
 Optimization
 LAB

V E R S I O N 1 . 1

USER’S GUIDE
 COMSOL
 Script

How to contact COMSOL:

Benelux
COMSOL BV
Röntgenlaan 19
2719 DX Zoetermeer
The Netherlands
Phone: +31 (0) 79 363 4230
Fax: +31 (0) 79 361 4212
info@femlab.nl
www.femlab.nl

Denmark
COMSOL A/S
Diplomvej 376
2800 Kgs. Lyngby
Phone: +45 88 70 82 00
Fax: +45 88 70 80 90
info@comsol.dk
www.comsol.dk

Finland
COMSOL OY
Arabianranta 6
FIN-00560 Helsinki
Phone: +358 9 2510 400
Fax: +358 9 2510 4010
info@comsol.fi
www.comsol.fi

France
COMSOL France
WTC, 5 pl. Robert Schuman
F-38000 Grenoble
Phone: +33 (0)4 76 46 49 01
Fax: +33 (0)4 76 46 07 42
info@comsol.fr
www.comsol.fr

Germany
FEMLAB GmbH
Berliner Str. 4
D-37073 Göttingen
Phone: +49-551-99721-0
Fax: +49-551-99721-29
info@femlab.de
www.femlab.de

Italy
COMSOL S.r.l.
Via Vittorio Emanuele II, 22
25122 Brescia
Phone: +39-030-3793800
Fax: +39-030-3793899
info.it@comsol.com
www.it.comsol.com

Norway
COMSOL AS
Søndre gate 7
NO-7485 Trondheim
Phone: +47 73 84 24 00
Fax: +47 73 84 24 01
info@comsol.no
www.comsol.no

Sweden
COMSOL AB
Tegnérgatan 23
SE-111 40 Stockholm
Phone: +46 8 412 95 00
Fax: +46 8 412 95 10
info@comsol.se
www.comsol.se

Switzerland
FEMLAB GmbH
Technoparkstrasse 1
CH-8005 Zürich
Phone: +41 (0)44 445 2140
Fax: +41 (0)44 445 2141
info@femlab.ch
www.femlab.ch

United Kingdom
COMSOL Ltd.
UH Innovation Centre
College Lane
Hatfield
Hertfordshire AL10 9AB
Phone:+44-(0)-1707 284747
Fax: +44-(0)-1707 284746
info.uk@comsol.com
www.uk.comsol.com

United States
COMSOL, Inc.
1 New England Executive Park
Suite 350
Burlington, MA 01803
Phone: +1-781-273-3322
Fax: +1-781-273-6603

COMSOL, Inc.
10850 Wilshire Boulevard
Suite 800
Los Angeles, CA 90024
Phone: +1-310-441-4800
Fax: +1-310-441-0868

COMSOL, Inc.
744 Cowper Street
Palo Alto, CA 94301
Phone: +1-650-324-9935
Fax: +1-650-324-9936

info@comsol.com
www.comsol.com

For a complete list of international
representatives, visit
www.comsol.com/contact

Company home page
www.comsol.com

COMSOL user forums
www.comsol.com/support/forums

Optimization Lab User’s Guide
 © COPYRIGHT 1994–2007 by COMSOL AB. All rights reserved

Patent pending

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from COMSOL AB.

COMSOL, COMSOL Multiphysics, COMSOL Reaction Engineering Lab, and FEMLAB are registered
trademarks of COMSOL AB. COMSOL Script is a trademark of COMSOL AB.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Version: October 2007 COMSOL 3.4

C O N T E N T S

C h a p t e r 1 : I n t r o d u c t i o n

The Documentation Set 2

Typographical Conventions 2

About the Optimization Lab 4

Overview 5

What Can the Optimization Lab Do? 5

Which Problems Can it Solve? 5

C h a p t e r 2 : U s i n g t h e O p t i m i z a t i o n L a b

Formulating Optimization Problems 8

Basic Concepts in Optimization 8

Types of Optimization Problems 9

Optimization Algorithms . 12

Creating the Opt Structure 16

The Opt Structure . 16

Defining the Objective Function 16

Defining Constraints . 18

Solving Optimization Problems 20

General . 20

Providing Initial Values . 20

Interpreting the Solution . 20

The Optimization Lab Solvers 21

Solver Compatibility Chart 22

A First Optimization Example 24

The Optimization Problem 24
C O N T E N T S | i

ii | C O N T E N T S
Creating the Opt Structure and Solving the Problem 25

Bibliography 27

C h a p t e r 3 : O p t i m i z a t i o n E x a m p l e s

Overview 30

Circumscribing Points on a Plane 31

Introduction . 31

Unconstrained Optimization 31

Nonlinear Optimization . 35

Quadratic Optimization . 39

Inscribing a Circle in a Polytope 43

Linear Optimization . 43

The Rosenbrock Function 47

C h a p t e r 4 : M u l t i p h y s i c s O p t i m i z a t i o n

Overview 50

SPICE Parameter Extraction for a Semiconductor Diode 51

Introduction . 51

Model Definition . 51

Results and Discussion. . 56

Modeling in the Graphical User Interface 57

Modeling in COMSOL Script 57

Spinning Gear 63

Introduction . 63

Model Definition . 64

Reference . 64

Modeling using the Graphical User Interface 64

Modeling using COMSOL Script 65

C h a p t e r 5 : C o m m a n d R e f e r e n c e

Summary of Commands 74

Commands Grouped by Function 75

optgetstatus. . 76

optim . 77

optlin . 82

optlinlsq . 84

optnlin . 86

optnlinlsq. . 90

optnm . 95

optprop . 99

optpropnlin . 103

optquad . 107

optsetstatus . 110

Diagnostics 111

Error Messages and Troubleshooting 111

C h a p t e r 6 : S o l v e r P r o p e r t i e s

Gradient-Based Solver Properties 120

Cendiff. 120

Checkfreq . 120

Diffint . 121

Elastic . 121

Elasticobj . 122

Elasticbc . 123

Elasticlc . 123

Elasticw . 124

Expfreq . 124

Facfreq. 125
C O N T E N T S | iii

iv | C O N T E N T S
Feastol . 125

Funcprec . 126

Hessdim . 127

Hessfreq . 127

Hessmem. 127

Hessupd . 128

Infbound . 128

Itlim . 129

Linesearch . 129

Linestol . 130

Majfeastol . 130

Majitlim . 131

Majsteplim . 131

Maximize . 132

Opttol . 132

Newsuplim . 133

Parprice . 133

Pivtol . 134

Print . 135

Proxmeth . 135

Qpsolver . 135

Scaleopt . 136

Scaletol . 137

Suplim . 137

Totitlim . 138

Verify . 138

Viollim . 139

C h a p t e r 7 : G l o s s a r y

Glossary of Terms 142

INDEX 143

 1
I n t r o d u c t i o n
Welcome to the Optimization Lab! This User’s Guide details features and
techniques to help you use this powerful package for all kinds of optimization.
Through examples and code samples you will get an understanding of the
optimization problems it is possible to solve and also learn about the solvers and
algorithms that the Optimization Lab contains.

This introductory chapter provides an overview of the Optimization Lab.
 1

2 | C H A P T E R 1
Th e Do cumen t a t i o n S e t

The documentation for the Optimization Lab consists of this book, the Optimization
Lab User’s Guide, which provides full information about the product and its
applications for optimization tasks. In addition, the Optimization Lab includes the
SQOPT User’s Guide and SNOPT User’s Guide in PDF versions. For the general use
of the COMSOL Script language and for installation of the software, the following
resources provide additional information:

• COMSOL Quick Installation Guide—basic information for installing the
COMSOL software and getting started. Included in the DVD/CD package.

• COMSOL New Release Highlights—information about new features and models
in the 3.4 release. Included in the DVD/CD package.

• COMSOL License Agreement—the license agreement. Included in the DVD/CD
package.

• COMSOL Installation and Operations Guide—besides covering various
installation options for COMSOL Script, this manual describes the system
requirements and options for running various COMSOL software products.

• COMSOL Script User’s Guide—explains how to use the vast range of functions in
the COMSOL Script language. This guide also describes COMSOL Script’s
programming-language features and the powerful graphics capabilities and tools it
provides for creating custom graphical user interfaces.

• COMSOL Script Command Reference—provided only as online documentation as
a PDF and in HTML format, it reviews each function in the COMSOL Script
environment with syntax descriptions and examples.

Note: Following installation, the full documentation set is available on your
computer in electronic versions—as PDF files and in HTML format.

Typographical Conventions

All COMSOL manuals use a set of consistent typographical conventions that should
make it easy for you to follow the discussion, realize what you can expect to see on the
: I N T R O D U C T I O N

screen, and know which data you must enter into various data-entry fields. In
particular, you should be aware of these conventions:

• A boldface font of the shown size and style indicates that the given word(s) appear
exactly that way on the COMSOL graphical user interface (for toolbar buttons in
the corresponding tooltip). For instance, we often refer to the Model Navigator,
which is the window that appears when you start a new modeling session in
COMSOL; the corresponding window on the screen has the title Model Navigator.
As another example, the instructions might say to click the Multiphysics button, and
the boldface font indicates that you can expect to see a button with that exact label
on the COMSOL user interface.

• The names of other items on the graphical user interface that do not have direct
labels contain a leading uppercase letter. For instance, we often refer to the Draw
toolbar; this vertical bar containing many icons appears on the left side of the user
interface during geometry modeling. However, nowhere on the screen will you see
the term “Draw” referring to this toolbar (if it were on the screen, we would print
it in this manual as the Draw menu).

• The symbol > indicates a menu item or an item in a folder in the Model Navigator.
For example, Physics>Equation System>Subdomain Settings is equivalent to: On the
Physics menu, point to Equation System and then click Subdomain Settings.
COMSOL Multiphysics>Heat Transfer>Conduction means: Open the COMSOL

Multiphysics folder, open the Heat Transfer folder, and select Conduction.

• A Code (monospace) font indicates keyboard entries in the user interface. You might
see an instruction such as “Type 1.25 in the Current density edit field.” The
monospace font also indicates COMSOL Script codes.

• An italic font indicates the introduction of important terminology. Expect to find
an explanation in the same paragraph or in the Glossary. The names of books in the
COMSOL documentation set also appear using an italic font.
T H E D O C U M E N T A T I O N S E T | 3

4 | C H A P T E R 1
Abou t t h e Op t im i z a t i o n L ab

The Optimization Lab extends the COMSOL Script environment—an open and
extensible language for technical computing of any kind—with a suite of tools for
solving optimization problems.

The optimization algorithms in this product build on the proven SNOPT package
developed by Prof. Philip Gill (University of California, San Diego) along with Profs.
Walter Murray and Michael Saunders (Stanford University). SNOPT is a
general-purpose system for large-scale nonlinearly constrained optimization.

The Optimization Lab builds on a flexible data structure, the Opt structure, which
contains the entire optimization problem within a single variable. The main
optimization function, optim, selects the proper solver algorithm depending on
properties of the objective function and the constraints. Linearity, for example, allows
optim to take appropriate shortcuts.

For optimization involving fields of physics and geometric properties, such as shape
optimization, you can connect the Optimization Lab to COMSOL Multiphysics to
perform optimization on a finite element model.

This documentation set introduces you to the full range of functionality in the
Optimization Lab. We are certain that you will come up with some very creative uses
of the powerful optimization tools it provides. We are anxious to hear about them and
invite you to get in touch with us with any feedback whatsoever. We plan on
developing the Optimization Lab even further, so let us know what kinds of
functionality would serve you best. Contact us at suggest@comsol.com with any
questions or comments you might have.
: I N T R O D U C T I O N

Ove r v i ew

What Can the Optimization Lab Do?

The Optimization Lab is a powerful collection of optimization solvers based on the
proven SNOPT and SQOPT codes developed by Philip Gill, Walter Murray, and
Michael Saunders. You can use the Optimization Lab to solve large-scale linear and
nonlinear optimization problems. It is especially effective for nonlinear problems,
where functions and gradients can be expensive to evaluate. A solver routine that is
common to all problem types, optim, chooses the best solver type for the optimization
problem that you specify, and it uses a convenient structure variable, the Opt structure.

The Optimization Lab includes solvers for the following classes of problems:

• Linear optimization

• Quadratic optimization

• Nonlinear optimization

• Linear least squares

• Nonlinear least squares

• Unconstrained nonlinear optimization (Nelder-Mead search algorithm)

The Optimization Lab is fully integrated within the COMSOL Script
technical-computing environment, which provides an open and extensible scripting
tool for further data analysis and visualization.

By using this software together with other members of the COMSOL Multiphysics
product family, you can perform optimization of space-dependent multiphysics
problems.

Which Problems Can it Solve?

The Optimization Lab provides tools for solving optimization problems within a wide
range of applications:

• General-purpose linear programming, quadratic programming, and nonlinear
programming

• Optimization problems in engineering, economics, and finance
O V E R V I E W | 5

6 | C H A P T E R 1
• Trajectory optimization, optimal control, engineering design, nonlinear networks,
trade models, and the like

• Multiphysics applications together with COMSOL Multiphysics and COMSOL
Script
: I N T R O D U C T I O N

 2
U s i n g t h e O p t i m i z a t i o n L a b
This chapter describes how to use the Optimization Lab to solve different types of
optimization problems. It also shows how to define an optimization problem using
the Opt structure—the data structure that you use to define all types of
optimization problems in the Optimization Lab. Finally it describes the solvers and
their properties, concluding with a small quadratic optimization example that puts
all this information together.
 7

8 | C H A P T E R
Fo rmu l a t i n g Op t im i z a t i o n P r ob l em s

Basic Concepts in Optimization

Optimization deals with minimizing (or maximizing) the value of a function. The
function that you want to minimize, f(x), is usually called the objective function or cost
function. In addition to the objective function, optimization problems often include
constraints. The Optimization Lab solves optimization problems in the form

Here, f(x) is the objective function, which you can specify in a number of different
formats. In addition, there are three types of constraints:

• The matrix A defines the linear constraints together with the vectors blb and bub,
which are the lower and upper bounds, respectively.

• The vector function c(x) defines the nonlinear constraints with the lower and
upper bounds dlb and dub (vectors), respectively.

• The vectors xlb and xub define the lower and upper bounds for the variables x,
respectively.

Note: These are inequality constraints. You can define an equality constraint by
setting the upper bound equal to the lower bound. For example, to define the j th
linear constraint as an equality, set blb(j) = bub(j).

For a specific optimization problem, some of the available constraints might not apply.
For an unconstrained minimization there are no constraints.

If x satisfies the constraints, then x is called feasible. The “optimal value” p* of the
problem is defined as if no x satisfies the constraints and as if f is unbounded
from below. Otherwise p* is the GLB (greatest lower bound) of f over the feasible set.
If there is a feasible x that makes f(x) = p*, then x belongs to a set of optimal points. A
feasibility problem deals with finding the x satisfying the constraints.

minimize
x

f x()

subject to blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤

+∞ ∞–
2 : U S I N G T H E O P T I M I Z A T I O N L A B

M A X I M I Z I N G I N S T E A D O F M I N I M I Z I N G

The functions in the Optimization Lab solve minimization problems. To instead find
the maximum of the objective function, set the solver property 'maximize' to 'on'
for the gradient-based solvers. For optnm, to maximize f(x), provide −f(x) as the
objective function.

Types of Optimization Problems

The most demanding problems have a nonlinear objective function and nonlinear
constraints. For important subclasses of problems, the algorithms might take shortcuts
to improve speed and robustness. For these reasons, the Optimization Lab
distinguishes between linear and quadratic problems, also called linear programming
(LP) and quadratic programming (QP) problems.

Because the constraints are linear, the feasible set is convex, that is, the entire line
between two feasible points is feasible. Additionally, the objective function is convex
for the linear problem and also for quadratic problems with a semidefinite matrix H.

L I N E A R O P T I M I Z A T I O N P R O B L E M S

A linear optimization problem has a linear objective function and only linear
constraints:

The objective function cTx is the dot product of the vector c and the vector of variables
x. In addition, there are two types of constraints:

• The matrix A defines the linear constraints together with the vectors blb and bub,
which are the lower bounds and upper bounds, respectively. The number of rows in
A corresponds to the number of constraints. The number of columns must match
the number of variables. The number of elements in the bounds blb and bub
corresponds to the number of constraints.

• The vectors xlb and xub define the bound constraints, that is, the lower and upper
bounds for the variables x. The number of elements in the bounds xlb and xub must
match the number of variables.

minimize
x

cTx

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤
F O R M U L A T I N G O P T I M I Z A T I O N P R O B L E M S | 9

10 | C H A P T E R
If an optimization problem appears to be more general than the linear optimization
problem, it is wise to examine the quadratic and nonlinear optimization problems in
the following sections.

Q U A D R A T I C O P T I M I Z A T I O N P R O B L E M S

A quadratic problem (or convex quadratic programming problem) has a quadratic
objective function and only linear constraints:

The matrix H (the Hessian) defines the quadratic term, and the vector c defines the
linear part. For the unconstrained problem to have a local minimum, the Hessian must
be positive semidefinite, that is, xTHx ≥ 0 for all x. If H = 0 the problem is linear. The
Optimization Lab always treats problems with quadratic constraints as nonlinear.

The linear constraints are exactly the same as for the linear problem as outlined in the
previous section.

If an optimization problem appears to be more general than the quadratic
optimization problem, it is wise to examine the nonlinear optimization problem type
in the following section. In particular, if H is indefinite you must treat the objective
function as a general nonlinear function and accept that the solution might be just a
local minimizer.

N O N L I N E A R O P T I M I Z A T I O N P R O B L E M S

A nonlinear optimization problem has a nonlinear objective function, nonlinear
constraints, or both:

The objective function f(x) can be a nonlinear function, and the constraint function
c(x) defines the nonlinear constraints . The number of elements in the
bounds dlb and dub must match the number of nonlinear constraints.

minimize
x

1
2
---x

T
Hx c+

T
x

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤

minimize
x

f x()

subject to blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤

dlb c x() dub≤≤
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

The general nonlinear optimization solver in the Optimization Lab is gradient based,
that is, it uses the gradient of the objective function and the Jacobian of the constraint
function. The gradient is the column vector of derivatives of the objective function
with respect to the variables

, (2-1)

and the Jacobian of the constraint function is the matrix of derivatives of constraint
functions with respect to the variables

. (2-2)

In addition to the nonlinear constraints, the problem description can include linear
constraints, which are in the same form as in the previous sections.

L I N E A R L E A S T - S Q U A R E S P R O B L E M S

A constrained linear least-squares problem is a particular type of quadratic problem,

which is always convex. C is an m-by-n matrix, where m is the length of the column
vector d, and n is the length of the vector x. When the columns of C are linearly
dependent, the Hessian is semidefinite, but it is still possible to find a local minimizer,
albeit nonunique.

The constraints of the linear least-squares problem are the same as for the linear and
quadratic optimization problems.

N O N L I N E A R L E A S T - S Q U A R E S P R O B L E M S

The Optimization Lab also treats constrained nonlinear least-squares problems of the
form

gi xi∂
∂f

=

Jij xj∂
∂ci=

minimize
x

1
2
--- Cx d–

2

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤
F O R M U L A T I N G O P T I M I Z A T I O N P R O B L E M S | 11

12 | C H A P T E R
where the vector-valued function F(x) can be a nonlinear function of the variables. The
constraints of the nonlinear least-squares problem are the same as for the nonlinear
optimization problem.

Optimization Algorithms

Starting at a feasible point (possibly after locating one, if none are known), an
optimization algorithm works iteratively by sampling the objective function and
constraints in the vicinity, then it moves to decrease the objective function without
violating the constraints. The gradient g(x) is the n-vector of first derivatives, and the
Hessian H(x) is the n-by-n matrix of second derivatives of the objective,

.

If the objective is differentiable, it is well approximated by

,

and a move in the gradient direction changes the objective most rapidly. For
twice-differentiable functions,

furnishes a much more accurate local approximation, the basis for the effective
algorithms in the Optimization Lab, based on quadratic programming (QP). The
Optimization Lab also provides a search algorithm (optnm) for unconstrained
minimization of nonsmooth functions, which does not rely on any derivative
information at the expense of using many samples.

The search stops when the estimated improvement that is possible—as judged by, for
example, the magnitude of the “reduced” gradient (see “Reduced-Gradient Methods”
on page 14) or the change over the last iteration—becomes small enough.

minimize
x

1
2
--- F x() 2 1

2
--- Fi

i
∑ x()

2
=

subject to blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤

gi xi∂
∂ f x()= Hij xj∂

∂ gi x()=,
xj∂
∂

xi∂
∂ f x()= i j, , 1 … n, ,=

f x h+() f x() g x()Th+≈

f x h+() f x() g x()Th 1
2
---hTH x()h+ +≈
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

Problems with nonlinear constraints are solved with a sequential quadratic
programming (SQP) method in which a reduced-gradient method solves each QP
subproblem.

O P T I M A L I T Y C O N D I T I O N S A N D L A G R A N G E M U L T I P L I E R S

Consider an inequality constraint . If at a point , then the
constraint is called active at ; otherwise it is inactive. Constraints that are inactive at
the optimum can be disregarded, and the active constraints can be replaced by
equalities. Note that it is not possible to know beforehand which will be the active set
of constraints.

Note: The next section assumes that all constraints, whether linear, nonlinear, or
bound constraints, are included in c(x).

A local optimum of the equality-constrained problem

 (2-3)

is characterized by the 1st-order optimality conditions

which say that a perturbation to x that does not violate any of the constraints (to first
order) produces no 1st-order change to the objective. The Lagrangian,

,

is the sum of the objective function and a sum of the constraint functions weighted by
the Lagrange multipliers, y. L(x, y) has a stationary point at a minimum in
Equation 2-3.

For a problem involving inequality constraints

c x() 0≤ c x() 0= x
x

minimize
x

f x()

subject to c x() 0=

g JTy+ 0=

c x() 0=

L x y,() f x() yTc x()+=

minimize
x

f x()

subject to c x() 0≤
F O R M U L A T I N G O P T I M I Z A T I O N P R O B L E M S | 13

14 | C H A P T E R
the 1st-order optimality conditions are

Only the active constraints have a corresponding nonzero Lagrange multiplier. These
conditions are known as the Kuhn-Tucker necessary conditions.

To see how the Lagrange multipliers enter into the problem formulation of the
Optimization Lab, consider the most general optimization problem definition

The 1st-order optimality conditions are

.

Note: Positive and negative multipliers indicate active lower and upper bounds,
respectively.

Reduced-Gradient Methods
Multipliers convey useful information: nonzero values are the costs in
objective-function units of satisfaction of the constraint. Algorithms for constrained
problems predict the active set, solve the equality-constrained problem, and check for
violation of the (presumedly) inactive constraints and possible release of the active
constraints. The active set strategy selects the active set for the next step. The
reduced-gradient algorithms for linear constraints choose an active set and optimize
within the associated subspace, perhaps adding constraints one by one to the active set
if they are encountered before the objective is sufficiently optimized. They then
consider releasing an active constraint and continuing as before. The Optimization Lab

g JTy+ 0=

c x() 0≤
y 0≥

minimize
x

f x()

subject to blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤

g x() AT ylcub
ylclb

+() JT yncub
ynclb

+() ybcub
ybclb

+ + + + 0=

ylcub
0 yncub

0 ybcub
0≥,≥,≥

ylclb
0≤ ynclb

0≤ ybclb
0≤,,

blb Ax bub≤ ≤ dlb c x() dub≤ ≤ xlb x xub≤ ≤, ,
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

algorithms are reduced-gradient methods. They use the active constraints to eliminate
some of the variables, effectively reducing the dimension of the search space and
eliminating the constraints. Gradients in this space are called reduced gradients.

For problems with nonlinear constraints, the SQP algorithm ultimately solves a QP
subproblem defined at the optimal point. The reduced-gradient notion therefore still
applies.
F O R M U L A T I N G O P T I M I Z A T I O N P R O B L E M S | 15

16 | C H A P T E R
C r e a t i n g t h e Op t S t r u c t u r e

The Opt Structure

The Opt structure contains a complete representation of an optimization problem and
its solution. To define a problem, you define its objective function in the Opt
structure’s opt.obj field, the nonlinear constraints in the opt.nc field, the linear
constraints in the opt.lc field, and finally the bound constraints in the opt.bc field.

The Opt structure can also provide initial values of the variables to the optimization
solvers in the opt.init field. The solvers store the solution to the optimization
problem in the opt.sol field.

Defining the Objective Function

You specify the objective function in the Opt structure’s opt.obj field. In addition to
the description below, the entry optim on page 77 in the chapter “Command
Reference” contains a table with information about the ways you can specify the
objective function.

L I N E A R O P T I M I Z A T I O N P R O B L E M S

For linear optimization problems, you need specify only the vector c in the objective
function . Use the opt.obj.c field for this vector, which must have the
same number of elements as the number of variables. Strictly speaking, c should be a
column vector, but you can enter a row vector as well. In addition, it is good practice
to specify that the problem is linear: opt.obj.form='lin'.

Q U A D R A T I C O P T I M I Z A T I O N P R O B L E M S

For quadratic optimization problems you specify the Hessian H and the vector c of the
objective function . Use the opt.obj.c field for the vector and
the opt.obj.H field for the matrix. The number of elements in c as well as the number
of rows and columns in H must be the same as the number of variables.

Alternatively, you can specify the Hessian as the name of a function that computes the
matrix-vector product Hx for any given vector x. This allows you to exploit structure
or sparsity in H.

f x() cTx=

f x() 1
2
---x

T
Hx cTx+=
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

You must specify at least one of the fields opt.obj.H or opt.obj.c. Strictly speaking,
c should be a column vector, but you can enter a row vector, as well. In addition, it is
good practice to specify that the problem is quadratic: opt.obj.form='quad'.

N O N L I N E A R O P T I M I Z A T I O N P R O B L E M S

Specify the objective function in the opt.obj.f field of the Opt structure. You can
give the function either as a string, denoting the function name, or as an inline
function. Similarly, you specify the gradient of the objective function in the field
opt.obj.g. You can omit the gradient, but it is good practice to include it, when
available, for performance reasons.

If you provide the same function name in the fields opt.obj.f and opt.obj.g, the
function must compute both, with the first output argument being the objective
function and the second its gradient. The definition of the gradient appears in
Equation 2-1.

Normally, the solver tries to estimate the gradient sparsity pattern through repeated
objective function evaluations. This process can be very expensive, but you can avoid
it by providing the sparsity pattern explicitly as a sparse matrix in the field
opt.obj.ptrn. In addition, it is good practice to specify that the problem is nonlinear:
opt.obj.form = 'nlin'.

L I N E A R L E A S T - S Q U A R E S O P T I M I Z A T I O N P R O B L E M S

For linear least-squares problems, the objective function looks like

.

Specify C and d in opt.obj.C and opt.obj.d, respectively. The number of columns
in C must match the number of variables, and the number of rows must match the
length of d. In addition, it is good practice to specify that the problem is a linear
least-squares problem: opt.obj.form = 'linlsq'.

N O N L I N E A R L E A S T - S Q U A R E S O P T I M I Z A T I O N P R O B L E M S

For nonlinear least-squares problems the objective function looks like

.

1
2
--- Cx d–

2

f x() 1
2
--- F x() 2 1

2
--- Fi

i
∑ x()

2
= =
C R E A T I N G T H E O P T S T R U C T U R E | 17

18 | C H A P T E R
Specify F by providing the name of a function that returns the vector Fi (not the sum
of squares) in the field opt.obj.F. Optionally, provide the name of a function that
returns the Jacobian of F(x), that is, the matrix

in the field opt.obj.J. The solver by default tries to evaluate a sparsity pattern for J
through repeated evaluations of F. To avoid this expensive process, you can provide
the pattern explicitly as a sparse matrix in opt.obj.ptrn. In addition, it is good
practice to specify that the problem is a nonlinear least-squares problem:
opt.obj.form='nlinlsq'.

Defining Constraints

B O U N D C O N S T R A I N T S

Use the fields opt.bc.lb and opt.bc.ub to specify lower and upper bounds,
respectively, on the variables. Both fields should be column vectors whose length
matches the number of variables, but you can use row vectors, as well. Instead of using
vectors you can also specify a single value that sets the default for all constraints.

If a problem does not contain any bound constraints, you can omit the opt.bc field.

L I N E A R C O N S T R A I N T S

Use the field opt.lc.A to specify the matrix A of the linear constraints, and use the
fields opt.lc.lb and opt.lc.ub for their lower and upper bounds, respectively. The
number of rows in A must correspond to the number of constraints, and the number
of rows must match the number of variables. Both opt.lc.lb and opt.lc.ub should
be column vectors whose length matches the number of variables, but you can use row
vectors, as well. Instead of vectors you can also specify a single value that sets the
default for all constraints.

If a problem does not contain any linear constraints, you can omit the opt.lc field.

N O N L I N E A R C O N S T R A I N T S

Specify the function that computes the nonlinear constraints in the opt.nc.c field of
the Opt structure. The function should compute the values of all nonlinear constraints
and can be given either as a string denoting the function name or as an inline function.
Similarly, specify the Jacobian of the constraint function in the field opt.nc.J. You can
omit the Jacobian, but it is good practice to provide it, when available, for performance

Jij xj∂
∂Fi=
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

reasons. Also for performance reasons, it is a good idea to provide the Jacobian sparsity
pattern as a sparse matrix in the field opt.nc.ptrn. Otherwise, the solver will try to
estimate the sparsity pattern through repeated evaluations of the constraint residual.

If you provide the same function name in the fields opt.nc.c and opt.nc.J, the
function must compute both, with the first output argument being the constraints and
the second its Jacobian.
C R E A T I N G T H E O P T S T R U C T U R E | 19

20 | C H A P T E R
S o l v i n g Op t im i z a t i o n P r ob l em s

General

All Optimization Lab solvers except optnm share a common interface function,
optim, which solves optimization problems of all available types. It automatically
dispatches an optimization problem to the least general optimization solver that can
handle the problem.

To run the optim solver on an optimization problem that you have set up in the Opt
structure opt, use the call

opt.sol=optim(opt);

Upon successful completion, the solver puts the result in the opt.sol field.

Providing Initial Values

All solvers benefit from getting an initial guess for the variables. You can provide it in
the Opt structure as a vector in the opt.init.x field. Make sure that its length
matches the number of variables. Formally it should be a column vector, but the
Optimization Lab allows you to enter a row vector, as well.

For the nonlinear solver you might want to specify initial values for the Lagrange
multipliers, too. See optnlin and optnlinlsq in the “Command Reference” chapter
for details.

Interpreting the Solution

The field opt.sol contains output information from the solver. The optimal values for
the variables appears in the opt.sol.x field, the extremum appears in the
opt.sol.eval.f field, and the value of the constraints, if any, appears in the
opt.sol.eval.bc, opt.sol.eval.lc and opt.sol.eval.nc fields.

In addition, you can find information about the success of the computation in
opt.sol.exit. A value of 1 indicates success, and a value of 0 indicates failure.
Further, opt.sol.msg gives a more descriptive text for the result of the computation.
(The corresponding SQOPT/SNOPT output code is available in the field
opt.sol.info.) The name of the algorithm ultimately called by optim is available in
the field opt.sol.algorithm.
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

Auxiliary information on the computation is available in the field opt.sol.xinfo. See
the entry for optim on page 77 in the “Command Reference” chapter for more
information.

You can also find the values of the Lagrange multipliers for the constraints in the
opt.sol.y structure. The opt.sol.y.bc field contains the Lagrange multipliers for
the bound constraints, the opt.sol.y.lc field contains the Lagrange multipliers for
the linear constraints, and the opt.sol.y.nc field contains the Lagrange multipliers
for the nonlinear constraints.

The Optimization Lab Solvers

The following list describes the various solvers in the Optimization Lab.

T H E L I N E A R O P T I M I Z A T I O N S O L V E R

The linear optimization solver, optlin, is based on the SQOPT solver (Ref. 1) and
uses a sparse implementation of the primal simplex method.

T H E Q U A D R A T I C O P T I M I Z A T I O N S O L V E R

The solver for quadratic optimization problems, optquad, is also based on the SQOPT
solver (Ref. 1), which uses a reduced-Hessian active-set method, also known as a
reduced-gradient method.

T H E N O N L I N E A R O P T I M I Z A T I O N S O L V E R

The solver for nonlinear optimization problems, optnlin, is based on the SNOPT
solver (Ref. 2), which uses a sparse sequential quadratic programming (SQP) method,
with SQOPT as the QP subproblem solver.

T H E L I N E A R L E A S T - S Q U A R E S O P T I M I Z A T I O N P R O B L E M S O L V E R

To solve linear least-squares optimization problems, the Optimization Lab’s
optlinlsq solver uses the SQOPT package with the following objective function:

.

The implementation of the Hessian-vector products is as CT(Cx), without forming
CTC explicitly.

f x() 1
2
---xTCTCx dTCx–

1
2
---d

T
d+=
S O L V I N G O P T I M I Z A T I O N P R O B L E M S | 21

22 | C H A P T E R

NLINEAR
NSTRAINT
T H E N O N L I N E A R L E A S T - S Q U A R E S O P T I M I Z A T I O N P R O B L E M S O L V E R

To solve nonlinear least-squares optimization problems, the Optimization Lab’s
optnlinlsq solver uses the SNOPT package with the following objective function and
gradient:

T H E N E L D E R - M E A D S O L V E R F O R U N C O N S T R A I N E D P R O B L E M S

The Optimization Lab contains a simple solver for nonlinear unconstrained
optimization problems (those where there are no constraints on the variables). The
optnm solver uses the Nelder-Mead simplex algorithm as defined in Ref. 3. Because this
is not a gradient-based method, it is particularly useful for the minimization of
nonsmooth functions.

Solver Compatibility Chart

The solvers in the Optimization Lab cover many types of optimization problems.
There is also a general optimization solver, optim, which solves an optimization
problem by looking at the fields of the opt structure and calling the most appropriate
solver among optlin, optquad, optnlin, optlinlsq, and optnlinlsq. For
example, a general nonlinear objective function or a quadratic objective function with
nonlinear constraints results in optnlin being called. To control the solver selection
in optim, you can specify the problem type in the opt.obj.form field (see the
reference entry for optim on page 77 for more information).

The following table shows the compatibility among the solvers and the types of
optimization problems you can solve with the Optimization Lab.

f x() 1
2
--- Fi

i
∑ x()

2
=

g x() JTF=

TABLE 2-1: OPTIMIZATION SOLVER/OPTIMIZATION PROBLEM COMPATIBILITY CHART

SOLVER LINEAR
PROBLEMS

QUADRATIC
PROBLEMS

NONLINEAR
PROBLEMS

LINEAR
LEAST-
SQUARES

NONLINEAR
LEAST-
SQUARES

LINEAR
CONSTRAINT

NO
CO

optlin √ √
optquad √ √ √
optnlin √ √ √ √ √
optlinlsq √ √
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

NLINEAR
NSTRAINT
In general, it is possible to use a nonlinear or quadratic solver also for linear problems
of the same type.

For more information about the syntax and properties for each solver, see the sections
“Command Reference” on page 73 and “Solver Properties” on page 119.

The following section provides an introductory example of solving an optimization
problem using the Optimization Lab. More illustrations are available in the sections
“Optimization Examples” on page 29 and “Multiphysics Optimization” on page 49.
This latter section focuses on the optimization of multiphysics models created using
COMSOL Multiphysics products.

optnlinlsq √ √ √ √
optnm √ √ √

TABLE 2-1: OPTIMIZATION SOLVER/OPTIMIZATION PROBLEM COMPATIBILITY CHART

SOLVER LINEAR
PROBLEMS

QUADRATIC
PROBLEMS

NONLINEAR
PROBLEMS

LINEAR
LEAST-
SQUARES

NONLINEAR
LEAST-
SQUARES

LINEAR
CONSTRAINT

NO
CO
S O L V I N G O P T I M I Z A T I O N P R O B L E M S | 23

24 | C H A P T E R
A F i r s t Op t im i z a t i o n Examp l e

This first example shows how to create the Opt structure with the objective function
and constraints for a quadratic optimization problem and then solve it.

The Optimization Problem

For a given value of n, find the n-vector x that is closest in Euclidean norm to a given
vector x0, which in this case is equal to the vector [1, 2, 3]' (using COMSOL Script
notation).The complication is that not only must x lie in the set

,

but its components must also be nonincreasing: . It is possible to write this
situation in the form of a quadratic problem:

You can now write the objective function to be minimized as

,

which is a quadratic problem with H = I (the identity matrix) and c = −x0. The
additional constant term, , is not part of the optimization problem that you pass
to the optimization function. Instead you add it to the solution that the optimization
routine returns.

To implement the constraints, write them for the nonincreasing components as
. These n−1 constraints, together with the restriction that the sum

of all variables must be 1, define m so-called range constraints, , in this
case with m equal to n. For n = 3,

S x: xj

j 1=

n

∑ 1 x 0≥,=

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

xj xj 1+≤

minimize
x1, x2

1
2
--- xj x0()j–()2

j 1=

∑
subject to xj xj 1+– 0 j 1 2 … n 1–, , ,=,≤

xj

j 1=

n

∑ 1 x 0≥,=

1
2
--- x x0–()T x x0–() 1

2
---x0

Tx0 x0
Tx–

1
2
---xTx+=

1
2
---x0

Tx0

∞ xj xj+1 0≤–≤–

blb Ax bub≤ ≤
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

.

In addition, the nonnegativity constraints on the variables x form bounds constraints
on x: , where

.

Creating the Opt Structure and Solving the Problem

Perform the following steps to create the Opt structure and solve the optimization
problem:

1 First create a function that returns the matrix for the quadratic term of the objective
function as a symmetric matrix or Hx. The following function, objhx, implements
the later case, which is simply x, because H is the identity matrix in this optimization
problem:

function Hx = objhx(x)
Hx = [x(1), x(2), x(3)]';

The function that defines Hx takes the present vector of variables as the first input
argument. It is possible to add extra input arguments using the param solver option
(see optprop on page 99 for details). This is not necessary in this example.

2 Next define the vector for the linear part, c, which in this case is −xo:

c = -[1 2 3]';

3 Start defining the Opt structure:

clear opt;
opt.obj.H = 'objhx';
opt.obj.c = c;

4 Next define the constraint matrix A plus the lower and upper bounds (blb and bub)
for the linear constraints:

opt.lc.A = [-1 1 0; 0 -1 1; 1 1 1];
opt.lc.lb = [-Inf -Inf 1]';

blb

∞–

∞–

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

A,
1– 1 0
0 1– 1
1 1 1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

bub,
0
0
1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= = =

xlb x xub≤ ≤

xlb

0
0
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

xub

∞
∞
∞⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=,=
A F I R S T O P T I M I Z A T I O N E X A M P L E | 25

26 | C H A P T E R
opt.lc.ub = [0 0 1];

Instead of defining A directly, writing a small script function that creates A for an
arbitrary column dimension would provide an extensible code.

Notice that the lower and upper bounds are equal for the third row, which sums the
variables, making it an equality constraint.

5 Define the range for the variables through the lower and upper bounds for x (xlb
and xub, respectively):

opt.bc.lb = 0;
opt.bc.ub = Inf;

6 Finally define an initial guess and solve the optimization problem using the general
optimization routine optim.

opt.init.x = ones(3,1);
opt.sol = optim(opt);

You could also use the dedicated function for solving quadratic optimization problems,
optquad (see optquad on page 107 in the “Command Reference” chapter for more
information).
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

B i b l i o g r a ph y

1. P.E. Gill, W. Murray, and M.A. Saunders, User’s Guide for SQOPT Version 7:
Software for Large-Scale Nonlinear Programming, Systems Optimization
Laboratory, Dept. Management Science and Engineering, Stanford Univ., 2006.

2. P.E. Gill, W. Murray, and M.A. Saunders, User’s Guide for SNOPT Version 7:
Software for Large-Scale Linear and Quadratic Programming, Systems
Optimization Laboratory, Dept. Management Science and Engineering, Stanford
Univ., 2006.

3. J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright, “Convergence Properties
of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optimization,
vol. 9, pp. 112–147, 1998.

4. J. Nocedal and S.J. Wright, Numerical Optimization, Springer-Verlag, 1999.
B I B L I O G R A P H Y | 27

28 | C H A P T E R
 2 : U S I N G T H E O P T I M I Z A T I O N L A B

 3
O p t i m i z a t i o n E x a m p l e s
This chapter reviews a series of solved optimization problems that make use of the
suite of solvers in the Optimization Lab. A first introductory set of examples deals
with circumscribing points on a plane or inscribing a circle on a polytope and uses
several approaches to solving the problems.
 29

30 | C H A P T E R
Ove r v i ew

Table 3-1 lists the examples in this and the next chapter in their order of appearance
and also categorizes them by the solver each uses. The introductory “circle” models
have nice geometric interpretations and take you through the modeling procedure
with the least effort. They also illustrate the gains possible by refining the problem
formulation when problems are large or when minimizing computing time is
important, or inversely, the gains to be made by selecting the simplest problem
formulation and leaving the work to the computer. The Rosenbrock problem is a
classic example of an unconstrained optimization.

Examples using COMSOL Multiphysics appear in the next chapter, “Multiphysics
Optimization” on page 49.

a. Requires COMSOL Multiphysics.
b. Requires COMSOL Multiphysics and the Structural Mechanics Module.

TABLE 3-1: OPTIMIZATION EXAMPLES CHART

EXAMPLE MODEL LIN QUAD NLIN NM LINLSQ NLINLSQ GRADIENT PAGE

circlenm.m √ none 31

circlenlin.m √ supplied 35

circlequad.m √ supplied 39

circlelin.m √ supplied 43

rosenbrock.m √ none 47

diode.ma √ numeric 51

spinning_gear.mb √ √ numeric 63
 3 : O P T I M I Z A T I O N E X A M P L E S

C i r c ums c r i b i n g Po i n t s on a P l a n e

This example shows how to set up the same optimization problem for different solvers
in the Optimization Lab, and also touches upon the importance of the problem
formulation.

Introduction

The goal is to find the smallest circle enclosing all the points on
a plane. If is the circle’s center, the distance from the center to point x(i)
is given by the norm || x(i) − x ||2. Then you can express the optimization problem as
“minimize, by choice of x, the maximum distance from x to any of the points x(i):”

.

There are no constraints on x (except, of course, that). The objective function
is a strictly convex function of x. It follows that there is a single, global minimum. The
only potential problem is that although the objective function is continuous, it is not
differentiable. The adaptive search method optnm (see page 95 in the “Command
Reference” chapter) does not require the objective to be differentiable, so try it first.
Next you can reduce the number of iterations by reformulating the problem with
differentiable but nonlinear constraints and use the nonlinear solver optnlin.
Recognizing that the problem can be stated with a quadratic objective function with
linear constraints, you can further reduce the number of iterations with the quadratic
solver optquad.

Unconstrained Optimization

The distance from x to x(i) is given by the norm || x(i) − x ||2. Then the distance to the
furthest point is the radius of the smallest circle enclosing all the points for that x.

M O D E L D E F I N I T I O N

Minimize, by choice of x, the square of the maximum distance from x to any of the
points x(i)

.

x i(){ } i, 1 2 …n, ,=

x x1 x2,()T∈

minimize
x

max
i 1 … n, ,=

x i() x– 2

x R2∈

min
x

max
i 1 … n, ,=

x i() x–()
T

x i() x–()
C I R C U M S C R I B I N G P O I N T S O N A P L A N E | 31

32 | C H A P T E R
R E S U L T S

For the set of points

the smallest circle containing all the points has its center at x = [6.5000 2.0000]T and
has a radius r = 6.8007. The results appear in Figure 3-1.

Figure 3-1: The smallest circle circumscribing all the points. Notice that the top left point
lies inside, rather than on, the circle.

X x 1() … x 5() 0 9 13 7 2
0 2– 4 8 7

= =
 3 : O P T I M I Z A T I O N E X A M P L E S

Figure 3-2: With an initial guess of x = [20 40]T, the software reaches the solution in 93
iterations using 179 function evaluations. This can be improved by refining the problem
formulation.

S T E P - B Y - S T E P I N S T R U C T I O N S

1 Create a function file circlenm_obj.m that returns the objective function, and save
it in a directory that is on the COMSOL Script path.

function f = circlenm_obj(x)
global X IND xLIST
[m,n]=size(X);

% Help variable
y = X - x*ones(1,n);

% Objective function
f = max(y(1,:).^2 + y(2,:).^2);

% Solution history
xLIST(:,IND) = x;
IND = IND+1;

2 Either from the command line or in another file, for example, circlenm.m, define
the point matrix X and declare it global.
C I R C U M S C R I B I N G P O I N T S O N A P L A N E | 33

34 | C H A P T E R
clear opt;
global X IND xLIST

% Points
X = [0 9 13 7 2;
 0 -2 4 8 7];

% Solution history
IND = 1;
xLIST = zeros(2,100);

% Objective
opt.obj.f = 'circlenm_obj';

% Initial guess
opt.init.x = [20;40];

% Solve
opt.sol = optnm(opt,'report','on','dtol',1e-6);

% Postprocessing
if(opt.sol.exit==1)
 fprintf(['Optimality conditions satisfied.\n'])
end
x = opt.sol.x
r = sqrt(max(sum((X-x).^2)))

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
theta = linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal

% Solution history
figure
plot(xLIST(1,1:IND-1),xLIST(2,1:IND-1),xLIST(1,1:IND-1),xLIST(2,1
:IND-1),'ob')
axis equal

3 Here you have just set up the problem using the opt structure. When working with
the Nelder-Mead Simplex solver, optnm, you can also use the shortcut command

[x,f,exit] =
optnm('circlenm_obj',[20;40],'report','on','dtol',1e-6).
 3 : O P T I M I Z A T I O N E X A M P L E S

Nonlinear Optimization

By reformulating the optimization problem as a constrained optimization problem,
you can solve it with considerably less computational effort. By minimizing over both
the circle center x and the radius r, it is possible to write the problem as

M O D E L D E F I N I T I O N

By introducing the auxiliary 1D variable s representing the square of the radius, you
can state the problem with nonlinear constraints:

By comparing it to optnlin on page 86 of the “Command Reference” it is possible to
identify the components of the Opt structure.

By introducing in the objective and constraint functions you can
enter the problem using

, , and

There are no linear constraints, and the remaining bounds are and , which are
set by default.

You should also supply the gradient of the objective function and the Jacobian of the
constraints function whenever possible. Shortly this discussion examines how
performance decreases as the amount of information decreases. In this case the
gradient is simply and the Jacobian is this 5-by-3 matrix:

minimize
x r,

subject to

r

r x x i()
– 2≥ i 1 … n, ,=

minimize
x s,

subject to

s

s 2x i()Tx xTx–+ x i()Tx i()≥ i 1 … n, ,=

minimize
x

f x()

subject to blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤

y s x1 x2

T
=

f s y 1()= = c y()
s...
s

2x 1()Tx...

2x 5()Tx

xTx...

xTx

–+= dlb

x 1()Tx 1()
...

x 5()Tx 5()

=

∞– +∞

g 1 0 0
T

=

C I R C U M S C R I B I N G P O I N T S O N A P L A N E | 35

36 | C H A P T E R
R E S U L T S

The result is, of course, the same as before, but the way and speed the software reaches
it is rather different (see Figure 3-3).

Figure 3-3: With an initial guess s = 1 and x = (20, 40), the solver reaches a solution after
31 function evaluations. This can also be improved by further refining the problem
formulation.

You could, as noted earlier, solve the optimization problem without supplying the
Jacobian of the constraints function or the gradient of the objective. The Optimization
Lab then approximates them numerically; this can be useful for cases when these are

J
1 2 x1

1() x1–() 2 x2
1() x2–()

...

1 2 x1
5() x– 1() 2 x2

5() x2–()

=

 3 : O P T I M I Z A T I O N E X A M P L E S

difficult or impossible to provide analytically. The tradeoff, of course, is slower
convergence as shown in Table 3-2.

S T E P - B Y - S T E P I N S T R U C T I O N S

1 Create a function file circlenlin_obj.m that returns the objective function and
the gradient of the objective function with respect to the auxiliary variable, s, and
the circle center, x:

function [f,g]= circlenlin_obj(y)
global X IND xLIST

% Variables
s = y(1);
x = [y(2);y(3)];

% Objective function
f = s;

% Gradient
g = [1,0,0];

% Solution history
xLIST(:,IND) = [s; x];
IND = IND+1;

2 Create another function file circlenlin_con.m that returns the nonlinear
constraints function and the gradient of the constraints function.

function [c,J] = circlenlin_con(y)
global X IND xLIST

% Variables
s = y(1);
x = [y(2);y(3)];
[m,n]=size(X);

% Constraints function
c = s*ones(n,1)+2*X'*x-x'*x*ones(n,1);

% Jacobian of constraints function

TABLE 3-2: COMPUTATIONAL COST OF OMITTING THE GRADIENT AND JACOBIAN

INFORMATION SUPPLIED OBJECTIVE FUNCTION EVALUATIONS NEEDED

Both gradient g and Jacobian J 31

No gradient 57

No Jacobian 80

Neither gradient nor Jacobian 120
C I R C U M S C R I B I N G P O I N T S O N A P L A N E | 37

38 | C H A P T E R
J = [ones(n,1),2*(X'-ones(n,1)*x')];

3 Finally, either create a file circlenlin.m or run the optimization from the
command line:

clear opt;
global X IND xLIST

% Points
X = [0 9 13 7 2;
 0 -2 4 8 7];
[m,n] = size(X);

% Solution history
IND = 1;
xLIST = zeros(3,1);

% Objective
opt.obj.f = 'circlenlin_obj';
opt.obj.g = 'circlenlin_obj';

% Nonlinear constraints
opt.nc.c = 'circlenlin_con';
opt.nc.J = 'circlenlin_con';

% Bounds for nonlinear constraints
opt.nc.lb = X(1,:).^2+X(2,:).^2;
opt.nc.ub = Inf*ones(1,n);

% Initial guess
opt.init.x = [1;20;40];

% Solve
opt.sol = optnlin(opt);

% Postprocessing
fprintf([opt.sol.msg '\n'])
s = opt.sol.x(1)
x = opt.sol.x(2:3)
r = sqrt(s)

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
theta = linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
 3 : O P T I M I Z A T I O N E X A M P L E S

plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal

% Solution history
figure
plot(xLIST(2,1:IND-1),xLIST(3,1:IND-1),xLIST(2,1:IND-1),xLIST(3,1
:IND-1),'ob')
axis equal

Note: The solution vector in the opt structure is still named opt.sol.x no matter
what you choose to call the variables in the objective and constraints functions. You
can see this in the previous postprocessing section.

Quadratic Optimization

A close look at the problem formulation in “Unconstrained Optimization” on page 31
shows that you can rewrite the problem as

M O D E L D E F I N I T I O N

By introducing the auxiliary 1D variable t you can state the problem with linear
constraints:

This is a convex quadratic problem, that is, a convex problem with quadratic objective
and linear constraints. By comparing the problem to optquad on page 107 of the
“Command Reference” it is once again possible to identify the components of the opt
structure:

You can see that

minimize
x

xTx max
i 1 … n, ,=

x i()Tx i() 2x i()Tx–()+

minimize
x

xTx t+

subject to x i()Tx i() 2x i()Tx t+≤ i = 1 … n, ,

minimize
x

1
2
---xTHx cTx+

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤
C I R C U M S C R I B I N G P O I N T S O N A P L A N E | 39

40 | C H A P T E R
, , , , and

The remaining bounds are and , which are set by default.

R E S U L T S

Yet again you have improved the method of solving the problem. Now it takes just 10
function evaluations compared to the 179 evaluations for the unconstrained problem.

Figure 3-4: With an initial guess of t = 0 and x = (20, 40), the software reaches a solution
after10 objective function evaluations.

Reworking this example by preparing and reformulating the problem shows that you
can gain considerable efficiency by using more specialized solvers. The cost is the
preparation time. For a small problem, just setting it up the first way you think of

x
t

x1

x2

= H
0 0 0
0 2 0
0 0 2

= c
1
0
0

= A
1 2x1

1() 2x2
1()

...

1 2x1
n() 2x2

n()

=

blb

x 1()Tx 1()
...

x n()Tx n()

=

∞– +∞
 3 : O P T I M I Z A T I O N E X A M P L E S

probably minimizes the time to solution, whereas for large problems more care is
needed.

S T E P - B Y - S T E P I N S T R U C T I O N S

1 Create a function file circlequad_Hx.m that returns the Hx part of the objective
function. In this example it would be easier to instead supply only the matrix H, but
then you could not use the trick with global variables in the objective function to
see how the solution was reached.

function Hx = circlequad_Hx(x)
global IND xLIST

% Variables
Hx = 2*x;
Hx(1) = 0;

% Solution history
xLIST(:,IND) = x;
IND = IND+1;

2 Create a file circlequad.m or run this code from the command line:

clear opt;
global IND xLIST

% Points
X = [0 9 13 7 2;...
 0 -2 4 8 7];
[m,n] = size(X);

% Solution history
IND = 1;
xLIST = zeros(3,1);

% Objective
opt.obj.H = 'circlequad_Hx';
opt.obj.c = [1 0 0]';

% Linear constraints:
opt.lc.A = [ones(n,1), 2*X(1,:)', 2*X(2,:)'];

% Bounds for linear constraints
opt.lc.ub = inf*ones(n,1);
opt.lc.lb = (X(1,:).^2+X(2,:).^2)';

% Initial guess
opt.init.x = [0;20;40];

% Solve
C I R C U M S C R I B I N G P O I N T S O N A P L A N E | 41

42 | C H A P T E R
opt.sol = optquad(opt);

% Postprocessing
fprintf([opt.sol.msg '\n'])
t = opt.sol.x(1)
x = opt.sol.x(2:3)
r = sqrt(t+x'*x)

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
theta=linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal

% Solution history
figure
plot(xLIST(2,1:IND-1),xLIST(3,1:IND-1),xLIST(2,1:IND-1),xLIST(3,1
:IND-1),'ob')

Note: The function call to solve the quadratic optimization problem is made to
optim rather than optquad. The Optimization Lab automatically detects the
problem’s form and applies the most specialized solver.
 3 : O P T I M I Z A T I O N E X A M P L E S

I n s c r i b i n g a C i r c l e i n a Po l y t o p e

As an extension of the previous problem, consider the irregular pentagon that was
plotted in the solution in Figure 3-1 on page 32. This model exemplifies linear
optimization by inscribing a circle in that pentagon.

Linear Optimization

The pentagon is a convex polytope formed by five points. It is an important restriction
that the polytope be convex; if it were not, you would have to keep track of where the
facets end, which certainly complicates matters.

Let the set of points be ordered clockwise in the plane, and append
the first point x(1) at the end so that the set consist of n+1 points.

Then you can compute the normalized normal vector to the ith facet as

The distance from the circle center to the ith facet is , which means that
the constraint on the radius of a circle inscribed in the polytope is

.

M O D E L D E F I N I T I O N

Following these definitions, you can formulate the problem as the linear optimization
problem

By comparing the problem to optlin on page 82 (and notice the similarity to the
quadratic problem)

x i(){ } i=1 … n, ,

v i() 1
x i 1+() x i()–

x2

i 1+() x2
i()

–

x1
i 1+() x1

i()
–()–

=

x i() x–()
T

v i()

r x i() x–()
T

v i()≤ , i=1 … n, ,

minimize
x r,

r–

subject to v i()Tx r v i()Tx i()≤+ i = 1 … n, ,
I N S C R I B I N G A C I R C L E I N A P O L Y T O P E | 43

44 | C H A P T E R
you can identify how to set up the problem. Call the parameter vector x instead of y
because there are no constraints or objective functions this time, only matrices that you
enter directly into the Opt structure:

, , , and

R E S U L T S

The largest radius is 4.4801 and the circle center is (6.0589, 3.2429).

Figure 3-5: The largest circle inscribed in the pentagon.

Typing help optprop on the command line shows the solver properties and their
default values, and you can see that both feastol and opttol are 1e-6. Looking at

minimize
x

cTx

subject to blb Ax bub≤ ≤

xlb x xub≤ ≤

x
r
x1

x2

= c
1–

0
0

= A
1 v1

1() v2
1()

...

1 v1
5() v2

5()

= bub

v 1()Tx 1()
...

v 5()Tx 5()

=

 3 : O P T I M I Z A T I O N E X A M P L E S

opt.sol.xinfo.state.lc note that constraints 1, 3, and 4 are active. Also, from the
tolerances and from the fact that optimality was reached, you know that the error is
smaller than 1e-6. You can also easily check the actual error by typing in

opt.lc.ub'-opt.lc.A*opt.sol.x

Where the constraints are active, the distance is approximately 1e-14.

S T E P - B Y - S T E P I N S T R U C T I O N S

1 Create a file circlelin.m or run this code from the command line:

clear opt;

% Points
X = [0 9 13 7 2 0;
 0 -2 4 8 7 0];
[m,n] = size(X);

% Normal vectors
V = 1./sqrt(sum(diff(X,1,2).^2,1)).*([0 1;-1 0]*diff(X,1,2));

% Objective
opt.obj.c = [-1,0,0];

% Linear constraints
opt.lc.A = [ones(1,n-1);V]';

% Bounds for linear constraints
opt.lc.lb = -Inf*ones(1,n-1);
opt.lc.ub = sum(V.*X(:,1:n-1));

% Initial guess
opt.init.x = [1;20;40];

% Solve
opt.sol = optlin(opt);

% Postprocessing
fprintf([opt.sol.msg '\n'])
r = opt.sol.x(1)
x = opt.sol.x(2:3)

% Points
figure
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'k')
hold on
plot([X(1,:) X(1,1)],[X(2,:) X(2,1)],'ko')

% Circle
I N S C R I B I N G A C I R C L E I N A P O L Y T O P E | 45

46 | C H A P T E R
theta = linspace(0,2*pi,1000);
plot(x(1),x(2),'+')
plot(x(1)+r*cos(theta),x(2)+r*sin(theta))
axis equal
 3 : O P T I M I Z A T I O N E X A M P L E S

Th e Ro s e nb r o c k Fun c t i o n

The Rosenbrock function is a common test bed for solving unconstrained
optimization problems:

.

This function is sometimes called a “banana function” due to the shape of the contours
(see Figure 3-6 below). This flat shape with a narrow valley makes a steepest-descent
approach converge slowly toward the minimum value of 0 at (1, 1), which is easy to
see from the function itself. To compute the minimum using optnm:

1 Create a COMSOL Script function rosenbrock.m that computes the value of the
Rosenbrock function:

function f = rosenbrock(x)
f = (1-x(1))^2+100*(x(2)-x(1)^2)^2;

2 Compute the minimum of the function and the values of x1 and x2 at the minimum,
using 0 as the starting guess for both variables:

[x,f]=optnm('rosenbrock',[0 0]);

Figure 3-6: Contour plot of the Rosenbrock function, where the lower (green) dot indicates
the starting point and the upper (blue) dot indicates the optimal solution.

f x1 x2,() 1 x1–()2 100 x2 x1
2

–()
2

+=
T H E R O S E N B R O C K F U N C T I O N | 47

48 | C H A P T E R
Figure 3-7: The Rosenbrock function where z = f (x, y) = (1−x)2+100(y−x2)2.
 3 : O P T I M I Z A T I O N E X A M P L E S

 4
M u l t i p h y s i c s O p t i m i z a t i o n
This chapter shows how to combine the Optimization Lab with COMSOL
Multiphysics to optimize physics models. Thus the following examples require both
software packages.
 49

50 | C H A P T E R
Ove r v i ew

By combining the Optimization Lab with COMSOL Multiphysics it is possible to
perform various optimizations using parameters from a physics model. To illustrate this
concept, the two examples in this chapter include:

• a diode model, which shows how the Optimization Lab can extract SPICE
parameters for the equivalent circuit of a diode modeled in COMSOL Multiphysics

• a spinning-gear model, which uses the Optimization lab to locate the separation
frequency of a spinning gear.

In general, optimization of models from COMSOL Multiphysics includes the
following steps:

1 Set up the model in COMSOL Multiphysics.

2 Whenever possible, make sure to define the parameters you intend to optimize in
the Options>Constants dialog box. This makes them readily available to pass back
and forth between the Optimization Lab routines and the COMSOL Multiphysics
solvers (the fem.const field).

3 Export the FEM structure to the Script prompt.

4 Write a script or function that defines the problem in the Opt structure.

5 Write the callback routines, including the FEM structure as an additional input
argument, and make sure to update the fem.const field at each iteration.

6 Call optim to solve the problem using the 'param' option to pass along the FEM
structure and any additional arguments to the callback routines. Use the
persistent (or global) modifier to retain variables across calls.
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

S P I C E Pa r ame t e r E x t r a c t i o n f o r a
S em i c ondu c t o r D i o d e

This model shows how the Optimization Lab can extract SPICE parameters from the
model of a semiconductor diode for use in an equivalent circuit.

Introduction

In the design of a semiconductor device, it is often desirable to develop a compact
model to use when analyzing its behavior in larger systems. SPICE models are compact
descriptions of electronic circuits, where a set of SPICE parameters determines the
device’s behavior in static, transient, and time-harmonic analysis. In developing such a
compact model, the extraction of the SPICE parameters usually requires several
different characteristics that show how the device behaves for a range of operating
conditions. The characteristics can either be the result of measurements or come from
simulations of a more-detailed reference model.

This example reviews the development of a compact model for a semiconductor diode.
The reference finite-element model is “Semiconductor Diode” on page 442 of the
COMSOL Multiphysics Model Library. From this model it is possible to extract the
forward characteristics where the diode is biased from 0 V up to 1.5 V. Six SPICE
parameters control the forward characteristics of the compact model. This sets a lower
limit on the number of reference data required to extract the compact model.

Model Definition

S E M I C O N D U C T O R M O D E L

The previously mentioned example in the Model Library solves for a forward bias of
only up to 1 V. This level is not high enough to extract all the needed parameters,
especially the resistor parameter, so the characteristics must go a bit further. As a result,
the first part of this example solves the extra steps for the semiconductor diode with a
bias reaching 1.5 V.
S P I C E P A R A M E T E R E X T R A C T I O N F O R A S E M I C O N D U C T O R D I O D E | 51

52 | C H A P T E R
E Q U I V A L E N T D I O D E C I R C U I T

A diode is an electrical rectifier that conducts current for positive voltages and insulates
for negative voltages. The current-voltage characteristics (or IV characteristics) for an
ideal semiconductor diode follow the relationship

where VT is the thermal voltage. The compact model of a real diode actually consists
of two ideal diodes in parallel and a resistor in series (see nearby figure). Furthermore,
a parameter called the ideality factor, N, is introduced into the ideal diode equation so
that

.

One of the ideal diodes also has a parameter for high-level injection, which is a change
in its characteristics for high currents.

The following image shows the complete equivalent circuit for a real diode with the
SPICE parameters next to each device.

You cannot express the compact model as an explicit relationship between its current
and voltage, so to obtain its characteristics, it is necessary to solve an implicit nonlinear
problem. An easy way to set up this equivalent circuit is to use the spiceimport script
available in the AC/DC Module. With a simple circuit file, the script automatically
generates ODE expressions that model the equivalent diode circuit. In this case the
ODE representation does not involve any time derivatives, so from the mathematical
viewpoint you have the special case of static, algebraic equations. The solve command
femstatic can then solve the ODEs and give the current for a predefined list of

I IS e

V
VT

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

I IS e

V
NVT

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

RS

IS, N, IKF

ISR, NR
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

voltages. The SPICE parameters are given as constants in the equivalent circuit model
according to the following table:

T H E O P T I M I Z A T I O N

The Optimization Lab searches for values for the six SPICE parameters shown in the
equivalent circuit such that the IV characteristics from the ODE circuit simulations
match the IV characteristics extracted from the reference finite-element diode model.
This is an optimization problem of six unknowns that enter the objective function in a
nonlinear fashion. The initial guess for the parameters are crucial to reduce the search
time.

It is also necessary to define a couple of constraints in the search because otherwise the
two diodes in parallel become hard to distinguish. These diodes have a physical
interpretation, where the upper one controls the main diode characteristics. The
ideality factor of the main diode should lie close to one. The lower diode is responsible
for the recombination effects in the semiconductor, and that effect shows an ideality
factor close to 2. Therefore, a proper constraint is to force the ideality factor N to be
less than the ideality factor NR. A high ideality factor also results in a high saturation
current, ISR, so the same constraint can be used for the saturation currents. That is,

In addition, it is also necessary to set lower and upper bounds to all parameters and to
use the logarithmic values for the parameters, IS, ISR, RS, and IKF because they usually
span several orders of magnitude.

To summarize, the optimization problem is

PARAMETER CONSTANT DESCRIPTION

 IS IS_ID_D1_cir Saturation current

 N N_ID_D1_cir Ideality factor

 IKF IKF_ID_D1_cir High-injection knee current

 ISR ISR_IR_D1_cir Recombination current

 NR NR_IR_D1_cir Ideality factor for recombination current

 RS R_RS_D1_cir Series resistance

N NR<

IS ISR<
S P I C E P A R A M E T E R E X T R A C T I O N F O R A S E M I C O N D U C T O R D I O D E | 53

54 | C H A P T E R
where

.

The objective is to determine the SPICE parameters (x) so that the equivalent circuit
matches the original diode with respect to the IV characteristics in a least-squares
sense. Again, using a logarithmic scale:

.

Because Icir depends implicitly on the SPICE parameters, the system of algebraic
equations describing the IV relationship of the equivalent circuit must be solved by
femstatic for each voltage in the range of the characteristic you wish to match. This
must be done every time the optimization solver evaluates the objective function with
updated SPICE parameters.

Initial Guess
The initial guess for the parameter values is very important in order to speed up the
search, and in some cases also to get convergence. You can easily extract proper
parameter values directly from the IV characteristics of the semiconductor diode. In
the following figure you can see some straight lines that represents the diode equations
presented earlier, one for each diode in the equivalent circuit.

minimize
x

1
2
--- Fi Vi x,()2

i
∑ Objective function

subject to IS ISR≤ Linear constraints

N NR≤

20–

1
20–

1
2
7–

x

10–

2
10–

2
6
4–

≤ ≤ Parameter bounds

Icir Icir V x,[]= Algebraic equations

x IS()log N ISR()log NR RS()log IKF()log, , , , ,()T
=

Fi x() log10 I Vi()() log10 Icir Vi x,[]()–=
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

The intersections between these lines and the y-axis serve as good initial guesses for
the parameters IS and ISR. Next, the ideality factors usually have values close to one
and two, so use those values as initial guess. The parameter IKF determines where the
curve has its knee for large currents, so the current value where this appears is suitable
as an initial guess. The final parameter, RS, also controls the flat region of the curve,
so approximately the maximum voltage divided by the maximum current is a good
guess. The initial parameters from this simple analysis are summarized in this table:

The unit for current is A/m because the circuit is compared to a 2D simulation in SI
units.

PARAMETER VALUE INITIAL VALUE IN X DESCRIPTION

 IS 10-16 A/m -16 Saturation current

 N 1 1 Ideality factor

 ISR 10-14 A/m -14 Recombination current

 NR 2 2 Ideality factor for recombination current

 RS 104 Ωm 4 Series resistance

 IKF 10-6 A/m -6 High injection knee current
S P I C E P A R A M E T E R E X T R A C T I O N F O R A S E M I C O N D U C T O R D I O D E | 55

56 | C H A P T E R
Results and Discussion

You export the finite element model from COMSOL Multiphysics to the COMSOL
Script command line, where the optimization takes place using the Optimization Lab.
Fitting the parameters takes a few minutes on a modern PC, and the resulting compact
model characteristics appear as crosses in the next figure, which plots the IV
characteristics from the finite element reference model as a solid line. The agreement
is quite good over the entire voltage range up to 1.5 V.

Figure 4-1: The crosses show the IV characteristics of the equivalent circuit, the blue (solid)
line is that from the COMSOL Multiphysics Model Library model semiconductor_diode.

PARAMETER OPTIMIZED VALUE DESCRIPTION

IS 4.9·10-17 A/m Saturation current

N 1.1 Ideality factor

ISR 8.6·10-15 A/m Recombination current

NR 2.0 Ideality factor for recombination current

RS 5.21·102 Ωm Series resistance

IKF 1.7·10-6 A/m High injection knee current
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

Modeling in the Graphical User Interface

First start COMSOL Multiphysics and open the semiconductor diode example and
export it to COMSOL Script.

1 In the Model Navigator, click the Model Library tab.

2 Browse to the model
COMSOL Multiphysics>Semiconductor Devices>semiconductor diode.

3 Select it and click OK.

4 Export the model to COMSOL Script by choosing
File>Export>Export FEM structure as 'fem'. COMSOL Script opens automatically.

Modeling in COMSOL Script

If you followed the previous instructions, the semiconductor diode model should now
be present in the workspace as the variable fem. The optimization procedure involves
solving the equivalent circuit model for the list of voltages used in the reference model,
and then comparing the values of the current from the circuit model with those from
the reference model.

1 Start by creating a function called diode_obj.m by entering the following lines of
code:

function F = diode_obj(x,fem,V,I,logind)

global ITER

% Update iterations counter
if isempty(ITER)==0
 ITER = ITER+1;
end

% Default parameter values
values = [-16 1.0 -13 2 4 -5];

% SPICE parameter map
params = {'IS_ID_D1_cir','N_ID_D1_cir','ISR_IR_D1_cir', ...
 'NR_IR_D1_cir','R_RS_D1_cir','IKF_ID_D1_cir'};
params_name = {'IS','N','ISR','NR','RS','IKF'};

% Replace values
values(1:length(x)) = x;

% Replace logarithmic values
values(logind) = 10.^(values(logind));
S P I C E P A R A M E T E R E X T R A C T I O N F O R A S E M I C O N D U C T O R D I O D E | 57

58 | C H A P T E R
% Update constant list in fem
for ind=1:length(values)
 ic = 2*strmatch(params{ind},fem.const(1:2:end),'exact');
 fem.const{ic} = values(ind);
end

% Output values on screen
if (mod(ITER,10)==0)
 fprintf('It. IS N ISR NR RS IKF \n')
end
fprintf('%3d %2.6e %2.6f %2.6e %2.6f %e %2.6e \n', ...
 ITER,values(1),values(2),values(3),values(4),values(5),...
 values(6))

em.xmesh = meshextend(fem);

% Solve circuit model
fem.sol = femstatic(fem,'pname','value_VIN_cir','plist',V);

% Evaluate the current of equivalent circuit
data = postglobaleval(fem,{'-I_VIN_cir'});
I_cir = data.y;

% Compare with real data in a logarithmic scale
F = log10(I)-log10(I_cir);

The arguments to this function are explained in the following table.

The function diode_obj.m first defines some default values that it uses if you do
not search for all parameters. Next the code replaces the parameters in the FEM
structure with the supplied parameters in the argument x. Before passing the
parameter to the FEM structure, the function converts the variables that contain the
logarithm of the true parameter into the true parameter value. After the for loop,
it prints the parameter values to make it easy to follow the search. Then it updates
the FEM structure with the new values and calculates the solution. Finally, it extracts

ARGUMENT DESCRIPTION

x Array with the current parameter values in the order
specified in the params cell array

fem FEM structure containing the equivalent circuit model

V List of voltages to solve for

I Values of current from the semiconductor diode model

logind Indices to parameters in x that are the logarithm of the
actual value in the equivalent circuit model
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

the IV characteristics of the equivalent circuit and compares them to the supplied
IV characteristics from the reference model. Note that the code uses the logarithm
of the current in the comparison because the highest and lowest values differ by
several orders of magnitude.

2 Next either run the following code from the command line or from an m-file
diode.m. A detailed explanation of each step follows.

Note: The following example requires the SPICE import feature of the AC/DC
Module. Replace the line fem = spiceimport(diode_cir_path) below with
flload diode_spicefem if you do not have this module. This will load the
pre-saved FEM structure into the workspace.

global ITER

% Initialize iteration counter
ITER = 0;

% Solve up to 1.5 V to see more resistive effects
fprintf('Solving diode model from 1.0 to 1.5 V to see more resistive
effects...\n')
sol = femstatic(fem,'init',fem.sol.u(:,end),'pname','Va',...
 'plist',1.025:0.025:1.5);

% Concatenate solutions
fprintf('Concatenating solutions 0 to 1.5 V.\n')
sol = femsol(cat(2,fem.sol.u,sol.u),'plist',...
 cat(2,fem.sol.plist,sol.plist));

% Extract the IV-characteristics (avoid low V)
IV = postglobaleval(fem,{'Ic'},'u',sol,...
 'solnum',4:length(sol.plist));

% Create equivalent circuit
fprintf('Setting up equivalent circuit equations from SPICE model
diode.cir...\n')
clear fem;
diode_cir_path = which('diode.cir');
fem = spiceimport(diode_cir_path);

% Optimization
fprintf('Minimizing 1/2*|log(I)-log(I_cir)|^2 by fitting the SPICE
parameters IS, N, ISR, NR, RS, IKF...\n')
% Start parameter extraction
clear opt;
S P I C E P A R A M E T E R E X T R A C T I O N F O R A S E M I C O N D U C T O R D I O D E | 59

60 | C H A P T E R
% Objective function
opt.obj.F = 'diode_obj';

% Parameters: log(IS), N, log(ISR), NR, log(RS), log(IKF)
% Parameter bounds
opt.bc.lb = [-20 ; 1 ; -20 ; 1 ; 2 ; -7];
opt.bc.ub = [-10 ; 2 ; -10 ; 2 ; 6 ; -4];

% Indices to logarithmic parameters: IS, ISR, RS, IKF
logind = [1 3 5 6];

% Linear constraints: IS<ISR, N<NR
opt.lc.A = [-1 0 1 0 0 0 ; 0 -1 0 1 0 0];
opt.lc.lb = [0 ; 0];

% Initial guess
opt.init.x = [-16 1 -14 2 4 -6];

% Find parameters
opt.sol = optnlinlsq(opt,'opttol',1e-2,...
 'param',{fem,IV.x,IV.y,logind});

% Plot parameters
I_log = -diode_obj(opt.sol.x,fem,IV.x,ones(size(IV.x)),logind);
semilogy(IV.x,IV.y,'r+',IV.x,10.^(I_log),'b');

Now take a closer look at the steps in the optimization. Start by solving the extra
steps up to 1.5 V with the following command:

sol = femstatic(fem,'init',fem.sol.u(:,end),'pname','Va',...
 'plist',1.025:0.025:1.5);

Then merge the solutions so you have one solution where the parameter Va ranges
from 0 to 1.5:

sol = femsol(cat(2,fem.sol.u,sol.u),'plist',...
 cat(2,fem.sol.plist,sol.plist));

From this solution you extract the IV characteristics:

IV = postglobaleval(fem,{'Ic'},'u',sol,'solnum',...
 4:length(sol.plist));

The voltage and current values are now stored in the fields IV.x and IV.y,
respectively. Note that the lowest voltages are not included because they contain
singularities and noisy results. You no longer need the semiconductor diode model,
so you can use the same variable for the equivalent circuit. The following commands
produce an FEM structure containing ODEs and expressions that models the
circuit:
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

clear fem;
diode_cir_path = which('diode.cir');
fem = spiceimport(diode_cir_path);

The file diode.cir is the SPICE netlist for a diode and contains the following text:

Vin 1 0 1
D1 1 0 diode
.MODEL diode D IS=1e-13 ISR=1e-10 N=1.1 NR=2.0 RS=1e1 IKF=1e-5

The first line defines a voltage of 1 V between nodes 1 and 0. The second line
specifies that you place a diode between these two nodes, and the final line specifies
some diode parameters for the SPICE model. These parameters are the ones that
you optimize later on, and they are available as constants in the created FEM
structure.

The following code sets up an optimization structure for the objective function:

clear opt;
opt.obj.F = 'diode_obj';

Then you set up the bounds for all the parameters. Note that some parameters are
in log scale:

opt.bc.lb = [-20 ; 1 ; -20 ; 1 ; 2 ; -7];
opt.bc.ub = [-10 ; 2 ; -10 ; 2 ; 6 ; -4];

The variable in log scale are specified by the logind variable that contains indices to
the parameter in the x argument to the objective function:

logind = [1 3 5 6];

You also need some linear constraints to separate the parameter range for the ideality
factor and saturation currents:

opt.lc.A = [-1 0 1 0 0 0 ; 0 -1 0 1 0 0];
opt.lc.lb = [0 ; 0];

Before you start the parameter search, it is necessary to specify the initial guess that
you can estimate from the IV characteristics of the semiconductor diode:

opt.init.x = [-16 1 -14 2 4 -6];

The setup is now complete, and the next step is to search for the optimum
parameters in a least-square sense. The following command starts the search:

opt.sol = optnlinlsq(opt,'opttol',1e-2,...
 'param',{fem,IV.x,IV.y,logind});

The optol option specifies the tolerance, and the param option lists the extra
argument that you pass to the objective function. The routine prints out a long list
of parameter values during the search process. When the search is finished, you can
S P I C E P A R A M E T E R E X T R A C T I O N F O R A S E M I C O N D U C T O R D I O D E | 61

62 | C H A P T E R
plot the IV characteristics from both the semiconductor diode and the equivalent
circuit in the same figure with the following commands:

I_log = -diode_obj(opt.sol.x,fem,IV.x,ones(size(IV.x)),logind);
semilogy(IV.x,IV.y,'r+',IV.x,10.^(I_log),'b');

You should now see the following plot.
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

S p i n n i n g Gea r

Introduction

Figure 4-2: Stresses and deformation at 1600 Hz.

One way to fasten a gear to a shaft is by thermal interference. In the preparation of the
assembly, the shaft diameter is oversized and the gear is thermally expanded in a
heat-treating oven. At an appropriate state of expansion, the gear is removed from the
oven, slid onto the shaft, and allowed to cool. As the gear’s temperature drops, that
component shrinks and comes into contact with the shaft before it can reach its
original shape. From this point on, additional gear shrinkage results in hoop stresses in
the gear as well as normal compression of the shaft. At thermal equilibrium, an intimate
bond between the two components is reached.

Such an assembly can operate safely in many situations. However, there are operating
conditions under which the fastening stresses become insufficient—for instance, when
spinning the assembly at high rpm.

The goal of this analysis is to determine the critical spinning frequency at which the
gear and shaft separate.
S P I N N I N G G E A R | 63

64 | C H A P T E R
Model Definition

The model computations consist of two initial steps in COMSOL Multiphysics: one
for the thermal interference fit, and one for spinning the shaft-gear assembly (for
details see Chapter 3, “Spinning Gear,” on page 80 of the Structural Mechanics
Module Model Library.)

The resulting physics model describes the spinning gear at any frequency. The
optimization problem is the inverse: find the frequency at which the gear and shaft
separate. The optimization equation is

where intdisp is the displacement integral (a COMSOL Multiphysics integration
coupling variable).

The optimization routine does not need to know the details of the physics model, it
simply queries for the distance between shaft and gear at any given frequency.

Reference

1. http://claymore.engineer.gvsu.edu/~schmitte/assign5.html

Model Library path:
Structural_Mechanics_Module/Automotive_Applications/spinning_gear

Note: The following section requires COMSOL Multiphysics and the Structural
Mechanics Module.

Modeling using the Graphical User Interface

M O D E L N A V I G A T O R

First open the spinning gear model and export it to COMSOL Script.

1 In the Model Navigator click the Model Library tab.

minimize
x

 intdisp x()
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

2 Browse to the model COMSOL Multiphysics>Structural Mechanics Module>Automotive

Applications>spinning gear.

3 Select it and click OK.

4 Export the model to COMSOL Script by choosing
File>Export>Export FEM structure as 'fem'. COMSOL Script opens automatically.

Modeling using COMSOL Script

Now you can determine the separation frequency. The spinning gear model should
now be present in the workspace as the variable fem.

Note: All the functions in the following discussion are available in COMSOL Script.

1 Start by creating a function called spinning_gear_obj.m. It defines the value of
the objective at a given frequency.

function f = spinning_gear_obj(x,fem,arclength)

persistent ITER;
global SPG_ITER

% The solver is calling this function for the first time
if isequal(optgetstatus,1)
 ITER = 1;
else
 ITER = ITER+1;
end

% Solve the problem at frequency x
fem.sol=femlin(fem, ...
 'solcomp',{'u2','v3','v2','u3'}, ...
 'outcomp',{'u2','v3','u','v2','u3','v'}, ...
 'pname','f', ...
 'plist',x, ...
 'nonlin','off');

% Pick up displacement integral
pd = posteval(fem,'int_disp','edim',0,'dl',1);

% Normalize
f = pd.d/arclength;

% Print progress
if (mod(ITER-1,10)==0)
 fprintf('Iteration Frequency Displacement \n')
end
S P I N N I N G G E A R | 65

66 | C H A P T E R
fprintf('%3d %8.3f %8.4e\n',ITER,x,f)
SPG_ITER(ITER)=x;

2 Create a function called spinning_gear.m. This is the main function that defines
the optimization problem and calls the solver.

function [opt,fem] = spinning_gear(fem, arclength)

global SPG_ITER;

clear opt;
opt.obj.f = 'spinning_gear_obj';

% Start from first existing solution
% (e.g. opt.init.x = 1000;)
opt.init.x = fem.sol.plist(1);

% Solution history
SPG_ITER = 0;

% Solve
opt.sol = optim(opt,'param',{fem,arclength},'opttol',1e-8);

freq = opt.sol.x;
fprintf('Separation Frequency = %8.3f [Hz] \n',freq);

% Plots
figure, plot(1:numel(SPG_ITER),SPG_ITER,'-o')
ylim([800,3200]);
title('Convergence')
xlabel('Iterations')
ylabel('frequency f [Hz]')
grid

% Plot solution
figure;
postplot(fem, ...
 'tridata',{'mises_all','cont','internal','unit',...
 'N/m^2'}, ...
 'trimap','jet(1024)', ...
 'deformsub',{'u_all','v_all'}, ...
 'solnum',1, ...
 'title',['f =' sprintf('%8.3f',freq),...
 ' Surface: mises_all [N/m^2] Subdomain',...
 ' deformation: [u_all, v_all] [m] Boundary',...
 'deformation: Displacement [m]']);

figure;
postplot(fem, ...
 'tridata',{'mises_all','cont','internal'}, ...
 'triz','mises_all', ...
 'trimap','jet(1024)', ...
 'solnum',1, ...
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

 'title',['f =' sprintf('%8.3f',freq),...
 ' Surface: mises_all, Height: mises_all'], ...
 'refine',2, ...
 'grid','on', ...
 'camlight','on');

For the initial solution, this script uses the first solution among those in the physics
model although it is not the best one. This is for demonstration purposes only; it is
always advisable to start with the best available solution. (In this case, the initial
sweep range happens to have hit very close to the optimum at a frequency of 1550
Hz; this would normally be the solution from which to begin optimization.)

3 To run the optimization call the spinning_gear function:

[opt,fem]=spinning_gear(fem,(2*pi*0.015)/4)

This prints the frequency and distance during the iterations and returns an optimal
solution of 1550.185 Hz. (The second argument, (2*pi*0.015)/4, is the length of
the circle segment and is used in spinning_gear_obj to normalize the displacement
integral.)

Note that the first few iterations indicate that the solver is preparing to estimate the
gradient through finite differences. (During this step, the solver determines the
sparsity pattern for the Jacobian and identifies the constant elements automatically):

Iteration Frequency Displacement
 1 1000.000 7.2929e-005
 2 242.516 1.2185e-004
 3 1666.588 1.9463e-005
 4 1803.304 4.4120e-005
 5 485.031 1.1268e-004
 6 4999.764 1.1744e-003
 7 7213.217 2.5795e-003

In problems where the derivatives are known, this step is not included.

Because this problem is unconstrained, you could also solve it using the optnm
function. In that case, replace the line

opt.sol = optim(opt,'param',fem,'opttol',1e-6);

with

opt.sol = optnm(opt,'param',fem);

You also need to remove optgetstatus call from spinning_gear_obj, either by
checking if ITER is empty or by making ITER a global variable and resetting it before
each call to the solver.
S P I N N I N G G E A R | 67

68 | C H A P T E R
Note that spinning_gear outputs three plots: the separation frequency during
optimization (Figure 4-3), and the stress distribution at separation as a 2D
(Figure 4-4) and 3D plot (Figure 4-5).

Figure 4-3: Convergence of the separation frequency during optimization.
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

Figure 4-4: Stress distribution at separation.

Figure 4-5: Stress distribution at separation.
S P I N N I N G G E A R | 69

70 | C H A P T E R
E X P L O I T I N G M O D E L S Y M M E T R Y

To reduce the required computation time, you can exploit the remaining model
symmetries instead of solving the complete model as above. Figure 4-6 illustrates the
stresses superimposed on the minimal model at the separation frequency.

Figure 4-6: Von Mises stresses superimposed on the minimal model.

To run the example on the minimal model, load the modified FEM structure, then
proceed as before.

1 At the Script prompt, type:

fem = cl_gear_minimal(1000);

This solves the reduced physics problem at an initial frequency of 1000 Hz.

2 Solve the optimization problem as before, but normalizing with the reduced
segment length (1/32 of the full circle). Type:

[opt,fem]=spinning_gear(fem,(2*pi*0.015)/32);

Figure 4-7 shows the resulting stress distribution plot.
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

Figure 4-7: Stress distribution at separation.
S P I N N I N G G E A R | 71

72 | C H A P T E R
 4 : M U L T I P H Y S I C S O P T I M I Z A T I O N

 5
C o m m a n d R e f e r e n c e
 73

74 | C H A P T E R
S umma r y o f C ommand s
optgetstatus on page 76

optim on page 77

optlin on page 82

optlinlsq on page 84

optnlinlsq on page 90

optnlin on page 86

optnm on page 95

optprop on page 99

optpropnlin on page 103

optquad on page 107

optsetstatus on page 110
 5 : C O M M A N D R E F E R E N C E

Command s G r oup ed b y Fun c t i o n

General Optimization Functions

Minimization Functions

Least-Squares Functions

Solver Properties

Miscellaneous Functions

FUNCTION PURPOSE

optim Solve a general optimization problem

FUNCTION PURPOSE

optlin Solve a linear optimization problem

optnlin Solve a nonlinear optimization problem

optnm Solve an unconstrained nonlinear optimization problem using the
Nelder-Mead simplex algorithm

optquad Solve a quadratic optimization problem

FUNCTION PURPOSE

optlinlsq Solve a linear least-squares problem

optnlinlsq Solve a nonlinear least-squares problem

FUNCTION PURPOSE

optprop Common solver property/value pairs for the linear and quadratic
solvers in the Optimization Lab

optpropnlin Common solver property/value pairs for the nonlinear solvers in
the Optimization Lab

FUNCTION PURPOSE

optgetstatus Check solver status during callback

optsetstatus Set solver status during callback
C O M M A N D S G R O U P E D B Y F U N C T I O N | 75

optgetstatus

76 | C H A P T E
optgetstatusPurpose Get solver status during callback.

Syntax s = optgetstatus

Description s = optgetstatus is intended for use in the callback functions in the Optimization
Lab and returns specific information about the call.

If s = 0, there is nothing special about the current call.

If s = 1, SNOPT/SQOPT is calling your function(s) for the first time.

If s ≥ 2, SNOPT/SQOPT is calling your function(s) for the last time.

For more information see the documentation for the SQOPT and SNOPT
packages.

See Also optsetstatus
R 5 : C O M M A N D R E F E R E N C E

optim
optimPurpose Solve a general optimization problem.

Syntax opt.sol = optim(opt,...)
opt.sol = optim(opt,options)

Description optim solves an optimization problem by examining the fields in the Opt structure
and then calling the most appropriate solver among optlin, optquad, optnlin,
optlinlsq, and optnlinlsq. For example, a general nonlinear objective function
or a quadratic objective function with nonlinear constraints results in optnlin being
called.

optim uses the problem formulation

where f(x) can be one the following forms:

TABLE 5-1: THE OPT.OBJ SUBSTRUCTURE

OBJ.FORM OBJECTIVE FUNCTION

min f(x)
FIELDS INTERPRETATION

'lin' obj.c Coefficient vector for the linear
term of the objective function
(numeric vector)

'quad' obj.H Coefficient matrix for the
quadratic terms of the objective
function (symmetric matrix or
function returning Hx), default
zero

obj.c Coefficient vector for the linear
term of the objective function
(numeric vector), default vector
of zeros

'nlin' f(x) obj.f Objective function (function)

obj.g (optional) Gradient of objective
function (function)

obj.ptrn (optional) Gradient sparsity
pattern (matrix)

min f x()
blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤

f x() cTx=

f x() 1
2
---x

T
Hx cTx+=
77

optim

78 | C H A P T E
Aside from the objective function, the Opt structure can contain the following
(optional) fields:

'linlsq' obj.C Objective function matrix
(matrix)

obj.d Objective function vector
(numeric vector), default vector
of zeros

'nlinlsq' obj.F Objective function (function).
Note that the function should
return the vector of Fi to be
summed, not the sum of
squares

obj.J (optional) Jacobian of F (matrix)

obj.ptrn (optional) Jacobian sparsity
pattern (matrix)

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints
(vector or scalar), default Inf

opt.nc.c c Nonlinear constraints (function)

opt.nc.J Jacobian of nonlinear constraints
(function)

opt.nc.ptrn Constraint Jacobian sparsity pattern
(matrix)

opt.nc.lb dlb Lower bounds for nonlinear constraints
(vector or scalar), default -Inf

opt.nc.ub dub Upper bounds for nonlinear constraints
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or
scalar), default Inf

TABLE 5-1: THE OPT.OBJ SUBSTRUCTURE

OBJ.FORM OBJECTIVE FUNCTION

min f(x)
FIELDS INTERPRETATION

f x() 1
2
--- Cx d–

2
=

f x() 1
2
--- F x() 2

=

1
2
--- Fi

i
∑ x()

2
=

R 5 : C O M M A N D R E F E R E N C E

optim
Functions can be given either as strings, denoting the function name, or as inline
functions. By specifying the same function name for the objective function and its
gradient, it is possible to use one function to compute both. The gradient must then
be returned as a second output argument. The same strategy applies to constraints.
If the gradient or Jacobian field for the objective or constraints is not assigned, the
solvers estimate the missing derivatives by finite differences.

The sparsity patterns for the objective function gradient and the constraint Jacobian
may be given as sparse matrices. If they are not provided, the solver will estimate a
sparsity pattern of a nonlinear problem through repeated objective function and
constraint residual evaluations.

User-defined functions take the present vector x as their input, but it is possible to
supply extra arguments by using the param solver option. The solver then passes
these additional arguments at each callback.

opt.init.x Initial guess (vector), default vector of
zeros

opt.init.y Initial guess for Lagrange multipliers of the
linear and nonlinear constraints
(structure), default zero for all multipliers

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of objective
function and constraints, if any

opt.sol.y Lagrange multipliers in solution
(structure)

opt.sol.xinfo Information about the solution (structure)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.algorithm Indicates which function was ultimately
called. Can be either 'optlin',
'optquad', 'optnlin', 'optlinlsq',
or 'optnlinlsq'

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION
79

optim

80 | C H A P T E
Note: All fields in the Opt structure are optional except opt.obj, but if a specific
constraint type is supplied, it is necessary to include the main field of that type (for
example, opt.lc.A for the linear constraints and opt.nc.c for the nonlinear
constraints) and at least one of the upper or lower bounds. In some cases, when the
solver cannot determine the number of variables from the Opt structure, it is
necessary to supply an initial guess (the default is zero for all variables). An example
of this would be an unconstrained nonlinear problem.

sol.eval is a structure with the following fields:

y is a structure with the following fields:

Note: The initial guess for the Lagrange multipliers cannot be supplied for some
solvers and, when available, it is for the linear and nonlinear constraints only. See
documentation about the specific solver for details.

Positive and negative multipliers indicate active lower and upper bounds,
respectively.

TABLE 5-2: THE EVAL STRUCTURE

FIELD NAME INTERPRETATION

f Final value of objective function (scalar)

lc Final value of linear constraints, if any (vector)

nc Final value of nonlinear constraints, if any (vector)

TABLE 5-3: THE Y STRUCTURE

FIELD NAME INTERPRETATION

bc Lagrange multipliers for the bounds on the variables

lc Lagrange multipliers for the linear constraints

nc Lagrange multipliers for the nonlinear constraints
R 5 : C O M M A N D R E F E R E N C E

optim
xinfo is a structure with the following fields:

For further details regarding the xinfo fields, see the SNOPT documentation.

optim accepts the solver properties for the respective functions as given by optprop
and optpropnlin. These can be given either in the options structure or as
property/value pairs.

See Also optlin, optnlin, optquad, optlinlsq, optnlinlsq

TABLE 5-4: THE XINFO STRUCTURE

FIELD NAME INTERPRETATION

xinfo.state.bc Vector containing the final state of the variables.
state(j) = 0 means that x(j) is nonbasic and usually equals
bc.xlb(j).
state(j) = 1 means that x(j) is nonbasic and usually equals
bc.xub(j).
state(j) = 2 means that x(j) is superbasic and usually between
bc.xlb(j) and bc.xub(j).
state(j) = 3 means that x(j) is basic and usually between
bc.xlb(j) and bc.xub(j).

Basic and superbasic variables might be outside their bounds
by as much as the feasibility tolerance (or minor feasibility
tolerance in the case of a nonlinear problem). Note that if
scaling is specified, the feasibility tolerance applies to the
variables of the scaled problem. In this case, the variables of
the original problem might be as much as 0.1 outside their
bounds, but this is unlikely unless the problem is very badly
scaled. Very occasionally, some nonbasic variables might be
outside their bounds by as much as the feasibility tolerance,
and there might be some nonbasics for which x(j) lies strictly
between its bounds.
If nInf > 0, some basic and superbasic variables might be
outside their bounds by an arbitrary amount (bounded by
sInf if scaling was not used)

xinfo.state.lc Analogous to xinfo.state.bc but for the linear constraints

xinfo.state.nc Analogous to xinfo.state.bc but for the nonlinear
constraints.

xinfo.ns The final number of superbasic variables

xinfo.ninf The number of infeasibilities

xinfo.sinf The sum of infeasibilities
81

optlin

82 | C H A P T E
optlinPurpose Solve a linear optimization problem.

Syntax opt.sol = optlin(opt,...)
opt.sol = optlin(opt,options)

Description optlin solves the linear optimization problem

which corresponds to the following fields in the Opt structure (for information
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.c c Coefficient vector for the linear term of
the objective function (numeric vector)

opt.obj.form Specifies the form of the objective
function. If it is not included, optlin
assumes the general linear formulation,
'lin' (the one given in this table). It is
also possible to call optlin with an
objective of the 'quad' form, in which
case the quadratic terms are ignored.
(For more information on objective
function forms, see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or
scalar), default Inf

opt.init.x Initial guess (vector), default vector of
zeros

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of
objective function and constraints, if any

min cTx
blb Ax bub≤ ≤

xlb x xub≤ ≤
R 5 : C O M M A N D R E F E R E N C E

optlin
optlin ignores any nonlinear constraints present in the Opt structure.

y is a structure with the following field:

Positive and negative multipliers indicate active lower and upper bounds,
respectively.

For information about eval and xinfo, see optim.

Parameters to the solvers can be given either as property/value pairs or in the
options structure. For a list of solver properties see optprop.

Algorithm optlin uses the SQOPT package. For further details, see User’s Guide for SQOPT:
A Fortran Package for Large-Scale Linear and Quadratic Programming (Philip
E. Gill, Walter Murray, and Michael A. Saunders).

See Also optquad, optnlin

opt.sol.y Lagrange multipliers in solution
(structure)

opt.sol.xinfo Information about the solution
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SQOPT. (See the
SQOPT User’s Guide for further details.)

opt.sol.msg Message corresponding to the info flag as
specified by SQOPT. (See the SQOPT
User’s Guide for further details.)

opt.sol.algorithm 'optlin', to indicate solver used

TABLE 5-5: THE Y STRUCTURE

FIELD NAME INTERPRETATION

lc Lagrange multipliers for the linear constraints

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION
83

optlinlsq

84 | C H A P T E
optlinlsqPurpose Solve a linear least-squares problem.

Syntax opt.sol = optlinlsq(opt,...)
opt.sol = optlinlsq(opt,options)

Description oplinlsq solves the linear least-squares problem

which corresponds to the following fields in the Opt structure (for information
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.C C Objective function matrix (matrix)

opt.obj.d d Objective function vector (numeric
vector), default vector of zeros

opt.obj.form Specifies the form of the objective
function. If it is not included, optlinlsq
assumes the linear least squares
formulation, 'linlsq' (the one given in
this table). This is the only form allowed
for the optlinlsq solver. (For more
information on objective function forms,
see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or
scalar), default Inf

opt.init.x Initial guess (vector), default vector of
zeros

opt.sol.x Solution (vector)

min 1
2
--- Cx d–

2

blb Ax bub≤ ≤

xlb x xub≤ ≤
R 5 : C O M M A N D R E F E R E N C E

optlinlsq
optlinlsq ignores any nonlinear constraints present in the Opt structure.

y is a structure with the following field:

Positive and negative multipliers indicate active lower and upper bounds,
respectively.

For information about eval and xinfo, see optim.

Parameters to the solvers can be given either as property/value pairs or in the
options structure. For a list of solver properties see optprop.

Algorithm optlinlsq uses the SQOPT package with the following objective function:

For further details about SQOPT, see User’s Guide for SQOPT: A Fortran
Package for Large-Scale Linear and Quadratic Programming (Philip E. Gill,
Walter Murray, and Michael A. Saunders).

See Also optnlinlsq

opt.sol.eval Substructure containing value of objective
function and constraints, if any

opt.sol.y Lagrange multipliers in solution
(structure)

opt.sol.xinfo Information about the solution
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SQOPT. (See the
SQOPT User’s Guide for further details.)

opt.sol.msg Message corresponding to the info flag as
specified by SQOPT. (See the SQOPT
User’s Guide for further details.)

opt.sol.algorithm 'optlinlsq', to indicate solver used

TABLE 5-6: THE Y STRUCTURE

FIELD NAME INTERPRETATION

lc Lagrange multipliers for the linear constraints

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

f x() 1
2
---xTCTCx 2dTCx–

1
2
---d

T
d+=
85

optnlin

86 | C H A P T E
optnlinPurpose Solve a nonlinear optimization problem.

Syntax opt.sol = optnlin(opt,...)
opt.sol = optnlin(opt,options)

Description optnlin solves the nonlinear optimization problem

which corresponds to the following fields in the Opt structure (for information
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.f f Objective function (function)

opt.obj.g Gradient of objective function
(function)

opt.obj.ptrn Gradient sparsity pattern (matrix)

opt.obj.form Specifies the form of the objective
function. If it is not included,
optnlin assumes the general
nonlinear formulation, 'nlin' (the
one given in this table). It is also
possible to call optnlin with an
objective of the 'lin' or 'quad'
forms. (For more information on
objective function forms, see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints
(vector or scalar), default Inf

opt.nc.c c Nonlinear constraints (function)

opt.nc.J Jacobian of nonlinear constraints
(function)

opt.nc.lb dlb Lower bounds for nonlinear
constraints (vector or scalar), default
-Inf

min f x()
blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤
R 5 : C O M M A N D R E F E R E N C E

optnlin
Functions can be given either as strings, denoting the function name, or as inline
functions. By specifying the same function name for the objective function and its
gradient, it is possible to use one function to compute both. The gradient must then
be returned as a second output argument. The same strategy applies to constraints.

opt.nc.ub dub Upper bounds for nonlinear
constraints (vector or scalar), default
Inf

opt.nc.ptrn Constraint Jacobian sparsity pattern
(matrix)

opt.bc.lb xlb Lower bounds for variables (vector
or scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector
or scalar), default Inf

opt.init.x Initial guess (vector), default vector
of zeros

opt.init.y Initial guess for Lagrange multipliers
(structure), default zero for all
multipliers

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of
objective function and constraints, if
any

opt.sol.y Lagrange multipliers in solution
(structure)

opt.sol.xinfo Information about the solution
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SNOPT. (See
the SNOPT user’s manual for further
details.)

opt.sol.msg Message corresponding to the info
flag as specified by SNOPT. (See the
SNOPT user’s manual for further
details.)

opt.sol.algorithm 'opntlin', to indicate solver used

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION
87

optnlin

88 | C H A P T E
If the gradient or Jacobian field for the objective or constraints is not assigned,
optnlin estimates the missing derivatives by finite differences.

The sparsity patterns for the objective function gradient and the constraint Jacobian
may be given as sparse matrices. If they are not provided, the solver will estimate a
sparsity pattern through repeated objective function and constraint residual
evaluations.

User-defined functions take the present vector x as their input, but it is possible to
supply extra arguments by using the param solver option. The solver then passes
along these additional arguments at each callback.

y is a structure with the following fields:

Positive and negative multipliers indicate active lower and upper bounds,
respectively.

For information about eval and xinfo, see optim.

Parameters to the solvers can be given either as property/value pairs or in the
options structure. For a list of solver properties, see optpropnlin.

Algorithm optnlin uses the SNOPT package. For further details, see User’s Guide for
SNOPT, A Fortran Package for Large-Scale Nonlinear Programming (Philip E.
Gill, Walter Murray, and Michael A. Saunders).

Example The code in this example defines and solves the following nonlinear optimization
problem:

TABLE 5-7: THE Y STRUCTURE

FIELD NAME INTERPRETATION

bc Lagrange multipliers for the bounds on the variables (Output only.
Cannot be supplied as initial guess.)

lc Lagrange multipliers for the linear constraints

nc Lagrange multipliers for the nonlinear constraints
R 5 : C O M M A N D R E F E R E N C E

optnlin
function [f,g] = exnlin_obj(x)
f = 3*x(1) + (x(1) + x(2) + x(3))^2 + 5*x(4);

g = [3 + 2*(x(1) + x(2) + x(3)),
2*(x(1) + x(2) + x(3)),
2*(x(1) + x(2) + x(3)),
5]';

function [f,g] = exnlin_con(x)
f = [x(1) + x(2)^2 + x(3)^2;
 x(2)^4 + x(3)^4 + x(4)];

g = [1 2*x(2) 2*x(3) 0;
 0 4*x(2) 4*x(3) 1];

clear opt;
opt.obj.f = 'exnlin_obj';
opt.obj.g = 'exnlin_obj';

opt.nc.c = 'exnlin_con';
opt.nc.J = 'exnlin_con';
opt.nc.lb = [2 4];
opt.nc.ub = opt.nc.lb;

opt.lc.A = [0 4 2 0];
opt.lc.lb = 0;
opt.lc.ub = Inf;

opt.bc.lb = [0,-Inf,-Inf, 0]';
opt.bc.ub = Inf;

opt.init.x = ones(4,1);
opt.sol = optnlin(opt);

See Also optlin, optquad

min 3x1 x1 x2 x3+ +()2 5x4+ +

4x2 2x3+ 0≥

x1 x2
2 x3

2
+ + 2=

x2
4 x3

4 x4+ + 4=

x1 0 x4 0≥,≥
89

optnlinlsq

90 | C H A P T E
optnlinlsqPurpose Solve a nonlinear least-squares problem.

Syntax opt.sol = optnlinlsq(opt,...)
opt.sol = optnlinlsq(opt,options)

Description optnlinlsq solves the nonlinear least-squares problem

which corresponds to the following fields in the Opt structure (for information
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.F F Objective function (function). Note that
the function must return the vector of
Fi to be summed, not the sum of
squares

opt.obj.J J Jacobian of F (matrix).

opt.obj.ptrn Objective Jacobian sparsity pattern
(matrix)

opt.obj.form Specifies the form of the objective
function. If it is not included,
optnlinlsq assumes the nonlinear
least-squares formulation, 'nlinlsq'
(the one given in this table). It is also
possible to call optnlinlsq with an
objective function of the 'linlsq'
form. (For more information on
objective function forms, see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints
(vector or scalar), default Inf

opt.nc.c c Nonlinear constraints (function)

min 1
2
--- F x() 2 1

2
--- Fi

i
∑ x()

2
=

blb Ax bub≤ ≤

dlb c x() dub≤ ≤

xlb x xub≤ ≤
R 5 : C O M M A N D R E F E R E N C E

optnlinlsq
Functions can be given either as strings, denoting the function name, or as inline
functions. By specifying the same function name for the objective function and its

opt.nc.J Jacobian of nonlinear constraints
(function)

opt.nc.lb dlb Lower bounds for nonlinear constraints
(vector or scalar), default -Inf

opt.nc.ub dub Upper bounds for nonlinear constraints
(vector or scalar), default Inf

opt.nc.ptrn Constraint Jacobian sparsity pattern
(matrix)

opt.bc.lb xlb Lower bounds for variables (vector or
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or
scalar), default Inf

opt.init.x Initial guess (vector), default vector of
zeros

opt.init.y Initial guess for Lagrange multipliers
(structure), default zero for all
multipliers

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of
objective function and constraints, if
any

opt.sol.y Lagrange multipliers in solution
(structure)

opt.sol.xinfo Information about the solution
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SNOPT. (See
the SNOPT user’s manual for further
details.)

opt.sol.msg Message corresponding to the info flag
as specified by SNOPT. (See the
SNOPT user’s manual for further
details.)

opt.sol.algorithm 'opntlinlsq', to indicate solver used

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION
91

optnlinlsq

92 | C H A P T E
Jacobian, it is possible to use one function to compute both. The Jacobian must
then be returned as a second output argument. The same strategy applies to
constraints. If the Jacobian field is not assigned, optnlinlsq estimates the missing
derivatives by finite differences.

The sparsity patterns for the objective function and constraint Jacobian may be
given as sparse matrices. If they are not provided, the solver will estimate a sparsity
pattern through repeated objective function and constraint residual evaluations.

User-defined functions take the present vector x as their input, but it is possible to
supply extra arguments by using the param solver option. The solver then passes
along these additional arguments at each callback.

y is a structure with the following fields:

Positive and negative multipliers indicate active lower and upper bounds,
respectively.

For information about eval and xinfo see optim.

Parameters to the solvers can be given either as property/value pairs or in the
options structure. For a list of solver properties, see optpropnlin.

Example The code in this example defines and solves the following nonlinear optimization
problem:

TABLE 5-8: THE Y STRUCTURE

FIELD NAME INTERPRETATION

bc Lagrange multipliers for the bounds on the variables (Output only.
Cannot be supplied as initial guess.)

lc Lagrange multipliers for the linear constraints

nc Lagrange multipliers for the nonlinear constraints
R 5 : C O M M A N D R E F E R E N C E

optnlinlsq
(Reference: W. Hock and K. Schittkowski, “Test Examples for Nonlinear
Programming Codes,” Lecture Notes in Economics and Mathematical Systems
187, Springer-Verlag, 1981.)

function [F,J] = exnlinlsq_con(x)
F = [x(1)^2 + x(2)^2;
 9*x(1)^2 + x(2)^2;
 x(1)^2 - x(2);
 x(2)^2 - x(1)];

J = [2*x(1), 2*x(2);
 18*x(1),2*x(2);
 2*x(1),-1;
 -1,2*x(2)];

clear opt;
opt.obj.C = eye(2);
opt.obj.form = 'linlsq';

opt.lc.A = [1 1];
opt.lc.lb = [1];

opt.nc.c = 'exnlinlsq_con';
opt.nc.J = 'exnlinlsq_con';
opt.nc.lb = [1 9 0 0];

opt.bc.lb = -50;
opt.bc.ub = 50;

% Infeasible starting point
opt.init.x = [3 0.6];
opt.sol = optnlinlsq(opt);

min 1
2
--- x1

2 x2
2

+()

x1 x2+ 1≥

x1
2 x2

2
+ 1≥

9x1
2 x2

2
+ 9≥

x1
2 x2– 0≥

x2
2 x1– 0≥

50– x1 50≤ ≤

50– x2 50≤ ≤
93

optnlinlsq

94 | C H A P T E
Algorithm optnlinlsq uses the SNOPT package with the following objective function and
gradient:

For further details about SNOPT see User’s Guide for SNOPT, A Fortran Package
for Large-Scale Nonlinear Programming (Philip E. Gill, Walter Murray, and
Michael A. Saunders).

See Also optlinlsq

f x() 1
2
--- Fi

i
∑ x()

2
=

g x() JTF=
R 5 : C O M M A N D R E F E R E N C E

optnm
optnmPurpose Solve an unconstrained nonlinear optimization problem using the Nelder-Mead
simplex algorithm.

Syntax opt.sol = optnm(opt,...)
opt.sol = optnm(opt,options)
x = optnm(fun,x0,...)
[x,f] = optnm(fun,x0,...)
[x,f,exit] = optnm(fun,x0,...)
optnm(fun,x0,options)

Description optnm solves the unconstrained nonlinear optimization problem min f(x), which
corresponds to the following fields of the Opt structure (for information about
which fields are optional, see optim):.

Functions can be either strings, denoting the function name, or inline functions.

The user-defined function takes the present vector of variables x as its input, but it
is possible to supply extra arguments by using the param solver option. The solver
then passes along these additional arguments at each callback.

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.f f Objective function (function)

opt.obj.form Specifies the form of the objective
function. optnm expects the form to
equal 'nlin' (assumed if form is not
given) but also accepts 'lin' or 'quad'
form. (For more information on objective
function forms, see optim.)

opt.init.x Initial guess (vector)

opt.sol.x Solution (vector)

opt.sol.eval.f Value of objective function (scalar)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.algorithm 'optnm', to indicate solver used
95

optnm

96 | C H A P T E
optnm accepts the following properties, which can be given either as property/value
pairs or in the options structure (n is the number of variables):

TABLE 5-9: VALID PROPERTIES FOR THE OPTNM FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

dtol numeric 1e-4 Absolute termination
tolerance on the largest
diameter of the simplex,
using infinity norm

functol numeric 1e-4 Absolute termination
tolerance on the function
precision

funlim integer 200*n Limit on number of function
evaluations

itlim integer 200*n Iterations limit

lscale numeric 1 Length scale used when
creating the initial simplex,
which is defined by the
starting guess x0 and n more
points
x0 + lscale*eye(n).

out 'sol' | 'opt' |
'x' | 'f'| 'exit'
| 'funs' | 'iter'

'sol' Output variables. 'sol'
returns the opt.sol
structure; 'opt'returns the
complete Opt structure;
'x', 'f', and 'exit' return
the respective fields of the
opt.sol structure; 'funs'
returns the actual number of
function evaluations; and
'iter' returns the number
of iterations
R 5 : C O M M A N D R E F E R E N C E

optnm
optnm(fun,x0,...) is a shortcut version of the structure form.

[x,f] = optnm(fun,x0), for example, equals the following command sequence:

opt.obj.f = fun;
opt.init.x = x0;
options.out = {'x','f'};
[x,f] = optnm(opt,options);

Examples function f = exnm_obj(x)
f = x(1)^4 + x(2)^4 - x(1)*x(2) + 1;

clear opt;
opt.obj.f = 'exnm_obj';
opt.init.x = [1 1];
opt.sol = optnm(opt);

% Vector notation:
[x,f] = optnm('exnm_obj',[1 1]);

% With inline function
[x,f] = optnm(inline('x(1)^4 + x(2)^4 - x(1)*x(2) + 1'),[1 1]);

Algorithm optnm uses the Nelder-Mead simplex algorithm as defined in “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions” (J.C.
Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright, SIAM J. Optimization, vol. 9,
pp. 112–147, 1998).

param any empty Allows additional arguments
to be passed along to the
callback function. Use a cell
array to pass along more than
one argument. Note that the
cell array is unpacked in the
function call, so setting
param to {a1,a2} results in
the function being called with
userfun(x,a1,a2).

report 'on' | 'off' 'off' 'on' displays the result at
each iteration and whether
optnm performs a reflection,
expansion, inner or outer
contraction, or a shrinking
step.

TABLE 5-9: VALID PROPERTIES FOR THE OPTNM FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION
97

optnm

98 | C H A P T E
See Also optnlin, optlin, optquad
R 5 : C O M M A N D R E F E R E N C E

optprop
optpropPurpose Optimization Lab solver properties.

Syntax options = optprop

Description The following table lists all common property/value pairs for the linear and
quadratic solvers in the Optimization Lab. In the table, m is the number of
constraints, while n1 is the number of leading nonzero columns of the Hessian in
the case of a quadratic problem and 0 in the linear case.

options = optprop returns a struct options with all available properties, each set
to its default value. Properties whose default depends on the input problem are not
set (the corresponding field contains an empty matrix).

For more details on the solver properties see “Solver Properties” in Chapter 6.

TABLE 5-10: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

checkfreq integer 60 Check frequency

elastic 0 | 1 | 2 1 Elastic mode.

0 indicates that Elastic
mode is never
invoked, which causes
the solver to
terminate as soon as
infeasibilities are
detected.

1 indicates that Elastic
mode is entered
when infeasibilities
are detected.

2 indicates that the
solver starts and
remains in Elastic
mode
99

optprop

100 | C H A P T
elasticbc scalar or
vector of
0 | 1 | 2 | 3

0 Indicates which
bound constraints can
be elastic.

0 indicates that
corresponding
constraints cannot be
violated.

1 indicates that the
lower bound can be
violated.

2 indicates that the
upper bound can be
violated.

3 indicates that either
bound can be
violated.

elasticlc scalar or
vector of
0 | 1 | 2 | 3

3 Indicates which linear
constraints can be
elastic.

0 indicates that
corresponding
constraints cannot be
violated.

1 indicates that the
lower bound can be
violated.

2 indicates that the
upper bound can be
violated.

3 indicates that either
bound can be
violated.

elasticobj 0 | 1 | 2 2 Elastic objective

elasticw numeric 1.0 Elastic weight

expfreq integer 10000 Expand frequency

facfreq integer 100 (linear)
50 (quadratic)

Factorization
frequency

feastol numeric 1.0e-6 Feasibility tolerance

TABLE 5-10: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 5 : C O M M A N D R E F E R E N C E

optprop
hessdim integer min(1000,n1+1) Hessian dimension

infbound positive numeric 1.0e20 Infinite bound size

itlim integer 3*m Iterations limit

maximize 'on' | 'off' 'off' 'on' if objective
should be maximized

print filename no printing Print information
about the solver
progress and solution
to file

opttol numeric 1.0e-6 Optimality tolerance

out 'sol' | 'opt' |
'x' | 'f' | 'y' |
'xinfo' |
'state' | 'ns' |
'ninf' | 'sinf' |
'exit' | 'info' |
'msg' |
'algorithm'

'sol' Output variables

param any empty Allows additional
arguments to be
passed along to the
user callback
functions. Use a cell
array to pass along
more than one
argument. Note that
the cell array is
unpacked in the
function call, so
setting param to
{a1,a2} results in
functions being called
with
userfun(x,a1,a2).

parprice integer 10 (linear)
1 (quadratic)

Partial price

pivtol numeric 3.7e-11 Pivot tolerance

TABLE 5-10: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
101

optprop

102 | C H A P T
See Also optpropnlin, optnlin, optlinlsq, optquad

print filename empty (no
printing)

Print information
about the solver
progress and solution
to file

qpsolver 'cholesky' |
'cg' | 'qn'

'cholesky' Specifies the
active-set algorithm
used in the optimality
phase. 'cholesky'
indicates the
Cholesky solver and
'qn' indicates the
quasi-Newton
method. 'cg' uses an
active-set method
similar to 'qn' but
uses the
conjugate-gradient
method to solve all
systems involving the
reduced Hessian.

scaleopt 0 | 1 | 2 2 (linear)
1 (quadratic)

Scale option

scaletol numeric 0.9 Scale tolerance

stop 'on' | 'off' 'on' When 'on', deliver
partial solution when
failing

suplim integer n1+1 Superbasics limit

TABLE 5-10: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 5 : C O M M A N D R E F E R E N C E

optpropnlin
optpropnlinPurpose Nonlinear Optimization Lab solver properties.

Syntax options = optpropnlin

Description The following table lists all common property/value pairs used in the Optimization
Lab solvers optnlin and optnlinlsq. In the table, m is the number of constraints
and n1 is the number of nonlinear variables, which is computed internally by the
solvers.

options = optpropnlin returns a struct with all available properties, each set to
its default value. Properties whose default depends on the input problem are not set
(the corresponding field contains an empty matrix).

For more details on the solver properties, see “Solver Properties” in Chapter 6.

TABLE 5-11: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

cendiff numeric 6.0e-6 Central difference
interval

checkfreq integer 60 Check frequency

diffint numeric 1.5e-8 Difference interval

elasticw numeric 1.0e4 Elastic weight

expfreq integer 10000 Expand frequency

facfreq integer 50 Factorization
frequency

feastol numeric 1.0e-6 Minor feasibility
tolerance

funcprec numeric 3.8e-11 Function precision

hessdim integer min(1000,n1+1) Hessian dimension

hessfreq integer 9999999 Hessian frequency

hessmem 'full' |
'limited'

'limited' if
n1 > 75 or
qpsolver 'cg'

Hessian memory

hessupd integer 10 if hessmem
'limited'

Hessian updates

infbound positive numeric 1.0e20 Infinite bound size

itlim integer 500 Minor iteration limit

linesearch 'derivative' |

'nonderivative'

derivative Linesearch method
103

optpropnlin

104 | C H A P T
linestol numeric 0.9 Linesearch tolerance

majfeastol numeric 1.0e-6 Major feasibility
tolerance

majitlim integer max(1000,m) Major iterations limit

majsteplim numeric 2.0 Major step limit

maximize 'on' | 'off' 'off' 'on' if objective
should be maximized

newsuplim integer 99 New superbasics limit

opttol numeric 1.0e-6 Optimality tolerance

out 'sol' | 'opt' |
'x' | 'f' | 'y' |
'xinfo' |
'state' | 'ns' |
'ninf' | 'sinf' |
'exit' | 'info' |
'msg' |
'algorithm'

'sol' Output variables

param any empty Allows additional
arguments to be
passed along to the
user callback
functions. Use a cell
array to pass along
more than one
argument. Note that
the cell array is
unpacked in the
function call, so
setting param to
{a1,a2} results in
functions being called
with
userfun(x,a1,a2).

pivtol numeric 3.7e-11 Pivot tolerance

print filename empty (no
printing)

Print information
about the solver
progress and solution
to file

TABLE 5-11: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 5 : C O M M A N D R E F E R E N C E

optpropnlin
proxmeth 1 | 2 1 Proximal point
method

qpsolver 'cholesky' |
'cg' | 'qn'

'cholesky' Specifies the
active-set algorithm
used to solve the QP
subproblem.
'cholesky'
indicates the
Cholesky solver and
'qn' indicates the
quasi-Newton
method. 'cg' uses an
active-set method
similar to 'qn' but
uses the
conjugate-gradient
method to solve all
systems involving the
reduced Hessian.

scaleopt 0 | 1 | 2 1 Scale option

scaletol numeric 0.9 Scale tolerance

stop 'on' | 'off' 'on' When 'on', deliver
partial solution when
failing

suplim integer n1+1 Superbasics limit

totitlim integer max(10000,20*m) Iterations limit
(absolute limit on the
total number of
minor iterations

TABLE 5-11: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
105

optpropnlin

106 | C H A P T
See Also optprop, optnlin, optnlinlsq

verify -1 | 0 | 1 | 2 | 3 0 Verification level of
derivatives through
finite-differences.
Derivatives are
checked at the first
point that satisfies all
bounds and linear
constraints.

-1 indicates that
derivative checking is
disabled.

0 indicates that only a
cheap test is
performed, requiring
two calls to user
functions.

1 indicates that
individual gradients
are checked with a
more reliable test.

2 indicates that
individual columns of
the problem Jacobian
are checked.

3 indicates that both
options 2 and 1 occur
(in that order).

viollim numeric 10 Violation limit

TABLE 5-11: COMSOL OPTIMIZATION LAB PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 5 : C O M M A N D R E F E R E N C E

optquad
optquadPurpose Solve a quadratic optimization problem.

Syntax opt.sol = optquad(opt,...)
opt.sol = optquad(opt,options)

Description optquad solves the quadratic optimization problem

which corresponds to the following fields in the Opt structure (for information
about which fields are optional, see optim):

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION

opt.obj.H H Coefficient matrix for the quadratic
terms of the objective function
(symmetric matrix or function returning
Hx), default zero

opt.obj.c c Coefficient vector for the linear term of
the objective function (numeric vector),
default vector of zeros

opt.obj.form Specifies the form of the objective
function. If it is not included, optquad
assumes the general quadratic
formulation, 'quad' (the one given in
this table). It is also possible to call
optquad with an objective of the 'lin'
form. (For more information on objective
function forms see optim.)

opt.lc.A A Linear constraints (matrix)

opt.lc.lb blb Lower bounds for linear constraints
(vector or scalar), default -Inf

opt.lc.ub bub Upper bounds for linear constraints
(vector or scalar), default Inf

opt.bc.lb xlb Lower bounds for variables (vector or
scalar), default -Inf

opt.bc.ub xub Upper bounds for variables (vector or
scalar), default Inf

min 1
2
---x

T
Hx cTx+

blb Ax bub≤ ≤

xlb x xub≤ ≤
107

optquad

108 | C H A P T
When Hx is supplied as a function, it can be either a string, denoting the function
name, or an inline function. It should take the present vector x as its input, but it is
possible to supply extra arguments by using the param solver option. The solver
then passes along these additional arguments at each callback.

y is a structure with the following field:

Positive and negative multipliers indicate active lower and upper bounds,
respectively.

For information about eval and xinfo see optim.

Parameters to the solvers can be given either as property/value pairs or in the
options structure. For a list of properties see optprop.

Algorithm optquad uses the SQOPT package. For further details, see User’s Guide for
SQOPT: A Fortran Package for Large-Scale Linear and Quadratic
Programming (Philip E. Gill, Walter Murray, and Michael A. Saunders).

opt.init.x Initial guess (vector), default vector of
zeros

opt.sol.x Solution (vector)

opt.sol.eval Substructure containing value of objective
function and constraints, if any

opt.sol.y Lagrange multipliers in solution
(structure)

opt.sol.xinfo Information about the solution
(structure)

opt.sol.exit Exit condition (scalar). exit is 1 for
successful completion, 0 otherwise.

opt.sol.info Info flag as specified by SQOPT. (See the
SQOPT User’s Guide for further details.)

opt.sol.msg Message corresponding to the info flag as
specified by SQOPT. (See the SQOPT
User’s Guide for further details.)

opt.sol.algorithm 'optquad', to indicate solver used

TABLE 5-12: THE Y STRUCTURE

FIELD NAME INTERPRETATION

lc Lagrange multipliers for the linear constraints

FIELD NAME MATHEMATICAL
NOTATION

INTERPRETATION
E R 5 : C O M M A N D R E F E R E N C E

optquad
See Also optlin, optnlin
109

optsetstatus

110 | C H A P T
optsetstatusPurpose Set solver status during callback.

Syntax optsetstatus(s)

Description optsetstatus(s) is intended for use in the Optimization Lab’s nonlinear callback
routines. Call optsetstatus with s = -1 to reduce the step length during a line
search (for example, if the current point is undefined). Call optsetstatus with
s -2 to request a solver abort.

For more information see the SNOPT documentation.

See Also optgetstatus

≤

E R 5 : C O M M A N D R E F E R E N C E

D i a gno s t i c s

Error Messages and Troubleshooting

The Optimization Lab solvers all return three pieces of information: an information
flag (sol.info), an integer exit code or flag indicating the exit condition, and a
message describing this particular state (sol.msg). The various states are grouped into
more general categories such that for all problems of a specific type, the most
significant digit of the exit code is the same. The list of general groups are:

The exit codes 0–20 appear when a solution exists (though it might not be optimal).

Following is a description of each message and possible courses of action. Not all
return states are possible for all types of problems; some typically occur only for the
nonlinear solvers.

TABLE 5-13: GROUPS OF POSSIBLE EXIT CONDITIONS

STATE GROUP DESCRIPTION

0 Finished successfully

10 The problem appears to be infeasible

20 The problem appears to be unbounded

30 Resource limit error

40 Terminated after numerical difficulties

50 Error in the user-supplied functions

60 Undefined user-supplied functions

70 User requested termination

80 Insufficient storage allocated

90 Input arguments out of range

140 System error
D I A G N O S T I C S | 111

112 | C H A P T E R
S U C C E S S F U L C O M P L E T I O N

These messages call for guarded optimism! They are certainly preferable to every other
message, and you naturally want to believe what they say. However, in every case a
distinct level of caution is in order. For example, if the objective value is much better
than expected, you might have obtained an optimal solution to the wrong problem.
Almost any item of data could have that effect if it has the wrong value. Verifying that
you have defined the problem correctly is one of the more difficult tasks for a model
builder.

If nonlinearities exist, you must always ask the question: could there be more than one
local optimum? When the constraints are linear and the objective is known to be
convex (for example, a sum of squares), then all is well if you are minimizing the
objective—a local minimum is a global minimum in the sense that no other point has
a lower function value. (However, many points could have the same objective value,
particularly if the objective is largely linear.)

Conversely, if you are maximizing a convex function, you cannot expect a local
maximum to be global unless there are sufficient constraints to confine the feasible
region. Similar statements could be made about nonlinear constraints defining convex
or concave regions. However, the functions of a problem are more likely to be neither
convex nor concave. It is good practice to specify a starting point that is as good an
estimate as possible and then to also include reasonable upper and lower bounds on all
variables in order to confine the solution to the specific region of interest.

For Flag 4, the final point is a weak minimizer. (The objective value is a global
optimum, but it might be achieved by an infinite set of points x.) This exit code applies
to optquad only (QP problems) and arises when (i) the problem is feasible, (ii) the
reduced gradient is negligible, (iii) the Lagrange multipliers are optimal, and (iv) the
reduced Hessian is singular or there are some very small multipliers. This exit code
cannot appear if H is positive definite.

TABLE 5-14: OUTPUT AT SUCCESSFUL COMPLETION

INFO FLAG DESCRIPTION

0 Finished successfully

1 Optimality conditions satisfied

2 Feasible point found

3 Requested accuracy could not be achieved

4 Weak QP minimizer
 5 : C O M M A N D R E F E R E N C E

One other caution about the return value 1, “Optimality conditions satisfied.” Some
of the variables or constraints might lie outside their bounds more than desired,
especially if scaling was requested.

I N F E A S I B L E P R O B L E M S

This exit code appears if the solver is unable to find a point that satisfies the constraints.
When the constraints are linear, the output messages are based on a relatively reliable
indicator of infeasibility. Feasibility is measured with respect to the upper and lower
bounds. Violations as small as the (minor) feasibility tolerance (feastol) are ignored,
but at least one component violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize
correctly. Even if a feasible solution exists, the current linearization of the constraints
might not contain a feasible point. In an attempt to deal with this situation, when
solving each quadratic subproblem, the nonlinear solvers are prepared to relax the
nonlinear bounds.

If a quadratic subproblem proves to be infeasible or unbounded (or if the Lagrange
multiplier estimates for the nonlinear constraints become large), the solvers enter a
so-called Elastic mode (provided the elastic property is nonzero). The subproblem
includes the original quadratic objective and the sum of the infeasibilities—suitably
weighted using the elastic weight parameter. In Elastic mode, the bounds on the
nonlinear constraints become “elastic”—that is, the constraints may violate their
bounds. If the original problem has a feasible solution and the elastic weight is
sufficiently large, a feasible point is eventually obtained for the perturbed constraints,
and optimization can continue on the subproblem. If the problem has no feasible
solution, the solvers tend to determine a “good” infeasible point if the elastic weight
is sufficiently large.

Unfortunately, even though the solvers locally minimize the nonlinear constraint
violations, there might still exist other regions in which the nonlinear constraints are

TABLE 5-15: OUTPUT FOR INFEASIBLE PROBLEMS

INFO FLAG DESCRIPTION

0 The problem appears to be infeasible

11 Infeasible linear constraints

12 Infeasible linear equalities

13 Nonlinear infeasibilities minimized

14 Infeasibilities minimized
D I A G N O S T I C S | 113

114 | C H A P T E R
satisfied. Wherever possible, try to define nonlinear constraints in such a way that
feasible points are known to exist when the constraints are linearized.

U N B O U N D E D P R O B L E M S

For linear problems, unboundedness is detected by the simplex method when a
nonbasic variable can be increased or decreased by an arbitrary amount without
causing a basic variable to violate a bound. Consider adding an upper or lower bound
to the variable that is unbounded. Also examine the constraints that have nonzeros in
the associated column to see if they have been formulated as intended. Very rarely, the
scaling of the problem could be so poor that a numerical error gives an erroneous
indication of unboundedness. Consider using the scale option scaleopt.

For nonlinear problems, the solvers monitor both the size of the current objective
function and the size of the change in the variables at each step. If either of these is
very large, the problem is terminated and declared unbounded. To avoid large
function values, it might be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the nonlinear functions.

Flag 22 indicates an abnormal termination while enforcing the limit on the constraint
violations. This exit code implies that the objective is not bounded below in the feasible
region defined by expanding the bounds by the value of the violation limit viollim.

R E S O U R C E L I M I T E R R O R S

Either the iterations limit (itlim, see page 129) or the total iterations limit
(totitlim, see page 138) was exceeded before the required solution could be found.

TABLE 5-16: OUTPUT FOR UNBOUNDED PROBLEMS

INFO FLAG DESCRIPTION

20 The problem appears to be unbounded

21 Unbounded objective

22 Constraint violation limit reached

TABLE 5-17: OUTPUT FOR RESOURCE LIMIT ERRORS

INFO FLAG DESCRIPTION

30 Resource limit error

31 Iteration limit reached

32 (Major) iteration limit reached

33 The superbasics limit is too small
 5 : C O M M A N D R E F E R E N C E

Check if the solver was making progress, for example by printing out the solution in
the callback functions. If so, restart the run using the last solution as an initial one.

N U M E R I C A L D I F F I C U L T I E S

Several circumstances can lead to the solvers not being able to improve on a
non-optimal point:

• The user-supplied functions could be returning accurate function values but
inaccurate gradients (or vice versa). This is the most likely cause. Study the
comments for Flags 51 and 52 and do your best to ensure that the coding is correct.

• The function and gradient values could be consistent, but their precision could be
too low. You might need to raise the default optimality tolerance (opttol) if it is
not possible to increase the precision of the functions themselves.

• If function values are obtained from an expensive iterative process, they might be
accurate to rather few significant figures, and gradients are probably not available.
You should specify a function precision t and an optimality tolerance , but even
then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same exit
condition could occur. At present the only remedy is to increase the accuracy of the
function calculation.

Termination because of a singular basis is highly unlikely to occur. The first
factorization attempt finds the basis to be structurally or numerically singular. The
modified basis is refactorized, but a singularity persists. This likely means that the
problem is badly scaled.

If the general constraints cannot be satisfied, an LU factorization of the basis has just
been obtained and used to recompute the basic variables. A step of “iterative
refinement” has also been applied to increase the accuracy. However, a row check has
revealed that the resulting solution does not satisfy the current constraints sufficiently
well. This probably means that the current basis is very ill-conditioned. If there are

TABLE 5-18: OUTPUT AFTER NUMERICAL DIFFICULTIES

INFO FLAG DESCRIPTION

40 Terminated after numerical difficulties

41 Current point cannot be improved

42 Singular basis

43 Cannot satisfy the general constraints

44 Ill-conditioned null-space basis

t

D I A G N O S T I C S | 115

116 | C H A P T E R
some linear constraints and variables, try setting scaleopt to 1 if scaling has not yet
been used.

E R R O R S I N U S E R - S U P P L I E D F U N C T I O N S

This exit code implies that there might be errors in the functions that define the
problem objective and constraints. If the objective derivatives appear to be incorrect,
the solver has made a check on some individual elements of the objective gradient array
at the first point that satisfies the linear constraints. At least one component in the user
routines has been set to a value that disagrees markedly with its associated
forward-difference estimate. (The relative difference between the computed and
estimated values is 1.0 or more.) This exit code is a safeguard because the solvers
usually fail to make progress when the computed gradients are seriously inaccurate. In
the process the solver might expend considerable effort before terminating with Flag
41 (“Current point cannot be improved”). Check the function and gradient
computation very carefully. A simple omission, such as forgetting to divide by two,
could explain everything. If some component is very large, then give serious thought
to scaling the function or the nonlinear variables.

If you feel certain that the computed objective gradient is correct (and that the
forward-difference estimate is therefore wrong), you can specify a verification level of
0 (using the property verify; see page 138) to prevent individual elements from being
checked. However, the optimization procedure might have difficulties.

If some constraint derivatives appear to be incorrect, then at least one of the computed
constraint derivatives is significantly different from an estimate obtained by forward
differences. Follow the advice given earlier for the objective function, trying to ensure
that the constraints and their derivatives are set correctly.

Return Flag 54 refers to the quadratic solver and indicates that an indefinite matrix was
detected during the computation of the reduced Hessian factor R such that
RTR = ZTHZ. This might be caused by the matrix H being indefinite, that is, there
might exist a vector y such that yTHy < 0. In this case the QP problem is not convex
and cannot be solved using optquad. You should check that H is correct and that all

TABLE 5-19: OUTPUT FOR ERRORS IN USER-SUPPLIED FUNCTIONS

INFO FLAG DESCRIPTION

50 Error in the user-supplied functions

51 Incorrect objective derivatives

52 Incorrect constraint derivatives

54 The QP Hessian is indefinite
 5 : C O M M A N D R E F E R E N C E

relevant components of Hx are assigned their correct values, in the case when Hx is
computed in a function.

If H is symmetric positive semidefinite, then the problem might be the ill-conditioning
of the reduced Hessian caused by ill-conditioning in either H or Z.

P R O B L E M S W I T H U N D E F I N E D F U N C T I O N S

If the user calls optsetstatus(-1) in any unction then the problem is considered to
be “undefined” at that point. The solvers attempt to evaluate the problem functions
closer to a point at which the objective and constraints have already been computed.
Flags 61 and 62 indicate that the solver is unable to proceed because the functions are
undefined at the initial point or first feasible point.

Flag 63 implies that repeated attempts to move into a region where the functions are
not defined resulted in the change in variables being unacceptably small.

U S E R R E Q U E S T E D T E R M I N A T I O N

These exit codes appear when some user-defined function has called optsetstatus
for values < -1. The solvers assume that you want the problem to be abandoned
immediately.

If the following exit codes appear during the first basis factorization, the primal and
dual variables have their original input values.

TABLE 5-20: OUTPUT FOR UNDEFINED FUNCTION ERRORS

INFO FLAG DESCRIPTION

60 Undefined user-supplied functions

61 Undefined function at the first feasible point

62 Undefined function at the initial point

63 Unable to proceed into undefined region

TABLE 5-21: OUTPUT FOR USER REQUESTED TERMINATION

INFO FLAG DESCRIPTION

70 User requested termination

71 Terminated during function evaluation

72 Terminated during constraint evaluation

73 Terminated during objective evaluation

74 Terminated from monitor routine
D I A G N O S T I C S | 117

118 | C H A P T E R
I N S U F F I C I E N T S T O R A G E

These exit codes indicate that the solver ran out of memory. Be sure that the Hessian
dimension is not unreasonably large.

I N P U T A R G U M E N T S O U T O F R A N G E

These exit codes appear if some data associated with the problem is out of range or
invalid.

S Y S T E M E R R O R

These exit codes appear if some fatal system error has occurred. The solver abandons
the problem.

TABLE 5-22: OUTPUT FOR INSUFFICIENT STORAGE

INFO FLAG DESCRIPTION

80-84 Insufficient storage allocated

TABLE 5-23: OUTPUT FOR INPUT ARGUMENT DIFFICULTIES

INFO FLAG DESCRIPTION

90 Input arguments out of range

91 Invalid input argument

TABLE 5-24: OUTPUT FOR SYSTEM ERRORS

INFO FLAG DESCRIPTION

140 System error

141 Wrong number of basic variables

142 Error in basis package
 5 : C O M M A N D R E F E R E N C E

 6
S o l v e r P r o p e r t i e s
This chapter contains details about the available properties for the gradient-based
solvers. These properties can be useful to tune the solvers’ performance.
 119

120 | C H A P T E R
Grad i e n t - B a s e d S o l v e r P r op e r t i e s

A list of the available solver properties appears in the “Command Reference” chapter
in the entries for optprop on page 99 (properties for linear and quadratic solvers) and
optpropnlin on page 103 (nonlinear solvers). The following sections provide more
detailed explanations of these properties.

Note: In the following sections, ε represents the machine precision and is
approximately equal to 2.2·10−16. The machine precision is available as eps in
COMSOL Script.

Cendiff

Central difference interval
Type: numeric
Default: ε1/3 ≈ 6.0·10−6

Applicable for: Nonlinear solvers

When some problem derivatives are unknown, the solver uses the central difference
interval near an optimal solution to obtain more accurate (but more expensive)
estimates of gradients. Twice as many function evaluations are required compared to
forward differencing. If r is the central difference interval, the interval used for the jth
variable is hj = r(1 + | xj |). The resulting derivative estimates should be accurate to
O(r2), unless the functions are badly scaled.

Checkfreq

Check frequency
Type: integer
Default = 60
Applicable for: All solvers

Every ith iteration after the most recent basis factorization, the solver makes a
numerical test to see if the current solution x satisfies the general linear constraints
(including linearized nonlinear constraints, if any). The constraints are of the form
Ax − s = b where s is the set of slack variables. To perform the numerical test, the solver
 6 : S O L V E R P R O P E R T I E S

computes the residual vector r = b − Ax + s. If the largest component of r is judged to
be too large, the current basis is refactorized and the basic variables are recomputed to
satisfy the general constraints more accurately.

checkfreq = 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Diffint

Difference interval
Type: numeric
Default: ε1/2 ≈ 1.5·10−8

Applicable for: Nonlinear solvers

This property alters the interval that the solver uses to estimate gradients by forward
differences in the following circumstances:

• In the initial (“cheap”) phase of verifying the problem derivatives

• For verifying the problem derivatives

• For estimating missing derivatives

In all cases, the solver estimates a derivative with respect to xj by perturbing that
component of x to the value xj + h1(1 + | xj |), where h1 is the difference interval, and
then evaluating the goal function at the perturbed point.

The resulting gradient estimates should be accurate to O(h1) unless the functions are
badly scaled. Judicious alteration of the difference interval can sometimes lead to
greater accuracy.

Elastic

Elastic mode
Type: integers 0, 1, or 2
Default: 1
Applicable for: Linear and quadratic solvers
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 121

122 | C H A P T E R
This parameter determines if (and when) Elastic mode is started. Three variations are
available:

Elasticobj

Elastic objective
Type: integers 0, 1, or 2
Default: 2
Applicable for: Linear and quadratic solvers

TABLE 6-1: ELASTIC MODES

MODE DESCRIPTION

0 Elastic mode is never invoked. The solver terminates as soon as it
detects infeasibility. There might be other points with significantly
smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be
infeasible. If so, the solver continues in the Elastic mode with the
composite objective determined by the values of properties
elasticobj (elastic objective) and elasticw (elastic weight).

2 The iterations start and remain in Elastic mode. This option allows
you to minimize the composite objective function directly without
first performing phase−1 iterations (also sometimes called the
feasibility phase, which minimizes the sum of infeasibilities to find a
feasible point). The success of this option depends critically on the
choice of elastic weight. If that value is sufficiently large and the
constraints are feasible, the minimizer of the composite objective and
the solution of the original problem are identical. However, if the
elastic weight is not sufficiently large, the minimizer of the composite
function might be infeasible even though a feasible point for the
constraints could exist.
 6 : S O L V E R P R O P E R T I E S

This option determines the form of the composite objective. Three types of composite
objective are available:

Elasticbc

Elastic bound constraints
Type: scalar or vector of 0, 1, 2, or 3
Default: 0
Applicable for: Linear and quadratic solvers

Indicates which bound constraints can be elastic:

• 0—corresponding constraints cannot be violated.

• 1—the lower bound can be violated.

• 2—the upper bound can be violated.

• 3—either bound can be violated.

Elasticlc

Elastic linear constraints
Type: scalar or vector of 0, 1, 2, or 3

TABLE 6-2: ELASTIC OBJECTIVE MODES

MODE DESCRIPTION

0 Include only the true objective in the composite objective. This
option sets the elastic weight to 0 in the composite objective and
allows the solver to ignore the elastic bounds and find a solution
that minimizes the objective function subject to the nonelastic
constraints. This option is useful if there are some “soft” constraints
that you would like to ignore if the constraints are infeasible.

1 Use a composite objective defined with elastic weight determined by
the value of the elasticw property. This value is intended to be used
in conjunction with Elastic mode set to 2.

2 Include only the elastic variables in the composite objective. The
elastics are weighted by 1. This choice minimizes the violations of the
elastic variable at the expense of possibly increasing the true
objective. This option can be used to find a point that minimizes the
sum of the violations of a subset of constraints determined by the
parameters elasticbc and elasticlc.
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 123

124 | C H A P T E R
Default: 3
Applicable for: Linear and quadratic solvers

Indicates which linear constraints may be elastic.

• 0—corresponding constraints cannot be violated.

• 1—the lower bound can be violated.

• 2—the upper bound can be violated.

• 3—either bound can be violated.

Elasticw

Elastic weight
Type: numeric
Default: 1.0 for linear and quadratic problems, 1.0·104 for nonlinear problems
Applicable for: Linear and quadratic solvers

This property determines the initial weight associated with the elastic QP problem. For
more details, see the SNOPT and SQOPT manuals. In general, in Elastic mode, if the
original problem has a feasible solution and the elastic weight is sufficiently large, a
feasible point is eventually obtained for the perturbed constraints and optimization can
continue.

Expfreq

Expand frequency
Type: integer
Default: 10,000
Applicable for: All solvers

This option is part of the internal procedure designed to make progress even on highly
degenerate problems.

For linear models, the strategy is to force a positive step at every (minor) iteration at
the expense of violating the bounds on the variables by a small amount. Suppose that
the expand frequency is i and the feasibility tolerance (property feastol) is δ. Over a
period of i iterations, the tolerance the solvers actually use increases from 0.5δ to δ (in
steps of 0.5δ/i).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a
 6 : S O L V E R P R O P E R T I E S

vertex of the feasible region.) Thus, zero steps are allowed if there is more than one
superbasic variable, but otherwise positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic variables (most of
which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see pivtol on page 134).

Facfreq

Factorization frequency
Type: integer
Default: 100 for linear problems, 50 for quadratic or nonlinear problems
Applicable for: All solvers

At most k basis changes occur between factorizations of the basis matrix, where k is
the factorization frequency.

With linear programs, the basis factors are usually updated every iteration. The default
k is reasonable for typical problems. Higher values to k = 100 might be more efficient
on problems that are extremely sparse and well scaled.

When the objective function is nonlinear or quadratic, fewer basis updates occur as an
optimum is approached. The number of iterations between basis factorizations
therefore increases. During these iterations a test is made regularly (according to the
check frequency, Checkfreq) to ensure that the general constraints are satisfied. If
necessary the basis is refactorized before the limit of k updates is reached.

Feastol

Feasibility tolerance
Type: numeric
Default: 1.0·10−6

Applicable for: All solvers

The solvers try to ensure that all bound and linear constraints are eventually satisfied
to within the feasibility tolerance t. (Feasibility with respect to nonlinear constraints is
instead judged by the major feasibility tolerance, majfeastol.)

If the bounds and linear constraints cannot be satisfied to within t, the problem is
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is quite
small, it might be appropriate to raise t by a factor of 10 or 100. Otherwise you should
suspect some error in the data.
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 125

126 | C H A P T E R
Nonlinear functions are evaluated only at points that satisfy the bound and linear
constraints. If there are regions where a function is undefined, every attempt should
be made to eliminate these regions from the problem. For example, if

, it is essential to place lower bounds on both variables. If
t = 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log
singularity is more serious. In general, keep x as far away from singularities as possible.)

If scaleopt (see page 136) is 1, feasibility is defined in terms of the scaled problem
(because it is then more likely to be meaningful).

In practice, the nonlinear solvers use t as a feasibility tolerance for satisfying the bound
and linear constraints in each QP subproblem. If the sum of infeasibilities cannot be
reduced to zero, the QP subproblem is declared infeasible. The solver is then in the
Elastic mode thereafter (with only the linearized nonlinear constraints defined to be
elastic).

For the quadratic and linear solvers, note that if sInf is not small and you have not
asked the solver to minimize the violations of the elastic variables (that is, you have not
specified elastobj = 2), other points might have a significantly smaller sum of
infeasibilities. The solvers do not attempt to find the solution that minimizes the sum
unless elastobj = 2. (See Elasticobj on page 122 for further details.)

Funcprec

Function precision
Type: numeric
Default: ε0.8 ≈ 3.8·10−11

Applicable for: Nonlinear solvers

The relative function precision is intended to be a measure of the relative accuracy with
which the nonlinear functions can be computed. For example, if f(x) is computed as
1000.56789 for some relevant x and if the first 6 significant digits are known to be
correct, the appropriate value for the function precision would be 1e-6. (Ideally the
functions should have a magnitude of order 1. If all functions are substantially less than
1 in magnitude, the function precision should be the absolute precision. For example,
if f(x) = 1.23456789·10−4 at some point and if the first 6 significant digits are known
to be correct, the appropriate precision would be 1e-10.)

The default value is appropriate for simple analytic functions.

In some cases the function values are the result of extensive computations, possibly
involving an iterative procedure that can provide rather few digits of precision at

f x() x1 xlog 2+=
 6 : S O L V E R P R O P E R T I E S

reasonable cost. Specifying an appropriate function precision might lead to savings by
allowing the line search procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

Hessdim

Hessian dimension
Type: numeric
Default: min{1000, n1 + 1}, where n1 in the nonlinear case is the number of
nonlinear variables, in the quadratic case is the number of leading nonzero columns
of the Hessian, and in the linear case is 0.
Applicable for: All solvers

Let r be the value given by the hessdim property. This specifies that an r-by-r
triangular matrix R is to be available for use by the Cholesky QP solver (to define the
reduced Hessian according to RTR = ZTHZ). See the SNOPT and SQOPT user’s
manuals for further details.

Hessfreq

Hessian frequency
Type: numeric
Default: 999,999
Applicable for: Nonlinear solvers

If the hessmem property is set to 'full' and hessfreq BFGS updates have already
been carried out, the Hessian approximation is reset to the identity matrix. (For certain
problems occasional resets might improve convergence, but in general they should not
be necessary.) hessmem set to 'full' and hessfreq set to 20 have a similar effect to
hessmem set to 'limited' and hessupd set to 20 (except that the latter retains the
current diagonal during resets).

Hessmem

Hessian memory
Type: string 'full' or 'limited'
Default: 'full' if the number of nonlinear variables is 75. When QP problem
solver is set to conjugate-gradient, the default is always 'limited'.
Applicable for: Nonlinear solvers

≤

G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 127

128 | C H A P T E R
This option selects the method for storing and updating the approximate Hessian.
(The nonlinear solvers use a quasi-Newton approximation to the Hessian of the
Lagrangian. A BFGS update is applied after each major iteration.)

If Hessian full memory is specified, the approximate Hessian is treated as a dense
matrix and the BFGS updates are applied explicitly. This option is most efficient when
the number of nonlinear variables is not too large (say, less than 75). In this case, the
storage requirement is fixed and you can expect 1-step Q-superlinear convergence to
the solution.

Hessian limited memory should be used on problems where the number of nonlinear
variables is very large. In this case a limited-memory procedure is used to update a
diagonal Hessian approximation a limited number of times.

Hessupd

Hessian updates
Type: integer
Default: 10
Applicable for: Nonlinear solvers

If hessmem is set to limited memory and hessupd BFGS updates have already been
carried out, all but the diagonal elements of the accumulated updates are discarded and
the updating process starts again. Broadly speaking, the more updates stored, the
better the quality of the approximate Hessian. However, the more vectors stored, the
greater the cost of each QP iteration. The default value is likely to give a robust
algorithm without significant expense, but faster convergence can sometimes be
obtained with significantly fewer updates (e.g., hessupd = 5).

Infbound

Infinite bound size
Type: positive numeric
Default: 1.0·1020

Applicable for: All solvers

Defines the “infinite” bound in the definition of the problem constraints. Any upper
bound greater than or equal to this bound is regarded as plus infinity (and similarly for
a lower bound less than or equal to -infbound).
 6 : S O L V E R P R O P E R T I E S

Itlim

Iterations limit
Type: nonnegative integer
Default: 500 for nonlinear solvers, otherwise 3m, where m is the number of general
constraints
Applicable for: All solvers

For the linear and quadratic solvers, this is the maximum number of allowed iterations
of the simplex method or the QP reduced-gradient algorithm. It is allowable to set
itlim to 0 whereby the solver checks both feasibility and optimality.

For the nonlinear solvers, this is the number of minor iterations for the optimality
phase of the QP subproblem. If itlim is exceeded, then all nonbasic QP variables that
have not yet moved are frozen at their current values and the reduced QP is solved to
optimality.

Note that more than itlim minor iterations might be necessary to solve the reduced
QP to optimality. These extra iterations are necessary to ensure that the terminated
point gives a suitable direction for the line search.

Note that totitlim (total iterations limit; see page 138) defines an independent
absolute limit on the total number of minor iterations (summed over all QP
subproblems).

Linesearch

Linesearch method
Type: string 'derivative' or 'nonderivative'
Default: 'derivative'
Applicable for: Nonlinear solvers

At each major iteration a line search is used to improve the merit function. A
derivative linesearch uses safeguarded cubic interpolation and requires both
function and gradient values to compute estimates of the step. If some analytic
derivatives are not provided or a nonderivative linesearch is specified, the solver
employs a line search based upon safeguarded quadratic interpolation, which does not
require gradient evaluations.

A nonderivative line search can be slightly less robust on difficult problems, and we
recommend use of the default if the functions and derivatives can be computed at
approximately the same cost. If the gradients are very expensive relative to the
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 129

130 | C H A P T E R
functions, a nonderivative line search might give a significant decrease in computation
time.

Linestol

Linesearch tolerance
Type: numeric
Default: 0.9
Applicable for: Nonlinear solvers

This parameter controls the accuracy with which a step length is located along the
direction of search during each iteration. At the start of each line search, the solver
identifies a target directional derivative for the merit function. This parameter
determines the accuracy to which this target value is approximated.

linestol must be a real value in the range 0 to 1. The default value of 0.9 requests
just moderate accuracy in the line search. If the nonlinear functions are cheap to
evaluate, a more accurate search might be appropriate; try a linestol value of 0.1,
0.01 or 0.001. The number of major iterations might decrease.

If the nonlinear functions are expensive to evaluate, a less accurate search might be
appropriate. If all gradients are known, try linestol = 0.99. (The number of major
iterations might increase, but the total number of function evaluations could decrease
enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each
search requires only one to five function values (typically), but many function calls are
then needed to estimate missing gradients for the next iteration.

Majfeastol

Major feasibility tolerance
Type: numeric
Default: 1.0·10−6

Applicable for: Nonlinear solvers

This parameter specifies how accurately the nonlinear constraints should be satisfied.
The default value of 1.0·10−6 is appropriate when the linear and nonlinear constraints
contain data to roughly that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of
the solution. It is required to satisfy
 6 : S O L V E R P R O P E R T I E S

where violi is the violation of the ith nonlinear constraint. If some of the problem
functions are known to be of low accuracy, a larger major feasibility tolerance might be
appropriate.

Majitlim

Major iterations limit
Type: numeric
Default: max(1000, m), where m is the number of general constraints
Applicable for: Nonlinear solvers

This is the maximum number of major iterations allowed. It is intended to guard
against an excessive number of linearizations of the constraints.

Majsteplim

Major step limit
Type: numeric
Default: 2.0
Applicable for: Nonlinear solvers

This parameter limits the change in x during a line search. It applies to all nonlinear
problems once the solver has found a “feasible solution” or “feasible subproblem.”

• A line search determines a step α over the range , where β is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the
constraints are linear. Normally, the first step length tried is α1 = min(1, β).

• In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the
components of x can lead to floating-point overflow. The parameter majsteplim is
therefore used to define a limit (where p is the search direction
and r the value of majsteplim), and the first evaluation of f(x) is at the potentially
smaller step length .

• Wherever possible, use upper and lower bounds on x s to prevent evaluation of
nonlinear functions at meaningless points. The major step limit provides an
additional safeguard. The default value majsteplim = 2.0 should not affect
progress on well-behaved problems, but setting it to 0.1 or 0.01 might be helpful
when rapidly varying functions are present. A “good” starting point might be

rowerr max
i

violi x 1+()⁄ majfeastol≤=

0 α β≤<

β r 1 x+() p⁄=

α1 min 1 β β,(,)=
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 131

132 | C H A P T E R
required. An important application is to the class of nonlinear least-squares
problems.

• In cases where several local optima exist, specifying a small value for majsteplim
could help locate an optimum near the starting point.

Maximize

Maximize objective
Type: string 'on' or 'off'
Default: 'off'
Applicable for: All solvers

Setting this property to on causes the objective to be maximized instead of minimized.

Opttol

Optimality tolerance
Type: numeric
Default: 1.0·10−6

Applicable for: All solvers

The linear and quadratic solvers use this parameter to judge the size of the reduced
gradients dj = gj − πT aj, where gj is the jth component of the gradient, aj is the
associated column of the constraint matrix (A − I), and π is the set of dual variables.

By construction, the reduced gradients for basic variables are always 0. Let t be the
optimality tolerance. The problem is declared optimal if the reduced gradients for
nonbasic variables at their lower or upper bounds satisfy

respectively, and if for superbasic variables.

In these tests, || π || is a measure of the size of the dual variables. It is included to make
the tests independent of a scale factor on the objective function. The quantity || π ||
actually used is defined by

so that only large scale factors are allowed.

dj π⁄ t or dj π⁄ t≤–≥

dj π⁄ t≤

π max σ m⁄ 1,{ } where σ, πi

i 1=

m

∑= =
 6 : S O L V E R P R O P E R T I E S

If the objective is scaled down to be very small, the optimality test reduces to
comparing dj against 0.01t.

For the nonlinear solvers, opttol is the major optimality tolerance and specifies the
final accuracy of the dual variables. On successful termination, the solvers compute a
solution (x, s, π) such that

where Compj is an estimate of the complementarity slackness for variable j. The values
Compj are computed from the final QP solution using the reduced gradients
dj = gj − πT aj, as above. Hence you have

See the SNOPT user’s manual for further details.

Newsuplim

New superbasics limit
Type: integer
Default: 99
Applicable for: Nonlinear solvers

This option causes early termination of the QP subproblems if the number of free
variables has increased significantly since the first feasible point. If the number of new
superbasics is greater than newsuplim, the nonbasic variables that have not yet moved
are frozen and the resulting smaller QP is solved to optimality.

Parprice

Partial price
Type: integer
Default: 10 for linear problems, 1 for quadratic
Applicable for: Linear and quadratic solvers

This parameter is recommended for large problems that have significantly more
variables than constraints. It reduces the work required for each “pricing” operation
(when a nonbasic variable is selected to become superbasic).

maxComp max
j

Compj π⁄ opttol≤=

Compj

dj min xj lj– 1{ , } if dj 0≥

dj– min uj xj– 1{ , } if dj 0<⎩
⎨
⎧

=

G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 133

134 | C H A P T E R
When the partial price is 1, all columns of the constraint matrix (A − I) are searched.
Otherwise, A and I are partitioned to give the partial price i roughly equal segments
Aj, Ij (j = 1 to i). If the previous pricing search was successful on Aj, Ij, the next search
begins on the segments Aj+1, Ij+1. (All subscripts here are modulo i.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2,
and so on.

Partial price t (or t/2 or t/3) might be appropriate for time-stage models having t time
periods.

Pivtol

Pivot tolerance
Type: numeric
Default: 3.7·10−11

Applicable for: All solvers

During solution of QP subproblems, the solver uses the pivot tolerance to prevent
columns entering the basis if they would cause the basis to become almost singular.

When x changes to x + α p for some search direction p, a “ratio test” is used to
determine which component of x first reaches an upper or lower bound. The
corresponding element of p is called the pivot element.

Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance.

It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the (minor) feasibility tolerance (say t) provides some freedom to
maximize the pivot element and thereby improve numerical stability. Excessively small
values of t should therefore not be specified.

To a lesser extent, the expand frequency (property expfreq) also provides some
freedom to maximize the pivot element. Excessively large values of expfreq should
therefore not be specified.
 6 : S O L V E R P R O P E R T I E S

Print

Print information about the solver progress and solution to file
Type: string
Default: empty
Applicable for: All solvers

When the print option is activated, the following information is output to the file
during the solution process. All printed lines are less than 131 characters.

• An estimate of the working storage needed and the amount available.

• Some statistics about the problem being solved.

• The storage available for the LU factors of the basis matrix.

• A summary of the scaling procedure, if scaleopt > 0.

• Notes about the initial basis.

• The iteration log.

• Basis factorization statistics.

• The exit condition and some statistics about the solution obtained.

• The printed solution, if requested.

For a more detailed overview of the various sections of the print files, see the SQOPT
and SNOPT user’s manuals.

Proxmeth

Proximal point method
Type: 1 or 2
Default: 1
Applicable for: Nonlinear solvers

proxmeth set to 1 or 2 specifies minimization of || x − x0 ||1 or , respectively,
when the starting point x0 is changed to satisfy the linear constraints (where x0 refers
to nonlinear variables).

Qpsolver

QP problem solver
Type: string 'cholesky', 'cg', or 'qn'

1
2
--- x x0– 2

2

G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 135

136 | C H A P T E R
Default: 'cholesky'
Applicable for: All solvers

Specifies the active-set algorithm used to solve the QP problem, or in the nonlinear
case, the QP subproblem.

'cholesky' holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the
QP iterations proceed, the dimension of R changes with the number of superbasic
variables. If the number of superbasic variables increases beyond the value of reduced
Hessian dimension (property Hessdim), the reduced Hessian cannot be stored and the
solver switches to qpsolver = 'cg'.

The Cholesky solver is reactivated if the number of superbasics stabilizes at a value less
than the reduced Hessian dimension.

'qn' solves the QP subproblem using a quasi-Newton method. In this case, R is the
factor of a quasi-Newton approximate Hessian.

'cg' uses an active-set method similar to 'qn' but uses the conjugate-gradient
method to solve all systems involving the reduced Hessian.

The Cholesky QP solver is the most robust but might require a significant amount of
computation if the number of superbasics is large.

The quasi-Newton QP solver does not require the computation of the exact R at the
start of each QP and might be appropriate when the number of superbasics is large but
each QP subproblem requires relatively few minor iterations.

The conjugate-gradient QP solver is appropriate for problems with large numbers of
degrees of freedom (many superbasic variables). The Hessian memory option
'hessmem' is defaulted to 'limited' when this solver is used.

Scaleopt

Scale option
Type: integers 0, 1, or 2
Default: 1 for quadratic and nonlinear problems, 2 for linear problems
Applicable for: All solvers
 6 : S O L V E R P R O P E R T I E S

Three scale options are available:

Scaletol

Scale tolerance
Type: numeric
Default: 0.9
Applicable for: All solvers

Scale tolerance affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and
smallest nonzero coefficients in each column:

If maxj ρj is less than scaletol times its previous value, another scaling pass is
performed to adjust the row and column scales. Raising the scale tolerance from 0.9
to 0.99 (for instance) usually increases the number of scaling passes through A. At
most 10 passes are made.

Suplim

Superbasics limit
Type: integer
Default: n1 + 1, where n1 in the nonlinear case is the number of nonlinear variables,

TABLE 6-3: SCALE OPTIONS

SCALEOPT DESCRIPTION

0 No scaling. This is recommended if it is known that x and the constraint
matrix (and Jacobian) never have very large elements (say, larger than
1000).

1 Linear constraints and variables are scaled by an iterative procedure
that attempts to make the matrix coefficients as close as possible to 1.0.
This sometimes improves the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also,
an additional scaling is performed that takes into account columns of
(A − I) that are fixed or have positive lower bounds or negative upper
bounds. If nonlinear constraints are present, the scales depend on the
Jacobian at the first point that satisfies the linear constraints. Scale
option 2 should therefore be used only if a good starting point is
provided and the problem is not highly nonlinear.

ρj max
i

aij min
i

aij⁄() aij 0≠()=
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 137

138 | C H A P T E R
in the quadratic case is the number of leading nonzero columns of the Hessian, and
in the linear case is 0.
Applicable for: All solvers

This parameter places a limit on the storage allocated for superbasic variables. Ideally,
suplim should be set slightly larger than the “number of degrees of freedom”
expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of
freedom. (The number of variables lying strictly between their bounds is no more than
m, the number of general constraints.) The default value of suplim is therefore 1.

The number of degrees of freedom is often called the “number of independent
variables.”

For quadratic problems, suplim normally need not be greater than the number of
leading nonzero columns of H. For many problems, suplim might be considerably
smaller than that, which saves storage if the number of leading nonzero columns is very
large.

For nonlinear problems, suplim normally need not be greater than n1 + 1, where n1
is the number of nonlinear variables. For many problems it might be considerably
smaller than n1. This saves storage if n1 is very large.

Totitlim

Total iterations limit
Type: numerical
Default: max{10000, 20m}, where m is the number of general constraints
Applicable for: Nonlinear solvers

This is the maximum number of minor iterations allowed (that is, iterations of the
simplex method or the QP algorithm), summed over all major iterations.

Verify

Verification level
Type: integers −1, 0, 1, 2, or 3
Default: 0
Applicable for: Nonlinear solvers
 6 : S O L V E R P R O P E R T I E S

This option refers to finite-difference checks on the derivatives computed by
user-provided routines. Derivatives are checked at the first point that satisfies all
bounds and linear constraints.

Verify level 3 is intended mainly for use when developing a new function routine.
Missing derivatives are not checked, so they result in no overhead.

Viollim

Violation limit
Type: numeric
Default: 10
Applicable for: Nonlinear solvers

This keyword defines an absolute limit on the magnitude of the maximum constraint
violation after the line search. On completion of the line search, the new iterate xk+1
satisfies the condition

where x0 is the point at which the nonlinear constraints are first evaluated, and vi(x) is
the ith nonlinear constraint violation vi(x) = max(0, li − fi(x), fi(x) − ui), where li and
ui are the lower and upper bounds, respectively.

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible
region whose size depends on the magnitude of τ. This makes it possible to keep the
iterates within a region where the objective is expected to be well defined and bounded
below. If the objective is bounded below for all values of the variables, then τ can be
any large positive value.

TABLE 6-4: THE VERIFY OPTION

VERIFY DESCRIPTION

-1 Derivative checking is disabled.

0 Only a “cheap” test is performed, requiring 2 calls to user functions.

1 Individual objective gradients are checked (with a more reliable test).

2 Individual columns of the problem Jacobian are checked.

3 Options 2 and 1 both occur (in that order).

vixk 1+ τ max ≤ 1 vi x0(){ , }
G R A D I E N T - B A S E D S O L V E R P R O P E R T I E S | 139

140 | C H A P T E R
 6 : S O L V E R P R O P E R T I E S

 7
G l o s s a r y
This glossary contains important terms in the Optimization Lab.
 141

142 | C H A P T E R
G l o s s a r y o f T e rm s
bound constraints Constraints that bound the variables: .

cost function See objective function.

goal function See objective function.

linear constraints Constraints that bound a linear transformation of the variables:
.

nonlinear constraints Constraints that bound an arbitrary function of the variables:
.

objective function The value of this function is what the optimization process attempts
to minimize.

Opt structure A COMSOL Script structure that contains the entire optimization
problem and also solution data after the Opt structure is passed to one of the
optimization routines.

xlb x xub≤ ≤

blb Ax bub≤ ≤

dlb c x() dub≤ ≤
 7 : G L O S S A R Y

I N D E X

A active constraint 13

B bound constraints 9, 18

C constraint

active 13

inactive 13

constraints 8

defining 18

convex 9

convex quadratic programming 10

cost function 8

D documentation set 2

E equality constraints 8

F feasibility problems 8

G gradient 12

gradient, of the objective function 11

gradients

specifying 17

H Hessian 10, 12

specifying 16

hoop stress 63

I inactive constraint 13

inequality constraints 8

initial values

providing 20

J Jacobian

providing function for 18

Jacobian, of the constraint function 11

K Kuhn-Tucker conditions 14

L Lagrange multipliers 13

values of 21

Lagrangian 13

least-squares problems

linear 11

nonlinear 11

linear constraints 8, 9, 18

linear least-squares problem 11

linear optimization problems 9

linear programming 9

M maximization 9

minimization 8

N Nelder- Mead simplex search 22

Nelder-Mead simplex algorithm 22, 97

nonlinear constraints 8, 18

nonlinear least-squares problems 11

nonlinear optimization problems 10

O objective function 8

objective functions

specifying 16

Opt structure 16

optimality conditions 13

Optimization Lab

documentation set 2

P primal simplex method 21

Q quadratic programming 9

R range constraints 24

reduced gradients 15

reduced-Hessian active-set method 21

Rosenbrock function 47

S sequential quadratic programming 13

solution data 20

solver

for linear optimization problems 21

for nonlinear optimization problems

21

for quadratic optimization problems

21
I N D E X | 143

144 | I N D E X
for unconstrained problems 22

using Nelder- Mead simplex search 22

solvers

compatibility chart for 22

solving optimization problems 20

spinning frequency 63

SQOPT/SNOPT output codes 20

T typographical conventions 2

U unconstrained minimization 8

	CONTENTS
	Chapter 1: Introduction
	The Documentation Set 2
	About the Optimization Lab 4
	Overview 5

	Chapter 2: Using the Optimization Lab
	Formulating Optimization Problems 8
	Creating the Opt Structure 16
	Solving Optimization Problems 20
	A First Optimization Example 24
	Bibliography 27

	Chapter 3: Optimization Examples
	Overview 30
	Circumscribing Points on a Plane 31
	Inscribing a Circle in a Polytope 43
	The Rosenbrock Function 47

	Chapter 4: Multiphysics Optimization
	Overview 50
	SPICE Parameter Extraction for a Semiconductor Diode 51
	Spinning Gear 63

	Chapter 5: Command Reference
	Summary of Commands 74
	Commands Grouped by Function 75
	Diagnostics 111

	Chapter 6: Solver Properties
	Gradient-Based Solver Properties 120

	Chapter 7: Glossary
	Glossary of Terms 142

	Introduction
	The Documentation Set
	Typographical Conventions

	About the Optimization Lab
	Overview
	What Can the Optimization Lab Do?
	Which Problems Can it Solve?

	Using the Optimization Lab
	Formulating Optimization Problems
	Basic Concepts in Optimization
	Types of Optimization Problems
	Optimization Algorithms

	Creating the Opt Structure
	The Opt Structure
	Defining the Objective Function
	Defining Constraints

	Solving Optimization Problems
	General
	Providing Initial Values
	Interpreting the Solution
	The Optimization Lab Solvers
	Solver Compatibility Chart

	A First Optimization Example
	The Optimization Problem
	Creating the Opt Structure and Solving the Problem

	Bibliography

	Optimization Examples
	Overview
	Circumscribing Points on a Plane
	Introduction
	Unconstrained Optimization
	Nonlinear Optimization
	Quadratic Optimization

	Inscribing a Circle in a Polytope
	Linear Optimization

	The Rosenbrock Function

	Multiphysics Optimization
	Overview
	SPICE Parameter Extraction for a Semiconductor Diode
	Introduction
	Model Definition
	Results and Discussion
	Modeling in the Graphical User Interface
	Modeling in COMSOL Script

	Spinning Gear
	Introduction
	Model Definition
	Reference
	Modeling using the Graphical User Interface
	Modeling using COMSOL Script

	Command Reference
	Summary of Commands
	Commands Grouped by Function
	General Optimization Functions
	Minimization Functions
	Least-Squares Functions
	Solver Properties
	Miscellaneous Functions

	optgetstatus
	optim
	optlin
	optlinlsq
	optnlin
	optnlinlsq
	optnm
	optprop
	optpropnlin
	optquad
	optsetstatus
	Diagnostics
	Error Messages and Troubleshooting

	Solver Properties
	Gradient-Based Solver Properties
	Cendiff
	Checkfreq
	Diffint
	Elastic
	Elasticobj
	Elasticbc
	Elasticlc
	Elasticw
	Expfreq
	Facfreq
	Feastol
	Funcprec
	Hessdim
	Hessfreq
	Hessmem
	Hessupd
	Infbound
	Itlim
	Linesearch
	Linestol
	Majfeastol
	Majitlim
	Majsteplim
	Maximize
	Opttol
	Newsuplim
	Parprice
	Pivtol
	Print
	Proxmeth
	Qpsolver
	Scaleopt
	Scaletol
	Suplim
	Totitlim
	Verify
	Viollim

	Glossary
	Glossary of Terms

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

