTIONS

INFO FLAG DESCRIPTION 

50 Error in the user-supplied functions

51 Incorrect objective derivatives

52 Incorrect constraint derivatives

54 The QP Hessian is indefinite
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relevant components of Hx are assigned their correct values, in the case when Hx is 
computed in a function.

If H is symmetric positive semidefinite, then the problem might be the ill-conditioning 
of the reduced Hessian caused by ill-conditioning in either H or Z. 

P R O B L E M S  W I T H  U N D E F I N E D  F U N C T I O N S

If the user calls optsetstatus(-1) in any unction then the problem is considered to 
be “undefined” at that point. The solvers attempt to evaluate the problem functions 
closer to a point at which the objective and constraints have already been computed. 
Flags 61 and 62 indicate that the solver is unable to proceed because the functions are 
undefined at the initial point or first feasible point.

Flag 63 implies that repeated attempts to move into a region where the functions are 
not defined resulted in the change in variables being unacceptably small.

U S E R  R E Q U E S T E D  T E R M I N A T I O N

These exit codes appear when some user-defined function has called optsetstatus 
for values < -1. The solvers assume that you want the problem to be abandoned 
immediately.

If the following exit codes appear during the first basis factorization, the primal and 
dual variables have their original input values. 

TABLE 5-20:  OUTPUT FOR UNDEFINED FUNCTION ERRORS

INFO FLAG DESCRIPTION 

60 Undefined user-supplied functions

61 Undefined function at the first feasible point

62 Undefined function at the initial point

63 Unable to proceed into undefined region

TABLE 5-21:  OUTPUT FOR USER REQUESTED TERMINATION

INFO FLAG DESCRIPTION 

70 User requested termination

71 Terminated during function evaluation

72 Terminated during constraint evaluation

73 Terminated during objective evaluation

74 Terminated from monitor routine
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I N S U F F I C I E N T  S T O R A G E

These exit codes indicate that the solver ran out of memory. Be sure that the Hessian 
dimension is not unreasonably large.

I N P U T  A R G U M E N T S  O U T  O F  R A N G E

These exit codes appear if some data associated with the problem is out of range or 
invalid.

S Y S T E M  E R R O R

These exit codes appear if some fatal system error has occurred. The solver abandons 
the problem.

TABLE 5-22:  OUTPUT FOR INSUFFICIENT STORAGE

INFO FLAG DESCRIPTION 

80-84 Insufficient storage allocated

TABLE 5-23:  OUTPUT FOR INPUT ARGUMENT DIFFICULTIES

INFO FLAG DESCRIPTION 

90 Input arguments out of range

91 Invalid input argument

TABLE 5-24:  OUTPUT FOR SYSTEM ERRORS

INFO FLAG DESCRIPTION 

140 System error

141 Wrong number of basic variables

142 Error in basis package
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S o l v e r  P r o p e r t i e s
This chapter contains details about the available properties for the gradient-based 
solvers. These properties can be useful to tune the solvers’ performance.
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Grad i e n t - B a s e d  S o l v e r  P r op e r t i e s

A list of the available solver properties appears in the “Command Reference” chapter 
in the entries for optprop on page 99 (properties for linear and quadratic solvers) and 
optpropnlin on page 103 (nonlinear solvers). The following sections provide more 
detailed explanations of these properties.

Note: In the following sections, ε represents the machine precision and is 
approximately equal to 2.2·10−16. The machine precision is available as eps in 
COMSOL Script.

Cendiff

Central difference interval 
Type: numeric 
Default: ε1/3 ≈ 6.0·10−6 

Applicable for: Nonlinear solvers

When some problem derivatives are unknown, the solver uses the central difference 
interval near an optimal solution to obtain more accurate (but more expensive) 
estimates of gradients. Twice as many function evaluations are required compared to 
forward differencing. If r is the central difference interval, the interval used for the jth 
variable is hj = r(1 + | xj |). The resulting derivative estimates should be accurate to 
O(r2), unless the functions are badly scaled.

Checkfreq

Check frequency 
Type: integer  
Default = 60  
Applicable for: All solvers

Every ith iteration after the most recent basis factorization, the solver makes a 
numerical test to see if the current solution x satisfies the general linear constraints 
(including linearized nonlinear constraints, if any). The constraints are of the form  
Ax − s = b where s is the set of slack variables. To perform the numerical test, the solver 
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computes the residual vector r = b − Ax + s. If the largest component of r is judged to 
be too large, the current basis is refactorized and the basic variables are recomputed to 
satisfy the general constraints more accurately.

checkfreq = 1 is useful for debugging purposes, but otherwise this option should 
not be needed.

Diffint

Difference interval 
Type: numeric  
Default: ε1/2 ≈ 1.5·10−8 

Applicable for: Nonlinear solvers

This property alters the interval that the solver uses to estimate gradients by forward 
differences in the following circumstances:

• In the initial (“cheap”) phase of verifying the problem derivatives

• For verifying the problem derivatives

• For estimating missing derivatives

In all cases, the solver estimates a derivative with respect to xj by perturbing that 
component of x to the value xj + h1(1 + | xj |), where h1 is the difference interval, and 
then evaluating the goal function at the perturbed point.

The resulting gradient estimates should be accurate to O(h1) unless the functions are 
badly scaled. Judicious alteration of the difference interval can sometimes lead to 
greater accuracy.

Elastic

Elastic mode 
Type: integers 0, 1, or 2 
Default: 1 
Applicable for: Linear and quadratic solvers
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This parameter determines if (and when) Elastic mode is started. Three variations are 
available:

Elasticobj

Elastic objective 
Type: integers 0, 1, or 2 
Default: 2 
Applicable for: Linear and quadratic solvers

TABLE 6-1:  ELASTIC MODES

MODE DESCRIPTION

0 Elastic mode is never invoked. The solver terminates as soon as it 
detects infeasibility. There might be other points with significantly 
smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be 
infeasible. If so, the solver continues in the Elastic mode with the 
composite objective determined by the values of properties 
elasticobj (elastic objective) and elasticw (elastic weight).

2 The iterations start and remain in Elastic mode. This option allows 
you to minimize the composite objective function directly without 
first performing phase−1 iterations (also sometimes called the 
feasibility phase, which minimizes the sum of infeasibilities to find a 
feasible point). The success of this option depends critically on the 
choice of elastic weight. If that value is sufficiently large and the 
constraints are feasible, the minimizer of the composite objective and 
the solution of the original problem are identical. However, if the 
elastic weight is not sufficiently large, the minimizer of the composite 
function might be infeasible even though a feasible point for the 
constraints could exist.
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This option determines the form of the composite objective. Three types of composite 
objective are available:

Elasticbc

Elastic bound constraints 
Type: scalar or vector of 0, 1, 2, or 3 
Default: 0 
Applicable for: Linear and quadratic solvers

Indicates which bound constraints can be elastic: 

• 0—corresponding constraints cannot be violated. 

• 1—the lower bound can be violated. 

• 2—the upper bound can be violated. 

• 3—either bound can be violated. 

Elasticlc

Elastic linear constraints 
Type: scalar or vector of 0, 1, 2, or 3 

TABLE 6-2:  ELASTIC OBJECTIVE MODES

MODE DESCRIPTION

0 Include only the true objective in the composite objective. This 
option sets the elastic weight to 0 in the composite objective and 
allows the solver to ignore the elastic bounds and find a solution 
that minimizes the objective function subject to the nonelastic 
constraints. This option is useful if there are some “soft” constraints 
that you would like to ignore if the constraints are infeasible.

1 Use a composite objective defined with elastic weight determined by 
the value of the elasticw property. This value is intended to be used 
in conjunction with Elastic mode set to 2.

2 Include only the elastic variables in the composite objective. The 
elastics are weighted by 1. This choice minimizes the violations of the 
elastic variable at the expense of possibly increasing the true 
objective. This option can be used to find a point that minimizes the 
sum of the violations of a subset of constraints determined by the 
parameters elasticbc and elasticlc.
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Default: 3 
Applicable for: Linear and quadratic solvers

Indicates which linear constraints may be elastic. 

• 0—corresponding constraints cannot be violated. 

• 1—the lower bound can be violated. 

• 2—the upper bound can be violated. 

• 3—either bound can be violated. 

Elasticw

Elastic weight 
Type: numeric 
Default: 1.0 for linear and quadratic problems, 1.0·104 for nonlinear problems 
Applicable for: Linear and quadratic solvers

This property determines the initial weight associated with the elastic QP problem. For 
more details, see the SNOPT and SQOPT manuals. In general, in Elastic mode, if the 
original problem has a feasible solution and the elastic weight is sufficiently large, a 
feasible point is eventually obtained for the perturbed constraints and optimization can 
continue.

Expfreq

Expand frequency 
Type: integer 
Default: 10,000 
Applicable for: All solvers

This option is part of the internal procedure designed to make progress even on highly 
degenerate problems.

For linear models, the strategy is to force a positive step at every (minor) iteration at 
the expense of violating the bounds on the variables by a small amount. Suppose that 
the expand frequency is i and the feasibility tolerance (property feastol) is δ. Over a 
period of i iterations, the tolerance the solvers actually use increases from 0.5δ to δ (in 
steps of 0.5δ/i).

For nonlinear models, the same procedure is used for iterations in which there is only 
one superbasic variable. (Cycling can occur only when the current solution is at a 
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vertex of the feasible region.) Thus, zero steps are allowed if there is more than one 
superbasic variable, but otherwise positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic variables (most of 
which are eliminated during a resetting procedure). However, it also diminishes the 
freedom to choose a large pivot element (see pivtol on page 134).

Facfreq

Factorization frequency 
Type: integer 
Default: 100 for linear problems, 50 for quadratic or nonlinear problems 
Applicable for: All solvers

At most k basis changes occur between factorizations of the basis matrix, where k is 
the factorization frequency.

With linear programs, the basis factors are usually updated every iteration. The default 
k is reasonable for typical problems. Higher values to k = 100 might be more efficient 
on problems that are extremely sparse and well scaled.

When the objective function is nonlinear or quadratic, fewer basis updates occur as an 
optimum is approached. The number of iterations between basis factorizations 
therefore increases. During these iterations a test is made regularly (according to the 
check frequency, Checkfreq) to ensure that the general constraints are satisfied. If 
necessary the basis is refactorized before the limit of k updates is reached.

Feastol

Feasibility tolerance 
Type: numeric 
Default: 1.0·10−6 

Applicable for: All solvers

The solvers try to ensure that all bound and linear constraints are eventually satisfied 
to within the feasibility tolerance t. (Feasibility with respect to nonlinear constraints is 
instead judged by the major feasibility tolerance, majfeastol.)

If the bounds and linear constraints cannot be satisfied to within t, the problem is 
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is quite 
small, it might be appropriate to raise t by a factor of 10 or 100. Otherwise you should 
suspect some error in the data.
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Nonlinear functions are evaluated only at points that satisfy the bound and linear 
constraints. If there are regions where a function is undefined, every attempt should 
be made to eliminate these regions from the problem. For example, if 

, it is essential to place lower bounds on both variables. If 
t = 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log 
singularity is more serious. In general, keep x as far away from singularities as possible.)

If scaleopt (see page 136) is 1, feasibility is defined in terms of the scaled problem 
(because it is then more likely to be meaningful).

In practice, the nonlinear solvers use t as a feasibility tolerance for satisfying the bound 
and linear constraints in each QP subproblem. If the sum of infeasibilities cannot be 
reduced to zero, the QP subproblem is declared infeasible. The solver is then in the 
Elastic mode thereafter (with only the linearized nonlinear constraints defined to be 
elastic).

For the quadratic and linear solvers, note that if sInf is not small and you have not 
asked the solver to minimize the violations of the elastic variables (that is, you have not 
specified elastobj = 2), other points might have a significantly smaller sum of 
infeasibilities. The solvers do not attempt to find the solution that minimizes the sum 
unless elastobj = 2. (See Elasticobj on page 122 for further details.)

Funcprec

Function precision 
Type: numeric 
Default: ε0.8 ≈ 3.8·10−11 

Applicable for: Nonlinear solvers

The relative function precision is intended to be a measure of the relative accuracy with 
which the nonlinear functions can be computed. For example, if f(x) is computed as 
1000.56789 for some relevant x and if the first 6 significant digits are known to be 
correct, the appropriate value for the function precision would be 1e-6. (Ideally the 
functions should have a magnitude of order 1. If all functions are substantially less than 
1 in magnitude, the function precision should be the absolute precision. For example, 
if f(x) = 1.23456789·10−4 at some point and if the first 6 significant digits are known 
to be correct, the appropriate precision would be 1e-10.)

The default value is appropriate for simple analytic functions.

In some cases the function values are the result of extensive computations, possibly 
involving an iterative procedure that can provide rather few digits of precision at 

f x( ) x1 xlog 2+=
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reasonable cost. Specifying an appropriate function precision might lead to savings by 
allowing the line search procedure to terminate when the difference between function 
values along the search direction becomes as small as the absolute error in the values.

Hessdim

Hessian dimension 
Type: numeric 
Default: min{1000, n1 + 1}, where n1 in the nonlinear case is the number of 
nonlinear variables, in the quadratic case is the number of leading nonzero columns 
of the Hessian, and in the linear case is 0. 
Applicable for: All solvers

Let r be the value given by the hessdim property. This specifies that an r-by-r 
triangular matrix R is to be available for use by the Cholesky QP solver (to define the 
reduced Hessian according to RTR = ZTHZ). See the SNOPT and SQOPT user’s 
manuals for further details.

Hessfreq

Hessian frequency 
Type: numeric 
Default: 999,999 
Applicable for: Nonlinear solvers

If the hessmem property is set to 'full' and hessfreq BFGS updates have already 
been carried out, the Hessian approximation is reset to the identity matrix. (For certain 
problems occasional resets might improve convergence, but in general they should not 
be necessary.) hessmem set to 'full' and hessfreq set to 20 have a similar effect to 
hessmem set to 'limited' and hessupd set to 20 (except that the latter retains the 
current diagonal during resets).

Hessmem

Hessian memory 
Type: string 'full' or 'limited' 
Default: 'full' if the number of nonlinear variables is  75. When QP problem 
solver is set to conjugate-gradient, the default is always 'limited'. 
Applicable for: Nonlinear solvers

≤
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This option selects the method for storing and updating the approximate Hessian. 
(The nonlinear solvers use a quasi-Newton approximation to the Hessian of the 
Lagrangian. A BFGS update is applied after each major iteration.)

If Hessian full memory is specified, the approximate Hessian is treated as a dense 
matrix and the BFGS updates are applied explicitly. This option is most efficient when 
the number of nonlinear variables is not too large (say, less than 75). In this case, the 
storage requirement is fixed and you can expect 1-step Q-superlinear convergence to 
the solution.

Hessian limited memory should be used on problems where the number of nonlinear 
variables is very large. In this case a limited-memory procedure is used to update a 
diagonal Hessian approximation a limited number of times. 

Hessupd

Hessian updates 
Type: integer 
Default: 10 
Applicable for: Nonlinear solvers

If hessmem is set to limited memory and hessupd BFGS updates have already been 
carried out, all but the diagonal elements of the accumulated updates are discarded and 
the updating process starts again. Broadly speaking, the more updates stored, the 
better the quality of the approximate Hessian. However, the more vectors stored, the 
greater the cost of each QP iteration. The default value is likely to give a robust 
algorithm without significant expense, but faster convergence can sometimes be 
obtained with significantly fewer updates (e.g., hessupd = 5).

Infbound

Infinite bound size 
Type: positive numeric 
Default: 1.0·1020 

Applicable for: All solvers

Defines the “infinite” bound in the definition of the problem constraints. Any upper 
bound greater than or equal to this bound is regarded as plus infinity (and similarly for 
a lower bound less than or equal to -infbound). 
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Itlim

Iterations limit 
Type: nonnegative integer 
Default: 500 for nonlinear solvers, otherwise 3m, where m is the number of general 
constraints  
Applicable for: All solvers

For the linear and quadratic solvers, this is the maximum number of allowed iterations 
of the simplex method or the QP reduced-gradient algorithm. It is allowable to set 
itlim to 0 whereby the solver checks both feasibility and optimality.

For the nonlinear solvers, this is the number of minor iterations for the optimality 
phase of the QP subproblem. If itlim is exceeded, then all nonbasic QP variables that 
have not yet moved are frozen at their current values and the reduced QP is solved to 
optimality.

Note that more than itlim minor iterations might be necessary to solve the reduced 
QP to optimality. These extra iterations are necessary to ensure that the terminated 
point gives a suitable direction for the line search.

Note that totitlim (total iterations limit; see page 138) defines an independent 
absolute limit on the total number of minor iterations (summed over all QP 
subproblems).

Linesearch

Linesearch method 
Type: string 'derivative' or 'nonderivative' 
Default: 'derivative' 
Applicable for: Nonlinear solvers

At each major iteration a line search is used to improve the merit function. A 
derivative linesearch uses safeguarded cubic interpolation and requires both 
function and gradient values to compute estimates of the step. If some analytic 
derivatives are not provided or a nonderivative linesearch is specified, the solver 
employs a line search based upon safeguarded quadratic interpolation, which does not 
require gradient evaluations.

A nonderivative line search can be slightly less robust on difficult problems, and we 
recommend use of the default if the functions and derivatives can be computed at 
approximately the same cost. If the gradients are very expensive relative to the 
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functions, a nonderivative line search might give a significant decrease in computation 
time.

Linestol

Linesearch tolerance 
Type: numeric 
Default: 0.9 
Applicable for: Nonlinear solvers

This parameter controls the accuracy with which a step length is located along the 
direction of search during each iteration. At the start of each line search, the solver 
identifies a target directional derivative for the merit function. This parameter 
determines the accuracy to which this target value is approximated.

linestol must be a real value in the range 0 to 1. The default value of 0.9 requests 
just moderate accuracy in the line search. If the nonlinear functions are cheap to 
evaluate, a more accurate search might be appropriate; try a linestol value of 0.1, 
0.01 or 0.001. The number of major iterations might decrease.

If the nonlinear functions are expensive to evaluate, a less accurate search might be 
appropriate. If all gradients are known, try linestol = 0.99. (The number of major 
iterations might increase, but the total number of function evaluations could decrease 
enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each 
search requires only one to five function values (typically), but many function calls are 
then needed to estimate missing gradients for the next iteration.

Majfeastol

Major feasibility tolerance 
Type: numeric 
Default: 1.0·10−6 

Applicable for: Nonlinear solvers

This parameter specifies how accurately the nonlinear constraints should be satisfied. 
The default value of 1.0·10−6 is appropriate when the linear and nonlinear constraints 
contain data to roughly that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of 
the solution. It is required to satisfy
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where violi is the violation of the ith nonlinear constraint. If some of the problem 
functions are known to be of low accuracy, a larger major feasibility tolerance might be 
appropriate.

Majitlim

Major iterations limit 
Type: numeric 
Default: max(1000, m), where m is the number of general constraints 
Applicable for: Nonlinear solvers

This is the maximum number of major iterations allowed. It is intended to guard 
against an excessive number of linearizations of the constraints.

Majsteplim

Major step limit 
Type: numeric 
Default: 2.0 
Applicable for: Nonlinear solvers

This parameter limits the change in x during a line search. It applies to all nonlinear 
problems once the solver has found a “feasible solution” or “feasible subproblem.”

• A line search determines a step α over the range , where β is 1 if there are 
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the 
constraints are linear. Normally, the first step length tried is α1 = min(1, β).

• In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the 
components of x can lead to floating-point overflow. The parameter majsteplim is 
therefore used to define a limit (where p is the search direction 
and r the value of majsteplim), and the first evaluation of f(x) is at the potentially 
smaller step length . 

• Wherever possible, use upper and lower bounds on x s to prevent evaluation of 
nonlinear functions at meaningless points. The major step limit provides an 
additional safeguard. The default value majsteplim = 2.0 should not affect 
progress on well-behaved problems, but setting it to 0.1 or 0.01 might be helpful 
when rapidly varying functions are present. A “good” starting point might be 

rowerr max 
i

violi x 1+( )⁄ majfeastol≤=

0 α β≤<

β r 1 x+( ) p⁄=

α1 min 1 β β,( , )=
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required. An important application is to the class of nonlinear least-squares 
problems.

• In cases where several local optima exist, specifying a small value for majsteplim 
could help locate an optimum near the starting point.

Maximize

Maximize objective 
Type: string 'on' or 'off' 
Default: 'off' 
Applicable for: All solvers

Setting this property to on causes the objective to be maximized instead of minimized.

Opttol

Optimality tolerance 
Type: numeric 
Default: 1.0·10−6 

Applicable for: All solvers

The linear and quadratic solvers use this parameter to judge the size of the reduced 
gradients dj = gj − πT aj, where gj is the jth component of the gradient, aj is the 
associated column of the constraint matrix (A − I), and π is the set of dual variables.

By construction, the reduced gradients for basic variables are always 0. Let t be the 
optimality tolerance. The problem is declared optimal if the reduced gradients for 
nonbasic variables at their lower or upper bounds satisfy

respectively, and if   for superbasic variables.

In these tests, || π || is a measure of the size of the dual variables. It is included to make 
the tests independent of a scale factor on the objective function. The quantity || π || 
actually used is defined by

so that only large scale factors are allowed.

dj π⁄ t or dj π⁄ t≤–≥

dj π⁄ t≤

π max σ m⁄ 1,{ }  where σ, πi

i 1=

m

∑= =
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If the objective is scaled down to be very small, the optimality test reduces to 
comparing dj against 0.01t.

For the nonlinear solvers, opttol is the major optimality tolerance and specifies the 
final accuracy of the dual variables. On successful termination, the solvers compute a 
solution (x, s, π) such that

where Compj is an estimate of the complementarity slackness for variable j. The values 
Compj are computed from the final QP solution using the reduced gradients 
dj = gj − πT aj, as above. Hence you have

See the SNOPT user’s manual for further details.

Newsuplim

New superbasics limit 
Type: integer 
Default: 99 
Applicable for: Nonlinear solvers

This option causes early termination of the QP subproblems if the number of free 
variables has increased significantly since the first feasible point. If the number of new 
superbasics is greater than newsuplim, the nonbasic variables that have not yet moved 
are frozen and the resulting smaller QP is solved to optimality.

Parprice

Partial price 
Type: integer 
Default: 10 for linear problems, 1 for quadratic 
Applicable for: Linear and quadratic solvers

This parameter is recommended for large problems that have significantly more 
variables than constraints. It reduces the work required for each “pricing” operation 
(when a nonbasic variable is selected to become superbasic).

maxComp max 
j

Compj π⁄ opttol≤=

Compj

dj min xj lj– 1{ , }  if dj 0≥

dj–  min uj xj– 1{ , }  if dj 0<⎩
⎨
⎧

=
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When the partial price is 1, all columns of the constraint matrix (A − I) are searched. 
Otherwise, A and I are partitioned to give the partial price i roughly equal segments 
Aj, Ij (j = 1 to i). If the previous pricing search was successful on Aj, Ij, the next search 
begins on the segments Aj+1, Ij+1. (All subscripts here are modulo i.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable 
with the largest such reduced gradient (of appropriate sign) is selected to become 
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2, 
and so on.

Partial price t (or t/2 or t/3) might be appropriate for time-stage models having t time 
periods.

Pivtol

Pivot tolerance 
Type: numeric 
Default: 3.7·10−11 

Applicable for: All solvers

During solution of QP subproblems, the solver uses the pivot tolerance to prevent 
columns entering the basis if they would cause the basis to become almost singular. 

When x changes to x + α p for some search direction p, a “ratio test” is used to 
determine which component of x first reaches an upper or lower bound. The 
corresponding element of p is called the pivot element.

Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller 
than the pivot tolerance.

It is common for two or more variables to reach a bound at essentially the same time. 
In such cases, the (minor) feasibility tolerance (say t) provides some freedom to 
maximize the pivot element and thereby improve numerical stability. Excessively small 
values of t should therefore not be specified.

To a lesser extent, the expand frequency (property expfreq) also provides some 
freedom to maximize the pivot element. Excessively large values of expfreq should 
therefore not be specified.
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Print

Print information about the solver progress and solution to file 
Type: string 
Default: empty 
Applicable for: All solvers

When the print option is activated, the following information is output to the file 
during the solution process. All printed lines are less than 131 characters.

• An estimate of the working storage needed and the amount available.

• Some statistics about the problem being solved.

• The storage available for the LU factors of the basis matrix.

• A summary of the scaling procedure, if scaleopt > 0.

• Notes about the initial basis.

• The iteration log.

• Basis factorization statistics.

• The exit condition and some statistics about the solution obtained.

• The printed solution, if requested.

For a more detailed overview of the various sections of the print files, see the SQOPT 
and SNOPT user’s manuals.

Proxmeth

Proximal point method 
Type: 1 or 2 
Default: 1 
Applicable for: Nonlinear solvers

proxmeth set to 1 or 2 specifies minimization of || x − x0 ||1 or , respectively, 
when the starting point x0 is changed to satisfy the linear constraints (where x0 refers 
to nonlinear variables).

Qpsolver

QP problem solver 
Type: string 'cholesky', 'cg', or 'qn' 

1
2
--- x x0– 2

2
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Default: 'cholesky' 
Applicable for: All solvers

Specifies the active-set algorithm used to solve the QP problem, or in the nonlinear 
case, the QP subproblem. 

'cholesky' holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the 
QP iterations proceed, the dimension of R changes with the number of superbasic 
variables. If the number of superbasic variables increases beyond the value of reduced 
Hessian dimension (property Hessdim), the reduced Hessian cannot be stored and the 
solver switches to qpsolver = 'cg'.

The Cholesky solver is reactivated if the number of superbasics stabilizes at a value less 
than the reduced Hessian dimension.

'qn' solves the QP subproblem using a quasi-Newton method. In this case, R is the 
factor of a quasi-Newton approximate Hessian.

'cg' uses an active-set method similar to 'qn' but uses the conjugate-gradient 
method to solve all systems involving the reduced Hessian.

The Cholesky QP solver is the most robust but might require a significant amount of 
computation if the number of superbasics is large. 

The quasi-Newton QP solver does not require the computation of the exact R at the 
start of each QP and might be appropriate when the number of superbasics is large but 
each QP subproblem requires relatively few minor iterations.

The conjugate-gradient QP solver is appropriate for problems with large numbers of 
degrees of freedom (many superbasic variables). The Hessian memory option 
'hessmem' is defaulted to 'limited' when this solver is used.

Scaleopt

Scale option 
Type: integers 0, 1, or 2 
Default: 1 for quadratic and nonlinear problems, 2 for linear problems 
Applicable for: All solvers
 6 :  S O L V E R  P R O P E R T I E S



Three scale options are available:

Scaletol

Scale tolerance 
Type: numeric 
Default: 0.9 
Applicable for: All solvers

Scale tolerance affects how many passes might be needed through the constraint 
matrix. On each pass, the scaling procedure computes the ratio of the largest and 
smallest nonzero coefficients in each column:

If maxj ρj is less than scaletol times its previous value, another scaling pass is 
performed to adjust the row and column scales. Raising the scale tolerance from 0.9 
to 0.99 (for instance) usually increases the number of scaling passes through A. At 
most 10 passes are made.

Suplim

Superbasics limit 
Type: integer 
Default: n1 + 1, where n1 in the nonlinear case is the number of nonlinear variables, 

TABLE 6-3:  SCALE OPTIONS

SCALEOPT DESCRIPTION

0 No scaling. This is recommended if it is known that x and the constraint 
matrix (and Jacobian) never have very large elements (say, larger than 
1000).

1 Linear constraints and variables are scaled by an iterative procedure 
that attempts to make the matrix coefficients as close as possible to 1.0. 
This sometimes improves the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also, 
an additional scaling is performed that takes into account columns of 
(A − I) that are fixed or have positive lower bounds or negative upper 
bounds. If nonlinear constraints are present, the scales depend on the 
Jacobian at the first point that satisfies the linear constraints. Scale 
option 2 should therefore be used only if a good starting point is 
provided and the problem is not highly nonlinear.

ρj max 
i

aij min 
i

aij⁄( )        aij 0≠( )=
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in the quadratic case is the number of leading nonzero columns of the Hessian, and 
in the linear case is 0. 
Applicable for: All solvers

This parameter places a limit on the storage allocated for superbasic variables. Ideally, 
suplim should be set slightly larger than the “number of degrees of freedom” 
expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of 
freedom. (The number of variables lying strictly between their bounds is no more than 
m, the number of general constraints.) The default value of suplim is therefore 1.

The number of degrees of freedom is often called the “number of independent 
variables.”

For quadratic problems, suplim normally need not be greater than the number of 
leading nonzero columns of H. For many problems, suplim might be considerably 
smaller than that, which saves storage if the number of leading nonzero columns is very 
large.

For nonlinear problems, suplim normally need not be greater than n1 + 1, where n1 
is the number of nonlinear variables. For many problems it might be considerably 
smaller than n1. This saves storage if n1 is very large.

Totitlim

Total iterations limit 
Type: numerical 
Default: max{10000, 20m}, where m is the number of general constraints 
Applicable for: Nonlinear solvers

This is the maximum number of minor iterations allowed (that is, iterations of the 
simplex method or the QP algorithm), summed over all major iterations.

Verify

Verification level 
Type: integers −1, 0, 1, 2, or 3 
Default: 0 
Applicable for: Nonlinear solvers
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This option refers to finite-difference checks on the derivatives computed by 
user-provided routines. Derivatives are checked at the first point that satisfies all 
bounds and linear constraints.

Verify level 3 is intended mainly for use when developing a new function routine. 
Missing derivatives are not checked, so they result in no overhead.

Viollim

Violation limit 
Type: numeric 
Default: 10 
Applicable for: Nonlinear solvers

This keyword defines an absolute limit on the magnitude of the maximum constraint 
violation after the line search. On completion of the line search, the new iterate xk+1 
satisfies the condition

where x0 is the point at which the nonlinear constraints are first evaluated, and vi(x) is 
the ith nonlinear constraint violation vi(x) = max(0, li − fi(x), fi(x) − ui), where li and 
ui are the lower and upper bounds, respectively.

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible 
region whose size depends on the magnitude of τ. This makes it possible to keep the 
iterates within a region where the objective is expected to be well defined and bounded 
below. If the objective is bounded below for all values of the variables, then τ can be 
any large positive value.

TABLE 6-4:  THE VERIFY OPTION

VERIFY DESCRIPTION

-1 Derivative checking is disabled.

0 Only a “cheap” test is performed, requiring 2 calls to user functions.

1 Individual objective gradients are checked (with a more reliable test).

2 Individual columns of the problem Jacobian are checked.

3 Options 2 and 1 both occur (in that order).

vixk 1+ τ max ≤ 1 vi x0( ){ , }
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G l o s s a r y  
This glossary contains important terms in the Optimization Lab.
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G l o s s a r y  o f  T e rm s
bound constraints   Constraints that bound the variables: . 

cost function   See objective function.

goal function   See objective function.

linear constraints   Constraints that bound a linear transformation of the variables: 
. 

nonlinear constraints   Constraints that bound an arbitrary function of the variables: 
. 

objective function   The value of this function is what the optimization process attempts 
to minimize.

Opt structure   A COMSOL Script structure that contains the entire optimization 
problem and also solution data after the Opt structure is passed to one of the 
optimization routines.

xlb x xub≤ ≤

blb Ax bub≤ ≤

dlb c x( ) dub≤ ≤
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A active constraint 13

B bound constraints 9, 18

C constraint

active 13

inactive 13

constraints 8

defining 18

convex 9

convex quadratic programming 10

cost function 8

D documentation set 2

E equality constraints 8

F feasibility problems 8

G gradient 12

gradient, of the objective function 11

gradients

specifying 17

H Hessian 10, 12

specifying 16

hoop stress 63

I inactive constraint 13

inequality constraints 8

initial values

providing 20

J Jacobian

providing function for 18

Jacobian, of the constraint function 11

K Kuhn-Tucker conditions 14

L Lagrange multipliers 13

values of 21

Lagrangian 13

least-squares problems

linear 11

nonlinear 11

linear constraints 8, 9, 18

linear least-squares problem 11

linear optimization problems 9

linear programming 9

M maximization 9

minimization 8

N Nelder- Mead simplex search 22

Nelder-Mead simplex algorithm 22, 97

nonlinear constraints 8, 18

nonlinear least-squares problems 11

nonlinear optimization problems 10

O objective function 8

objective functions

specifying 16

Opt structure 16

optimality conditions 13

Optimization Lab

documentation set 2

P primal simplex method 21

Q quadratic programming 9

R range constraints 24

reduced gradients 15

reduced-Hessian active-set method 21

Rosenbrock function 47

S sequential quadratic programming 13

solution data 20

solver

for linear optimization problems 21

for nonlinear optimization problems 

21

for quadratic optimization problems 

21
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for unconstrained problems 22

using Nelder- Mead simplex search 22

solvers

compatibility chart for 22

solving optimization problems 20

spinning frequency 63

SQOPT/SNOPT output codes 20

T typographical conventions 2

U unconstrained minimization 8
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