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 1
I n t r o d u c t i o n
We have designed COMSOL Multiphysics to be an extremely flexible package 
applicable to virtually any area of research, science, and engineering. A consequence 
of this flexibility is that it becomes necessary to set up COMSOL Multiphysics for 
a specific modeling task. To relieve you of this work in many disciplines and 
application areas, we have created a series of time-saving preconfigured models and 
collected them in this Model Library. It ships as a standard component of 
COMSOL Multiphysics 3.4, and it is just one of several collections available to 
COMSOL Multiphysics users. Similar libraries with models devoted to specific 
disciplines are also available in the range of add-on modules:

• AC/DC Module

• Acoustics Module

• Chemical Engineering Module

• Earth Science Module

• Heat Transfer Module

• MEMS Module

• RF Module

• Structural Mechanics Module.
 1



2 |  C H A P T E R  
These ready-to-run models cover many classic problems and equations from science 
and engineering, and they have two goals in mind:

• To show the versatility of COMSOL Multiphysics and the wide range of applications 
it covers

• To form an educational basis for you to learn about COMSOL Multiphysics and 
gain an understanding of the underlying physics

Each model entry consists of two elements: the documentation and a corresponding 
ready-to-run COMSOL Multiphysics Model MPH-file you load directly from the 
Model Navigator window in COMSOL Multiphysics. These model files are copied to 
your hard disk with the default installation.

The documentation for each model entry in this library includes a technical 
background, the model definition, and results. Each entry also contains a section that 
shows, step by step, how to implement the model in COMSOL Multiphysics. 
Following the model description, a series of instructions guide you in the process of 
building, solving, and postprocessing the model in COMSOL Multiphysics.

Note: In some cases, the settings appear in a table rather than giving a step-by-step 
procedure for each data entry.

Those users new to COMSOL Multiphysics might want start reading the COMSOL 
Multiphysics Quick Start and Quick Reference, which contains a detailed 
step-by-step instruction for a basic multiphysics model. During modeling, some 
general questions might arise about COMSOL Multiphysics, its various features, and 
how to use them. For the answers we suggest that you first refer to the COMSOL 
Multiphysics User’s Guide and the COMSOL Multiphysics Modeling Guide.

The Model Library entries follow the basic structure of COMSOL Multiphysics and 
the modeling process you follow in using this package. Most of the chapters 
correspond to application modes in COMSOL Multiphysics. For a description of 
these application modes, including typical example models included in the Model 
Library, see the COMSOL Multiphysics Modeling Guide.

When describing equation-based models, which use partial differential equations 
(PDEs) directly, the text provides information about the model and the physical or 
mathematical background. In benchmark models you can compare a solution to 
analytical or established results. Parametric studies vary physical or geometrical 
1 :  I N T R O D U C T I O N



parameters in a series of solutions for optimization or evaluation of design criteria. To 
quickly locate models in each of the above categories, refer to the “Model Library 
Guide” on page 5.

One outstanding features of COMSOL Multiphysics is the ability to include several 
interacting physics in one system using its multiphysics modeling features. To help you 
better appreciate this power, the Model Library includes a number of corresponding 
examples in the chapter “Multiphysics Models” on page 341. Additional information 
about multiphysics modeling is available in the COMSOL Multiphysics User's Guide 
and the COMSOL Multiphysics Modeling Guide.

The section “Multidisciplinary Models” on page 301 contain models that include 
control loops or other system simulation components. The models in this chapter show 
you how to combine COMSOL with MATLAB and Simulink for system simulations 
that include finite element models.

Typographical Conventions

All COMSOL manuals use a set of consistent typographical conventions that should 
make it easy for you to follow the discussion, realize what you can expect to see on the 
screen, and know which data you must enter into various data-entry fields. In 
particular, you should be aware of these conventions:

• A boldface font of the shown size and style indicates that the given word(s) appear 
exactly that way on the COMSOL graphical user interface (for toolbar buttons in 
the corresponding tooltip). For instance, we often refer to the Model Navigator, 
which is the window that appears when you start a new modeling session in 
COMSOL; the corresponding window on the screen has the title Model Navigator. 
As another example, the instructions might say to click the Multiphysics button, and 
the boldface font indicates that you can expect to see a button with that exact label 
on the COMSOL user interface.

• The names of other items on the graphical user interface that do not have direct 
labels contain a leading uppercase letter. For instance, we often refer to the Draw 
toolbar; this vertical bar containing many icons appears on the left side of the user 
interface during geometry modeling. However, nowhere on the screen will you see 
the term “Draw” referring to this toolbar (if it were on the screen, we would print 
it in this manual as the Draw menu).

• The symbol > indicates a menu item or an item in a folder in the Model Navigator. 
For example, Physics>Equation System>Subdomain Settings is equivalent to: On the 
Physics menu, point to Equation System and then click Subdomain Settings. 
 |  3



4 |  C H A P T E R  
COMSOL Multiphysics>Heat Transfer>Conduction means: Open the COMSOL 

Multiphysics folder, open the Heat Transfer folder, and select Conduction.

• A Code (monospace) font indicates keyboard entries in the user interface. You might 
see an instruction such as “Type 1.25 in the Current density edit field.” The 
monospace font also indicates COMSOL Script codes.

• An italic font indicates the introduction of important terminology. Expect to find 
an explanation in the same paragraph or in the Glossary. The names of books in the 
COMSOL documentation set also appear using an italic font.
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Mode l  L i b r a r y  Gu i d e

The table below summarizes key information about the entries in this Model Library.

The first three columns contain the model name, page number, and solution times. 
The solution time is the elapsed time measured on a machine running Windows Vista 
with a 2.6 GHz AMD Athlon X2 Dual Core 500 CPU and 2 GB of RAM. For models 
with a sequential solution strategy, the Solution Time column shows the elapsed time 
for the longest solution step.

The subsequent three columns indicate whether the model geometry includes 1D, 2D, 
3D, or multiple geometries (extended multiphysics).

The next several columns indicate the analysis types that the model covers, such as 
stationary, time-dependent, eigenvalue, or nonlinear.

The Multiphysics column shows which models include multiphysics couplings.

The final column indicates models that use parametric studies to evaluate and optimize 
their results by varying the value of one or more parameters.

TABLE 1-1:  COMSOL MULTIPHYSICS MODEL LIBRARY MODELS
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ACOUSTICS MODELS 9

automotive_muffler 10 31 min  √  √  √ 

eigenmodes_of_room 19 12 s  √  √ 

reactive_muffler* 34 4 s  √  √ 

BENCHMARK MODELS 567

isospectral_drum1 568 1 s  √  √ 

isospectral_drum2 568 1 s  √  √ 

lshaped_membrane_parametric* 425 1 s  √  √  √ 

minimal_surface* 296 1 s  √  √  √ 

point_source* 279 1 s  √  √ 

poisson_unit_disk* 275 1 s √ √
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CHEMICAL ENGINEERING MODELS 29

adsorption 30 5 s √ √ √

tubular_reactor 42 30 s √ √ √ √
DIFFUSION MODELS

effective_diffusivity* 56 5 s √ √

thin_layer_diffusion* 380 1 s √ √
ELECTROMAGNETICS MODELS 53

electric_sensor* 118 2 s √ √

electrochemical_polishing* 414 4 s √ √ √

pacemaker_electrode 66 5 s √ √

permanent_magnet* 123 3 s √ √

potential_between_cylinders 55 1 s √ √

quadrupole 83 1 s √ √

skin_effect 74 1 s √ √

spherical_capacitor 93 1 s √ √

thin_film_resistance* 368 3 s √ √
EQUATION-BASED MODELS 99

black-scholes_put 166 1 s √ √

heart_clg 100 8 min √ √ √

heart_fhn 100 32 min √ √ √

integro_partial 119 3 s √ √

kdv_equation 128 10 s √ √ √

shallow_water 142 1 s √ √

shell_diffusion 150 1 s √ √

spherical_symmetry_ore 156 1 s √ √

telegraph_equation 135 1 s √ √

transport_problem 111 1 s √ √
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two_term_boltzmann 171 3 min √ √ √ √
FLUID DYNAMICS MODELS 191

backstep* 150 16 s √ √ √ √

backstep_argyris 192 25 s √ √ √

backstep_quad* 150 42 s √ √ √ √

cylinder_flow 198 9 min √ √ √

falling_sand 237 2 min √ √ √

fluid_valve 208 22 min √ √

micromixer 219 31 min √ √ √

shock_tube 230 8 s √ √ √

sloshing_tank 247 2 min √ √
GEOPHYSICS MODELS 257

groundwater_flow 258 7 s √ √ √

rock_fracture 270 4 s √ √
HEAT TRANSFER MODELS 277

heat_convection_2D* 184 1 s √ √

heat_radiation_1D* 180 1 s √ √ √

heat_transient_axi* 188 1 s √ √

laser_heating 278 2 min √ √ √

lpd19_dev_merge 289 3 min √ √ √
MULTIDISCIPLINARY MODELS 301

magnet_brake 302 5 s √ √ √

magnet_brake_simulink 302 1 s √ √

PID_control 317 2 min √ √ √ √

thermal_controller_simulink 329 2 s √ √ √
MULTIPHYSICS MODELS 341

electronic_conductor*** 36 4 min √ √ √ √ √
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* In the COMSOL Multiphysics Modeling Guide

** In the COMSOL Multiphysics User’s Guide

*** In the COMSOL Multiphysics Quick Start and Quick Reference

free_convection 357 13 s √ √ √ √ √

magnetic_drug_targeting 342 2 min √ √ √ √

marangoni 377 14 s √ √ √ √

microrobot 389 50 s √ √ √

milk_container 399 1 s √ √ √ √

peristaltic_pump 408 5 min √ √ √ √

resistive_heating* 334 4 s √ √ √ √ √
QUANTUM MECHANICS MODELS 421

conical_quantum_dot 432 1 s √ √

hydrogen_atom 422 3 s √ √
SEMICONDUCTOR DEVICE MODELS 441

bipolar_transistor 457 2 min √ √ √ √ √

mos_transistor 474 4 min √ √ √ √ √

semiconductor_diode 442 2 min √ √ √ √ √
STRUCTURAL MECHANICS MODELS 495

crankshaft 495 2 min √ √

edge_load_2d* 226 1 s √ √

feeder_clamp 503 9 s √ √

fl_front_wing 549 11 min √ √

gravity_load_2d* 231 1 s √ √

mast_diagonal_loading 537 29 s √ √

pulley 522 10 s √ √ √
WAVE PROPAGATION MODELS 559

diffraction_patterns 560 1 s √ √ √

TABLE 1-1:  COMSOL MULTIPHYSICS MODEL LIBRARY MODELS
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 2
A c o u s t i c s  M o d e l s
This chapter contains acoustics models solving for the pressure field using 
time-harmonic and eigenvalue formulation in the Acoustics application mode.
 9
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A c ou s t i c s  o f  a  Mu f f l e r

Introduction

This model describes the pressure wave propagation in a muffler for an explosion 
engine. The approach is general for analysis of damping of propagation of harmonic 
pressure waves.

The purpose of the model is to show how to treat 3D acoustics in a fairly complex 
geometry, consisting of several separate sections and pipes divided by thin perfectly 
rigid walls. The analysis gives the transmission loss in the frequency range 100–1000 
Hz.

Model Definition

The model geometry consists of three separate resonator chambers divided by thin 
walls. The inlet and the outlet correspond to the connection in the direction of the 
engine and of free air, respectively.

Figure 2-1: The geometry of a muffler. The exhaust fumes enter through the left pipe, pass 
the three resonator chambers, and exit through the right pipe.

D O M A I N  E Q U A T I O N S

The problem is solved in the frequency domain using the time-harmonic Acoustics 
application mode. The model equation is a slightly modified Helmholtz’s equation for 
the acoustic pressure, p:
 2 :  A C O U S T I C S  M O D E L S



where ρ is the density, cs is the speed of sound, and ω is the angular frequency. The 
density needs to be included in the equation in cases where variations in density in 
different materials exist. The model assumes that in the low-frequency range, reactive 
damping prevails. Resistive damping is therefore not included.

B O U N D A R Y  C O N D I T I O N S

The boundary conditions are of three different types. At all the solid boundaries, which 
include the outer walls of the muffler, the dividing walls between the resonator 
chambers, and the walls of the pipes, sound hard (wall) boundary conditions are used:

 (2-1)

At the inlet boundary is a combination of incoming and outgoing plane waves:

In this equation p0 denotes the applied outer pressure and i the imaginary unit. At the 
outlet boundary, an outgoing plane wave is set:

Results and Discussion

The following equation defines the damping of the acoustic energy, dw:

Here, wo and wi denote the acoustic energy at the outlet and inlet, respectively. The 
acoustic energy is calculated using the following equations:

∇ p∇
ρ

-------–⎝ ⎠
⎛ ⎞ ω2p

cs
2ρ

----------–⋅ 0=

p∇
ρ

-------–⎝ ⎠
⎛ ⎞ n⋅ 0=

p∇
ρ

-------–⎝ ⎠
⎛ ⎞ n⋅ iω

ρ cs
---------p 2 iω

ρ cs
-----------p0–=

p∇
ρ

-------–⎝ ⎠
⎛ ⎞ n⋅ iω

ρ cs
---------p=

dw 10
wo
wi
-------⎝ ⎠
⎛ ⎞log=

wo
pc

2

2 ρ cs
------------- Ad

∂Ω
∫=
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Figure 2-2 shows the result of a parametric frequency study. This plot reveals that the 
damping is better at higher frequencies, with the exception of several deep dips 
throughout the frequency range. The dips correspond to the resonance frequencies for 
different parts of the muffler system. 

Figure 2-2: The damping (dB) in the muffler as a function of the frequency (Hz).

Modeling in COMSOL Multiphysics

The dividing walls between the resonator chambers and the walls of the pipes 
constitute interior boundaries. Because no waves propagate through these boundaries, 
the pressure between the inside and the outside of the pipe walls, as well as that 
between the chambers, must be decoupled. To accomplish this, use three dependent 
variables for the pressure (and three Acoustics application modes) in the model: one 
for the pipes, pp, one for the first and the third resonator chambers, pc1, and one for 
the second resonator chamber, pc2. You implement this by deactivating the variables 
in the parts of the model where they do not exist. It is then possible to specify the 
dividing walls and the walls of the pipes as exterior boundaries for each pressure 

wi
p0

2

2 ρ cs
------------- Ad

∂Ω
∫=
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variable. The pressure variables couple to each other where the pipes open up into the 
resonator chambers and at the openings between the chambers. You only have to 
specify this coupling in one direction; the implementation distributes the reaction 
forces evenly. To view the results for the entire pressure field simultaneously, you define 
a variable p for the common pressure.

Model Library path: COMSOL_Multiphysics/Acoustics/automotive_muffler

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, click the Multiphysics button.

2 Add three Acoustics application modes. To do so, select 3D in the Space dimension 
list and then select Acoustics>Acoustics>Time-harmonic analysis in the list of 
application modes (in the COMSOL Multiphysics folder if the license contains 
additional modules).

3 Before adding each application mode, name it and its dependent variable according 
to the following table:

Type the names of the application mode and the dependent variable in the 
Application mode name and Dependent variables edit fields, respectively.

4 Click Add to add each of the application modes to the model.

5 When you have added the three application modes, click OK to exit the 
Model Navigator and continue modeling.

O P T I O N S  A N D  S E T T I N G S

1 Open the Constants dialog box from the Options menu, and enter the variable name 
p0 and the expression 1. Click OK.

2 From the Physics menu, choose Scalar Variables to open the 
Application Scalar Variables dialog box. Set the frequency to freq for all the three 

APPLICATION MODE NAME DEPENDENT VARIABLE

pipe p_p

chamber1 p_c1

chamber2 p_c2
A C O U S T I C S  O F  A  M U F F L E R  |  13



14 |  C H A P T E R
application modes. It is sufficient to type freq in the Expression edit field for the 
variable freq_pipe only and press Enter. The synchronization of equivalent 
variables then sets the two other frequency variables to freq. When done, click OK.

G E O M E T R Y  M O D E L I N G

1 Create a cylinder with radius 0.03, height 0.75, axis base point (−0.1, 0, 0), and axis 
direction vector (1, 0, 0).

2 Create another cylinder with radius 0.03, height 0.65, axis base point 
(0.25, −0.09, 0), and axis direction vector (1, 0, 0).

3 Go to the Work-Plane Settings dialog box in the Draw menu. On the Quick page, 
specify a y-z plane at x = 0. Click OK.

4 In this new work plane, specify an ellipse with semiaxes 0.15 and 0.07, centered at 
(0, 0).

5 In the Extrude dialog box in the Draw menu, select the ellipse and extrude it by a 
distance of 0.8.

6 In the Work-Plane Settings dialog box, set the x coordinate for the y-z plane to 0.25. 
When done, click OK.

7 Specify a circle with radius 0.03, centered at (0.09, 0).

8 Go to the Embed dialog box in the Draw menu. Mark both the circle and the ellipse, 
and embed them.

9 Go to the Work-Plane Settings dialog box again, and set the x coordinate for the y-z 

plane to 0.65. Click OK.

10 Embed the circle and the ellipse from this plane.

11 Finally, click the Zoom Extents button to view the complete muffler geometry.
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The geometry should now look like that in Figure 2-3.

Figure 2-3: The muffler geometry.

P H Y S I C S  S E T T I N G S

Subdomain Settings
In this model, use the default values for the subdomain settings. However, every 
subdomain should have only one active application mode. Open the Subdomain 

Settings dialog box from each application mode, select the Active in this mode check 
box in the following subdomains, and clear it in all other subdomains.

Boundary Conditions
1 In the pipe application mode, select Radiation condition from the Boundary condition 

list and then select Plane wave from the Wave type list on Boundaries 1 and 50; the 
pressure source p_p0 should be p0 on Boundary 1 and 0 on Boundary 50. Use the 
default sound-hard boundary condition on all other boundaries.

APPLICATION MODE ACTIVE IN SUBDOMAINS

pipe 1, 3, 5, 6, 8, 9

chamber1 2, 7

chamber2 4
A C O U S T I C S  O F  A  M U F F L E R  |  15
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2 In the chamber1 application mode, use the Pressure boundary condition on 
Boundaries 19, 31, 40, and 43. Set the pressure source p_c10 to p_p on Boundaries 
19 and 40 and p_c2 on boundaries 31 and 43. Use the default sound-hard 
boundary condition on all other active boundaries.

3 In the chamber2 application mode, use the default sound-hard boundary condition 
on all boundaries. 

Coupling Variables
1  On the Options menu, point to Integration Coupling Variables and then click 

Boundary Variables.

2 In the Boundary Integration Variables dialog box, select Boundary 1 and create a 
boundary integration variable with Name Iin, Expression p0^2/(2*1.25*343), 
Integration order 4, and Global destination.

3 Select Boundary 50 and create a boundary integration variable with Name Iout, 
Expression p_p^2/(2*1.25*343), Integration order 4, and Global destination.

Expression Variables
1 Open the Scalar Expressions dialog box from the Options menu. Create a scalar 

expression with Name dw and Expression 10*log10(Iin/Iout). This represents the 
damping in dB.

2 Open the Boundary Expressions dialog box. Create a boundary expression with Name 

p and Expressions according to the following table:

3 Open the Subdomain Expressions dialog box. Create a subdomain expression with 
Name p and Expressions according to the following table:

M E S H  G E N E R A T I O N

Click the Initialize Mesh toolbar button to generate the mesh.

EXPRESSION BOUNDARIES

p_p 2–5, 10, 11, 13, 14, 20–23, 25, 26, 28, 29, 36–39, 46–49

p_c1 6, 7, 12, 16, 33, 41, 44

p_c2 17, 27, 32

EXPRESSION SUBDOMAINS

p_p 1, 3, 5, 6, 8, 9

p_c1 2, 7

p_c2 4
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C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box.

2 Select the Parametric solver from the Solver list.

3 Type freq in the Parameter name edit field and 100:10:1000 in the 
Parameter values edit field. This will compute the solution for 91 equally spaced 
frequencies from 100 to 1000 Hz. Note that this process takes around 25 minutes; 
if you want to run a faster analysis, try the same frequency range but with a step of 
100 Hz instead (to do so, type 100:100:1000).

4 Click OK.

5 Click the Solve button to compute the solution.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 To see what goes on inside the muffler, hide the boundaries that obstruct the view. 
To do so, choose Options>Suppress>Suppress Boundaries and suppress boundaries 1, 
8, 9, 15, 18, 19, 24, 30, 31, 34, 35, 40, 42, 43, 45, and 50 by selecting them from 
the Boundary selection list in the Suppress Boundaries dialog box and then click OK.

2 Open the Plot Parameters dialog box.

3 Visualize the pressure in the muffler with a boundary plot of the absolute value of 
the pressure and an isosurface plot of the pressure. To do so, click the General tab, 
clear the Slice check box and select the Boundary and Isosurface check boxes in the 
Plot type area.

4 Click the Boundary tab and type abs(p) in the Expression edit field.

5 Click the Isosurface tab and type p in the Expression edit field in the Isosurface data 
area. The suitable number of isosurface levels for the isosurface plot varies with the 
frequency. At frequencies with low damping many of the isosurfaces tend to 
congregate inside the pipe. For a frequency of 490 Hz (select this solution from the 
General page of the Plot Parameters dialog box), ten isolevels gives a nice plot.

6 Click OK.

7 Click the Headlight toolbar button to make the visualization more viewer friendly. 
The plot should look like the one in Figure 2-4.
A C O U S T I C S  O F  A  M U F F L E R  |  17



18 |  C H A P T E R
8 Click the Go to XY View toolbar button to see a projection of the plot on the 
xy-plane. You may need to click it twice, in case the muffler appears upside 
down.The pressure in the second chamber displays a resonance pattern.

Figure 2-4: The solution at 490 Hz. The real value of the pressure is plotted as isosurfaces, 
and the absolute value of the pressure is displayed as a boundary plot on the inner walls of 
the muffler.

9 To see the damping as a function of the frequency, open the 
Cross-Section Plot Parameters dialog box.

10 On the General page, select all solutions in the Solutions to use area.

11 Click the Point plot button.

12 Click the Point tab and type dw in the Expression edit field to make a point plot of 
the damping in some arbitrary point located inside the geometry. The origin (the 
default point) will do.

The plot should look like in Figure 2-2. Notice the deep dip in the damping around 
490 Hz caused by the resonance in the second chamber. If you plot the pressure in the 
muffler at other dips, resonances in the other chambers appear.
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E i g e nmode s  o f  a  Room

Resonance can at times be a problem in everyday life. The low bass notes from the 
music system or home theater in the living room can shake the windows and make the 
floor vibrate. This happens only for certain frequencies—the eigenfrequencies of the 
room.

It is only in the low-frequency range that the eigenfrequencies are well separated. In 
the mid- and high-frequency ranges, the eigenfrequencies are packed so closely, with 
less than a halftone between them, that the individual resonances are insignificant for 
music and other natural sounds. Nevertheless, the music experience is affected by the 
acoustics of the room.

When designing a concert hall, it is extremely important to take the resonances into 
account. For a clear and neutral sound, the eigenfrequencies should be evenly spaced. 
For the home theater or music system owner, who cannot change the shape of the 
living room, another question is more relevant: Where should the speakers be located 
for the best sound?

Model Definition

For example, take a room with the dimensions 5 by 4 by 2.6 meters equipped with a 
TV set, two speakers, and a couch. To illustrate the effects on the music, compute all 
eigenfrequencies below 100 Hz together with the corresponding eigenmodes. The 
eigenmode shows the sound intensity pattern for its associated eigenfrequency. From 
the characteristics of the eigenmodes, you can draw some conclusions as to where the 
speakers should be placed.

D O M A I N  E Q U A T I O N S

Sound propagating in free air is described by the wave equation:

where p is the pressure, and c is the speed of sound. If the air is brought into motion 
by a harmonically oscillating source, for example, a loudspeaker, only one frequency f 
exists in the room. For that reason it makes sense to look for a time-harmonic solution 
on the form

p∆–
1

c2
-----

t2

2

∂
∂ p

+ 0=
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The wave equation then simplifies to the Helmholtz equation for p, the amplitude of 
the acoustic disturbances:

B O U N D A R Y  C O N D I T I O N S

This model assumes that all boundaries—walls, floor, ceiling, and furniture —are 
perfectly rigid (sound hard boundaries).

A N A L Y T I C  C O M P A R I S O N

It is possible to solve the simpler case of an empty room analytically. Each 
eigenfrequency corresponds to an integer triple (i, l, m):

The eigenmodes can be divided into three distinct classes:

• Eigenfrequencies with only one index different from zero give rise to axial modes, 
that is, plane standing waves between two opposite walls.

• If one index is zero, the mode is tangential.

• If all indices are different from zero, the mode is oblique.

Theoretical eigenvalues for a room without furniture are found in the following table.

MODE INDEX  ω2/105
MODE INDEX  ω2/105

0,0,0 0 0,1,1 2.444

1,0,0 0.465 2,1,0 2.584

0,1,0 0.726 0,2,0 2.902

1,1,0 1.191 1,1,1 2.908

0,0,1 1.718 1,2,0 3.367

2,0,0 1.858 2,0,1 3.575

1,0,1 2.182 3,0,0 4.180

p p̂e iωt
=

p̂∆ ω2

c2
------p̂+ 0=

fi l m, ,
c
2
--- i

Lx
------⎝ ⎠

⎛ ⎞ 2 l
Ly
------⎝ ⎠

⎛ ⎞ 2 m
Lz
------⎝ ⎠

⎛ ⎞2
+ +=
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Results and Discussion

The relevant quantity when it comes to placing the loudspeakers is the amplitude of 
the standing pressure wave. A sound source excites an eigenmode the most if it is 
placed in one of the pressure antinodes for the mode. Conversely, with the source in a 
pressure node, the eigenmode remains silent.

All modes have local maxima in the corners of an empty room so speakers in the 
corners excite all eigenfrequencies. This simulation predicts eigenmodes that strongly 
resemble those of the corresponding empty room. The higher the frequency, the more 
the placing of the furniture matters. For instance, some of the high-frequency 
eigenmodes are located behind the couch.

In the strictest sense, the results of this simulation only apply to a room with perfectly 
rigid walls and nonabsorbing furniture. The prediction that speakers placed in the 
corners of the room excite many eigenmodes and give a fuller and more neutral sound, 
however, holds for real-life rooms.

Figure 2-5: The sound pressure distribution for ω = 569 rad/s. The (negative of) the real 
part of the pressure is visualized as an isosurface plot, and the absolute value of the pressure 
as a boundary plot.
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Model Library path: COMSOL_Multiphysics/Acoustics/eigenmodes_of_room

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Click Multiphysics.

2 Select 3D in the Space dimension list.

3 In the list of application modes, select Acoustics (in the COMSOL Multiphysics folder if 
your license includes additional modules), and in the Acoustics folder, select 
Eigenfrequency analysis.

4 Click Add.

5 Add geometries according to the following table by clicking the Add Geometry 
button.

6 Click OK.

G E O M E T R Y  M O D E L I N G

1 Click the Geom1 tab. 

2 Click the Block button to create a block with the following dimensions that you 
enter in the Length area:

3 Click to deselect the Highlight Face toolbar button for a wireframe view.

Now create the cross section of the geometry on the floor of the room. The floor is by 
default an x-y plane at z = 0. 

NAME SPACE DIMENSION INDEPENDENT VARIABLES

Floor 2D x y z

Table 2D x y z

TV 2D x y z

PARAMETER VALUE

X 5

Y 4

Z 2.6
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1 Go to the Floor work plane and click the Zoom Extents toolbar button.

2 From the Options menu, open the Axes/Grid Settings dialog box.

3 Click the Grid tab, clear the Auto check box, and change the grid according to the 
following table:

4 Draw a rectangle with top left corner at (0.4, 3) and bottom right corner at (1.2, 1).

5 Draw eight squares with side 0.1 and upper left corners at (1.6, 1.7), (1.6, 2.4), 
(2.1, 1.7), (2.1, 2.4), (4.4, 1.7), (4.4, 2.4), (4.7, 1.7), and (4.7, 2.4).

6 From the Draw menu, choose Extrude.

7 In the Extrude dialog box, select all objects and set the Distance parameter to 0.4.

8 Click OK.

Figure 2-6: The geometry of the Floor work plane.

Now proceed to create the cross section of the geometry at the level of the table.

GRID

x spacing 0.2

Extra x 1.7 2.1 4.5 4.7

y spacing 0.2

Extra y 1.7 2.3
E I G E N M O D E S  O F  A  R O O M  |  23



24 |  C H A P T E R
1 Go to the Table work plane.

2 Go to the Work-Plane Settings dialog box and change the z coordinate to 0.4. When 
done, click OK.

3 Click the Zoom Extents button on the Main toolbar.

4 In the Axes/Grid Settings dialog box, click the Grid tab and clear the Auto check box. 
Then change the grid spacing according to the following table:

5 Draw a rectangle with top left corner at (1.6, 2.6) and bottom right corner at 
(2.2, 1.4).

6 Make sure the rectangle is selected and choose Extrude from the Draw menu. Set the 
distance to 0.1 and click OK.

7 Return to the Table work plane.

8 Draw a rectangle with top left corner at (0.4, 3) and bottom right corner at 
(1.2, 1), that is, following the blue projected contour.

9 Draw another rectangle with top left corner at (0.6, 2.8) and bottom right corner 
at (1.2, 1.2).

10 Select the two last rectangles and click the Difference button.

GRID

x spacing 0.2

y spacing 0.2
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11 With the new composite object still selected, open the Extrude dialog box. Set 
Distance to 0.4 and Displacement x to -0.1 and click OK.

Figure 2-7: The geometry of the Table work plane.

Finally, create the geometry in the cross section of the TV.

1 Go the TV work plane.

2 Go to the Work-Plane Settings dialog box. Select the y-z plane and set the 
x coordinate to 4.4.

3 Click OK.

4 Click the Projection of All 3D Geometries button and after that the Zoom Extents 
button.

5 Use Axes/Grid Settings to change the grid as in the following table:

6 Draw the TV set as a rectangle with top left corner at (1.6, 1.0) and bottom right 
corner at (2.4, 0.4).

GRID

x spacing 0.2

y spacing 0.2
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7 Draw the left speaker as a rectangle with top left corner at (0.8, 1.0) and bottom 
right corner at (1.2, 0.0).

8 Draw the right speaker with the same size, but with top left corner at (2.8, 1.0).

9 Select all objects and open the Extrude dialog box. Set distance to 0.4 and click OK.

10 In the 3D geometry, select all objects and click the Difference button.

Now the room is completed and should look like in Figure 2-8.

Figure 2-8: The 3D geometry.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Use the Sound hard boundary (wall) boundary condition for all boundaries.

Subdomain Settings
Use the default subdomain settings.

M E S H  G E N E R A T I O N

Click the Initialize Mesh button to initialize the mesh.
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C O M P U T I N G  T H E  S O L U T I O N

1 Make sure that Eigenfrequency is selected from the Solver list in the Solver Parameters 
dialog box.

2 To get 6 eigenfrequencies around 90 Hz enter 6 in the Desired number of 

eigenfrequencies edit field, this is default, and 90 in the Search for eigenfrequencies 

around edit field.

3 Click OK to close the Solver Parameters dialog box.

4 Click the Solve button to compute the solution.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot style is a slice plot showing the sound pressure in five equally spaced 
slices. Try looking at some of the eigenmodes. The first eigenvalue in the list is very 
small. Its true value is zero, corresponding to the solution without any sound. The next 
few are axial and tangential modes. To get a better view of the more complicated 
eigenmodes, you can do a combined surface and boundary plot (see Figure 2-5).

1 In the Suppress Boundaries dialog box in the Options menu, suppress the boundaries 
1, 2, and 4.

2 On the General page of the Plot Parameters dialog box, clear the Slice check box and 
select the Isosurface, Boundary, and Geometry edges check boxes in the Plot type area. 
In the Eigenfrequency list, select the eigenvalue of about 90.6. 

3 Click the Boundary tab and type abs(p) in the Expression edit field.

4 Click the Isosurface tab and type -p in the Expression edit field.

5 Click the Scene Light and Perspective Projection buttons in the Camera toolbar.

6 Click OK.

This particular mode is concentrated behind the couch. Try moving around the room 
and looking at other eigenmodes. It is possible that you can identify some of them with 
the exact solutions for the case of an empty room.
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 3
C h e m i c a l  E n g i n e e r i n g  M o d e l s
This section contains a model of a tubular reactor and a model of surface diffusion 
and surface reactions coupled to transport of species to the reacting surface—a 
comprehensive set of chemical engineering models covering mass balances, energy 
balances, and momentum balances is available in the Model Library  that comes with 
the Chemical Engineering Module.
 29
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T r a n s po r t  and Ad s o r p t i o n

This model demonstrates one of the unique features of COMSOL Multiphysics: the 
possibility to model phenomena defined in different numbers of dimensions in a fully 
coupled manner.

Whereas in most cases you define the reaction rate expression as a function of the 
concentrations of the reactants and products, in adsorption reactions it is also necessary 
to model the surface concentrations of the active sites or surface complex. This implies 
that the mass balance in the bulk of the reactor must be coupled to the mass balance 
for species present only at the surface of the device. This device could be a catalyst, a 
biochip, a semiconductor component, or any process with surface-specific species.

In this particular case, the model involves a small parallel-plate reactor with an active 
surface. It is a simple example of surface diffusion and surface reactions coupled to the 
transport of species between the reacting surface and the surrounding volume. 
Processes of this kind are found, for instance, in heterogeneous reactors and biacore 
chips.
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Model Definition

The geometry of the domain appears in Figure 3-1.

Figure 3-1: The modeled domain is a parallel plate reactor with an active surface where 
you want to model the concentration of surface species.

The first approximation you can make is to reduce the 3D geometry to a 2D 
approximation, which is reasonable if the variations in concentration are small along 
the depth of the domain.

D O M A I N  E Q U A T I O N S

The reaction at the active surface is given as

where

• c is the bulk concentration (mol/m3)

• θ is the surface concentration of active sites (mol/m2)

• cs is the surface concentration of adsorbed species (mol/m2)

3D

Modeled cross sectional plane

2D

Active surface

Gas outlet

Gas inlet

Active surface

kads

c θ+ cs⇔

kdes
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• kads is the rate constant for the forward reaction (m3/(mol·s))

• kdes is the rate constant for the backward reaction (1/s)

Note: The surface concentration is in moles per unit surface.

The material balance for the surface, including surface diffusion and the reaction rate 
expression for the formation of the adsorbed species, cs, is:

where Ds represents surface diffusivity. However, the concentration of active sites is 
equal to the difference between the total concentration of active sites and the number 
of sites occupied by the adsorbed species. This gives the following equation for the 
reaction rate:

 (3-1)

In the above equation, θ0 represents the total number of active sites available on the 
surface of the catalyst. Equation 3-1 also defines the units of the rate constants: kads 
and kdes. The initial condition is that the concentration of adsorbed species is zero at 
the beginning of the process:

The equation for the surface-reaction expression includes the concentration of the 
bulk species, c, at the position of the catalyst surface. Thus you must solve the equation 
for the surface reaction in combination with the mass balance in the bulk. The coupling 
between the mass balance in the bulk and the surface is obtained as a boundary 
condition in the bulk’s mass balance. This condition sets the flux of c at the boundary 
equal to the rate of the surface reaction and is presented below. The transport in the 
bulk of the reactor is described by a convection-diffusion equation:

 (3-2)

The initial condition sets the concentration in the bulk at t = 0:

cs∂
t∂

-------- ∇ Ds∇cs–( )⋅+ kadscθ kdes– cs=

cs∂
t∂

-------- ∇ Ds∇cs–( )⋅+ kadsc θ0 cs–( ) kdescs–=

cs 0=

c∂
t∂

----- ∇+ D c cu+∇–( )⋅ 0=

c c0=
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In the above equation, D denotes the diffusivity of the reacting species, c is its 
concentration, and u is the velocity. In this case, the velocity in the x direction equals 
0 while the velocity in the y direction comes from the analytical expression for fully 
developed laminar flow between two parallel plates:

Here, δ is the distance between the plates, and vmax is the maximum local velocity. We 
assume that the origin for x is at the left edge of the model depicted in Figure 3-1.

B O U N D A R Y  C O N D I T I O N S

The boundary conditions for the material balance for the surface species are insulating 
conditions according to:

 (3-3)

For the bulk, the boundary condition at the active surface couples the rate of the 
reaction at the surface with the flux of the reacting species and the concentration of 
the adsorbed species and bulk species:

The other boundary conditions for the bulk problem are:

• Inlet: c = c0

• Outlet: 

• Insulation: 

Modeling in COMSOL Multiphysics

This model deals with a phenomenon occurring in a 2D domain (convection- 
diffusion) coupled to another phenomenon occurring only at the 1D boundary of the 
2D domain (diffusion-reaction). The COMSOL Multiphysics implementation is 
straightforward in every step except for the definition of the 1D problem, which 
requires some mathematical background. You need to use weak-form application 
modes for modeling PDEs on boundaries, edges, or points. To add the 1D boundary 
equation in the 2D model, use the Weak Form, Boundary application mode. This 
enables you to formulate the problem with the weak form instead of with the PDE 
form. An examination of the spatial diffusion on the boundary shows that only the flux 
tangential to the surface is defined. Therefore, in the weak-form specification you must 

u 0 vmax 1 x 0.5δ–( )
0.5δ

-------------------------⎝ ⎠
⎛ ⎞ 2

–( , )=

n Ds cs∇–( )⋅ 0=

n D c cu+∇–( )⋅ k– adsc θ0 cs–( ) kdescs+=

n D c cu+∇–( )⋅ n cu⋅=

n D c cu+∇–( )⋅ 0=
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make use of the special tangential derivative variable. For more information about 
how to specify equations on the weak form, refer to the chapter “Deriving the Weak 
Form” on page 310 in the COMSOL Multiphysics Modeling Guide.

You define the two equations using the multiphysics feature of COMSOL 
Multiphysics. Select the two application modes, corresponding to the 2D and 1D 
material balances, in the Model Navigator.

Results

Figure 3-2: The concentration of the reacting species, c, after 2 seconds of operation in the 
2D cross section (top) and along the active surface (bottom).

The upper plot in Figure 3-2 shows the concentration, c, of the reacting species in the 
2D subdomain after 2 seconds of operation. The reaction is very fast and almost 
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reaches steady state in that time frame. The lower plot, displaying the concentration 
along a vertical cross section of the active surface, shows that the concentration 
distribution exhibits edge effects at both ends of the catalyst. The higher concentration 
near y = 0 is easy to explain because this is the position closest to the inlet, and this end 
is therefore continuously supplied with fresh reactant. The increase in concentration at 
the end closer to the outlet is due to radial diffusion; the edge of the surface can receive 
diffusion in all directions within a 90° angle without having to “compete” for the 
reactant supply with other parts of the catalysts. This effect also appears at the edge 
close to the inlet.

The concentration of adsorbed species, cs, shows a similar spatial distribution. 
However, while the concentration of the reactant decreases with time, the 
concentration of adsorbed species increases. You can also see that the slight spatial 
diffusion evens out the concentration gradients somewhat (see Figure 3-3).

Figure 3-3: The concentration of adsorbed species increases with time. The edge effect 
appears at both edges due to the increased supply of reactants. This figure displays the 
concentration after 0.05, 0.5, 1.0, 1.5, and 2.0 s.

The concentration of reacting species decreases while the surface concentration of the 
adsorbed species increases with time. This implies that the surface reaction rate 
decreases with time. You can see this effect in Figure 3-4, which also shows that after 

Increasing time
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0.5 s the reaction rate almost reaches steady-state. The upper curve shows the reaction 
rate after 0.05 s, while the lower curve represents the curves for 0.5, 1.0, 1.5, and 2.0 s, 
which are all on top of each other.

Figure 3-4: Surface reaction rate at the active surface. The largest reaction rate is 
obtained initially and is at the edges of the active surface. The reaction process almost 
reaches steady state at 0.5 s.

Model Library path: COMSOL_Multiphysics/Chemical_Engineering/
adsorption

Modeling Using the Graphical User Interface

The following pages describe how to solve this problem using the graphical user 
interface.

M O D E L  N A V I G A T O R

1 Start COMSOL Multiphysics.

Increasing time
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2 In the Model Navigator, click the Multiphysics button and select 2D in the Space 

dimension list.

3 Highlight the application mode COMSOL Multiphysics>Convection and 

Diffusion>Convection and Diffusion>Transient analysis. Click the Add button.

4 Select the application mode COMSOL Multiphysics>PDE Modes>Weak Form, Boundary. 
Type cs in the Dependent variables edit field. Click the Add button.

5 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 Define the following constants in the Constants dialog box:

NAME EXPRESSION DESCRIPTION

c0 1000[mol/m^3] Initial concentration

kads 1e-6[m^3/(mol*s)] Forward rate constant

kdes 1e-9[1/s] Backward rate constant

theta0 1000[mol/m^2] Active site concentration

Ds 1e-11[m^2/s] Surface diffusivity

D 1e-9[m^2/s] Gas diffusivity

v_max 1[mm/s] Maximum velocity

delta 0.1[mm] Channel width
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3 Click OK.

4 Open the Axes/Grid Settings dialog box from the Options menu. Specify the following 
settings and click OK.

G E O M E T R Y  M O D E L I N G

1 Hold down the shift key and click the Rectangle/Square button on the Draw toolbar. 
Enter the values listed below in the corresponding edit fields and click OK.

2 Click the Zoom Extents button on the Main toolbar.

3 Click the Point button and click on the coordinate (1e-4, 0) in the drawing area. 
Click the Point button again and click on (1e-4, 1e-4).

P H Y S I C S  S E T T I N G S

Expression Variables
1 On the Options menu, point to Expressions and then click Boundary Expressions.

2 Select Boundary 5 in the Boundary selection list and enter the following expression.

3 Click OK.

4 On the Options menu, select Expressions and then click Subdomain Expressions.

POSITION X-Y LIMITS

x min -15e-5

x max 25e-5

y min -15e-5

y max 25e-5

EDIT FIELD VALUE

Width 1e-4

Height 3e-4

x 0

y -1e-4

NAME EXPRESSION

react_surf kads*c*(theta0-cs)-kdes*cs
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5 Select Subdomain 1 in the Subdomain selection list and enter the following 
expression.

6 Click OK.

Boundary Conditions
1 From the Multiphysics menu, select 1 Convection and Diffusion (cd).

2 From the Physics menu, choose Boundary Settings.

3 Enter boundary conditions according to the following table:

4 Click OK.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

1 Select Subdomain 1 in the Subdomain Settings dialog box.

2 Specify the settings as in the following table:

3 Click the Init tab and type c0 in the Concentration, c edit field (c(t0)).

4 Click OK.

Boundary Conditions
Perform this step to specify the transport equation stated in Equation . Do so in the 
Boundary Settings dialog box because the catalytic surface is a boundary of the 2D 
geometry.

NAME EXPRESSION

v_lam v_max*(1-((x-0.5*delta)/(0.5*delta))^2)

SETTINGS BOUNDARIES 1, 4, 6 BOUNDARY 2 BOUNDARY 3 BOUNDARY 5

Type Insulation/ 
Symmetry

Concentration Convective flux Flux

c0 c0

N0 -react_surf

QUANTITY VALUE/EXPRESSION

δts 1

D isotropic D

R 0

u 0

v v_lam
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1 In the Multiphysics menu, select 2 Weak Form, Boundary (wb).

2 From the Physics menu, choose Boundary Settings.

3 Select the Select by group check box, then click in the Boundary selection list to select 
all boundaries (1–6). Clear the Active in this domain check box. 

4 Clear the Select by group check box, then select Boundary 5. Check the Active in this 

domain check box to enable the weak form application mode only on this boundary.

5 Click the Init tab and then type 0 in the cs(t0) edit field.

6 Click the Weak tab. Make the following specifications:

7 Click OK.

By adding T to all the weak variables you get the tangential components discussed in 
the section “Modeling in COMSOL Multiphysics” on page 33. The lowercase t 
indicates the derivative with respect to time.

Point Settings
To enforce the boundary condition in Equation  on the surface equation you must 
open the Point Settings dialog box from the Physics menu and select Points 4 and 5. In 
this case the default settings are correct, that is, the weak, dweak, and constr edit fields 
should all contain 0, so just leave them as is.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

2 In the Free Mesh Parameters dialog box, click the Boundary tab and select 
Boundary 5 from the list.

3 Type 1.5e-6 in the Maximum element size edit field.

4 Click Remesh, then click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Click the Solver Parameters button.

2 Select Time dependent in the Solver list.

3 In the Time stepping area, type 0:0.05:2 in the Times edit field.

TERM VALUE/EXPRESSION

weak Ds*(-test(csTx)*csTx-test(csTy)*csTy)+ 
test(cs)*(react_surf-cst)

dweak 0

constr 0
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4 Click OK.

5 Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To generate the right plot in Figure 3-2:

1 From the Postprocessing menu, choose Domain Plot Parameters.

2 Go to the General tab and click the Line/Extrusion plot button. Select 2 in the 
Solutions to use list. Customize the plot with text labels by clicking the Title/Axis 
button.

3 Click the Line/Extrusion tab and then select Convection and Diffusion (cd)> 
Concentration, c from the Predefined quantities list.

4 From the Boundary selection list select Boundary 5.

5 Under x-axis data, click the upper option button. Select y from the adjacent list.

6 Click OK.

To generate Figure 3-3, repeat the previous operations but with these changes:

1 On the General page, go to the Solutions to use list and hold down the Ctrl key to 
select the times 0.05, 0.5, 1.0, 1.5, and 2.0.

2 Click the Line/Extrusion tab and then select Weak Form, Boundary (wb)>cs from the 
Predefined quantities list.

To generate Figure 3-4, repeat the previous operations but with this change:

On the Line/Extrusion tab, type react_surf in the Expression edit field.
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Tubu l a r  R e a c t o r

Introduction

This example studies an elementary, exothermic, 2nd-order reversible reaction

 (3-4)

in a tubular reactor (liquid phase, laminar flow regime). The reactor is equipped with 
a cooling jacket to limit the temperature increase due to the exothermic nature of the 
reaction and avoid an explosion. The model is described by the material balances for 
the species involved and the energy balances for the reactor and the cooling jacket.

Additional background to this model is available in Section 8.9 of the Fourth Edition 
of Elements of Chemical Reaction Engineering  by H.S. Fogler.

Model Definition

Figure 3-5 illustrates the reactor geometry. By assuming that the variations in the 
angular direction around the centerline are negligible, you can use a 2D axisymmetric 
model.

Figure 3-5: Geometry for the 2-dimensional rotationally symmetric models.

The model geometry consists of an inlet boundary, an outlet boundary, a reactor wall 
facing the cooling jacket, and the symmetry axis r =0. The reactor’s radius is R = 8 cm 
its length L = 1 m.

A B+ 2C⇔
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Assuming the diffusivities for the three species to be identical, you can model the 
reactor using three differential equations:

• A material-balance partial differential equation (PDE) for one of the species. As 
noted in the next section, separate material-balance equations are not necessary for 
the other two species if the diffusivities are identical.

• An energy-balance PDE for the reactor core.

• An energy-balance ordinary differential equation (ODE) for the cooling jacket. 
Under the assumptions that the coolant flow is turbulent and that turbulent mixing 
eliminates any temperature differences in the radial direction, only axial temperature 
variations are present in the cooling jacket. For this reason, the cooling jacket is not 
included in the model geometry.

The material and energy balances in the reactor are automatically set up in COMSOL 
Multiphysics by selecting the proper application modes. The ordinary differential 
equation that describes the energy balance in the cooling jacket is manually defined as 
a boundary equation.

The material balance and energy balances for the reactor are described by the equations

 (3-5)

In the material-balance equation for cA (mol/m3), the concentration of species A, D 
(m2/s) denotes the diffusion coefficient, u (m/s) the flow velocity, and rA (mol/
(m3·s)) the reaction rate. In the energy-balance equation for the reactor temperature, 
T (K), the additional parameters are the thermal conductivity, k (W/(m·K)), the fluid 
density, ρ (kg/m3), the specific heat capacity, Cp (J/(kg·K)), and the reaction enthalpy 
∆HRx (J/mol).

The boundary conditions for Equations 3-5 are as follows (see Figure 3-5 for the 
appropriate references):

 (3-6)

Here cA0 and T0 denote the initial concentration and temperature, respectively.

For the flow velocity, assume a laminar profile:

∇ D cA ucA+∇–( )⋅ rA=

∇ k T uρCpT+∇–( )⋅ ∆HRx rA=

cA r 0,( ) cA0  =
r∂

∂cA R z,( )
r∂

∂cA 0 z,( ) 0  = =
z∂

∂cA r L,( ) 0=

T r 0,( ) T0  =
r∂

∂T R z,( )
r∂

∂T 0 z,( ) 0  = =
z∂

∂T r L,( ) 0=
TU B U L A R  R E A C T O R  |  43



44 |  C H A P T E R
 (3-7)

Here umax = 2u0, where the average velocity, u0 (m/s), is calculated as the ratio 
between the total volume flow rate, v0 (m3/s), and the reactor’s cross-sectional area, 
πR2.

In this model, assume that the species A, B, and C have the same diffusivity. This 
implies that you only need to solve one material balance, because you can find the 
other species’ concentrations through stoichiometry. Specifically, assuming the initial 
concentration for species C to be zero, the concentrations are given by

 (3-8)

where xA is the conversion of species A.

In the COMSOL Multiphysics Chemical Engineering Module, you could have 
modeled all three species using their true multicomponent diffusivities. These 
assumptions give the reaction-rate expression

 (3-9)

where  A (m3/(mol·s)) refers to the rate constant, E (J/mol) is the activation energy, 
Rg =8.314 J/(mol·K) denotes the ideal gas constant, T (K) is the temperature, and the 
equilibrium constant is

 (3-10)

The energy-balance ODE for the coolant reads

 (3-11)

where Tc is the coolant temperature (K), Uk (W/(m2·K)) is the total heat-transfer 
coefficient between the reactor and the cooling jacket, rate, Cpc (J/(kg·K)) is the 
coolant’s specific heat capacity, and mc (kg/s) represents its mass flow. You can neglect 
the heat conduction in the cooling jacket and thus assume that heat transport takes 
place only through convection.

As a boundary condition, set the temperature of the incoming cooling fluid:

u umax 1 r
R
----⎝ ⎠
⎛ ⎞ 2

–⎝ ⎠
⎛ ⎞=

cA 1 xA–( )cA0= cB cB0 xAcA0–= cC 2xAcA0=

rA A E
RgT
-----------⎝ ⎠
⎛ ⎞ cAcB

cC
2

Keq
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp–=

Keq Keq0 ∆HRx Rg
1

303 K
---------------- 1

T
----–⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞exp=

∂Tc
∂z

---------
2πRUk T Tc–( )

Cpc mc
-----------------------------------------=
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.  (3-12)

Table 3-1 summarizes the relevant input data.

Results

From the plots in Figure 3-6 you can see how the conversion and temperature vary 
inside the reactor. Due to a larger residence time, you find the highest conversion close 
to the wall (right side). Also, the cooling effect of the wall is evident from the 
temperature plot. Nevertheless, the temperature maximum is located close to the wall 
because the temperature depends strongly on the relation between the convected heat 
and the heat produced in the reaction. Due to the laminar-flow velocity profile, the 

TABLE 3-1:  MODEL INPUT DATA

PROPERTY VALUE

 D 10-9 m2/s

 k 0.559 W/(m·K)

 ρ 1000 kg/m3

 Cp 4180 J/(kg·K)

 ∆HRx -83,680 J/mol

 T0 313 K

 cA0 500 mol/m3

 cB0 500 mol/m3

 v0 5·10-4 m3/s

 A 1.65·1011 m3/(mol·s)

 E 95,238 J/mol

 Keq0 103

 Uk 1300 W/(m2·K)

 Cpc 4180 J/(kg·K)

 mc 0.01 kg/s

 Tc0 298 K

Tc 0( ) Tc0=
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fluid close to the reactor wall but not in contact with the cooling jacket is heated 
during a longer time by the exothermic reactions. 

Figure 3-6: Conversion (left) and temperature (right) in the reactor.

Figure 3-7 shows how the coolant temperature increases along the length of the 
reactor. The temperature increases rapidly close to the inlet, but as the reaction rate 
decreases due to the depletion of reactants so does the rate of temperature increase.

Figure 3-7: Coolant temperature along the length of the reactor.

Model Library path:  
COMSOL_Multiphysics/Chemical_Engineering/tubular_reactor
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Go to the Model Navigator and select Axial symmetry (2D) from the Space dimension 
list.

2 Click the Multiphysics button in the lower-right corner.

3 Open the COMSOL Multiphysics folder and select the Convection and Diffusion 
application mode from the Convection and Diffusion folder.

4 In the Dependent variables edit field, type cA. Click Add.

5 Add the Convection and Conduction application mode from the Heat Transfer folder.

6 From the Space dimension list, select 2D.

7 Open the COMSOL Multiphysics>PDE Modes folder and select Weak Form, Boundary.

8 Change the name of the dependent variable to Tc, then click Add.

9 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 Go to the Options menu and choose Constants.

2 Make the following entries in the Constants dialog box and then click OK.

NAME EXPRESSION DESCRIPTION

D 1e-9[m^2/s] Diffusivity

k 0.559[W/(m*K)] Thermal conductivity, reactor

rho 1000[kg/m^3] Fluid density, reactor

Cp 4180[J/(kg*K)] Specific heat capacity, reactor

dHRx -83680[J/mol] Reaction enthalpy

T0 320[K] Initial temperature, reactor

cA0 500[mol/m^3] Initial concentration, species A

cB0 500[mol/m^3] Initial concentration, species B

R 8[cm] Reactor radius

v0 0.0005[m^3/s] Total flow rate, reactor

u0 v0/(pi*R^2) Mean axial flow velocity

E 95238[J/mol] Activation energy

A 1.65e11[m^3/(mol*s)] Rate constant frequency factor

Rg 8.314[J/(mol*K)] Ideal gas constant

Keq0 1000 Equilibrium constant at 303 K
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3 Go to the Options menu and choose Expressions>Scalar Expressions.

4 Make the following entries in the Scalar Expressions dialog box; when done, click OK.

G E O M E T R Y  M O D E L I N G

1 Go to the Draw menu and select Specify Objects>Rectangle.

2 Type 0.08 in the Width edit field and 1 in the Height edit field. Click OK.

3 Click Zoom Extents to center the geometry.

P H Y S I C S  S E T T I N G S

Subdomain Settings—Convection and Diffusion
1 From the Multiphysics menu, select Convection and Diffusion (cd).

2 From the Physics menu, select Subdomain Settings.

3 In the Subdomain Settings dialog box, select Subdomain 1 and type D in the 
Diffusion coefficient edit field.

4 In the Reaction rate edit field, type rA.

5 In the z-velocity edit field, type uz.

6 Still in the Subdomain Settings dialog box, click the Init tab.

7 In the edit field for cA(t0), enter the initial value cA0.

8 Click OK.

Uk 1300[W/(m^2*K)] Heat transfer coefficient

Tc0 298[K] Coolant temperature, inlet

Cpc 4180[J/(kg*K)] Specific heat capacity, coolant

mc 0.01[kg/s] Total mass-flow rate, coolant

NAME EXPRESSION DESCRIPTION

uz 2*u0*(1-(r/R)^2) Axial flow velocity

xA (cA0-cA)/cA0 Conversion, species A

cB cB0-cA0*xA Concentration, species B

cC 2*cA0*xA Concentration, species C

rA -A*exp(-E/(Rg*T)) 
*(cA*cB-cC^2/Keq)

Reaction rate

Keq Keq0*exp(dHRx/Rg 
*(1/303[K]-1/T))

Equilibrium constant

Q (-rA)*(-dHRx) Heat production

NAME EXPRESSION DESCRIPTION
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Boundary Conditions—Convection and Diffusion
1 From the Physics menu, choose Boundary Settings. 

2 In the Boundary Conditions dialog box enter the following boundary conditions.

3 Click OK.

Subdomain Settings—Convection and Conduction
1 From the Multiphysics menu, choose Convection and Conduction (cc).

2 From the Physics menu, choose Subdomain Settings and select Subdomain 1.

3 In the Thermal conductivity edit field, type k.

4 In the Density edit field, type rho.

5 In the Heat capacity edit field, type Cp.

6 In the Heat source edit field, type Q.

7 In the z-velocity edit field, type uz.

8 Still in the Subdomain Settings dialog box, click the Init tab.

9 In the edit field for T(t0), enter the initial value T0.

10 Click OK.

Boundary Conditions—Convection and Conduction
1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Conditions dialog box enter the following boundary conditions.

Because Tc is the dependent variable of a PDE application mode, it does not have 
an associated unit. Therefore, if the Highlight unexpected units check box is selected 
in your modeling session, the Unit label for the q0 edit field appears in red. Provided 
you specify the boundary condition for Tc using the chosen base unit system 
(specified under Physics>Model Settings; the default choice is SI), you can safely 
ignore this warning.

3 Click OK.

SETTINGS BOUNDARIES 1, 4 BOUNDARY 2 BOUNDARY 3

Type Insulation/Symmetry Concentration Convective flux

cA0 - cA0 -

SETTINGS BOUNDARY 1 BOUNDARY 2 BOUNDARY 3 BOUNDARY 4

Type Axial symmetry Heat flux Convective flux Heat flux

q0 - rho*Cp*T0*uz - -Uk*(T-Tc)
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Boundary Conditions—Weak Form, Boundary
1 From the Multiphysics menu, choose Weak Form, Boundary (wb).

2 From the Physics menu, choose Boundary Settings. 

3 Select Boundaries 1–3 in the Boundary selection list and clear the Active in this 

domain check box.

4 Select Boundary 4 and click the Weak tab.

5 In the weak edit field, type Tc_test*(TcTz-2*pi*R*Uk*(T-Tc)/(Cpc*mc)).

6 Click OK.

7 From the Physics menu, choose Point Settings.

8 Select Point 3 from the Point selection list.

9 Set the inlet temperature of the cooling water by typing Tc-Tc0 in the constr edit 
field.

10 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Mapped Mesh Parameters.

2 Click the Boundary tab.

3 Select Boundaries 1 and 4 from the Boundary selection list by left-clicking and 
holding down the Ctrl-key.

4 Select the Constrained edge element distribution check box, then select 
Edge vertex distribution. In the corresponding edit field, type 
[logspace(-2,1,100)./10-1e-3 1].

5 Select Boundaries 2 and 3 in the Boundary selection list.

6 Select the Constrained edge element distribution check box then select 
Edge vertex distribution. In the corresponding edit field, type 
1+(log(linspace(1/61,1-1/61,61))./ 

max(-log(linspace(1/61,1-1/61,61)))).

7 Click Remesh, then click OK.

The generated mesh uses a dense mesh close to the cooling wall to resolve the large 
gradients in temperature, and also close to the reactor inlet to resolve the large 
gradients in composition.

C O M P U T I N G  T H E  S O L U T I O N

1 Click the Solver Parameters button on the Main toolbar.
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2 Make sure the Stationary solver is selected.

3 Click OK.

4 Click the Solve button on the Main toolbar to start the simulation.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot displays the concentration profile.

To see the resulting conversion or temperature profiles, follow these steps:

1 Click the Plot Parameters button on the Main toolbar.

2 To see the conversion or temperature profile, go to the Surface page and type xA (for 
the conversion) or T (for the temperature) in the Expression edit field.

3 Click OK to close the Plot Parameters dialog box.

4 Use the Zoom Window tool on the Main toolbar to get a closer look at the results 
(see Figure 3-6).

To plot the coolant temperature throughout the length of the reactor (see Figure 3-7), 
follow these steps:

1 From the Postprocessing menu, choose Domain Plot Parameters.

2 Click the Line/Extrusion tab and select Boundary 4 from the Boundary selection list.

3 From the Predefined quantities list, select Weak Form, Boundary (wb)>Tc.

4 From the x-axis data list, select z.

5 Click OK.

To investigate the average outlet conversion, concentration, and temperature follow 
the steps below:

1 From the Postprocessing menu, choose Boundary Integration.

2 Select Boundary 3 in the Boundary selection list.

3 Select the Compute surface integral (for axisymmetric modes) check box.

4 Type 1 in the Expression edit field to get the cross-sectional area of the reactor.

5 Click Apply. The value of the integral (roughly 0.0201 m2) appears in the message 
log at the bottom of the user interface.

6 Type xA in the Expression edit field, then click OK. To get the average outlet 
conversion, divide the result with the reactor’s cross-sectional area.

7 Follow the same procedure using the expressions cA and T to find the average outlet 
concentration and temperature, respectively.
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 4
E l e c t r o m a g n e t i c s  M o d e l s
This chapter contains a few electromagnetics models—more comprehensive sets 
are available in the model libraries that comes with the AC/DC Module and 
RF Module. For introductory electromagnetics models and information about the 
application modes for electromagnetics, see “Electromagnetics” on page 75 in the 
COMSOL Multiphysics Modeling Guide.

Several physical quantities are fundamental to electromagnetics. They are:

• Electric field intensity, E

• Electric flux density or electric displacement, D

• Magnetic flux density, B

• Magnetic field intensity, H

• Current density, J

• Electric charge density, ρ

The governing partial differential equations for all macroscopic electromagnetic 
problems are well known—they are the four Maxwell’s equations. Of these 
relationships, the first three are Faraday’s law, Ampère’s circuital law, and Gauss’ 
Law. The fourth equation states that isolated magnetic charges (monopoles) do not 
exist in nature.
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In electromagnetics, constitutive relations specify material-dependent interactions 
between fundamental physical quantities such as E and D. The definition of boundary 
conditions, taken together with Maxwell’s equations and the constitutive relations, 
make it possible to describe any macroscopic electromagnetic problem. For an 
introduction to the theory of electromagnetics, see the section “Fundamentals of 
Electromagnetics” on page 77 in the COMSOL Multiphysics Modeling Guide.
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E l e c t r o s t a t i c  Po t e n t i a l  B e twe en 
C y l i n d e r s

This example model demonstrates each step in building and solving a 3D electrostatics 
model. The analysis shows the electric potential between two cylinders in a vacuum.

Model Definition

The first step is to define the overall model and draw its geometry. This model consists 
of two cylinders with opposite electrostatic potentials. The potential difference 
between them induces an electric field in the vacuum. The electrostatic scalar potential 
V is related to an electric field as . Gauss’ law, , gives 

. 

This equation includes a material property and a source term:

• ε is the permittivity.

• ρ is the space charge density.

To simulate the vacuum chamber, create a box in which there is no atmosphere or gas 
of any kind. In addition, assume that the potential is zero on the bottom boundary and 
that there is no electric field normal to the other exterior boundaries.

Results

The plot in Figure 4-1 on page 56 combines a surface plot of the potential with a 
streamline plot of the electric field. The surface plot shows the electric potential on the 
cylinder and box faces. As expected, the electric field lines run from cylinder to cylinder 
and from the cylinders to the grounded bottom plate. The electric field does not 
penetrate the top and side walls.

E ∇V–= ∇ ε E( )⋅ ρ=

∇ ε∇V( )⋅– ρ=
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Figure 4-1: The electric potential (surface) and the electric field (streamlines).

Modeling Using the Graphical User Interface

Start COMSOL Multiphysics using the procedure for the operating system on your 
computer. On Windows double-click the COMSOL Multiphysics icon to start COMSOL 
Multiphysics and open the Model Navigator.

Model Library path: COMSOL_Multiphysics/Electromagnetics/
potential_between_cylinders

M O D E L  N A V I G A T O R

For this model use the Electrostatics application mode.

1 In the Model Navigator click on the New tab.

2 Select 3D in the Space dimension list.
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3 In the list of application modes, open the COMSOL Multiphysics folder and then the 
Electromagnetics folder. Select Electrostatics from the list of electromagnetics 
application modes. 

4 Accept the default element type (quadratic Lagrange elements), which is suitable for 
most cases.

5 Click OK.

The Electrostatics application mode provides predefined equations and boundary 
conditions that make it easy to create this model, but you must still attend to a few 
details.

O P T I O N S  A N D  S E T T I N G S

In this model the permittivity of free space, ε0, defines the permittivity in the domain. 
It is not necessary to enter this variable because it is a predefined application scalar 
variable in the Electrostatics application mode. If you prefer to use another value rather 
than the standard SI unit value, choose Scalar Variables from the Physics menu. Doing 
so, however, changes the underlying formulation for electrostatics, so we recommend 
that you use the predefined value.

G E O M E T R Y  M O D E L I N G

Next define the model geometry. For this example, create a box measuring 2 ×2 × 2 
meters, and then place two cylinders inside that box. When you exit the Model 
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Navigator to begin setting up a model, COMSOL Multiphysics enters Draw mode with 
access to the drawing tools.

To define the model geometry, begin with the box:

1 Open the Block dialog box by clicking on the appropriate symbol on the Draw 
toolbar.

2 In that dialog box, go to the Base area and click the Center button to use centered 
base coordinates.

3 In the Length area, type 2 in the X, Y, and Z edit fields as the length for all three 
dimensions.

4 Click OK to create the block.

5 To ensure that the full geometry is visible, click the Zoom Extents button.

Now move on to the two cylinders. To create these 3D objects on a 2D screen, work 
in a 2D work plane. The method to follow in creating the cylinders is simple: draw two 
circles in 2D and then extrude them in the z direction to form 3D objects.

1 Go to the Draw menu and choose Work-Plane Settings to define a new work plane.

2 Click the Quick tab and make sure that the x-y button is selected (the default).

3 Type -0.2 in the z edit field.

4 Click OK to enter the 2D work plane.

Now draw the cylinder cross sections in the work plane:

1 Click on the Zoom In button several times until the grid spacing equals 0.2 in both 
the x and y directions.

2 Go to the Options menu and choose Axes/Grid Settings.

3 In the Axes/Grid Settings dialog box click on the Grid tab.
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4 Clear the Auto check box and type 0.1 in the y spacing edit field.

5 Click OK. You can now create circles with a radius of 0.1.

6 Click on the Ellipse/Circle (centered) button in the Draw toolbar.

7 Place the crosshairs at the coordinates (−0.4, 0). Then click on the right mouse 
button and drag up or down until you create a circle with radius of 0.1.

8 Repeat the process to draw a second circle of the same size centered at (0.4, 0).

Create the cylinders:

1 Press Ctrl+A to select both circles.

2 Go to the Draw menu and choose Extrude.

3 In the Extrude dialog box define the height of the cylinders by typing 0.4 in the 
Distance edit field. The resulting cylinders extend from –0.2 to 0.2 in the z direction.

4 Click OK to close the dialog box.

COMSOL Multiphysics now returns to the 3D environment where the cylinders are 
present. The cylinders have become extruded geometry objects with the names EXT1 
and EXT2.

To complete the geometry, subtract the two cylinders from within the box using a 
Boolean operation:

1 Click the Create Composite Object button in the Draw toolbar.

2 Type the Boolean expression BLK1-EXT1-EXT2 in the Set formula edit field.

3 Click OK.

The resulting geometry is a new composite object with the default label CO1.
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P H Y S I C S  M O D E L I N G

The next task is to define the physics through material properties on the domain and 
conditions on the boundaries.

Subdomain Settings
First, specify the material properties in the modeling domain.

Open the Subdomain Settings dialog box from the Physics menu. COMSOL 
Multiphysics then switches to Subdomain Selection mode where you can specify 
material properties for each subdomain.

In this example, ε equals the permittivity of free space ε0 = 8.854·1012 F/m, a value 
predefined in COMSOL Multiphysics. The relative permittivity εr then equals 1.

The space charge density option specifies the distribution of a space charge in a 
subdomain. Here there is none, so the value of ρ equals zero.

Now set the value for the permittivity in the model:

1 This model consists of only one subdomain. Make certain that Subdomain 1 is 
selected in the Subdomain selection list.

2 Go to Constitutive relation and make certain that the default D = ε0εrE is selected.

3 Click OK.

SETTINGS SUBDOMAIN 1

εr 1

 ρ 0
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For time-dependent and nonlinear analyses you might find it necessary to set initial 
conditions. That step is not necessary for this linear electrostatics problem.

Boundary Conditions
To set boundary conditions, go to the Physics menu and choose Boundary Settings to 
open up the corresponding dialog box. Here you select boundaries and specify the 
boundary conditions.

When you select a specific boundary, the program allows you to choose from a list of 
available boundary conditions.

To speed up the modeling process even with a relatively simple 3D model, you can 
select several faces with one mouse click. To learn more about the various selection 
methods see “Object Selection Methods in 3D” on page 127 in the COMSOL 
Multiphysics User’s Guide.

The following table summarizes the boundaries in this model and their values:

• Boundaries 6–11 define the left cylinder where the electric potential is 1 V.

• The second cylinder consists of Boundaries 12–17 and has an electric potential of 
−1 V.

• The third set of boundaries defines the box, except the bottom boundary.

• The last set (Boundary 3) is the grounded bottom plate.

SETTINGS BOUNDARIES 6–11 BOUNDARIES 12–17 BOUNDARIES 1, 2, 4, 5, 18 BOUNDARY 3

Type Electric potential Electric potential Zero charge/Symmetry Ground

V0 1 -1
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To enter these boundary values into the model, follow these steps:

1 To enable object selection with the mouse you must first deselect the orbit/pan/
zoom function. To do so, click the Orbit/Pan/Zoom button.

2 Draw a rubber-band box around one of the cylinders.

3 When its faces are highlighted, select Electric potential from the Boundary condition 
list.

4 Type 1 in the V0 edit field.

5 Repeat the procedure for the second cylinder, but this time type –1 in the V0 edit 
field.

6 Select the Select by group check box.

7 Select Boundary 1. The group selection then also selects all other exterior 
boundaries.

8 Select Symmetry from the Boundary condition list.

9 To select the bottom face, first click to clear the Select by group check box and then 
select Boundary 3.

10 Select Ground from the Boundary condition list.

11 Click OK.

M E S H  G E N E R A T I O N

Generating the mesh is usually quite simple: just click one of the mesh buttons on the 
Main toolbar. In cases with special requirements you can also use commands in the 
Mesh menu. In this case, use a predefined setting for creating a coarse mesh, which 
makes the solution process faster than the default mesh-size settings.

1 From the Mesh menu, choose Free Mesh Parameters.

2 In the Free Mesh Parameters dialog box, select Coarser from the Predefined mesh sizes 
list.

3 Click OK.

4 Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

At this point you can either accept the default settings for the solver COMSOL 
Multiphysics should use, or you can interactively select the solver and its operating 
parameters. In most cases, though, you only need to click on the Solve button in the 
Main toolbar.
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To reduce the time and memory requirements for the solution process, it is wise to 
make a few changes to the solver parameters. The default settings for 3D electrostatics 
models specify an iterative solver. These solvers generally use less memory than direct 
solvers and are often faster.

Iterative solvers work with a set of preconditioners, and the algebraic multigrid 
(AMG) preconditioner works best for scalar elliptic PDEs such as Laplace’s equation 
and Poisson’s equations. It is the default preconditioner for the 3D Electrostatics 
application mode.

1 From the Solve menu, open the Solver Parameters dialog box.

2 Click the General tab.

3 Choose a linear system solver. Select GMRES from the Linear system solver list. 

4 Choose a preconditioner. Select Algebraic multigrid from the Preconditioner list.

5 Click OK.

6 Start the solution process by clicking on the Solve button on the Main toolbar. The 
results might take a few seconds to compute depending on the problem’s 
complexity.
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P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

After solving the problem, COMSOL Multiphysics shifts to its postprocessing mode 
and shows a slice plot of the electric potential V. This plot, however, might not offer 
much immediately useful information, but COMSOL Multiphysics provides a variety 
of color plots and animations that help you more quickly spot trends and regions of 
interest. To better examine the solution for an electrostatic problem, for instance, you 
might want to view a surface or contour plot, and as the variable of interest you can 
select the electrostatic potential, the electric field, the electric displacement field, or the 
polarization field. Further, for arrow or streamline plots it is possible to select the x, y, 
or z components of most of those parameters.

To combine a surface plot with a flow plot, follow these steps:

1 Choose Plot Parameters from the Postprocessing menu.

2 On the General page, clear the Slice check box to deactivate the slice plot.

3 Select the Boundary and Streamline check boxes to activate these features.

4 Click the Streamline tab.

5 Type 30 in the Number of start points edit field on the Start Points tab.

6 Click OK.

You should immediately notice that the surface plot obstructs the view, making it 
impossible to see inside the box. To remove the rendering of the front faces, use the 
ability of COMSOL Multiphysics to suppress boundaries.

1 In the Options menu, point to Suppress and then click Suppress Boundaries.

2 While holding down the Ctrl key, select Boundaries 1, 2, and 4 in the Boundary 

selection list.

3 Click OK to close the dialog box and render all boundaries except 1, 2, and 4.
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4 To add lighting to the model, click the Scene Light and Headlight buttons on the 
Camera toolbar.
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Pa c emake r  E l e c t r o d e

This model illustrates the use of COMSOL Multiphysics for modeling of ionic current 
distribution problems in electrolytes, in this case in human tissue. The problem is 
exemplified on a pacemaker electrode, but it can be applied in electrochemical cells like 
fuel cells, batteries, corrosion protection, or any other process where ionic conduction 
takes place in the absence of concentration gradients.

Introduction

The modeled device is a pacemaker electrode that is placed inside the heart and helps 
the patient’s heart to keep a normal rhythm. The device is referred to as an electrode, 
but it actually consists of two electrodes: a cathode and an anode.

Figure 4-2 shows a schematic drawing of two pair of electrodes placed inside the heart. 
The electrodes are supplied with current from the pulse generator unit, which is also 
implanted in the patient.

Figure 4-2: Schematic drawing of the heart with two pairs of pacemaker electrodes.

This model deals with the current and potential distribution around one pair of 
electrodes.
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Model Definition

The model domain consists of the blood and tissue surrounding the electrode pair. The 
actual electrodes and the electrode support are boundaries to the modeled domain. 
Figure 4-3 shows the electrode in a darker shade, while the surrounding modeling 
domain is shown in a lighter shade.

Figure 4-3: Modeling domain and boundaries.

The working electrode consists of a a hemisphere placed on the tip of the supporting 
cylindrical structure. The counter electrode is placed in the “waist” of this structure. 
All other surfaces of the supporting structure are insulated. The outer boundaries are 
placed far enough from the electrode to give a small impact on the current and 
potential distribution.

In COMSOL Multiphysics, use the 3D Conductive Media DC application mode for 
the analysis of the electrode. This application mode is useful for modeling conductive 
materials where a current flows due to an applied electric field.

D O M A I N  E Q U A T I O N S

The current in the domain is controlled by the continuity equation, which follows 
from the Maxwell’s equations:

where σ is the conductivity of the human heart. This equation uses the following 
relations between the electric potential and the fields.

Spherical working electrodeAnnular counter electrode

Insulated surfaces of
the device

Outer boundaries
of the domain

∇– σ V∇( )⋅ 0=
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B O U N D A R Y  C O N D I T I O N S

Ground potential boundary conditions are applied on the thinner waist of the 
electrode. The tip of the electrode has a fixed potential of 1 V. All other boundaries are 
electrically insulated.

Results and Discussion

This simulation gives you the potential distribution on the surface of the electrode and 
the streamlines of the current distribution inside the human heart. This plot appears in 
Figure 4-4.

Figure 4-4: The plot shows the electrostatic potential distributed on the surface of the 
electrode. The total current density is shown as streamlines.

As expected, the current density is highest at the small hemisphere, which is the one 
that causes the excitation of the heart. The current density is fairly uniform on the 

E V∇–=

J σE=

n J⋅ 0=
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working electrode. The counter electrode is larger and there are also larger variations 
in current density on its surface. Mainly, the current is lower with the distance from 
the working electrode. The model shows that the anchoring arms of the device have 
little influence on the current density distribution.

Model Library path: COMSOL_Multiphysics/Electromagnetics/
pacemaker_electrode

Modeling Using the Graphical User Interface

1 In the Model Navigator, select 3D from the Space dimension list.

2 In the COMSOL Multiphysics>Electromagnetics folder, select Conductive Media DC. 
Make sure Lagrange - Quadratic is selected in the Element list.

3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Select Work-Plane Settings from the Draw menu.

2 Click the y-z button and then click OK.

3 From the Draw menu, select Specify Objects>Rectangle. In the Rectangle dialog box, 
enter 2.1e-3 in the Width edit field, 5.5e-3 in the Height edit field, and enter the 
corner coordinates (0, 14.5e-3) in the edit fields x and y. Make sure that Corner is 
selected in the Base list. Click OK.

4 Select Fillet/Chamfer from the Draw menu. Expand R1 and select point number 2. 
Enter 5e-4 in the Radius edit field. Click OK.

5 Create a rectangle with width 1.6e-3, height 2e-3, and corner position at  
(0, 12.5e-3).

6 Create a rectangle with width 2.1e-3, height 12.5e-3, and corner position at  
(0, 0).

7 Select Fillet/Chamfer from the Draw menu. Expand R2 and select point number 2 and 
3. Enter 5e-4 in the Radius edit field. Click OK.

8 From the Draw menu, select Specify Objects>Circle. Enter 1e-3 in the Radius edit 
field. Click OK.

9 Create a rectangle with width 2e-3, height 2e-3, and corner position at  
(−2e-3, −1e-3).
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10 Select Create Composite Object from the Draw menu. In the dialog box, type the 
formula C1-R2 in the Set formula edit field. Click OK.

11 Select all objects by pressing Ctrl+A. Click on the Union toolbar button located to 
the left side.

12 Click the Delete Interior Boundaries toolbar button on the same toolbar.

13 Click the Zoom Extents button on the Main toolbar. You should have a window 
similar to the figure below.

14 Select Revolve from the Draw menu. Click OK.

15 Click the Zoom Extents button to see the revolved geometry.

These steps created the electrode, but the electrode also has some hooks that hold it 
in place.

1 Go back to the work plane by clicking on the Geom2 tab.

2 Create a rectangle with width 5e-4, height 5.2e-3, and corner position at  
(0, 3.5e-3).

3 Select Fillet/Chamfer from the Draw menu. Expand R1 and select point number 3. 
Click the Chamfer radio button, and enter 2e-4 in the Distance edit field. Click OK.

4 Select Revolve from the Draw menu. Click OK.
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5 Click the Rotate toolbar button and enter 60 in the edit field for the rotation angle. 
Define the point and axis for the rotation by specifying the coordinate  
(0, 0, 2.5e-3) in the Point on rotation axis frame, and the direction (1, 0, 0) in the 
Rotation axis direction vector frame. Click OK.

6 Press Ctrl+C to copy the object. Press Ctrl+V to paste it directly. In the Paste dialog 
box, leave all displacement fields set to zero. Click OK.

7 Click the Rotate toolbar button and set the rotation angle to 90. Click OK.

8 Press Ctrl+V again and click OK (zero displacements).

9 Click the Rotate toolbar button and set the rotation angle to 180. Click OK.

10 Press Ctrl+V and click OK (zero displacements).

11 Click on the Rotate toolbar button and set the rotation angle to 270. Click OK.

12 Press Ctrl+A to select all objects. Click on the Union toolbar button and then click 
on the Delete Interior Boundaries toolbar button.

13 Click the Zoom Extents and the Headlight toolbar buttons to see geometry in the 
following figure.

Finally, you need to define the volume surrounding the electrode. The simulation only 
takes place in this volume, where the boundaries of the electrode influence the result.
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1 Click the Cylinder toolbar button. In the Cylinder dialog box, enter 10e-3 in the 
Radius edit field, 40e-3 in the Height edit field, and the coordinate (0, 0, -20e-3) in 
the edit fields of the Axis base point frame. Click OK.

2 Choose Create Composite Object from the Draw menu. In the dialog box, type the 
formula CYL1-CO2 in the Set formula edit field. Click OK.

P H Y S I C S  S E T T I N G S

Boundary Conditions
The thin waist of the electrode is grounded, and a positive potential is applied to the 
lower half sphere. All other boundaries are kept electrically insulated.

1 Open the Boundary Settings dialog box from the Physics menu.

2 Define the boundary condition according to the following table. Click OK.

Subdomain Settings
The electrode is inserted into the human heart, so you must define the conductivity 
for the heart tissue.

1 Open the Subdomain Settings dialog box from the Physics menu.

2 Enter the following values in the corresponding edit fields. Click OK.

M E S H  G E N E R A T I O N

Use the default mesh settings. Click the Initialize Mesh button on the Main toolbar to 
generate the mesh.

C O M P U T I N G  T H E  S O L U T I O N

Use the default solver parameters—the stationary solver using the conjugate gradients 
iterative solver—and algebraic multigrid as the preconditioner.

Click on the Solve button on the Main toolbar.

SETTINGS BOUNDARIES 
29, 30, 58, 63

BOUNDARIES 31, 32, 59, 
60

ALL OTHER 
BOUNDARIES

Boundary condition Ground Electric potential Electric insulation

 V0 1

SETTING SUBDOMAIN 1

σ (isotropic) 5000
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The potential distribution on the electrode boundary is used together with a 
streamline plot of the total current density to visualize the result of the simulation.

1 Start by suppressing some boundaries not to be used for visualization. Select 
Suppress Boundaries from the Options menu, and select Boundaries 1, 2, 3, 4, 45, 
and 74. Click OK.

2 Choose Plot Parameters from the Postprocessing menu. In the Plot Parameters dialog 
box under the General tab, clear the Slice check box and select the Boundary and 
Streamline check boxes.

3 Click the Boundary tab and make sure that Electric potential is selected as boundary 
data.

4 Click the Streamline tab and then select Total current density from the Predefined 

quantities list. Click the Line Color tab, and then click the Use expression radio button. 
Use the default expression—the electric potential.

5 Select Tube from the Line type list. Click the Tube Radius button. In the Tube Radius 

Parameters dialog box, select the Radius data check box, and choose Total current 

density, norm from the Predefined quantities list. Click OK twice. You should now see 
something similar to the figure below after proper rotation and zoom operations.
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S k i n  E f f e c t  i n  C i r c u l a r  W i r e

This example demonstrates the skin effect where, during the flow of AC current, 
electrons tend to move along the surface of a conductor. Changes in the current’s 
amplitude and direction induces a magnetic field that pushes the electrons toward the 
wire’s exterior. The effect increases with frequency and conductor size.

Engineers working at microwave frequencies take advantage of these effects by 
designing hollow waveguides because at these frequencies, the core of a conductor 
would not carry current anyway.

In solid conductors, the skin effect can have important implications even at powerline 
frequencies. For instance, utilities can replace expensive, heavy copper wire with 
aluminum cables clad with a copper skin without appreciably increasing power losses. 
As proof of this claim, this model first computes the current distribution at 50 Hertz 
in an unusually large copper cable (20 cm diameter). It then goes on to compute the 
current distribution and compare resistive losses in a like-sized copper-clad cable that 
consists of 90% aluminum.

Model Definition

Copper specifies a conductivity σ of 5.99·107 S/m and permeability µ of 4π·10−7 H/
m. For aluminum the values are 3.77·107 S/m and 4π ·10−7 H/m, respectively. The 
materials’ dielectric properties have no influence on the fields at low frequencies as in 
this case. You can therefore set ε = ε0 = 8.854·10−12 F/m.

Using the AC Power Electromagnetics application mode, the equation that COMSOL 
Multiphysics solves is a complex Helmholtz equation for the amplitude of the 
magnetic potential:

Here ω is the angular frequency, in this case 2π·50 rad/s. For good conductors, such 
as copper and aluminum, σ >> ωε. So, for engineering purposes the approximation 

 is close enough.

∇–
1
µ
---∇Az⎝ ⎠
⎛ ⎞⋅ k2Az+ 0=

k jωσ ω2ε–=

k jωσ=
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The boundary conditions require some careful consideration. From a mathematical 
point of view, it is necessary to specify either the magnetic potential Az (corresponding 
to a Dirichlet type condition) or the normal derivative of the same field (a Neumann 
condition) on the outer surface. These quantities, however, have little or no 
significance in applied engineering. In COMSOL Multiphysics the Neumann type 
condition on the Az field is implemented by specifying a surface current equal to the 
negative of the tangential magnetic field at the boundary. The current may not be 
physically real. On exterior boundaries you can interpret it as the surface current 
necessary to make the magnetic field H vanish outside the domain.

Even better from the pure engineering point of view is to specify the total current 
throughput, which is rather straightforward in this case. Making the magnetic field 
disappear everywhere outside the circular domain requires that the total current 
through the domain equals zero. One way of achieving this is by adding a “virtual” 
surface current of opposite sign to the “real” current inside the conductor. Because the 
problem is rotationally symmetric, you can write the necessary virtual surface current 
density

where Itot is the total real current throughput, and R is the radius of the wire.

Js
Itot
2πR
-----------–=
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Results

The solution of the AC power electromagnetics equation is complex valued, reflecting 
the time lag between the surface and the interior. This plot shows the real part of the 
solution. The full complex-valued solution is available. You can plot various properties 
of the complex solution by typing expressions such as imag(Jz_qa) or abs(Jz_qa) in 
an Expression edit field in the Plot Parameters dialog box.

Model Library path: COMSOL_Multiphysics/Electromagnetics/skin_effect

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 2D in the Space dimension list.

2 In the list of application modes, open the COMSOL Multiphysics folder and then the 
Electromagnetics folder. Select AC Power Electromagnetics from the list of 
electromagnetics application modes. 
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3 Accept the default element type (quadratic Lagrange elements), which is suitable for 
most cases.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Axes/Grid Settings.

2 Set axis and grid settings according to the following table. On the Grid page, clear 
the Auto check box to enter the grid spacings manually.

3 Click OK.

4 From the Options menu, choose Constants.

5 Enter the following constants:

6 Click OK.

G E O M E T R Y  M O D E L I N G

The cross-section of the conductor is represented by a circle with radius 0.1. The 
aluminum core is drawn as a circle with radius 0.0949.

1 Draw a circle centered at (0, 0) with a radius of 0.1. 

2 Draw one more circle centered at (0, 0) with a radius of 0.1. 

3 Double-click the last circle and enter a new radius of 0.0949.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu, choose Boundary Settings.

AXIS GRID

x min -0.15 x spacing 0.1

x max 0.15 Extra x

y min -0.1 y spacing 0.1

y max 0.1 Extra y

NAME EXPRESSION

sigC 5.99e7

sigA 3.77e7

Itot 100
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2 Enter boundary coefficients according to the following table. When done, click OK.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

2 Click the Electric Parameters tab.

3 Enter the subdomain settings (material property) according to the following table. 
When done, click OK.

M E S H  G E N E R A T I O N

The small gap between the concentric circles gives you a fine mesh close to the 
boundaries, where the solution is expected to vary fastest. If you decrease the element 
growth rate, the mesh becomes smoother.

1 In the Free Mesh Parameters dialog box, click the Custom mesh size button and type 
1.1 in the Element growth rate edit field.

BOUNDARY ALL

Type Surface current

Jsz -Itot/(2*pi*0.1)

SETTING SUBDOMAINS 1, 2

 σ sigC
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2 Initialize the mesh.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Due to the skin effect, the current density at the surface is much higher than that 
within the interior of the conductor. Plotting the current density Jz clearly shows this 
effect. 

1 Open the Plot Parameters dialog box.

2 Click the Surface tab.

3 On the Surface Data tab, select Total current density, z component from the Predefined 

quantities list.

4 Select cool from the Colormap list.

5 Click OK.

The resistance per meter is defined as R = P/I2, where P is the power loss per meter of 
wire, and I is the current through the power line. You can compute both the power 
and the current with integrations over the cross section:
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where Q = σ|E|2. The value of the second integral is known, because the total current 
is part of the boundary conditions. However, performing the integration of the FEM 
solution provides an opportunity to verify that the previous calculations are correct.

1 Open the Subdomain Integration dialog box. Select both subdomains and choose the 
Total current density, z component from the Predefined quantities list. Click OK and 
note that the total current is very close to 100 A, as expected. 

2 Change the integration expression to Resistive heating, time average and again click 
OK.

3 You can now compute the resistance per meter from R = P/I2.

Modeling a Wire with an Aluminum Core

Next, replace almost all copper with aluminum, leaving only a thin copper shell, and 
compare the results. 

S U B D O M A I N  S E T T I N G S

Change the conductivity in Subdomain 2 to sigA.

C O M P U T I N G  T H E  S O L U T I O N

Solve the problem.

P O S T P R O C E S S I N G

Now calculate the resistance per meter in the modified design.

1 Open the Subdomain Integration dialog box.

2 Select both subdomains and choose Resistive heating, time average in the Predefined 

quantities list.

3 Click OK. 

4 Calculate the resistance per meter as before.

For a given current you can see that the combined copper/aluminum wire suffers 
approximately 10 percent more resistance compared to pure copper. On the other 
hand it weighs only one third and is considerably less expensive. 

P Q Ad∫=

I Jz Ad∫=
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Modeling Using the Programming Language 

1 To solve the problem using the application mode, first set some constants, define 
the geometry and create the mesh:

clear fem
omega = 2*pi*50;
Itot = 100;
fem.geom = circ2(0,0,0.1)+circ2(0,0,0.0949);

2 Select the AC Power Electromagnetics application mode:

fem.appl.mode = 'FlPerpendicularCurrents';
fem.appl.prop.analysis = 'harmonic';

3 Specify the boundary conditions:

fem.appl.bnd.Js0z = -Itot/(2*pi*0.1);
fem.appl.bnd.type = {'Js'};

4 Specify the material property:

fem.appl.equ.sigma = 5.99e7;

5 Expand the application mode fem.appl, mesh the geometry, and create the 
fem.xmesh field:

fem = multiphysics(fem);
fem.mesh = meshinit(fem,'hgrad',1.1);
fem.xmesh = meshextend(fem);

6 Solve the problem with the stationary solver:

fem.sol = femstatic(fem);

7 Visualize the result by plotting the current density:

postplot(fem,'tridata','Jz','trimap',cool); axis equal

8 Integrate the power loss and the current over the cross-section and calculate the 
resistance per meter of wire:

P1 = postint(fem,'Qav')
I1 = postint(fem,'Jz')
R1 = P1/abs(I1)^2

9 Change the conductivity of the core, rebuild the FEM structure, and solve again:

fem.appl.equ.sigma = {5.99e7 3.77e7};
fem = multiphysics(fem);
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);

10 Plot the current distribution in a new window:

figure;
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postplot(fem,'tridata','Jz','trimap',cool); axis equal

11 Perform the integrations over the cross section and calculate the resistance:

P2 = postint(fem,'Qav')
I2 = postint(fem,'Jz')
R2 = P2/abs(I2)^2

12 Finally calculate the ratio of the resistances in the two cases:

Q = R2/R1
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Quad r upo l e  L en s

Introduction

Just like optical lenses focus light, electric and magnetic lenses can focus beams of 
charged particles. Systems of magnetic quadrupole lenses find a common use in 
focusing both ion and particle beams in accelerators at nuclear and particle physics 
centers such as CERN, SLAC, and ISIS. This COMSOL Multiphysics model shows 
the path of Be5+ ions going through three consecutive magnetic quadrupole lenses. 
The model is set up in a cross section of the geometry. You can find a full 3D version 
in the AC/DC Module Model Library.

Model Definition

The quadrupole consists of an assembly of four permanent magnets, as seen in 
Figure 4-5 below, where the magnets work together to give a good approximation of 
a quadrupole field. To strengthen the field and keep it contained within the system, 
the magnets are set in an iron cylinder.

Figure 4-5: Cross-sectional view of one of the magnetic quadrupoles used in the lens.
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The ions are sent through a system of three consecutive quadrupole assemblies. The 
middle one is twice as long as the other ones, and is rotated by 90 degrees around the 
central axis. This means the polarity of its magnets is reversed. Figure 4-6 gives a full 
view of the magnetic quadrupole lens.

Figure 4-6: Cutout of the quadrupole lens. The second quadrupole (Q2) has its polarities 
reversed compared to Q1 and Q2. After traveling through the lens, the ions are left to drift 
1 m.

An accelerator feeds the system with ions traveling with the velocity 0.01c along the 
the central axis. To study the focusing effect of the quadrupoles, track a number of ions 
starting out from a distance of 3 cm from the central axis, evenly distributed along the 
circumference of a circle in the transverse plane. They are all assumed to have a zero 
initial transverse velocity. Each quadrupole focuses the ion beam along one of the 
transverse axes and defocuses it along the other one. The net effect after traveling 
through the system of the three quadrupoles and the drift length is focusing in all 
directions. As the ions exit the system, they are all contained within a 1 cm radius in 
the transverse plane.

The model is set up in a 2D cross section of any of the two identical quadrupoles Q1 
and Q3. Neglecting fringe fields, the transverse magnetic field at a given point in a 
transverse plane in Q2 will automatically have the same magnitude as the 
corresponding in Q1 and Q3, but point in the opposite direction. It is therefore 
sufficient to model the fields in one of the quadrupoles.

D O M A I N  E Q U A T I O N S

The magnetic field is described using the Magnetostatics equation, solving for the z 
component of the magnetic potential A (Wb/m):
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Here µ0 = 4π·10−7 H/m denotes the permeability of vacuum, M is the magnetization 
(A/m), σ the conductivity (S/m), and v the velocity of the medium (m/s). In this 
model, the medium is not moving. The right-hand side of the equation holds an 
imposed current, specified in terms of either ∆V (V) and L (m), or an external current 
density Jz

e (A/m2). No currents are imposed in this model. The iron subdomain uses 
a slightly different formulation of the same equation:

,

where µr = 4000 is the relative permeability. The magnetic potential is everywhere 
defined so that . 

B O U N D A R Y  C O N D I T I O N S

The magnetic field is approximately parallel to the exterior boundary of the iron 
cylinder. To enforce this, use the magnetic insulation boundary condition, stating that 
Az  =  0.

µ0
1– Az M–∇×( )∇× σv Az∇×( )×– σ V L⁄∆ Jz

e
+=

1
µ0µr
------------ Az∇×∇×⎝ ⎠

⎛ ⎞ σ v Az∇×( )×– σ V L⁄∆ Jz
e

+=

B A∇×=
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Results

The magnetic field density and flowlines in a cross section of Q1 or Q3 appear in 
Figure 4-7 below.

Figure 4-7: The magnetic field density and flowlines in the center of one of the quadrupole 
magnets.

Each ion passing through the assembly experiences a Maxwell force equal to 
F = q v × B, where v (m/s) is the ion’s velocity. Next, assume that the z component of 
the velocity is constant and much larger than the x and y (transverse) components. 
Thus consider only the force contributions from the z component of the velocity. To 
find the transverse position as a function of time, you need to solve Newton’s second 
law for each ion, q v × B = m a, where m is the ion mass (kg), and a denotes its 
acceleration (m/s2). If the computed magnetic flux density in Q1 equals B', and the 
length of quadrupole i is Li (m), the flux density that the ion experiences is given by
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where t (s) is the time of flight. This dependency of the magnetic flux density on the 
time of flight is fed to the particle-tracing algorithm as a logical expression. Figure 4-8 
below shows how the ions travel in the transverse plane. 

Figure 4-8: As the ions enter Q1, they start out evenly distributed around the larger circle, 
3 cm from the z-axis. Q1 focuses along the x-axis and defocuses along the y-axis. The force 
on each ion is approximately proportional to its distance from the z-axis, so as the ions enter 
Q2, those that are far out on the x-axis rapidly turn around and move toward the center. 
Q3 stabilizes the motion and gets all ions on the right track. Finally the ions are left to drift 
toward a waist situated a little bit more than 1 m beyond Q3.
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Model Library path: COMSOL_Multiphysics/Electromagnetics/quadrupole

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select COMSOL Multiphysics>Electromagnetics>Magnetostatics 
from the list of application modes.

2 Click OK to close the dialog box.

O P T I O N S  A N D  S E T T I N G S

1 Enter the following constant names and expressions in the Constants dialog box 
(units and descriptions are optional):

2 Click OK to close the dialog box.

G E O M E T R Y  M O D E L I N G

1 Shift-click the Rectangle/Square button on the Draw toolbar.

2 Specify a rectangle with the following properties; when done, click OK.

NAME EXPRESSION DESCRIPTION

M 11 Ion mass number

Z 5 Ion charge number

L1 1[m] Length of first quadrupole

L2 2[m] Length of second quadrupole

L3 1[m] Length of third quadrupole

vz 0.01*3e8[m/s] Ion velocity

mp 1.672e-27[kg] Proton mass

Ze 1.602e-19[C] Proton charge

m M*mp Ion mass

q Z*Ze Ion charge

MQ 5.8e3[A/m] Quadrupole magnetization

PROPERTY EXPRESSION

Width 0.177

Height 0.07
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3 Click the Rotate button on the Draw toolbar. Rotate the rectangle by 45 degrees 
around the origin.

4 Click the Ellipse/Circle (Centered) button on the Draw toolbar.

5 Specify a circle with the following properties; when done, click OK.

6 Select both the circle and the rectangle, then click the Intersection button on the 
Draw toolbar.

7 Make a copy of your composed object (CO1) and paste it at the same location, that 
is with zero displacements. 

8 Rotate the copied object (CO2) by 90 degrees around the origin.

9 Paste two more copies of CO1 at the same location, and rotate them by 180 and 
270 degrees respectively.

10 Create a circle centered at the origin with a radius of 0.2 m.

11 Create another circle centered at the origin, with a radius of 0.12 m.

12 Click the Create Composite Object button and create an object using the formula 
C1+C2-(CO1+CO2+CO3+CO4).

13 Draw a circle centered at the origin with a radius of 0.2 m.

Position: Base Corner

Position: x 0

Position: y -0.035

PROPERTY EXPRESSION

Radius 0.2

Position: Base Center

Position: x 0.2

Position: y 0.2

PROPERTY EXPRESSION
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The geometry should now look like that in the figure below.

Figure 4-9: The COMSOL Multiphysics geometry of the quadrupole lens.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Use the default condition Magnetic insulation at all exterior boundaries.

Subdomain Settings
1 From the Physics menu, select Subdomain Settings. Select Subdomain 1.

2 Click the Load button. In the Materials/Coefficients Library dialog box that appears, 
select Basic Material Properties>Iron in the Materials area.

3 Leave the default settings in Subdomain 4.

4 In all the other subdomains, set the constitutive relation to B = µ0 H + µ0 M and 
specify the magnetization components according to the table below.

M E S H  G E N E R A T I O N

1 From the Mesh menu, select Free Mesh Parameters.

PROPERTY SUBDOMAIN 2 SUBDOMAIN 3 SUBDOMAIN 5 SUBDOMAIN 6

M (x component) MQ/sqrt(2) -MQ/sqrt(2) MQ/sqrt(2) -MQ/sqrt(2)

M (y component) MQ/sqrt(2) MQ/sqrt(2) -MQ/sqrt(2) -MQ/sqrt(2)
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2 From the Predefined mesh sizes list, select Extra fine.

3 Click the Remesh button.

4 When the mesher has finished, click OK to close the dialog box.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot shows the norm of the magnetic flux density. Follow the instructions 
to view the magnetic field.

1 Click the Plot Parameters button on the Main toolbar.

2 On the Surface page, select Magnetic field, norm from the Predefined quantities list.

3 On the Contour page, select the Contour plot check box. From the 
Predefined quantities list, select Magnetic potential, z component.

4 In the Contour color area, click first the Uniform color option button and then the 
Color button. Select a white color, then click OK. Clear the Color scale check box.

5 Click Apply to see the magnetic field. The magnetic field lines follow the same 
pattern as the magnetic potential contour lines (see Figure 4-7 on page 86).

To see how the ions travel through the system of quadrupoles, do the following:

6 On the Surface page, set the Colormap to hot.

7 On the Particle Tracing page, select the Particle tracing plot check box and apply the 
following settings:

8 On the Line Color page, click the Use expression option button.

9 Click the Color Expression button. Set the Colormap to cool and the expression to 
1+(partt>L1/vz)+(partt>(L1+L2)/vz)+(partt>(L1+L2+L3)/vz). Click OK.

PROPERTY EXPRESSION

Mass m

Fx -q*vz*By_qa*(1-2*(partt>L1/vz)+2*(partt>(L1+L2)/vz)

-(partt>(L1+L2+L3)/vz))

Fy q*vz*Bx_qa*(1-2*(partt>L1/vz)+2*(partt>(L1+L2)/vz)

-(partt>(L1+L2+L3)/vz))

Start Points, x 0.03*cos(linspace(0,2*pi,41))

Start Points, y 0.03*sin(linspace(0,2*pi,41))
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10 Click the Advanced button. Set the Relative tolerance to 1e-6, the End time for static 

flow fields to 5/3e6, and the Maximum number of steps to 1e5. Click OK.

11 On the Contour tab, set the Expression to sqrt(x^2+y^2). For Contour levels, select 
Vector with isolevels and enter 0.01 0.03.

12 Click OK to generate the plot.

13 Click the Zoom In button on the Main toolbar to zoom in on the center of the model 
geometry as in Figure 4-8 on page 87.
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S ph e r i c a l  C apa c i t o r

Introduction

This example is a study of a capacitor consisting of two spherical copper conductors 
separated by glass.

You can compute the capacitance of a capacitor in two ways. By definition, the 
capacitance is given by the expression

where V12 is the voltage difference between the two conductors and Q is the charge 
of the two conductors, positive and negative, respectively, when connected in a DC 
circuit.

The energy required to charge a capacitor is given by the expression

The energy defined above should equal the energy of the electrostatic field:

Because this integral is readily available in the Electrostatics application mode, the 
capacitance is obtained from the expression

With the second method, an analytical expression for the capacitance is calculated and 
used for a comparison with the numerical solution. Thus, assume charges +Q and −Q 
on the inner and outer spherical conductor, respectively. Denote the radii of the two 
spheres by Ri and Ro, respectively. Applying Gauss’s law to a spherical surface with 
radius R (Ri < R < Ro) gives

C Q
V12
---------=

We
Q2

2C
--------=

We D E⋅ Vd
Ω
∫=

C Q2

2We
-----------=

E Q

4πεR2
-----------------er=
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The potential difference between the spheres is then

Hence, the analytical expression for the capacitance is

Model Definition

In COMSOL Multiphysics, you solve the spherical capacitor problem using the 
axisymmetric 2D Electrostatics application mode. It is easy to compute the capacitance 
from the COMSOL Multiphysics user interface using the available integration tools.

D O M A I N  E Q U A T I O N S

The electric scalar potential V, must obey Poisson’s equation,

where ε0 is the permittivity of free space, εr is the relative permittivity and ρ is the space 
charge density. The electric field and displacement are obtained from the gradient of V

B O U N D A R Y  C O N D I T I O N S

A ground potential boundary condition describes the condition at the outer electrode. 
At the inner electrode, the boundary condition gives the surface charge:

A symmetry boundary condition describes the condition at the symmetry axis.

Model Library path: COMSOL_Multiphysics/Electromagnetics/
spherical_capacitor

V E er⋅ Rd

Ro

Ri

∫–
Q

4πε
--------- 1

Ri
------ 1

Ro
-------–⎝ ⎠

⎛ ⎞= =

C Q
V
---- 4πε 1

Ri
------ 1

Ro
-------–⎝ ⎠

⎛ ⎞⁄= =

∇ ε0εr V∇( )⋅– ρ=

E V∇–=

D ε0εr E=

n– D⋅ ρs=
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select Axial symmetry (2D) from the Space dimension list.

2 In the list of application modes, select 
COMSOL Multiphysics>Electromagnetics>Electrostatics.

3 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Axes/Grid Settings.

2 Set axis and grid settings according to the following table. To enter the settings on 
the Grid page, first clear the Auto check box. When done, click OK.

3 In the Constants dialog box, enter the following variable name and expression, and 
then click OK.

G E O M E T R Y  M O D E L I N G

1 Draw a circle C1 with radius 0.19 centered at (0, 0).

2 Draw a circle C2 with radius 0.05 centered at (0, 0).

3 Draw a rectangle with opposite corners at (−0.2, −0.2) and (0, 0.2).

4 Open the Create Composite Object dialog box from the Draw toolbar or the Draw 
menu.

5 Form a composite object by typing C1-(C2+R1) in the Set formula edit field.

AXIS GRID

r min -0.2 r spacing 0.05

r max 0.3 Extra r 0.19

z min -0.2 z spacing 0.05

z max 0.2 Extra z

NAME EXPRESSION

Q0 5e-12
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6 Click OK to close the dialog box, then click the Zoom Extents button on the Main 
toolbar.

P H Y S I C S  S E T T I N G S

Boundary Conditions
From the Physics menu, choose Boundary Settings. Enter boundary conditions 
according to the following table and then click OK.

Subdomain Settings
In this model, use the materials library for defining the material properties:

1 Open the Subdomain Settings dialog box, and select Subdomain 1.

2 Click the Load button to open the Materials/Coefficients Library dialog box.

3 Open the Basic Material Properties folder and select Glass (quartz) from the list of 
materials and click OK.

4 Now the defined material’s relative permittivity is used in the subdomain settings.

SETTINGS BOUNDARIES 1, 2 BOUNDARIES 4, 5 BOUNDARIES 3, 6

Type Axial symmetry Surface charge Ground

ρs Q0/(4*pi*0.05^2)
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M E S H  G E N E R A T I O N

1 Initialize the mesh by clicking the Initialize Mesh button on the Main toolbar.

2 Click the Refine Mesh button on the Main toolbar to refine the mesh once.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The resulting electrostatic potential is zero at the outer conductor and positive and 
constant at the inner conductor as shown in the default surface plot of V.

Capacitance Calculation
You can compute the capacitance of the capacitor using the available postprocessing 
functionality in COMSOL Multiphysics:

1 Choose Boundary Integration from the Postprocessing menu and integrate the 
expression V/(0.05*pi) for Boundaries 4 and 5. This gives an average value of 
0.157676 for the potential on the inner conductor.

2 Choose Subdomain Integration from the Postprocessing menu, select the Compute 

volume integral check box, and choose Electrostatics (es)>Electric energy density from 
the Predefined quantities list to compute volume integral of the electric energy 
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density, We_es. This gives a value of 3.94188·10−13 joule for the total electric 
energy. It is now possible to compute the capacitance in two different ways:

C1 = Q/V

which gives the result

C1 = 3.17106e-011

and

C2 = Q^2/(2*We)

which gives the result

C2 = 3.17107e-11

Compare this to the analytical result

C0 = 4.2*4*pi*8.854e-12/(1/0.05-1/0.19)

which gives the result

C0 = 3.170985e-011

Clearly, both numerical results are in good agreement with the analytical expression.
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E q u a t i o n - B a s e d  M o d e l s
This chapter contains models using the COMSOL Multiphysics PDE language to 
solve partial differential equations.
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E l e c t r i c a l  S i g n a l s  i n  a  Hea r t

This model is kindly provided by Prof. Simonetta Filippi and Dr. Christian Cherubini 
from Università Campus Biomedico di Roma, Italy.

Background

Modeling the electrical activity in cardiac tissue is an important step in understanding 
the patterns of contractions and dilations in the heart. The heart produces rhythmic 
electrical pulses, initiated from a point known as the sinus node. The electrical pulses, 
in turn, trigger the mechanical contractions of the muscle. In a healthy heart these 
electrical pulses are damped out, but a number of heart conditions involve an elevated 
risk of re-entry of the signals. This means that the normal steady pulse is disturbed, a 
severe and acute condition which is often referred to as arrhythmia. 

This section presents two mathematical models describing different aspects of electrical 
signal propagation in cardiac tissue: the FitzHugh-Nagumo equations and the Complex 
Ginzburg-Landau equations, both of which are solved on the same geometry. 
Interesting patterns emerging from these types of models are, for example, spiral 
waves, which, in the context of cardiac electrical signals, can produce effects similar to 
those observed in cardiac arrhythmia. 

E X C I T A B L E  M E D I A  A N D  T H E  F I T Z H U G H - N A G U M O  E Q U A T I O N S

It has been shown that many important characteristics of electrical signal propagation 
in cardiac tissue can be reproduced by a class of equations which describe excitable 
media, that is, materials consisting of elementary segments or cells with the following 
basic characteristics:

• Well-defined rest state

• Threshold for excitation

• A diffusive-type coupling to its nearest neighbors

Excitable media is a rather general concept, which is useful for modeling of (in addition 
to the electrical signals in cardiac tissue) a number of different phenomena, including 
nerve pulses, the spreading of forest fires, and certain types of chemical reactions. One 
of the most important qualitative characteristics displayed by excitable media, and 
equally a common denominator between the diversity of phenomena mentioned 
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



above, is the almost immediate damping out of signals below a certain threshold. On 
the other hand, signals exceeding this threshold propagate without damping. 

The heart works by passing ionic current inside the muscle, thus triggering the 
rhythmic contractions that pump blood in and out. The ions move through small pores 
or gates in the cellular membrane, which can be either open (excitation state) or closed 
(rest state). 

In nerve cells and cardiac cells the three abstract characteristics of excitable media are 
manifested as

• Rest cell membrane potential

• Threshold for opening the ionic gates in the cellular membrane

• The diffusive spreading of the electrical signals

The state of the membrane gates is random on a microscopic scale, but the probability 
of a given state can be modelled as a continuous function of the voltage, thus allowing 
an averaged macroscopic continuum description of the current flow. 

The FitzHugh-Nagumo equations for excitable media describe the simplest 
physiological model with two variables, an activator and an inhibitor. In these heart 
models the activator variable corresponds to the electric potential, and the inhibitor is 
a variable that describes the voltage-dependent probability of the pores in the 
membrane being open and ready to transmit ionic current.

C H A O T I C  D Y N A M I C S  A N D  T H E  C O M P L E X  L A N D A U - G I N Z B U R G  E Q U A T I O N S

The complex Landau-Ginzburg equations provide a relatively simple way of modeling 
some aspects of the transition, displayed by many dynamical systems under the 
influence of strong external stimulus, from periodic oscillatory behavior into a chaotic 
state with gradually increasing amplitude of oscillations and decreasing periodicity. 

Although their first use was to describe the theory of superconductivity, the complex 
Landau-Ginzburg equations are also generic in their nature (as are the 
FitzHugh-Nagumo equations), and examples of dynamical systems which you can 
model successfully using these equations are:

• The formation of vortices behind a slender obstacle in transversal fluid flow

• Oscillating chemical reactions of the Belousov-Zhabotinsky type

In this model the complex Landau-Ginzburg equations simulate the dynamics of the 
spiral waves in excitable media.
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Model Definition

The geometry here is a simplified 3D model of a heart with two chambers, represented 
with semispherical cavities1.

Figure 5-1: Model geometry.

T H E  F I T Z H U G H - N A G U M O  E Q U A T I O N S

The equations are the following:

Here u1 is an action potential (the activator variable), and u2 is a gate variable (the 
inhibitor variable). The parameter α represents the threshold for excitation, ε 
represents the excitability, and β, γ, and δ are parameters that affect the rest state and 
dynamics of the system.

The boundary conditions for u1 are insulating, using the assumption that no current 
is flowing into or out of the heart. The initial condition defines an initial potential 
distribution u1 where one quadrant of the heart is at a constant, elevated potential V0, 
while the rest remains at zero. The adjacent quadrant has instead an elevated value ν0 
for the inhibitor u2. It is convenient to implement this initial distribution using the 
following logical expressions, where TRUE evaluates to 1 and FALSE to 0:

1. Note that it is possible to import more realistic human/animal heart geometries, with anisotropies and 
inhomogenities as well as proper dimensions, into COMSOL Multiphysics using the CAD import capabilities.

t∂
∂u1 u∆ α u1–( ) u1 1–( )u1 u2–( )+ +=

t∂
∂u2 ε βu1 γu2– δ–( )=
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



Here d is equal to 10−5, and it is added into the expressions to shift the elevated 
potential slightly off the main axes. 

T H E  C O M P L E X  L A N D A U - G I N Z B U R G  E Q U A T I O N S

The complex Landau-Ginzburg equations are:

The two variables u1 and u2 are the activator and inhibitor, respectively. The constants 
c1 and c2 are parameters reflecting the properties of the material. These constants also 
determine the existence and nature of the stable solutions.

As in the previous model, the boundary conditions are kept insulating. The initial 
condition, which gives a smooth transition step near z = 0, are the following:

Modeling in COMSOL Multiphysics

The simplified geometry is quite straightforward to create using the drawing tools in 
COMSOL Multiphysics. The FitzHugh-Nagumo and Landau-Ginzburg equations are 
also readily entered in one of the PDE-based application modes2. 

It is important to note that these equations are strongly nonlinear. It is therefore 
necessary (especially in full 3D models like these) to use a much finer mesh or use 
higher element order than in these examples to get results with some degree of 
reliability for the time intervals of interest. This is particularly important in solving the 
complex Landau-Ginzburg equations, which describe inherently chaotic phenomena. 
They are highly sensitive to perturbations in the initial value and similarly to numerical 
errors during the course of the time-dependent solution. We recommend the use of 
the fourth-order Hermite element for the complex Landau-Ginzburg equation.

2. With this stage completed, it would also be straightforward to replace the rather simple 
FitzHugh-Nagumo equations with a physiologically more realistic mathematical model.

u1 0 x y z, , ,( ) V0 x d+( ) 0>( ) z d+( ) 0>( )⋅=

u2 0 x y z, , ,( ) v2 x– d+( ) 0>( ) z d+( ) 0>( )⋅=

t∂
∂u1 u1 c1u2–( )∆– u1 u1 c3u2–( ) u1

2 u2
2

+( )–=

t∂
∂u2 c1u1 u2+( )∆– u2 c3u1 u2+( ) u1

2 u2
2

+( )–=

u1 0 x y z, , ,( ) z( )tanh=

u2 0 x y z, , ,( ) z( )tanh–=
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For the reasons above, the results presented here are only intended as a first rough 
estimate of the qualitative behavior that you can expect the system to show under a 
given stimulus. Consequently, higher-order elements, finer meshing, and smaller 
relative and absolute time dependent tolerances clearly give quantitatively more correct 
simulation results. These improvements may require several hours of computational 
time to solve the equations, while the rough model described here should solve within 
around 20 minutes on a standard PC. When attempting these types of large models we 
strongly recommend the use of 64-bit platforms.

Results

T H E  F I T Z H U G H - N A G U M O  E Q U A T I O N S

The plots in Figure 5-2 below show the action potential u1. To visualize the solution 
on the inside, a quarter of the outside shell of the heart and one of the chamber 
surfaces are suppressed in the plot.

The parameters used in the model along with the initial pulse lead to a reentrant wave 
which travels around the tissue without damping in a characteristic spiral pattern. 

Figure 5-2: Solution to the FitzHugh-Nagumo equations at times t = 125 s (left figure) 
and t = 500 s (right figure).
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T H E  L A N D A U - G I N Z B U R G  E Q U A T I O N S

Figure 5-3 below shows the species u1 at different times.

Figure 5-3: Solution to the Complex Landau-Ginzburg equations at times t=50 s (left) 
and t=75 s (right).

The equation parameters and initial condition used here lead the diffusing species (u1) 
to display characteristic spiral patterns with growing complexity over time.

Modeling Using the Graphical User Interface

The instructions below describe how to create the model containing the 
FitzHugh-Nagumo equations for excitable media. To create the model containing the 
complex Landau-Ginzburg equations, follow the instructions from the beginning until 
you have completed the “Geometry Modeling” section. Then jump to the section 
called “Modifications.”

Model Library path:  

COMSOL_Multiphysics/Equation-Based_Models/heart_fhn

M O D E L  N A V I G A T O R

1 Open COMSOL Multiphysics.

2 Select 3D from the Space dimension list.

3 Expand the COMSOL Multiphysics folder, then expand the PDE Modes subfolder, and 
finally select the PDE, General Form application mode.

4 Enter the dependent variables u1 and u2 by typing u1 u2 in the Dependent variables 
edit field at the bottom of the window.
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5 Click OK to confirm and close the Model Navigator.

G E O M E T R Y  M O D E L I N G

1 Click the Sphere button on the Draw toolbar on the left. Enter a radius of 54 for the 
sphere, then click OK.

2 Click the Ellipsoid button on the Draw toolbar. Enter 54, 54, and 70 for the x-, y-, 
and z-semiaxes, respectively. Click OK.

3 To create the egg-shaped solid, we will fuse the top half of the sphere with the 
bottom half of the ellipsoid. Creating the halves which we intend to fuse together, 
we need to divide the two solids across the middle. A convenient way of doing this 
is by using a work plane. To create a work plane select Draw>Work-Plane Settings and 
click on the Vertices tab. Expand the ELP1 folder in the Vertex Selection on the left, 
select Vertex 1 and click the >> button to add it to the definition of the work plane. 
Then select Vertex 2, click >>, and finally select Vertex 6 and click OK.

4 In the 2D Geom2 geometry, click Zoom Extents in the Main toolbar at the top of the 
main window and draw a rectangle which completely covers the blue circle by using 
the Rectangle button on the left hand toolbar. (Note that the blue curves show the 
contours of the 3D geometry in the 2D plane.) Then select Draw>Embed and click 
OK.

The rectangular surface should now have been added to the 3D geometry, splitting 
both the sphere and the ellipse in two halves.

5 To create the separated geometry objects we need for the halves, select the 
rectangular surface, confirm the selection by right clicking, and then similarly select 
and confirm the spherical solid. With both the spherical solid and the rectangular 
surface selected, click on the Coerce to Solid button on the left toolbar. Then click 
the Split object button. Finally, remove the bottom half of the sphere by clicking on 
it to select it and press the Delete button on the keyboard.

6 Go back to the 2D geometry and select the rectangle, then choose Draw>Embed, 
and then click OK. Repeat Step 5 for the elliptical solid instead of the sphere. Note 
that this time you need to remove the top half of the elliptic solid (for the sphere it 
was the bottom half).

7 Select both objects by pressing Ctrl+A and go to Draw>Create Composite Object. 
Make sure that the Keep interior boundaries check box is cleared and click the Union 
button. Click OK.

8 To create the cavity inside the heart, press Ctrl+C and then Ctrl+V to create a copy 
of the egg-shaped solid (leave the x, y, and z displacements at zero). Then select Scale 
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from the Draw>Modify menu and set 2/3 as the scaling factor in the x, y, and z 
directions. Click OK.

9 Open the Create Composite Object dialog box again (Draw>Create Composite Object) 
and enter the expression CO1-CO2 in the Set formula edit field to subtract the smaller 
solid from the larger one. To see the cavities inside the solid you can click the 
Increase Transparency button on the left toolbar a couple of times.

10 To create the wall separating the two chambers click the Cylinder button on the 
Draw toolbar and enter 45 for the radius and 10 for the height. Type the values -5, 
0, and -5 respectively in the x, y, and z edit fields in the Axis base point frame. Enter 
1, 0, and 0 as the x, y, and z values in the Axis direction vector frame. Click OK.

11 Once again, open the Create Composite Object dialog box from the Draw menu. Then 
select both geometry objects, make sure the Keep interior boundaries check box is 
cleared and click the Union button. Click OK.

The final geometry should look as shown in Figure 5-1 on page 102.

VA R I A B L E S  A N D  E X P R E S S I O N S

Enter the following constants under Options>Constants:

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 Select Physics>Subdomain Settings. Enter the subdomain settings according to the 

following table:

NAME VALUE

epsilon 0.01

gamma 1

beta 0.5

a 0.1

delta 0

V0 1

v0 0.3

d 1e-5

SETTINGS SUBDOMAIN 1

F (row 1) (a-u1)*(u1-1)*u1-u2

F (row2) epsilon*(beta*u1-gamma*u2-delta)
E L E C T R I C A L  S I G N A L S  I N  A  H E A R T  |  107



108 |  C H A P T E
2 Click the Init tab and enter the following initial conditions:

3 If you can afford the increase in memory usage and solution time needed for better 
accuracy, click the Element tab and select Hermite - Quartic from the Predefined 

elements list. Otherwise skip this step and use the default second-order Lagrange 
elements.

4 Click OK.

Boundary Settings
1 Select Physics>Boundary Settings.

2 Select all boundaries by pressing Ctrl+A, then enter boundary settings according to 
the following table:

3 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Choose Solve>Solver Parameters and select the Time dependent solver from the Solver 
list on the left side. In the Time stepping area on the General page, type 0:5:500 in 
the Times edit field.

2 In the Linear system solver list, select GMRES. Make sure that the Preconditioner is set 
to Incomplete LU, then click OK.

3 Click the Solve button on the Main toolbar (the Solve button is illustrated with an 
equals sign).

Γ (row 1) -u1x -u1y -u1z

Γ (row2) 0 0 0

DEPENDENT VARIABLE INITIAL CONDITION EXPRESSION

u1(t0) V0*((x+d)>0)*((z+d)>0)

u2(t0) v0*((-x+d)>0)*((z+d)>0)

SETTINGS ALL BOUNDARIES

Type Neumann

g 0

SETTINGS SUBDOMAIN 1
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 To create the right plot in Figure 5-2 on page 104, go to Postprocessing>Plot 

Parameters and select the Boundary check box on the General page. Clear all other 
check boxes in the Plot type area, then click OK.

2 Choose Options>Suppress>Suppress Boundaries. Select Boundaries 2 and 4–9, then 
click OK to hide these boundaries.

3 Click the Postprocessing Mode button on the Main toolbar to see the plot.

4 To create the left plot in Figure 5-2 on page 104, go to Postprocessing>Plot 

Parameters and select 125 from the Solution at time list on the General page.

M O D I F I C A T I O N S  F O R  U S I N G  C O M P L E X  L A N D A U - G I N Z B U R G  E Q U A T I O N S

Model Library path:  

COMSOL_Multiphysics/Equation-Based_Models/heart_clg

Follow the steps under the Model Navigator and Geometry Modeling sections just 
described. Then do the following:

Variables and Expressions
Enter the following constants in the Options>Constants list:

Subdomain Settings
1 Go to Physics>Subdomain Settings and enter the following expressions for the PDE 

coefficient Γ:

2 Enter the following for the source term F:

 NAME VALUE

c1 2

c3 -0.2

DEPENDENT VARIABLE  Γx  Γy  Γz

u1 -u1x+c1*u2x -u1y+c1*u2y -u1z+c1*u2z

u2 -c1*u1x-u2x -c1*u1y-u2y -c1*u1z-u2z

DEPENDENT VARIABLE  F 

u1 u1-(u1-c3*u2)*(u1^2+u2^2)

u2 u2-(c3*u1+u2)*(u1^2+u2^2)
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3 Click the Init tab, then enter the following initial values:

4 Follow the instructions under Boundary Settings above (the boundary conditions 
are the same for both equations).

5 Follow the steps under Computing the Solution with the following modifications:

- Enter the times 0:5:75 in the Times edit field

- Enter 1e-7 as the absolute and relative tolerances

6 Follow the steps under “Postprocessing and Visualization” on page 109 to produce 
the corresponding plots for the Landau-Ginzburg equations. Note that to produce 
the plot on the left in Figure 5-3 on page 105 you need to select 50 from the 
Solution at time list on the General page.

References

1. F.H. Fenton, E.M. Cherry, H.M. Hastings, and S.J. Evans, “Real-time computer 
simulations of excitable media: JAVA as a scientific language and as a wrapper for C and 
FORTRAN programs,” BioSystems 64, pp. 73–96, 2002.

2. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Dover Publications, 
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3. J. Keener and J. Sneyd, Mathematical Physiology, Springer, 1998.

DEPENDENT VARIABLE INITIAL VALUE

u1(t0) tanh(z)

u2(t0) -tanh(z)
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A T r an s po r t  P rob l em

Background

This model features a pure stationary transport problems with a single convective term. 
It shows how to address oscillations and instabilities that arise from the numerical 
method. Here you stabilize a formulation with continuous Langrange elements by 
streamline diffusion and using a formulation with discontinuous elements with 
upwinding.

Model Definition

The following 1st-order equation models pure stationary transport in the direction of 
the constant vector β:

Here Γ is the inflow boundary, and the vector β = (βx, βy) points into the domain Ω. 
The exact solution is constant on the characteristics

where t is a real number. Thus, if a characteristic intersects Γ at the point (x, y), then 
the value of u is u0(x, y) along the entire characteristic.

In this example, the domain Ω is the unit square and β = (1, 1). Thus Γ corresponds 
to the left and lower edges of the square. Use the expression u0 = y > x to define the 
boundary conditions u = 1 on the left boundary and u = 0 on the lower boundary. The 
exact solution then equals

β ∇u( )⋅ 0= Ω
u u0= Γ⎩

⎨
⎧

x x0 tβx+=

y y0 tβy+=

u x y,( ) 1 y x>
0 y x<⎩

⎨
⎧

=
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Streamline Diffusion

Streamline diffusion stabilizes oscillations and instabilities that arise from the 
numerical method. Streamline diffusion is an example of a Petrov-Galerkin method 
where the test-function space differs from the solution space. The modified test 
functions give rise to additional terms in the weak formulation of the problem. The 
streamline-diffusion contribution to the transport equation is

where the “hat” symbol denotes the corresponding test functions.

The Convection and Diffusion, Convection and Conduction, and Incompressible 
Navier-Stokes application modes have built-in artificial diffusion of several types, 
including streamline diffusion. This model explicitly adds the streamline-diffusion 
contributions.

The section “Stabilization Techniques” on page 433 in the COMSOL Multiphysics 
Modeling Guide describes general techniques for introducing contributions from 
artificial diffusion.

Upwinding Using Discontinuous Basis Functions

When you use continuous basis functions, the usual Galerkin method must be 
numerically stabilized, for example using streamline diffusion. Another approach is to 
use discontinuous basis functions (also know as the discontinuous Galerkin method).

The term  must be treated carefully because if u is discontinuous over an 
element boundary, this term is a δ-function on the boundary. Assume the vector field 
β is continuous within an element and has a continuous normal component across 
element boundaries (this is certainly true for the constant β used here). Define the 
upstream and downstream sides of an element boundary such that β points in the 
downstream direction, and define the normal vector n to be pointing in the opposite 
direction, from the downside to the upside. Also let the superscripts u and d indicate 
evaluation on the respective sides of a boundary. 

It is then possible to assemble the contribution from the discontinuities as 
 (note that if β happens to be parallel to the boundary, “up” and 

“down” are undefined, but this is no problem because the factor β · n is then zero 
anyway). Using the test function on the downwind side gives sufficient stabilization 

h
2

------- βxûx βyûy+( ) βxux βyuy+( )–

β ∇u( )⋅

û
d

β n⋅( ) ud uu
–( )
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



since it means that information is always taken from the upwind side and transported 
downwind (upwinding stabilization).

When using discontinuous elements, it does not make sense to impose a boundary 
condition on u by constraints because the value of u is not well defined on an element 
boundary. Instead use the same transport term, where you can imagine an element 
upstream of Γ with a value u0. Thus assemble a contribution  at 
element boundaries belonging to the inflow boundary Γ.

Note: This upwinding method is not suited for problems with diffusion terms.

Results

The PDE is stationary but has a discontinuity in the solution. The model shows how 
you can prevent instabilities from propagating into areas where the solution should be 
constant by using streamline diffusion or upwinding.

The plot shows the discontinuities between elements stabilized with upwinding.

û
d

β n⋅( ) ud u0–( )
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Modeling in COMSOL Multiphysics

When setting up this model, think of the equation as a special case (c = 0) of a general 
convection-diffusion equation:

Using the Convection-Diffusion application mode, this transport problem is easy to 
set up and solve. A second step adds explicit streamline diffusion.

Further steps change the model to use discontinuous elements and upwinding. In 
COMSOL Multiphysics all boundaries have an “up” and “down” side defined 
independent of the β direction. However, you can use the expression

(bx*dnx+by*dny<0)*(bx*dnx+by*dny)*test(down(u))*(down(u)-up(u))+
(bx*unx+by*uny<0)*(bx*unx+by*uny)*test(up(u))*(up(u)-down(u))

for the interior mesh boundaries using an ultraweak term, and use the expression

(bx*dnx+by*dny<0)*(bx*dnx+by*dny)*test(down(u))*(down(u)-u0)+
(bx*unx+by*uny<0)*(bx*unx+by*uny)*test(up(u))*(up(u)-u0)

for the inflow boundaries, which are independent of the definitions of “up” and 
“down.”

Model Library path:  
COMSOL_Multiphysics/Equation-Based_Models/transport_problem

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Open the Model Navigator, and select 2D from the Space dimension list.

2 In the list of application modes select  
COMSOL Multiphysics>PDE Modes>PDE, Coefficient Form.

3 Make sure that Lagrange - Quadratic elements are selected in the Element list.

4 Click OK.

∇– c∇u( )⋅ β ∇u⋅+ f= Ω
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G E O M E T R Y  M O D E L I N G

1 On the Draw menu point to Specify Objects, select Square, then click OK.

Because you do not change any settings in the Square dialog box, you create the 
default square with its corner at (0, 0) and with a side length of 1.

2 Press the Zoom Extent button on the Main toolbar.

O P T I O N S  A N D  S E T T I N G S

Constants and Expressions
1 From the Options menu select Expressions>Global Expressions. 

2 Enter the following names and expressions; when done, click OK:

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu choose Boundary Settings.

2 Enter the following settings in the Boundary Settings dialog box; when done, click 
OK.

Subdomain Settings
1 From the Physics menu choose Subdomain Settings.

2 Select Subdomain 1.

3 Change these PDE coefficients in the Subdomain Settings dialog box:

NAME EXPRESSION

bx 1

by 1

u0 y>x

SETTINGS BOUNDARIES 1, 2 BOUNDARIES 3, 4

Type Dirichlet Neumann

r u0 -

PROPERTY SUBDOMAIN 1

 c 0

 f 0

 da 0

 β bx by
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4 Click the Weak tab.

5 Type -h*(bx*ux_test+bx*uy_test)/sqrt(2)*(bx*ux+bx*uy) in the weak edit 
field.

6 Click OK.

To add streamline diffusion automatically, instead use the Convection and Diffusion 
application mode. When in that mode open the Subdomain Settings dialog box, click 
the Artificial Diffusion button and select the Streamline diffusion check box to add 
stabilization by streamline diffusion.

M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Click the 3D Surface Plot button on the Plot toolbar to visualize the solution.

Investigate the effect of streamline diffusion stabilization by turning it off and then 
setting the weak contribution to 0. You can increase the accuracy by refining the mesh.

Continue with the same model using discontinuous elements and upwinding instead 
of Lagrange elements and streamline diffusions.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu choose Boundary Settings.

2 Select all the boundaries and click the Neumann boundary conditions button.

3 Click the Weak tab.

4 Enter the following settings in the Boundary Settings dialog box; when done, click 
OK.

TERM ALL

weak (bx*dnx+by*dny<0)*(bx*dnx+by*dny)*test(down(u))*(down(u)-u0)+
(bx*unx+by*uny<0)*(bx*unx+by*uny)*test(up(u))*(up(u)-u0)

dweak 0

constr 0
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Subdomain Settings
1 From the Physics menu choose Subdomain Settings.

2 Select Subdomain 1, click the Weak tab, and enter these terms:

3 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 From the Postprocessing menu choose Plot Parameters.

2 On the Surface page clear the Smooth check box.

3 Click OK.

Discontinuities between elements are clearly visible in the plot.

Modeling Using COMSOL Script

1 Create a square domain:

clear fem
fem.geom = square2;
fem.mesh = meshinit(fem);

2 Plot the domain to see the edge labels:

geomplot(fem,'edgelabel','on')
axis([-0.1 1.1 -0.1 1.1])

3 Specify the boundary conditions and the PDE:

fem.globalexpr = {'bx' 1 'by' 1 'u0' 'y>x'};
fem.bnd.h = {1 0 0 1};
fem.bnd.r = {'u0' 0 0 'u0'};
fem.equ.be = {{{'bx' 'by'}}};

4 Specify the streamline diffusion:

fem.equ.weak = '-h*(ux_test+uy_test)/sqrt(2)*(ux+uy)';

TERM ALL

weak 0

dweak 0

constr 0

bnd.weak (bx*dnx+by*dny<0)*(bx*dnx+by*dny)*test(down(u))*(down(u)-up(u))+
(bx*unx+by*uny<0)*(bx*unx+by*uny)*test(up(u))*(up(u)-down(u))
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5 Select quadratic Lagrange elements and extend the mesh:

fem.shape = 2;
fem.xmesh = meshextend(fem);

6 Solve the system using streamline diffusion stabilization:

fem.sol = femstatic(fem);
postcont(fem,'u')

7 Now create the equations using the discontinuous Galerkin method. Set the 
boundary conditions:

fem.bnd.h = 0;
fem.bnd.r = 0;
fem.bnd.weak=['(bx*dnx+by*dny<0)*(bx*dnx+by*dny)*'...
              'test(down(u))*(down(u)-u0)+'...
              '(bx*unx+by*uny<0)*(bx*unx+by*uny)*'...
              'test(up(u))*(up(u)-u0)'];

8 Add the ultraweak contributions:

fem.equ.bnd.weak=['(bx*dnx+by*dny<0)*(bx*dnx+by*dny)*'...
                  'test(down(u))*(down(u)-up(u))+'...
                  '(bx*unx+by*uny<0)*(bx*unx+by*uny)*'...
                  'test(up(u))*(up(u)-down(u))'];

9 Solve the problem again:

fem.shape = 'shdisc(2,2,''u'')';
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem);

10 Plot without smoothing:

postsurf(fem,'u','u','cont','off')

11 You can also try to use discontinuous quad elements:

fem.mesh=meshmap(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem);
postsurf(fem,'u','u','cont','off')

12 An interesting experiment is to use the meshpoi command to get a regular 
triangular mesh:

fem.mesh=meshpoi(fem,10,10);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem);
postsurf(fem,'u','u','cont','off')

Using this mesh, the numerical solution exactly represents the solution to the PDE 
problem.
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An I n t e g r o - P a r t i a l  D i f f e r e n t i a l  
Equa t i o n 3

Introduction

This example investigates how to solve the integro-partial differential equation

where ρ is the density, Cp is the heat capacity, κ is the thermal conductivity, σ is Stefan’s 
constant (the Stefan-Boltzmann constant), ε is the emissivity, and k(x,  x') is the kernel 
corresponding to the radiation view factor. This equation arises in the physical 
description of 1D heat conduction and radiation along a pipe. Figure 5-4 shows the 
model geometry.

Before setting up the model, make the following assumptions:

• Inside the tube, neglect convection and consider only radiation and conduction.

• Assume blackbody radiation with ε = 1.

• Model heat transfer only in the x direction (assume θ symmetry).

• The pipe’s outer wall is perfectly insulated so that no heat escapes to the outside 
world by either radiation or conduction.

The definition of the kernel k(x, x') is

where ξ = | x − x' |/ Di  as explained in Ref. 1.

3. This model is courtesy of Daniel Smith and Ali Shajii of MKS Instruments, Wilmington, Mass., USA.

x∂
∂ κ

x∂
∂T

⎝ ⎠
⎛ ⎞ 4Di

Do
2 Di

2
–

-------------------------εσT4
–

4Di

Do
2 Di

2
–

-------------------------εσ k x x',( )T x'( )4 x'd
Di
-------⋅

0

L

∫+ ρCp
T∂
t∂

-------=

1 2ξ3 3ξ+
2 ξ2 1+( )3 2/
-------------------------------–
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Figure 5-4: Model geometry and boundary conditions.

Also consider the following boundary conditions and initial condition:

Modeling in COMSOL Multiphysics

To model the equation, use the Heat Transfer by Conduction application mode. In 
this application mode you can include the radiation effects in the source term, Q, using 
an integration-coupling variable.

To enter convolution integrals of the type needed here, use the dest operator, which 
forces COMSOL Multiphysics to evaluate the expression on which it operates on the 
destination points instead of the source points. In the expression k(x, x'), x' is the 
variable to integrate over, whereas the model does not integrate over x. To specify that 
x should remain a variable that can take on values from the entire domain, write it as 
dest(x) when defining the integration-coupling variable. In the case of a coupling 
variable, dest(f(x)) makes COMSOL Multiphysics evaluate f(x) on the destination 
domain and not the source domain.

0 < x < L

Do

Di
q = 0. No heat loss 
from outer surface

T 0 t,( ) 300 1200 t
1 s
-------⎝ ⎠
⎛ ⎞  Ktanh+=

T L t,( ) 300 K=
T x 0,( ) 300 K=
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Results

The temperature distribution along the length of the pipe at t = 100 s appears in 
Figure 5-5.

Figure 5-5: Temperature distribution along the pipe at t = 100 s.

It is easy to make a comparison with a radiation-free model by removing the source 
term from the heat transfer equation. The equation to solve now becomes

.
x∂

∂ κ
x∂

∂T
⎝ ⎠
⎛ ⎞ ρCp t∂

∂T
=
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Figure 5-6 plots the solutions to both the radiation-free heat transfer and the original 
PDE with radiation as a heat source.

Figure 5-6: The temperature distribution with radiation (dotted line) and without 
radiation (solid line).

Comparison with the Full 3D Radiation Model

To illustrate the validity of the 1D model, you can set up the entire stationary 3D 
model using the Heat Transfer Module. Its General Heat Transfer application mode 
handles surface-to-surface radiation boundary conditions, making it easy to verify the 
results (Figure 5-7).
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Figure 5-7: 3D temperature distribution in the pipe.

Figure 5-8 compares the temperature distributions along the axial direction for the 
two models (1D and 3D). Clearly the results are in good agreement.

Figure 5-8: The temperature distributions from the 1D model (square markers) and the 
3D model (triangle markers).

Reference

1. R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed., Taylor & 
Francis Group, New York, 2001.
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Model Library path:  
COMSOL_Multiphysics/Equation-Based_Models/integro_partial

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 1D in the Space dimension list.

2 In the list of application modes select  
COMSOL Multiphysics>Heat Transfer>Conduction>Transient analysis.

3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Draw a line from −0.1 to 0.1. To do so, from the Draw menu select Specify 

Objects>Line, then enter the coordinates -0.1 0.1. Click OK.

2 Click the Zoom Extents button on the Main toolbar.

O P T I O N S  A N D  S E T T I N G S

Constants and Expressions
1 From the Options menu select Constants. Enter the following names, expressions, 

and descriptions (the descriptions are optional); when done, click OK.

NAME EXPRESSION DESCRIPTION

kappa 13[W/(m*K)] Thermal conductivity

rho 8700[kg/m^3] Density

C_p 300[J/(kg*K)] Heat capacity

sigma 5.67e-8[W/(m^2*k^4)] Stefan’s constant

epsilon 1 Emissivity

T_cold 300[K] Temperature, cold end

DT_max 1200[K] Maximum temperature difference

T_init T_cold Initial temperature

D_i 2.54[cm] Inner diameter

D_o D_i*1.1 Outer diameter
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2 Go to the Options menu and select Expressions>Subdomain Expressions. Select 
Subdomain 1, then enter the following two expressions; when done, click OK.

Coupling Variables
1 From the Options menu select Integration Coupling Variables>Subdomain Variables, 

then enter the following variable (type the complete expression on a single line); 
when done, click OK.

This is the integral term in the original equation, which you specify in this way using 
the dest operator. This coupling variable does not have a unit, so for other 
quantities that include the irrad variable (in this case, Q_source and the heat 
source setting that uses Q_source), COMSOL Multiphysics indicates inconsistent 
units.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 From the Physics menu select Subdomain Settings, then enter these expressions for 

the material properties:

The time-scaling factor δts changes the time scale from seconds to minutes.

2 Click the Init tab. In the T(t0) edit field type T_init, then click OK.

Boundary Conditions
1 From the Physics menu select Boundary Settings.

NAME EXPRESSION

Q_source 4*sigma/(D_o^2-D_i^2)*irrad

Q_loss -4*D_i/(D_o^2-D_i^2)*sigma*epsilon*T^4

NAME EXPRESSION

irrad T^4*(1-(2*(abs(x-dest(x))/D_i)^3+3*(abs(x-dest(x))/
D_i))/(2*(((x-dest(x))/D_i)^2+1)^1.5))

NAME EXPRESSION

  δts 1/60

  κ kappa

  ρ rho

  Cp C_p

  Q Q_source+Q_loss
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2 In the Boundary selection list select Boundary 1. In the Boundary condition list select 
Temperature. In the T0 edit field enter the expression T_cold+DT_max*tanh(t/
1[s]). Dividing t by the time constant 1[s] makes the input to tanh unitless, as is 
appropriate.

3 Select Boundary 2, and in the Boundary condition list select Temperature. In the T0 
edit field type T_cold, then click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, select Initialize Mesh. Doing so results in 15 elements as you 
can see in the message log.

2 Select Mesh>Refine Mesh twice to end up with 60 elements.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu select the Solver Manager.

2 On the Initial Value page, click the Initial value expression button. Click OK.

3 From the Solve menu select Solver Parameters.

4 On the General page go to the Solver list on the left side of the window and select 
Time dependent. In the Times edit field, type 0:1:100. Click OK.

5 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To reproduce the plot in Figure 5-5, follow these steps:

1 From the Postprocessing menu, select Domain Plot Parameters. 

2 On the General page, go to the Solutions to use list and make sure that only time 100 
is selected. 

3 Click the Line/Extrusion tab, then click Apply.

Comparing the Results with a Radiation-Free Model
To compare the temperature distribution in the radiation model with that of a model 
without radiation, plot the temperature distributions from the two variations in the 
same figure.

1 Again, go to Postprocessing>Domain Plot Parameters. Click the Line/Extrusion tab. 
Click Apply to plot the temperature T, then return to the General page and select the 
Keep current plot check box at the bottom of the window. Click OK.
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2 From the Physics menu, select Subdomain Settings. Click the Physics tab. In the Q edit 
field type 0. Click OK. (This step removes the effect of the radiation on the 
temperature distribution.)

3 Click the Solve button.

4 Return to the Postprocessing>Domain Plot Parameters dialog box. Click the General 
tab. In the Solution to use list select 100. Click the Line/Extrusion tab. To change the 
line color, click the Line Settings button, then go to the Line color list and select Color. 
Click the Color button on the right and then choose your preferred color (for 
example, red). Click OK twice to return to the Domain Plot Parameters dialog box.

5 Click Apply. This step plots the temperature T in the same window as the previous 
temperature distribution, and the result should resemble Figure 5-6.

Visualizing the Effect of the Nonlocal Coupling

Note: This step requires that you run COMSOL Multiphysics with COMSOL Script 
or MATLAB.

To examine the effect of the nonlocal behavior, first export the model to the workspace 
(select File>Export>FEM Structure or press Ctrl+F), then enter these commands:

[K,L,M,N] = assemble(fem,'T',100);
n = size(N,1);
spy([K,N',L;N,sparse(n,n),M]);

The pattern of nonzero entries reveals that the Jacobian for this problem is a full 
matrix.
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T h e  KdV Equa t i o n  and S o l i t o n s

Introduction

The Korteweg-de Vries (KdV) equation, formulated in 1895 by Korteweg and de 
Vries, models water waves. It contrasts sharply to the Burgers equation, because it 
introduces no dissipation and the waves travel seemingly forever. In 1965, Zabusky 
and Kruskal named such waves as solitons.

The KdV equation with boundary conditions and initial value for this model is 
formulated as

 

The equation models the steepening and dispersion of wavefronts but does not 
support a train of simple harmonic waves. Such trains comprise the wavecrests 
normally associated with the ocean: simply a momentary constructive interference of 
contributing waves moving at different speeds. However, the equation does support 
solitons, single “humps” that travel without changing shape or speed for unexpectedly 
long distances.

Indeed, Perry and Schimke (Ref. 2) concluded from shipboard oceanographic 
measurements that bands of choppy water in the Andaman Sea, which lies east of the 
Bay of Bengal and west of Burma and Thailand, are associated with large-amplitude 
oceanic internal waves. Satellite images have since clarified that these waves originate 
on shallow banks on a layer between warm and cool water. Further, Osborne and 
Burch (Ref. 1) analyzed oceanographic data in an effort to assess the forces of 
underwater current fluctuations associated with such waves on offshore drilling rigs. 
They concluded that the visually observed roughness bands are caused by internal 
solitons that follow the KdV equation (Ref. 3). 

A more recent development is the application of the KdV equation to another type of 
waves—light waves. Today solitons have their primary practical application in optical 
fibers. Specifically, a fiber’s linear dispersion properties level out a wave while the 
nonlinear properties give a focusing effect. The result is a very stable, long-lived pulse 
(Ref. 3). It is amazing that researchers have discovered a formula for such waves:

ut uxxx+ 6uux       in Ω 8– 8,[ ]
u 8– t,( ) u 8 t,( ),      periodic
u x 0,( ) 6 x( )sech2–

= =

=

=
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This equation says that the pulse speed is what determines the pulse amplitude and the 
pulse width. The following simulation illustrates this effect. An initial pulse, which 
does not conform to the formula, immediately breaks down into two pulses of 
different amplitudes and speeds. The two new pulses do follow the formula and thus 
can travel forever. While the formula does not reveal how solitons interact, the 
simulation shows that they can collide and reappear, seemingly unchanged, just as 
linear waves do, another counterintuitive observation that is difficult to observe 
without predictions by computing.

Model Definition

In the model, the term uux describes the focusing of a wave and uxxx refers to its 
dispersion. The balancing of these two terms permits waves to travel with their shape 
unchanged.

Because COMSOL Multiphysics does not evaluate third derivatives directly, you 
rewrite the original equation above as a system of two variables to solve it:

Using the general form PDE, you need to define two dependent variables, u1 and u2, 
and identify the da, Γ, and F coefficients in the following equation:

• Only the first equation has a time derivative, and it is with respect to u1, so only 
da(1,1) is 1; the other three components are zero.

• The divergence in this model is a space derivative with respect to x. This means that 
the Γ component from the first equation is u2, which you type as u2. The Γ 
component from the second equation is u1x, which you express in COMSOL 
Multiphysics as u1x.

• The F term components are the right-hand side of the equations: F1 is 6u1u1x (type 
6*u1*u1x), and F2 is u2 (type u2).

u v

2cosh2 1
2
--- v⎝ ⎠
⎛ ⎞ x vt– f–( )

--------------------------------------------------------------------=

u1t u2x+ 6u1u1x 
u1xx u2

=
=

da t∂
∂u ∇+ Γ⋅ F=
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The initial condition for u1 uses a hyperbolic cosine function to provide an interesting 
wave form to start with. For u2, you must provide the second space derivative of this 
function to provide consistent initial conditions.

Results

The following plot shows how solitons collide and reappear with their shape intact.
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Model Library path:  

COMSOL_Multiphysics/Equation-Based_Models/kdv_equation

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 1D in the Space dimension list.

2 In the list of application modes, open the COMSOL Multiphysics>PDE Modes folder and 
then PDE, General Form. Select Time-dependent analysis.

3 Type u1 u2 (space separated) in the Dependent variables edit field to define two 
dependent variables, u1 and u2.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

Set the x-axis range to [-9 9].

G E O M E T R Y  M O D E L I N G

Draw a line from −8 to 8.

P H Y S I C S  M O D E L I N G

Periodic Boundary Conditions
1 On the Physics menu, point to Periodic Conditions and then click Periodic Boundary 

Conditions.

2 On the Source page, select Boundary 1 and type u1 in the Expression column.

3 Press Enter. The constraint name pconstr1 appears in the Constraint name column.

4 Click the Destination tab.

5 Select destination Boundary 2 and enter destination expression u1.

6 Click the Source Vertices tab.

7 Select Vertex 1, then click the >> button.

8 Click the Destination Vertices tab.

9 Select Vertex 2, then click the >> button.

10 Click the Source tab.
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11 Select Boundary 1 and type u2 in the Expression column.

12 Press Enter. The constraint name pconstr2 appears in the Constraint name column.

13 Click the Destination tab.

14 Select destination Boundary 2 and enter destination expression u2.

15 Click the Source Vertices tab.

16 Select Vertex 1 and click the >> button.

17 Click the Destination Vertices tab.

18 Select Vertex 2 and click the >> button.

19 Click OK.

Boundary Mode
1 From the Physics menu, choose Boundary Settings.

2 Select both boundaries and click the Neumann boundary condition button. The 
default Dirichlet boundary condition would override the periodic boundary 
conditions.

3 Click OK.

Subdomain Mode
1 From the Physics menu, choose Subdomain Settings.

2 Select Subdomain 1, then enter the following PDE coefficients:

SETTINGS BOUNDARIES 1, 2

Type Neumann

G(1) 0

G(2) 0

PROPERTY VALUE

Γ(1) u2

Γ(2) u1x

F(1) 6*u1*u1x

F(2) u2

da(11) 1

da(12) 0

da(21) 0

da(22) 0
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3 Click the Init tab.

4 Enter initial conditions.

5 Click OK.

M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box.

2 Type 0.1 in the Maximum element size edit field.

3 Click OK.

4 Click the Initialize Mesh toolbar button.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box.

2 Type linspace(0,2,81) in the Times edit field. This provides 81 equally-spaced 
time intervals from 0 to 2 seconds.

3 Click the Time Stepping tab.

4 Type 2 in the Maximum BDF order edit field in the Advanced area. This is to ensure 
stability in the time-stepping algorithm.

PROPERTY VALUE

u1(t0) -6*sech(x)^2

u2(t0) -24*sech(x)^2*tanh(x)^2

+12*sech(x)^2*(1-tanh(x)^2)
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5 Click OK and then click the Solve button.

Figure 5-9: The solution to the KdV equation at 0.25 s (plot shows −u1).

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

By default, the software plots the solution at the last time point. The model computes 
the negated solution, which is positive. The best way to visualize it is to extrude the 
result along time to create a time-series plot.

1 Open the Domain Plot Parameters dialog box.

2 Make sure all time steps are selected in the Solutions to use list on the General tab.

3 Click the Line/Extrusion tab.

4 Click the Extrusion plot button.

5 Select Subdomain 1 in Subdomain selection list.

6 Type the quantity -u1 in the Expression edit field in the y-axis data area.

7 Click OK. In the plot window that appears, click the Go to XY View button.
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Th e  T e l e g r a ph Equa t i o n

Introduction

This model examines how telegraph wire transmits a pulse of voltage using the 
telegraph equation. The telegraph equation models mixtures between diffusion and 
wave propagation by introducing a term that accounts for effects of finite velocity to a 
standard heat or mass transport equation.

This example models a small section of a telegraph wire and contains a study of the 
pulse of voltage moving along it. A parametric analysis provides results showing the 
shape of the pulse with varying damping coefficients.

Model Definition

The model is simple to define. The geometry is a one-dimensional line of length 1. To 
model the pulse, the initial condition is a bell-shaped voltage distribution. The 
boundary conditions define the flux at both ends of the wire section, which allows the 
voltage to vary freely.

D O M A I N  E Q U A T I O N S

The telegraph equation is the following:

where:

• α and β are positive constants.

• c is the transport velocity.

• u is the voltage (the dependent variable).

The model begins with the values α = β = 0.25 and c = 1.

B O U N D A R Y  C O N D I T I O N S

The boundary conditions at both ends are homogeneous Neumann conditions:

utt α β+( )ut αβu+ + c2uxx=

ux t 0,( ) 0=

ux t 1,( ) 0=
T H E  TE L E G R A P H  E Q U A T I O N  |  135



136 |  C H A P T E
I N I T I A L  C O N D I T I O N

The following equations for the initial condition describe a bell-shaped pulse with the 
highest point at 0.2 and a base width of 0.4:

Results

The figure below shows the results of the first simulation. It is clear that the pulse gets 
smoother as it propagates along the wire section. Figure 5-10 shows the shape of the 
pulse at t = 0, 0.5, and 1:

Figure 5-10: Shape of the pulse at t = 0, 0.5, and 1: α+β = 0.5.

Small values of the term αβ result in a smoother pulse compared to larger values, while 
the term α+β sets the amount of damping. The following plots shows the influence of 

u 0 x,( ) e
3 x

0.2
-------- 1–⎝ ⎠
⎛ ⎞–

2

=

ut 0 x,( ) 0=
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the term α+β on the damping. A value of α+β = 1 yields the pulse in Figure 5-11 at 
t = 0, 0.5, and 1:

Figure 5-11: Shape of the pulse at t = 0, 0.5, and 1: α+β = 1.
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In the figure above the height of the pulse decreases only slightly from the initial value. 
In Figure 5-12, the decrease in height is more pronounced owing to a damping term 
that is four times as large as the one used for Figure 5-11.

Figure 5-12: Shape of the pulse at t = 0, 0.5, and 1: α+β = 2.

Applying the telegraph equation to 2D and 3D models follows the same protocol 
shown here but produces a more complex systems of equations.

Modeling in COMSOL Multiphysics

To set up the telegraph equation, use a Coefficient Form PDE application mode for 
time-dependent analysis.

Model Library path:  
COMSOL_Multiphysics/Equation-Based_Models/telegraph_equation
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 1D in the Space dimension list.

2 In the list of application modes, browse to COMSOL Multiphysics>PDE Modes>PDE, 

Coefficient Form.

3 Select Time-dependent analysis, wave type. Make sure that Lagrange - Quadratic 
elements are selected in the Element list.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 Enter the following constants in the Constants dialog box:

3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Click the Line button and draw a line of length 1 from 0 to 1 on the x-axis.

2 Click the Zoom Extents button on the Main toolbar.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu, choose Boundary Settings.

2 Select Boundaries 1 and 2. From the Boundary condition list select Neumann.

3 Click OK.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

NAME EXPRESSION

c 1

alpha 0.25

beta 0.25
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2 On the Coefficients page in the Subdomain Settings dialog box, enter these PDE 
coefficients (the ea and da coefficients are the default values):

3 Click the Init tab and enter the following initial conditions:

4 Click OK.

M E S H  G E N E R A T I O N

Initialize the mesh and refine it once.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu, choose Solver Parameters.

2 Click the Time Stepping tab.

PROPERTY SUBDOMAIN 1

 c c*c

 a alpha*beta

 f -(alpha+beta)*ut

 da 0

 ea 1

PROPERTY SUBDOMAIN 1

 u(t0) exp(-3*(x/0.2-1)^2)

 ut(t0) 0
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3 Select the Manual tuning of step size check box. Type 0.002 in the Maximum time 

step edit field. To get a good solution to the telegraph equation with this mesh, a 
time step of around 0.002 is sufficient. It means that the solver takes about 500 
steps.

4 Click OK.

5 Click the Solve button on the Main toolbar to run the analysis.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 From the Postprocessing menu, choose Plot Parameters.

2 Select the Keep current plot check box and plot the solution at time 0, 0.5, and 1.

3 From the Options menu, choose Constants.

4 In the Constants dialog box, change alpha and beta to 0.5.

5 Click OK.

6 Click the Solve button.

Continue to investigate the effect of the α and β coefficients by changing their values.
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S h a l l ow Wa t e r  Equa t i o n s

The shallow water equations are frequently used for modeling both oceanographic and 
atmospheric fluid flow. Models of such systems lead to the prediction of areas 
eventually affected by pollution, coastal erosion, and polar ice-cap melting.

Comprehensive modeling of such phenomena using physical descriptions such as the 
Navier-Stokes equations can often be problematic, due to the scale of the modeling 
domains as well as through resolving free surfaces. The shallow water equations, of 
which there are a number of representations, provide an easier description of such 
phenomena.

This 1D model investigates the settling of a wave over a variable bed as a function of 
time. The initial wave and the shape of the bed are represented by mathematical 
relations so that it is easy to change parameters such as the wave amplitude or the bed’s 
shape.

Introduction

This example uses the Saint-Venant’s shallow water equations, which are the 
following:

and

where z is the thickness of the water layer (m), v is the velocity (m/s), g is the gravity 
constant (m/s2), and ν is the kinematic viscosity (m2/s). The definition of the   

∂z
∂t
------ ∇ zv( )⋅+ 0=

∂ zv( )
∂t

-------------- ∇ zvvT( ) gz zs∇ ν∆ zv( )–+⋅+ 0=
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thickness of the water layer, z, is zs−zf, where zs and zf are the measures in Figure 5-13 
below. For further details, see Ref. 1.

Figure 5-13: Representative vertical section through the fluid domain showing the bed of 
a lake and the water surface.

Artificial Stabilization

With time, the flow develops discontinuities known as hydraulic jumps. Use artificial 
stabilization to replace the jumps by steep fronts that can be resolved on the grid. Small 
amplitude waves on still water of depth z move with velocity . The maximal 
propagation velocity is  for water waves.

Stabilize the solution by adding artificial viscosity chosen to make the cell Reynolds 
number of order unity. To do so, add the term  to the 
physical viscous momentum flux . Here tune is a O(1) tuning parameter 
and h is the local element size. You add the contribution to the divergence term of the 
conservation law so that it does not affect the shock speeds. The modification is first 
order in element size.

Model Definition

This model studies a simple example of shallow water in a channel with bottom 
topography shown in Figure 5-14. Notice the difference in scale between the x and 
y directions.

x

zs
zf

gz
vphase v gz+=

tune vphase h
x∂

∂ vz( )⋅ ⋅ ⋅
ν

x∂
∂ zv( )⋅
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Figure 5-14: Sea bed profile, zf, used in the model.

Dirichlet boundary conditions (v = 0) are implemented at both ends, while the physics 
are described by the equations above. The initial condition is a wave profile, which the 
following expression defines:

z0 2 10 2– zf– 5 10 3– e

x 3–( )2–

12
----------------------

⋅+⋅=
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where zf is the analytical expression for the sea bed profile (see Figure 5-14). The 
elevation of the water surface is z + zf, while Figure 5-15 shows z0 + zf.

Figure 5-15: The initial water surface profile, z0 + zf, and the sea bed profile, zf.
S H A L L O W  W A T E R  E Q U A T I O N S  |  145



146 |  C H A P T E
Results and Discussion

The simulation runs for 60 seconds. Figure 5-16 shows the water surface and slope of 
the sea bed at six output times toward the beginning of the simulation.

Figure 5-16: The water level and the slope of the sea bed at six output times. Time spans 
from t = 0 to t = 15 at steps of 3 seconds.

The simulation clearly shows the influence of the topography of the sea bed on the 
elevation of the water surface. Another interesting visualization of the results is an 
animation, which is easy to create using COMSOL Multiphysics.
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Modeling in COMSOL Multiphysics

The modeling procedure is straightforward using the PDE, General Form application 
mode with two dependent variables: Z and ZV. It is easy to define expressions, such as 
the one that describes the initial wave profile, z0, in the appropriate dialog box.

Reference

1. O. Pironneau, Finite Element Methods for Fluids, John Wiley & Sons, 1989.

Model Library path:  

COMSOL_Multiphysics/Equation-Based_Models/shallow_water

Modeling Using the Graphical User Interface

1 Double-click the COMSOL Multiphysics icon to open the Model Navigator.

2 Select 1D from the Space dimension list.

3 Select COMSOL Multiphysics>PDE Modes>PDE, General Form>Time-dependent analysis.

4 Type Z ZV in the Dependent variables edit field.

5 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 Select Constants in the Options menu.

2 Enter the following constants:

3 Click OK.

4 Select Expressions>Scalar Expressions in the Options menu.

NAME EXPRESSION

nu1 1e-6

ge 9.8

x0 6

a 0.005

k1 0.0015

tune 0.1
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5 Enter the following scalar expressions:

6 Click OK.

G E O M E T R Y  M O D E L I N G

1 Select Specify Objects>Line in the Draw menu.

2 Type 0 10 in the x edit field. This creates a line from 0 to 10 along the x-axis.

3 Click OK.

4 Click the Zoom Extents button in the main toolbar.

P H Y S I C S  S E T T I N G S

Subdomain Settings

1 Select Subdomain Settings in the Physics menu.

2 Select Subdomain 1 in the Subdomain selection list.

3 Type ZV in the first edit field (first row) in the Flux vector area.

4 Type ZV*ZV/Z-nu*ZVx in the second edit field in the Flux vector area.

5 Click the F tab.

6 Type 0 in the first edit field in the Source term area.

7 Type -ge*Z*(Zx+dZfdx) in the second edit field in the Source term area.

8 Click the Init tab to set the initial conditions.

9 Type Z0 in the Z(t0) edit field. Type 0 in all other edit fields.

10 Click OK.

Boundary Settings
1 Select Boundary Settings from the Physics menu.

2 Select both Boundary 1 and Boundary 2 from the Boundary selection list.

3 Click the R edit field.

NAME EXPRESSION

Zf a*exp(-(x-x0)^2)+k1*x

dZfdx (-2*x+2*x0)*a*exp(-(x-x0)^2)+k1

Zs Z+Zf

Z0 0.02-Zf+0.005*exp(-(x-3)^2/1^2)

vphase abs(ZV/Z)+sqrt(ge*Z)

nu nu1+vphase*h*tune
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4 Type 0 in the first edit field (first row).

5 Type -ZV in the second edit field.

6 Click OK.

M E S H  G E N E R A T I O N

1 Select Free Mesh Parameters in the Mesh menu.

2 Type 0.05 in the Maximum element size edit field.

3 Click Remesh and OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Select Solver Parameters in the Solve menu.

2 Type linspace(0,60,61) in the Times edit field in the Time stepping area.

3 Type 1e-5 in the Relative tolerance edit field.

4 Type 1e-7 in the Absolute tolerance edit field.

5 Click OK.

6 Click the Solve button.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The most interesting part of the results is obtained by looking at the scalar expression 
Zs, corresponding to the surface topography, at different times compared to the 
topography of the bottom.

1 Click the Plot Parameters button.

2 Click the Line tab.

3 Type Zs in the Expression edit field; then click Apply.

4 Click the General page.

5 Select 6 from the Solution at time list.

6 Select the Keep current plot check box.

7 Click the Line tab.

8 Type Zf in the Expression edit field.

9 Click OK.
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S h e l l  D i f f u s i o n

Introduction

A goal for many applications is to predict physics in thin structures, such as shells, 
without modeling the thickness of the structure. This is because large aspect ratios can 
cause meshing and geometry analysis problems. The model reported here 
demonstrates how to use the tangential derivative variables in COMSOL 
Multiphysics to solve partial differential equations in curved 3D shells and 2D 
boundaries without modeling their thickness.

Model Definition

The steel tank shown below has two pipe connections. One is grounded and the other 
connects to a dead current source. This model calculates the current density in the tank 
shell along with the potential distribution across the surface.

E Q U A T I O N S

The fundamental equation to be solved is the current conduction, or charge 
conservation equation.

 (5-1)

Here, σ is the electric conductivity (S/m) and V is the electric potential (V).

The material is a 1 mm thick steel sheet with a conductivity of 4.032·106 S/m. You 
are working with a surface in 3D so there is no thickness in the model. To account for 
the charge conservation in Equation 5-1 you must multiply the current flux expression 
with the shell thickness d: 

0 V

400 V

∇ σ ∇V–( )⋅ 0=
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.

Results

Figure 5-17: Electric potential distribution across the surface (V).

Figure 5-17 reveals the potential distribution across the surface. Figure 5-18 shows a 
zoom of one of the pipe connections. The current arrows show clearly how the current 
is collecting toward the hole that is earthed. It is possible to see some current arrows 
on the opposite wall through the interior of the tank.

∇ σ d∇V–( )⋅ 0=
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Figure 5-18: Arrow plot of the local current field.

Figure 5-19: Plot of the local magnitude of the electric current density (A/m2).
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



The plot of the magnitude of the local current density in Figure 5-19 is interesting 
because you can use it to calculate the resistive heating in the material as an extension 
to the model.

Modeling in COMSOL Multiphysics

The current conduction equation is modeled here using a Weak Form, Boundary 
application mode. For example, you can express the Poisson’s equation −∆u = F in 2D 
using the weak term sequence -ux_test*ux-uy_test*uy+u_test*F. Tangential 
derivative variables come into play only in the shell, which you represent as a boundary. 
To call the tangential derivative variables in COMSOL Multiphysics, add a T suffix to 
the variable name. For example, the tangential derivative corresponding to ux is uTx. 
To fully appreciate the weak-level formulation, some knowledge of the weak form in 
the finite element method is recommended. Further information is available in the 
section “Theoretical Background” on page 310 in the COMSOL Multiphysics 
Modeling Guide.

Model Library path:  

COMSOL_Multiphysics/Equation-Based_Models/shell_diffusion

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Start COMSOL Multiphysics.

2 In the Model Navigator, select 3D in the Space dimension list. In the list of application 
modes, select COMSOL Multiphysics>PDE Modes>Weak Form, Boundary.

3 Type V in the Dependent variables edit field.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.
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2 Enter these constants:

3 Click OK.

G E O M E T R Y  M O D E L I N G

Create the model by drawing the profile of revolution for the shell and then subtract 
a hole from the shell:

1 From the Draw menu, choose Work-Plane Settings.

2 Click the Quick tab and then click the y-z button. Click OK.

3 In the 2D drawing, double-click SOLID on the status bar to disable automatic 
coercion to solid objects.

4 Click the Line button on the Draw toolbar and draw an open polygon with corners 
in (0, 0), (0.15, 0), (0.15, 1), and (0.05, 1).

5 Click the Fillet/Chamfer button on the Draw toolbar.

6 Open the B1 folder and select vertex 3 and 4 (the two corners in the polygon 
object). Make sure the Fillet button is selected and type 0.05 in the Radius edit field.

7 Click OK to create two fillets with radii of 0.05.

8 Select Revolve from the Draw menu and use the default settings.

9 Return to the 2D sketch and draw a centered circle around (0, 0.2) with a radius of 
0.05.

10 Select Extrude from the Draw menu, type 0.2 in the Distance edit field, and click OK.

11 Press Ctrl+A to select both objects and then click the Coerce to Face button on the 
Draw toolbar.

12 Double-click on the geometry object with the right mouse button to open up the 
Object Properties dialog box. Select faces 16, 17, 19, 20, and 25–30 in the Face 
selection list and then click Delete to remove them.

B O U N D A R Y  C O N D I T I O N S

1 From the Physics menu, choose Boundary Settings.

2 Press Ctrl+A to select all boundaries.

NAME EXPRESSION

sigma 4.032e6

d 1e-3
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



3 On the Weak page, type 
sigma*d*(-VTx_test*VTx-VTy_test*VTy-VTz_test*VTz) in the weak edit 
field.

4 Click OK.

E D G E  S E T T I N G S

1 From the Physics menu, choose Edge Settings.

2 Select edges 14, 15, 25, and 29, and type 400-V in the constr edit field.

3 Select edges 40–43, and type -V in the constr edit field.

4 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button. 

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 To generate Figure 5-17 on page 151, click the Plot Parameters button and select 
the Boundary plot type. Click the Boundary tab and select to plot V.

2 To generate Figure 5-18 on page 152, add an arrow plot. Click the Arrow tab and 
then select Plot arrows on: boundaries, Arrow type: Cone, Arrow length: normalized, 
Scale factor: 0.7. Let the x,- y-, and z-components of the arrow be -sigma*VTx, 
-sigma*VTy, and -sigma*VTz, respectively. Click OK. Click Decrease Transparency 
in the Plot toolbar several times to reset the transparency.

3 To generate Figure 5-19 on page 152, use a boundary plot again, but plot the 
expression sigma*sqrt(VTx^2+VTy^2+VTz^2).
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S ph e r i c a l l y  S ymme t r i c  T r a n s po r t

Introduction

Many models of industrial-transport problems allow the assumption that the problem 
is spherically symmetric. This assumption is of great importance because it eliminates 
two space coordinates and leaves a 1D problem that is computationally fast and has 
very small memory requirements. Some applications where spherical symmetry 
assumptions are useful include:

• Reaction and diffusion in catalytic pellets in chemical reactors

• Heat and mass transfer in the processing of upgraded iron-ore pellets

• Any other process that takes place in beads that are nearly spherical

For spherical symmetry to be valid, the following assumptions must apply:

• The computational domain has a spherical shape

• The outer-perimeter boundary condition does not change with the position on the 
surface, that is, it does not vary with the space angles θ and 

• At any given time for a time-dependent problem, the material properties depend 
only on the radial distance from the center, r, and not on the space angles θ and 

• For a time-dependent problem, the initial condition depends only on the radial 
distance from the center, r, and not on the space angles θ and 

Model Definition

This following example simulates the initial transient heating process of a pelletized 
piece of magnetite ore. This is the first step in the process of making hematite ore 
pellets, an important raw material for the steel industry.

During the initial heating of a magnetite pellet the temperature is in a range that allows 
you to disregard any phase change of moisture. Thus it is possible to use a transient 
heat-conduction equation with constant properties in spherical symmetry. You can also 
scale the equation for easy parameterization of the radius.

ϕ

ϕ

ϕ
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Figure 5-20 depicts some pellets together with a push pin as a scale reference. 

Figure 5-20: Hematite pellets after drying and oxidation (end product)

The figure shows that these pellets are indeed not perfectly spherical. Nonetheless, this 
model takes advantage of the assumption of spherical symmetry.

D O M A I N  E Q U A T I O N S

Starting with the time-dependent heat conduction equation

and expanding it in spherical polar coordinates, the result is the equation

where ρ is the density (kg/m3), cp gives the heat capacity (J/kg·K), k denotes the 
thermal conductivity (W/m·K), and Q is an internal heat source (W/m3). Further, r, 
θ, and are the space coordinates. 

Assuming a perfect sphere of radius Rp and no change in temperature with differing 
space angles, or , gives

.

ρcp
∂T
∂t
------- ∇ k∇T–( )⋅+ Q=

ρcp
∂T
∂t
------- k 1

r2
----- ∂

∂r
----- r2∂T

∂r
-------⎝ ⎠

⎛ ⎞ 1
r2 θsin
------------------ ∂

∂θ
------ θsin ∂T

∂θ
-------⎝ ⎠

⎛ ⎞ 1

r2 θ2sin
--------------------∂2T

∂ϕ2
----------+ +– Q=

ϕ

T θ∂⁄∂ T ϕ∂⁄∂ 0= =

ρcp
∂T
∂t
------- 1

r2
----- ∂

∂r
----- k– r2∂T

∂r
-------⎝ ⎠

⎛ ⎞+ Q=
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To avoid division by zero at r = 0, which causes numerical problems, multiply this 
equation by r2

.  (5-2)

Using a dimensionless radial coordinate by scaling the equation provides the option 
to quickly change the pellet’s radius without changing or parameterizing the geometry 
size4. Introducing the dimensionless coordinate

and substituting in Equation 5-2 leads to

 (5-3)

on the following domain:

In a similar manner, it is possible to derive equations similar to Equation 5-3 for 
porous media flow, diffusion-reaction problems, and so on.

The model uses the following material data:

4. Note that scaling the variables to get well-conditioned problems is not necessary in COMSOL 
Multiphysics because the solvers use automatic variable scaling.

SYMBOL NAME VALUE

 ρ Density 2000 kg/m3

 cp Heat capacity 300 J/(kg·K)

 k Conductivity 0.5 W/(m·K)

 Rp Pellet radius 0.005 m

 Q Heat source 0 W/m3

r2ρcp
∂T
∂t
------- ∂

∂r
----- k– r2∂T

∂r
-------⎝ ⎠

⎛ ⎞+ r2Q=

r̂

r̂ r
Rp
------- ∂

∂r
-----, 1

Rp
------- ∂

∂r̂
-----= =

r̂
2
ρcp

∂T
∂t
------- ∂

∂r̂
----- k– r̂

2

Rp
2

------------∂T
∂r̂
-------

⎝ ⎠
⎜ ⎟
⎛ ⎞

+ r̂
2
Q=

r

r 0= r 1=
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B O U N D A R Y  C O N D I T I O N S  A N D  I N I T I A L  C O N D I T I O N S

Because of symmetry about r = 0, there is zero flux through this point, meaning 
. 

At the surface, , you use a convective heating expression with a heat transfer 
coefficient, hs (W/(m2K), for the influx of heat (W/m2):

.  (5-4)

This expression describes a hot gas with a temperature Text flowing around the pellet. 
Text is chosen at 95 °C. The heat transfer coefficient is set to 1000 W/(m2·K). The 
initial condition is set to 25 °C.

Results

Figure 5-21: Temperature profiles from t = 0 to t = 10 s.

Figure 5-21 shows the temperature profiles from 0 to 10 seconds. Each line represents 
an increment of 0.5 s from the preceding line. From the topmost line it is clear that 

∂T
∂r̂
------- 0=

r 1=

qin hs Text T–( )=

t=0s

t=10s
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the center of the pellet has not reached steady state at 10 s. You can also plot the time 
evolution of the temperature at the center of the pellet.

Figure 5-22: Time evolution of temperature in the center of a pellet with radius 
Rp = 5 mm

Figure 5-22 shows even more clearly how long the process must yet go before it 
reaches steady state. An interesting next step is to experiment with different particle 
radii, Rp, and different heating times.

Figure 5-23: Time evolution in the center of a pellet with radius Rp = 2.5 mm
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Simply reducing the radius somewhat lets the model reach steady state within 7 s.

Modeling in COMSOL Multiphysics

To implement Equation 5-3 and the boundary conditions of this problem, use the 1D 
time-dependent version of the PDE, General Form application mode:

For more information about using this application mode, please refer to the section 
“The Scalar General Form Equation” on page 250 in the COMSOL Multiphysics 
Modeling Guide.

The space coordinate in the model is . For typographical reasons we use rh in this 
model for “r-hat.” Identifying the general form with Equation 5-3, the following 
settings generate the correct equation:

You must take special care when setting the heat-influx boundary condition on the 
pellet surface.  on the surface, so you need to compensate G 
accordingly:

.

COEFFICIENT EXPRESSION

 ea 0

 da
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2
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Model Library path:  
COMSOL_Multiphysics/Equation-Based_Models/spherical_symmetry_ore

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Open the Model Navigator. Click the Multiphysics button and click the Add Geometry 
button.

2 The Add Geometry dialog box appears. In the Space dimension list select 1D, and in 
the Independent variables edit field enter rh theta phi. In the Unit system list select 
none. Click OK.

3 In the list of application modes, select  
COMSOL Multiphysics>PDE Modes>PDE, General Form>Time-dependent analysis. Do 
not click OK yet.

4 In the Dependent variables edit field type T.

5 In the Application mode name edit field type ore_pellet.

6 In the Element list verify that Lagrange - Quadratic is selected.

7 Click Add, then click OK.

O P T I O N S  A N D  S E T T I N G S

From the Options menu select Constants. Enter the following names, expressions, and 
(optionally) descriptions; when done, click OK.

NAME EXPRESSION DESCRIPTION

rho 2000 Density (kg/m^3)

cp 300 Heat capacity (J/(kg*K))

k 0.5 Conductivity (W/(m*K))

Rp 0.005 Pellet radius (m)

Qs 0 Heat source (W/m^3)

hs 1000 Heat transfer coefficient (W/(m^2*K))

Text 368 External temperature (K)

Tinit 298 Initial value (K)
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G E O M E T R Y  M O D E L I N G

1 Select the menu item Draw>Specify Objects>Line.

2 In the rh edit field enter 0 1, then click OK.

3 Click the Zoom Extents button on the main toolbar.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 From the Physics menu choose Subdomain Settings.

2 Go to the Subdomain selection list and choose Subdomain 1. Enter the coefficients 
from the following table:

Note: Trh is COMSOL Multiphysics syntax for ∂T/∂(rh) if T and rh are defined 
variables.

3 Click the Init tab, and in the T(t0) edit field enter Tinit.

4 Click OK.

Boundary Conditions
1 From the Physics menu choose Boundary Settings.

2 In the Boundary Settings dialog box enter the following settings; when done, click 
OK.

COEFFICIENT VALUE/EXPRESSION

 Γ -k*rh^2/Rp^2*Trh

 F rh^2*Qs

 ea 0

 da rh^2*rho*cp

SETTINGS BOUNDARY 1 BOUNDARY 2

Boundary condition type Neumann Neumann

G 0 rh^2/Rp*hs*(Text-T)
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Note: Clicking the Neumann boundary condition button disables the R edit field and 
sets it to 0. You can also manually type 0 in the R field to get a Neumann condition.

M E S H  G E N E R A T I O N

1 Go to the Mesh menu and select Free Mesh Parameters.

2 Set the Maximum element size scaling factor to 0.4 and click Remesh.

3 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu choose Solver Parameters.

2 Find the Times edit field and enter the time steps as 0:0.25:10.

3 Click OK.

4 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To create a line plot with all temperature profiles for the time steps in Figure 5-21 on 
page 159, follow these steps:

1 Select the menu item Postprocessing>Domain Plot Parameters.

2 On the General page, in the Plot type area click the Line/Extrusion plot option button.

3 Verify that all the entries in the Solutions to use list are selected (the default).

4 Go to the Line/Extrusion page, and select the Line plot button.

5 In the y-axis data area go to the Predefined quantities list and select T.

6 Click the General tab. Click the Title/Axis button and enter the Title Temperature, 
the First axis label Dimensionless radius, and the Second axis label T (K).

7 Click OK.

To create a line plot with time evolution of the temperature at the center as in 
Figure 5-22 on page 160, follow these steps:

1 Select the menu item Postprocessing>Domain Plot Parameters.

2 Go to the General page, then to the Plot type area, and then select the Point plot 

option button.

3 Verify that all the entries in the Solutions to use list are selected (the default).
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4 Click the Point tab.

5 In the y-axis data area find the Predefined quantities list and select T.

6 In the Boundary selection list choose 1.

7 Click the General tab. Click the Title/Axis button and set all fields to Auto.

8 Click OK, then OK again.

Finally, if you want to make an animation, execute the following instructions:

1 Click the Plot Parameters button on the Main toolbar (or press F12). 

2 On the Animate page click the Start Animation button to launch the COMSOL Movie 

Player window, then click OK to close the Plot Parameters dialog box.
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Th e  B l a c k - S c h o l e s  Equa t i o n

Introduction

There are different types of stock options:

• A call option is the right to buy a security at a specified price (called the exercise or 
strike price) during a specified period of time.

• A put option is the right to sell a security at a specified price during a specified period 
of time.

American options can be exercised at any time up to and including the day the option 
expires. European options can be exercised only on the day the option expires.

The famous Black-Scholes equation computes the cost u of a European stock option

with the following parameters:

• x, the underlying asset price

• r, the continuous compounding rate of interest

• σ, the standard deviation of the asset’s rate of return (also known as volatility)

A put option’s value on the exercise day is

where K is the strike price. The problem domain is infinite and consists of the entire 
real axis across the time domain 0 ≤ t ≤ T.

The assumptions made in deriving the Black-Scholes equation are: 

• The underlying stock pays no dividends. 

• The price of the stock, one period ahead, has a log-normal distribution with mean 
and standard deviation that are constant over the life of the option. 

• The existence of a risk-free interest rate which is constant over the life of the option.

• You can lend and borrow at the risk-free interest rate.

t∂
∂u 1

2
---σ2x2

x2

2

∂
∂ u rx

x∂
∂u

+ + ru=

u T x,( ) max K x– 0,( ),=
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Black-Scholes derived an analytical expression for the solution to the above problem 
(available, for example, in the MATLAB Financial Toolbox). However, the formula 
works only for certain cases. For instance, you cannot use it when σ and r are functions 
of x and t. Using the PDE formulation, you can determine the price for such cases.

Model Definition

Because you must work within a finite domain 0 ≤ x ≤ X, it becomes necessary to 
specify not only the boundary conditions for t = T but also for x = 0 and x = X. It is 
therefore necessary to analyze the problem’s characteristics to determine the location 
of the input and output boundaries.

E Q U A T I O N  D E F I N I T I O N

To put the equation in coefficient form, rewrite the equation as

In the following, denote

To reduce the problems with inflow boundaries, start by considering a put option: 
Study the value of a put option at a strike price K = 40 with σ = 0.3 and r = 0.12.

B O U N D A R Y  C O N D I T I O N S  A N D  I N I T I A L  C O N D I T I O N S

Make the domain be 0 ≤ x ≤ 80 with time running from 12 to 0. Then the initial 
condition at t = 12 and x = 80 is 0 based on the put option’s value. The initial 
condition in the region 0 ≤ x ≤ 40 varies linearly from 0 to 40. At the end of the 
simulation domain, the boundary is free (use a homogeneous boundary condition).

Modeling in COMSOL Multiphysics

Model the Black-Scholes equation using the following approach:

• Create a 1D time-dependent model, using the time-stepping algorithm to solve for 
c as a function of x and t, the time. The time steps go backward in time. Using a 
variable substitution to reverse the sign of the time, the da coefficient becomes −1.

• To model the initial condition, use the logical expression (x<40)*(40-x). This 
means that in the areas where x > 40, the initial value is zero.

t∂
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x∂
∂ 1
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---σ2x2
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Model Library path:  
COMSOL_Multiphysics/Equation-Based_Models/black_scholes_put

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 1D in the Space dimension list.

2 In the application mode list, open COMSOL Multiphysics>PDE Modes and then PDE, 

Coefficient Form.

3 Select Time-dependent analysis. Make sure Lagrange - Quadratic elements are selected.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 Open the Axes/Grid Settings dialog box.

2 In the x min and x max edit fields, type -1 and 81, respectively.

3 Click OK.

4 Open the Constants dialog box and enter the following constants:

5 Click OK.

G E O M E T R Y  M O D E L I N G

Draw a line from 0 to 80:

1 On the Draw menu, point to Specify Objects and then click Line.

2 In the x edit field, type 0 80.

3 Click OK.

P H Y S I C S  M O D E L I N G

Boundary Conditions
1 Open the Boundary Settings dialog box.

NAME EXPRESSION

r 0.12

sigma 0.3
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2 Select the left boundary and click the Neumann boundary condition button. Use the 
default zero Dirichlet condition on the right boundary.

3 Click OK.

Subdomain Settings
1 Open the Subdomain Settings dialog box.

2 Select Subdomain 1 and enter the PDE coefficients as follows:

3 Click the Init tab and type (x<40)*(40-x) in the u(t0) edit field. Click OK.

M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box.

2 On the Global page, type 2 in the Maximum element size edit field.

3 Click OK.

4 Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box.

2 Enter 12:-0.5:0 in the Times edit field to step backward in time from 12 to 0 with 
0.5 decrement.

3 Click OK.

4 Click the Solve button.

Modeling Using the Programming Language

1 Clear the FEM structure and set the problem dimension:

clear fem1
fem1.dim=1;
fem1.form='coefficient';
fem1.shape=2;

COEFFICIENT VALUE

 c 1/2*sigma^2*x^2

 a r

 f 0

 da -1

 ea 0

 β (-r+sigma^2)*x
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2 Specify the constants:

fem1.const={'r',0.12,'sigma',0.3};

3 Create the geometry:

fem1.geom=solid1([0 80]);

4 Specify the boundary conditions:

fem1.bnd.h={0 1};
fem1.bnd.r={0 0};

5 Specify the PDE coefficients.

fem1.equ.c={{{'1/2*sigma^2*x^2'}}};
fem1.equ.be={{{'(-r+sigma^2)*x'}}};
fem1.equ.a='r';
fem1.equ.da=-1;

6 Specify initial condition:

fem1.equ.init={{'(x<40)*(40-x)'}};

7 Generate the mesh:

fem1.mesh=meshinit(fem1,'hmax',2);
fem1.xmesh=meshextend(fem1);

8 Solve the problem and plot the results:

fem1.sol=femtime(fem1,'tlist',[12:-0.5:0],'report','on');
postcrossplot(fem1,1,1,'surfdata','u')
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Th e  Two - T e rm Bo l t zmann Equa t i o n 5

Introduction

Fluid models of plasma dynamics require a full and consistent set of electron transport 
and rate coefficients. In the drift-diffusion approximation for the electron density, n, 
and the mean electron energy, , the electron mobility, µe, electron diffusivity, De, and 
energy mobility, , energy diffusivity,  are required inputs, and are functions of 
background neutral particle number density, N, and mean electron energy. The rate 
coefficients, kj, for the inelastic collisions occurring in a plasma are strong functions of 
the electron energy distribution function (EEDF). In general, the EEDF cannot be 
assumed to be Maxwellian; a better approximation is obtained by solving a two-term 
truncation of a spherical-harmonic expansion in velocity space of the Boltzmann 
equation (Ref. 1). The rate coefficients and transport properties are then computed as 
appropriate integrals over the EEDF. The inputs are the gas temperature, neutral 
particle number density, electric field, and a set of electron-impact cross sections. Each 
electron-impact cross section is a table of collision cross section versus energy.

Figure 5-24: Plasma discharge in an oxygen-filled glass sphere. Image courtesy of 
Technorama, Switzerland.

In this example, you solve the two-term Boltzmann equation for an oxygen plasma to 
obtain the EEDF. The electron-oxygen collisions occurring in an oxygen plasma are 
listed in Table 5-1 and the corresponding cross sections are plotted in Figure 5-25. 

5. This model is courtesy of Daniel Smith of MKS Instruments, Wilmington, Mass., USA.

ε
µε Dε
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(The model neglects electron-electron collisions, although their inclusion would be 
relatively straightforward; for further details on this issue, see Ref. 1.)

Figure 5-25: Electron-impact cross sections for molecular oxygen.

TABLE 5-1:  ELECTRON-OXYGEN COLLISIONS IN AN OXYGEN PLASMA.

INDEX LEGEND REACTION TYPE  ∆ε (eV) 

1 mom O2 + e → O2 + e Momentum 0

2 att O2 + e → O + O- Attachment 0

3 rot O2 + e → O2(rot) + e Excitation 0.02

4 vib1 O2 + e → O2(v = 1) + e Excitation 0.19

5 vib2 O2 + e → O2(v = 1) + e Excitation 0.19

6 vib3 O2 + e → O2(v = 2) + e Excitation 0.38

7 vib4 O2 + e → O2(v = 2) + e Excitation 0.38

8 vib5 O2 + e → O2(v = 3) + e Excitation 0.75

9 vib6 O2 + e → O2(v = 3) + e Excitation 0.75

10 exc1 O2 + e → O2(a
1∆) + e Excitation 0.977

11 exc2 O2 + e → O2(b
1Σ) + e Excitation 1.627

12 exc3 O2 + e → O + O + e Dissociation 4.5
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Model Definition

The assumption of a Maxwellian EEDF can lead to substantial errors in the rate 
coefficients. This is particularly true in electronegative gases with a low ionization 
threshold where attachment removes the low-energy electrons and strong ionization 
“chops off” the tail of the EEDF. The two-term Boltzmann equation accounts for 
these effects. Here, a truncation of the velocity-space spherical-harmonic expansion

inserted in the full Boltzmann equation results in a system of two PDEs: one for the 
isotropic part, f0, and one for the first anisotropic perturbation, f1, of the EEDF. These 
two first-order PDEs can be combined into a single second-order PDE for f0:

 (5-5)

Here f0 and f1 are functions of ε = mev
2/(2e), the electron energy in electronvolts; σm 

is the effective momentum-transfer cross section (m2); me is the electron mass (kg); M 
is the mass of an oxygen molecule (kg); T is the neutral gas temperature (K); kB is 
Boltzmann’s constant, e is the elementary charge, E is the external electric field (V/
m); N is the number density of molecular oxygen; and each σk (m2) is a cross section 
corresponding to collision k. Notice that the source term, S, for the inelastic collisions 
is nonlocal in energy space. The interpretation of this is that electrons with energy 
above the activation threshold, ∆ε, inelastically collide with neutral O2 molecules, 
which results in the electrons being reinserted into the EEDF at a lower energy. In the 

13 exc4 O2 + e → O + O + e Dissociation 6.0

14 exc5 O2 + e → O + O + e Dissociation 8.4

15 exc6 O2 + e → O + O + e Dissociation 9.97

16 ion1 O2 + e → O2
+ + 2e Ionization 12.06

TABLE 5-1:  ELECTRON-OXYGEN COLLISIONS IN AN OXYGEN PLASMA.

INDEX LEGEND REACTION TYPE  ∆ε (eV) 
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case of ionization (k = 16), two equally energetic electrons are reinserted into the 
EEDF (the two electrons having equal energy is a simplifying assumption whose 
validity is best for low energies; see Ref. 1). For attachment, electrons are simply 
removed from the EEDF. Further, f0 is subject to the integral constraint

 (5-6)

and the boundary conditions

 (5-7)

Having solved for f0(ε), you compute the mobility and the diffusion coefficient as

 (5-8)

where γ ≡ (2e/me)
1/2 and is the mean electron energy in electronvolts:

 (5-9)

In the energy equation, the energy mobility and the energy-diffusion coefficient are

 (5-10)

The all-important rate coefficients are computed from the following integrals:
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 (5-11)

For comparative purposes, you can plot the computed rate coefficients against the ones 
calculated by assuming a Maxwellian EEDF

where the electron “temperature,” τe (eV), is related to the mean electron energy by 
. 

Results and Discussion

Figure 5-26 compares the Maxwellian EEDF to the EEDF computed from the two- 
term Boltzmann equation. The strong ionization at high electron energies tends to 
“chop off” the high energy tail in the EEDF. In the case of oxygen, attachment is also 
strong and it tends to “mop up” the low-energy electrons.

Figure 5-26: EEDF for an oxygen plasma calculated using the Maxwellian 
approximation (black) and the two-term Boltzmann equation (red).

Figure 5-27 similarly compares the ionization rate coefficient, k16, calculated with the 
EEDF from the two-term Boltzmann approximation with the corresponding 
Maxwellian result. As the figure shows, the Maxwellian EEDF overpredicts the rate 
coefficient for ionization—at a mean electron energy of 2 eV by nearly 10 orders of 
magnitude.

kj γ σj ε( )εf0 ε( ) εd

0

∞

∫=

f0
2
π

-------τe
3 2⁄– ε

τe
----–⎝ ⎠

⎛ ⎞exp=

τe 2ε 3⁄=
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Furthermore, the calculated rate coefficients for all 16 electron-impact reactions are 
plotted in Figure 5-28, and Figure 5-29 displays the corresponding transport 
properties (µe N, De N, , and ) as functions of . µεN DεN ε
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Figure 5-27: Ionization rate coefficient calculated for Maxwellian (black) and 
non-Maxwellian (red) EEDF.

Figure 5-28: Rate coefficients calculated using the two-term Boltzmann equation.
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Figure 5-29: Transport properties calculated using the two-term Boltzmann equation.

These computed rate coefficients and transport properties can be fed into a full fluid 
model for the electron density and energy, either as a look up table or by 
approximating the rate coefficients with a curve fit.

Finally, using COMSOL Script or MATLAB, the effect of the inelastic collisions on 
the Jacobian matrix can be visualized using the spy command. The sparsity-pattern 
plot in Figure 5-30 shows that the Jacobian matrix is different from the traditional 
banded matrix formed with a regular 1D convection-diffusion equation. Because the 
inelastic collisions dominate the system, it is essential that they contribute to the 
Jacobian matrix.

Modeling in COMSOL Multiphysics

To solve Equation 5-5, use a PDE, General Form application mode in 1D, letting the 
x-coordinate represent the electron energy expressed in electronvolts. An additional 
auxiliary 2D geometry allows you to handle the nonlocal couplings in the source term, 
S, using extrusion coupling variables (see the section “Extrusion Coupling Variables” 
on page 261 of the COMSOL Multiphysics User’s Guide for further details). To 
implement the integral constraint Equation 5-6, use an integration coupling variable 
and COMSOL Multiphysics’ ODE interface; for descriptions of these features, see the 
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



sections “Integration Coupling Variables” on page 255 of the COMSOL Multiphysics 
User’s Guide and “Solving ODEs and Global Equations” on page 286 of the 
COMSOL Multiphysics Modeling Guide, respectively. The collision cross-section 
data, obtained from Ref. 2, is included in a set of text files that comes with your 
COMSOL Multiphysics installation.

Figure 5-30: Sparsity-pattern plot of the assembled Jacobian matrix. The far off-diagonal 
elements are a result of the nonlocal couplings.
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Model Library path:  

COMSOL_Multiphysics/Equation-Based_Models/two_term_boltzmann

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Start COMSOL Multiphysics.
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2 From the Space dimension list in the Model Navigator, select 1D.

3 From the Application Modes list, choose 
COMSOL Multiphysics>PDE Modes>PDE, General Form.

4 In the Dependent variables edit field, change the name to f.

5 Click Multiphysics, then click Add.

6 Click Add Geometry. From the Space dimension list, select 2D. Click OK.

7 Click OK to close the Model Navigator.

G E O M E T R Y  M O D E L I N G

1 Click the Geom1 tab.

2 Shift-click the Line button on the Draw toolbar. In the Coordinates area, enter 0 500 
in the x edit field to draw a line between x = 0 and x = 500. Click OK.

3 In the same manner, draw a second line between x = 500 and x = 550.

4 Click the Zoom Extents button on the Main toolbar.

5 Click the Geom2 tab.

6 Using the Rectangle dialog box, which you open by shift-clicking the Rectangle/

Square button on the Draw toolbar, draw two rectangles, R1 and R2, with the 
properties in the table below. Click OK after specifying each rectangle.

7 Click the Zoom Extents button on the Main toolbar.

O P T I O N S  A N D  S E T T I N G S

Model Settings
Because this x-coordinate in this model signifies energy, and the energy is expressed in 
the nonstandard unit electronvolt, disable COMSOL Multiphysics’ unit support:

1 From the Physics menu, open the Model Settings dialog box.

2 On the Geom2 page, select None from the Base unit system list.

3 Click the Geom1 tab, and do the same for this geometry.

PROPERTY R1 R2

Width 250 250

Height 50 50

Base Corner Corner

x 0 250

y 0 0
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4 Click OK to close the dialog box.

Constants
1 From the Options menu, open the Constants dialog box.

2 Define the following constants (the descriptions are optional); when done, click OK.

Here, EoN is the value of the reduced electric field—that is, the ratio between the 
electric field and the neutral particle number density—expressed in townsend (1 Td 
= 10−21 V·m2). When computing the solution, you use EoN as the solver parameter.

NAME EXPRESSION DESCRIPTION

e 1.602e-19 The elementary charge (C)

m_e 9.109e-31 Electron mass (kg)

gam sqrt(2*e/m_e) Energy-velocity conversion factor

k_B 1.381e-23 Boltzmann’s constant (J/K)

N_A 6.022e23 Avogadro’s constant (1/mol)

T_g 300 Gas temperature (K)

tau_g k_B*T_g/e Gas temperature (eV)

tau_ei 0.025 Initial electron temperature (eV)

M_O2 0.032/N_A O2 molecule mass (kg)

EoN 32 Reduced electric field (Td)

dH3 0.02 Threshold energy, reaction 3 (eV)

dH4 0.19 Threshold energy, reaction 4 (eV)

dH5 0.19 Threshold energy, reaction 5 (eV)

dH6 0.38 Threshold energy, reaction 6 (eV)

dH7 0.38 Threshold energy, reaction 7 (eV)

dH8 0.57 Threshold energy, reaction 8 (eV)

dH9 0.75 Threshold energy, reaction 9 (eV)

dH10 0.977 Threshold energy, reaction 10 (eV)

dH11 1.627 Threshold energy, reaction 11 (eV)

dH12 4.5 Threshold energy, reaction 12 (eV)

dH13 6.0 Threshold energy, reaction 13 (eV)

dH14 8.4 Threshold energy, reaction 14 (eV)

dH15 09.97 Threshold energy, reaction 15 (eV)

dH16 12.06 Threshold energy, reaction 16 (eV)
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Functions
Next define functions sig1, …, sig16 that encode the electron-impact cross sections 
σ1, …, σ16 for the collisions listed in Table 5-1 using data provided in text files.

1 From the Options menu, open the Functions dialog box.

2 Click New. In the Function name edit field, type sig1.

3 Click the Interpolation option button.

4 In the Use data from list, select File. Browse to the folder models/
Equation-Based_Models in your COMSOL Multiphysics installation directory. 
Select the file two_term_boltzmann_cs1.txt, then click OK.

5 From the Interpolation method list, select Linear. From the Extrapolation method list, 
select Specific number, then set the Value outside range to 0.

6 Repeat Steps 2–5 to define the functions sig2, …, sig16 by loading, in turn, the 
text files two_term_boltzmann_cs2.txt, …, two_term_boltzmann_cs16.txt.

7 Click OK to close the Functions dialog box.

Global Expressions
1 Choose Options>Expressions>Global Expressions.

2 Define the expressions listed in the following table (the descriptions are optional).

NAME EXPRESSION DESCRIPTION

sigma_eps 2*(m_e/M_O2)*sig1(x) Elastic-collision c
section

sigma_m sig1(x) Effective momentum-
cross section

W_es -sigma_eps*x^2 PDE energy-space 
flow-velocity coeff

D_es (1/3)*(x/sigma_m)*(EoN)^2+ 
sigma_eps*tau_g*x^2

PDE energy-space di
coefficient

tau_e (2/3)*eps_mean Electron temperatur

f_M (2/sqrt(pi))*tau_e^(-3/2)*exp(-x/tau_e) Maxwellian EEDF

f_init (2/sqrt(pi))*tau_ei^(-3/2)*exp(-x/tau_ei) Initial EEDF

C2 -x*sig2(x)*f Inelastic source/si

C3 (x+dH3)*sig3(x+dH3)*f3-x*sig3(x)*f Inelastic source/si

C4 (x+dH4)*sig4(x+dH4)*f4-x*sig4(x)*f Inelastic source/si

C5 (x+dH5)*sig5(x+dH5)*f5-x*sig5(x)*f Inelastic source/si

C6 (x+dH6)*sig6(x+dH6)*f6-x*sig6(x)*f Inelastic source/si

C7 (x+dH7)*sig7(x+dH7)*f7-x*sig7(x)*f Inelastic source/si
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ion term
Here, f3, …, f16 represent the nonlocal factor f(ε + ∆εk) or (in the case of  f16) 
f(ε + 2∆εk) in Equation 5-5; later, you define these as extrusion coupling variables 
using the auxiliary geometry Geom2.

To preserve the normalization of f0 in the presence of collision processes that do not 
conserve the electron number, the growth-renormalization term, R_norm, must be 
added to the right-hand side of the PDE multiplied by the constraint λ defined by 
Equation 5-6; see Ref. 1 for a discussion. For this model, the electron-number 
changing processes are the attachment and ionization reactions (no. 2 and 16 in 
Table 5-1). The nojac operator in the expression for R_norm instructs COMSOL 
Multiphysics not to include the argument, k16-k2, in the Jacobian computation; 
see “The Nojac Operator” on page 162 of the COMSOL Multiphysics User’s Guide 
for additional information on this operator.

3 Click OK to close the Global Expressions dialog box.

Integration Coupling Variables
Compute the integrals appearing in Equations 5-6–5-11 and make them globally 
available in the model by defining corresponding integration coupling variables.

1 With Geom1 active, choose 
Options>Integration Coupling Variables>Subdomain Variables.

C8 (x+dH8)*sig8(x+dH8)*f8-x*sig8(x)*f Inelastic source/si

C9 (x+dH9)*sig9(x+dH9)*f9-x*sig9(x)*f Inelastic source/si

C10 (x+dH10)*sig10(x+dH10)*f10-x*sig10(x)*f Inelastic source/si

C11 (x+dH11)*sig11(x+dH11)*f11-x*sig11(x)*f Inelastic source/si

C12 (x+dH12)*sig12(x+dH12)*f12-x*sig12(x)*f Inelastic source/si

C13 (x+dH13)*sig13(x+dH13)*f13-x*sig13(x)*f Inelastic source/si

C14 (x+dH14)*sig14(x+dH14)*f14-x*sig14(x)*f Inelastic source/si

C15 (x+dH15)*sig15(x+dH15)*f15-x*sig15(x)*f Inelastic source/si

C16 2*(2*x+dH16)*sig16(2*x+dH16)*f16 
-x*sig16(x)*f

Inelastic source/si

S C2+C3+C4+C5+C6+C7+C8+C9+C10+ 
C11+C12+C13+C14+C15+C16

Inelastic collision

R_norm -nojac(k16-k2)*sqrt(x)*f Growth-renormalizat

NAME EXPRESSION DESCRIPTION
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2 Select Subdomain 1, then define integration coupling variables according to the 
table below. In all cases, use the default settings for Integration order (4) and 
Global destination (selected).

NAME EXPRESSION

f_norm sqrt(x)*f

eps_mean x^(3/2)*f

mu_N -(1/3)*gam*fx*x/sigma_m

D_N (1/3)*gam*f*x/sigma_m

mu_epsN -(1/(3*eps_mean))*gam*fx*x^2/sigma_m

D_epsN (1/(3*eps_mean))*gam*f*x^2/sigma_m

k1 gam*sig1(x)*x*f

k2 gam*sig2(x)*x*f

k3 gam*sig3(x)*x*f

k4 gam*sig4(x)*x*f

k5 gam*sig5(x)*x*f

k6 gam*sig6(x)*x*f

k7 gam*sig7(x)*x*f

k8 gam*sig8(x)*x*f

k9 gam*sig9(x)*x*f

k10 gam*sig10(x)*x*f

k11 gam*sig11(x)*x*f

k12 gam*sig12(x)*x*f

k13 gam*sig13(x)*x*f

k14 gam*sig14(x)*x*f

k15 gam*sig15(x)*x*f

k16 gam*sig16(x)*x*f

k1_M gam*sig1(x)*x*f_M

k2_M gam*sig2(x)*x*f_M

k3_M gam*sig3(x)*x*f_M

k4_M gam*sig4(x)*x*f_M

k5_M gam*sig5(x)*x*f_M

k6_M gam*sig6(x)*x*f_M

k7_M gam*sig7(x)*x*f_M

k8_M gam*sig8(x)*x*f_M

k9_M gam*sig9(x)*x*f_M
R  5 :  E Q U A T I O N - B A S E D  M O D E L S



3 Click OK.

Extrusion Coupling Variables
To implement the nonlocal collision source terms, use extrusion coupling variables.

1 With Geom1 still selected, choose 
Options>Extrusion Coupling Variables>Subdomain Variables.

2 On the Source page, select both subdomains, then enter the following data:

3 Click the Destination tab.

4 From the Geometry list, select Geom2, and from the Level list, select Subdomain.

5 From the Variable list, select f_extr. Select Subdomains 1 and 2, then select the 
Use selected subdomains as destination check box.

6 Set the Destination transformation to x+y.

7 From the Variable list, select f_extr_ion. Select Subdomain 1 only, then select the 
Use selected subdomains as destination check box.

8 Set the Destination transformation to 2*x+y, then click OK.

9 Now with Geom2 selected, choose 
Options>Extrusion Coupling Variables>Subdomain Variables.

10 On the Source page, select both subdomains, then enter the following data:

11 Define the variables f4, …, f15 using the same data as for f3 in the previous step.

k10_M gam*sig10(x)*x*f_M

k11_M gam*sig11(x)*x*f_M

k12_M gam*sig12(x)*x*f_M

k13_M gam*sig13(x)*x*f_M

k14_M gam*sig14(x)*x*f_M

k15_M gam*sig15(x)*x*f_M

k16_M gam*sig16(x)*x*f_M

NAME EXPRESSION TRANSFORMATION TYPE SOURCE TRANSFORMATION

f_extr f General transformation x

f_extr_ion f General transformation x

NAME EXPRESSION TRANSFORMATION TYPE SOURCE TRANSFORMATION

f3 f_extr General transformation x x y y

NAME EXPRESSION
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12 Select only Subdomain 1, then enter the following data:

13 Click the Destination tab.

14 From the Geometry list, select Geom1, and from the Level list, select Subdomain.

15 Select Subdomain 1.

16 From the Variable list, select f3. Select the Use selected subdomains as destination 
check box, and set the Destination transformation for x to x and that for y to dH3.

17 Repeat the previous step for each of the variables f4, …, f16, using as the 
Destination transformation for y dH4, …, dH16, respectively.

18 Click OK to close the Subdomain Extrusion Variables dialog box.

P H Y S I C S  M O D E L I N G

Space-Independent Equations
To implement the normalization constraint in Equation 5-6, first define a state for λ:

1 From the Physics menu, open the Space-Independent Equations dialog box.

2 Enter the following settings; when done, click OK.

3 From the Base unit system list, select None, then click OK.

Subdomain Settings
1 Click the Geom1 tab.

2 From the Physics menu, open the Subdomain Settings dialog box.

3 Specify the following PDE coefficients:

Note, in particular, the addition to the source term for Subdomain 1 of the 
growth-renormalization term multiplied by the integral constraint, λ. On 

NAME EXPRESSION TRANSFORMATION TYPE SOURCE TRANSFORMATION

f16 f_extr_ion General transformation x 2*x y y

NAME EQUATION INIT INITT DESCRIPTION

lam f_norm-1 1e-5 0 Normalization constraint

SETTINGS SUBDOMAIN 1 SUBDOMAIN 2

 Γ W_es*f-D_es*fx 0

  F S+lam*R_norm -f

  ea 0 0

 da 0 0
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Subdomain 2, which is introduced solely to allow consistent definitions for the 
extrusion coupling variables, you simply set f0 to zero.

4 Click the Init tab. Select Subdomain 1, then type f_init in the f(t0) edit field.

5 Click OK.

Boundary Conditions
Implement the boundary conditions in Equation 5-7, substituting x = 500 for infinity.

1 From the Physics menu, open the Boundary Settings dialog box.

2 Select the Interior boundaries check box.

3 Specify boundary conditions as in the following table; when done, click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, open the Free Mesh Parameters dialog box.

2 On the Global page, type 1.02 in the Element growth rate edit field.

3 On the Subdomain page, select Subdomain 1. Set the Maximum element size to 20.

4 On the Boundary page, select Boundary 1. Set the Maximum element size to 0.05.

5 Click Remesh, then click OK.

6 Select Geom2.

7 From the Mesh menu, open the Free Mesh Parameters dialog box.

8 Click the Custom mesh size option button, then set the Maximum element size to 10.

9 Click the Boundary tab. Select Boundaries 1, 2, and 5, then set the 
Maximum element size to 1.5.

10 Click the Point tab. Select Point 1, then set the Maximum element size to 0.05.

11 Click Remesh, then click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Click the Solver Parameters button on the Main toolbar.

2 From the Solver list, select Parametric.

3 In the Parameter name edit field, type EoN, and in the Parameter values edit field, 
type [linspace(1.953,49,100) linspace(50,414,25)].

SETTINGS BOUNDARY 1 BOUNDARIES 2, 3

Type Neumann Dirichlet

G 0 0

R -f
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4 Click OK.

5 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

First, verify the normalization constraint Equation 5-6 for the solution.

1 Click the Geom1 tab.

2 From the Postprocessing menu, choose Subdomain Integration.

3 Select Subdomain 1. In the Expression edit field, type sqrt(x)*f.

4 In the Solution to use area, select an arbitrary solution from the Parameter value list, 
then click Apply.

The result, which should be 1 (or very close to 1), appears in the message log below 
the drawing area.

5 Try a few other solutions. When done, click OK.

Reproduce the EEDF plots in Figure 5-26 on page 175 with the following steps:

1 From the Postprocessing menu, choose Domain Plot Parameters.

2 On the General page, select 26.664556 from the Solution to use list. Select the 
Keep current plot check box.

3 Click the Line/Extrusion tab.

4 In the Expression edit field, type f_M.

5 Click the Line Settings button. From the Line color list, select Color, then click the 
Color button. Select the black swatch, then click OK.

6 Click OK to close the Line Settings dialog box.

7 In the Domain Plot Parameters dialog box, click Apply.

8 In the Expression edit field, type f.

9 Click the Line Settings button. From the Line color list, select Color, then click the 
Color button. Select a red swatch, then click OK.

10 On the General page, click the Title/Axis button.

11 Click the option button next to the Title edit field; leave the edit field empty.

12 Click the option button next to the First axis label edit field, then enter the label 
Electron energy [eV].

13 Click the option button next to the Second axis label edit field, then enter the label 
EEDF [eV<sup>-3/2</sup>]. Select the associated Log scale check box.

14 Click OK to close the Title/Axis dialog box.
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15 In the Domain Plot Parameters dialog box, click OK.

16 In the figure window, click the Zoom Window button, then select the area 0 < x < 20 
and 10−5 < y < 100 in the upper left corner to finish the plot.

Proceed to generate the plots of the ionization-rate coefficients in Figure 5-27:

1 From the Postprocessing menu, choose Global Variables Plot.

2 In the Expression edit field, type k16_M, then click the Add Entered Expression button.

3 In the x-axis data area, click the lower option button, then click the Expression 
button. In the Expression edit field, type eps_mean, then click OK to close the 
X-Axis Data dialog box.

4 Click the Line Settings button. From the Line color list, select Color, then click the 
Color button. Select black, then click OK.

5 Select the Legend check box, then click OK to close the Line Settings dialog box.

6 Click the Title/Axis button.

7 Click the option button next to the Title edit field; leave the edit field empty.

8 Click the option button next to the First axis label edit field, then enter the label 
Mean electron energy [eV].

9 Click the option button next to the Second axis label edit field, then enter the label 
Ionization rate coefficient [m<sup>3</sup>/s]. Select the associated 
Log scale check box.

10 Click OK to close the Title/Axis dialog box.

11 Click Apply to generate the first graph.

12 Select the Keep current plot check box.

13 In the Quantities to plot list, select k16_M, then click the 
Remove Selected Quantities to Plot button.

14 In the Expression edit field, type k16, then click the Add Entered Expression button.

15 Click the Line Settings button.Click the Color button. Select red, then click OK.

16 Click Apply to generate the second graph and thus finish the plot.

Next, reproduce Figure 5-28:

1 In the Quantities to plot list, select k16, then click the 
Remove Selected Quantities to Plot button.

2 In the Expression edit field, type k1, then click the Add Entered Expression button.

3 Repeat the previous step 15 times for, in turn, k2, …, k16.
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4 Click the Line Settings button. Select Cycle from the Line color, Line style, and 
Line marker lists, then click OK.

5 Click the Title/Axis button. Change the Second axis label to Rate coefficients 
[m<sup>3</sup>/s], then click OK.

6 From the Plot in list, select New figure, then click Apply to generate the plot.

To reproduce the plot of the transport properties in Figure 5-29, do as follows:

1 Click in the Quantities to plot list, then press Ctrl+A to select all entries. Click the 
Remove Selected Quantities to Plot button.

2 In the Expression edit field, type muN, then click the Add Entered Expression button.

3 Repeat the previous step for muepsN, DN, and DepsN.

4 Click the Title/Axis button. Change the Second axis label to Mobility*N, 
diffusivity*N. Clear the associated Log scale check box, then click OK.

5 From the Plot in list, select New figure, then click OK to generate the plot and close 
the Global Variables Plot dialog box.

Finally, if you have COMSOL Script or MATLAB, you can reproduce the 
sparsity-pattern plot of the assembled Jacobian matrix in Figure 5-30 in the following 
way:

1 Press Ctrl+F or choose File>Export>FEM Structure as 'fem'.

2 In the script window, enter the following commands:

[KC,LC] = femlin(fem);
spy(KC)

The sparsity-pattern plot appears in the last opened figure window.
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F l u i d  D y n a m i c s  M o d e l s
This chapter includes examples of fluid dynamics modeling using the 
incompressible Navier-Stokes equations for stationary and time-dependent fluid 
flow and the Euler equations for compressible flow in gas dynamics.
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Ba c k s t e p  w i t h  A r g y r i s  E l emen t

This model shows the use of stream functions to model incompressible fluid flow in a 
divergence-free approach. Instead of conventional p2-p1 Lagrange elements, the 
model uses C1-continuous Argyris elements to discretize the incompressible 
Navier-Stokes equations. Formulating the flow equations in terms of a stream function 
eliminates the continuity equation altogether.

Model Definition

The stream function Ψ is introduced through the following definition:

.

That is, the velocity field is the curl of the stream function. Therefore the divergence 
of the velocity field is identically zero wherever the stream function is smooth enough.

Introducing the stream function is in itself motivated by the requirement that the 
divergence of the velocity field should vanish: you can write any divergence-free field 
as the curl of some vector field, known as a vector potential. The velocity field 
determines the stream function Ψ only up to the gradient of some function, which 
means that the stream function corresponding to a given velocity field is not unique.

The Argyris elements belong to the C1-class of functions, implying that they have 
continuous first derivatives and function values. Therefore the continuity equation is 
satisfied weakly everywhere in the domain. Also, pressure has been eliminated from the 
equations, but you can determine the pressure field afterwards by solving a 
Poisson-type equation. To get this equation you essentially take the divergence of the 
momentum equations.

Argyris Element Properties

The advantage of using Argyris elements in the discretization is that the continuity 
equation is always satisfied. Convergence toward a solution is not inhibited by poor 
fulfillment of the incompressibility criterion. There are, however, some disadvantages. 
When using the Argyris elements, 21 degrees of freedom are associated with any 
triangle compared to 15 for the standard p2-p1 Lagrange elements. Due to different 
node usage, the total number of degrees of freedom in the model is roughly the same 

u v,( ) ∇ Ψ×
y∂

∂Ψ
x∂

∂Ψ
–,⎝ ⎠

⎛ ⎞= =
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in the two cases, but the Argyris elements are more tightly connected to one another, 
which leads to increased memory usage. Further, the Argyris elements are in all 
respects more complex, thus it takes more time to prepare the problem for the solvers.

Results

Fifth-order Argyris elements provide very high accuracy for smooth solutions. This 
model has a discontinuity in the gradient of the velocity field at the backstep corner. 
The Argyris element has degrees of freedoms representing this quantity in its corners. 
This causes some convergence and accuracy problems, which mean that you must use 
the parametric solver. The results, however, are of similar accuracy as in the 
introductory backstep model, “Example: Steady Incompressible Flow” on page 150 in 
the COMSOL Multiphysics Modeling Guide, on a mesh of half the size in number of 
elements.

Model Library path:  

COMSOL_Multiphysics/Fluid_Dynamics/backstep_argyris

Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 In the list of application modes, select  
COMSOL Multiphysics>PDE Modes>PDE, General Form>Stationary analysis.

3 In the Dependent variables edit field, type u v.

4 Click OK.

Set the element type to Argyris later on.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants to set the values needed to parameterize 
the model.
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2 In the Add/Edit Constants dialog box enter the following constants, which represent 
fluid properties and the velocity:

G E O M E T R Y  M O D E L I N G

1 Shift-click the Rectangle/Square button on the Draw toolbar to specify a rectangle.

2 In the Rectangle dialog box, type 0.08 in the Width edit field and 0.0101 in the 
Height edit field.

3 Click OK.

4 Click the Zoom Extents button on the Main toolbar.

5 Shift-click the Rectangle/Square button on the Draw toolbar to specify another 
rectangle.

6 In the Rectangle dialog box, type 0.02 in the Width edit field and 0.0049 in the 
Height edit field.

7 Click OK.

8 Press Ctrl+A to select both rectangles.

9 Click the Difference button on the Draw toolbar.

P H Y S I C S  S E T T I N G S

Point Settings
Because the equations contain only derivatives of the real dependent variable—the 
stream function Ψ—you must set a reference level somewhere to remove the ambiguity 
in the solution.

1 From the Physics menu, choose Point Settings.

2 Select Point 1 and enter the following constraint:

Boundary Conditions
1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Settings dialog box, click the r tab.

NAME EXPRESSION

rho0 1.23

Vmean 0.1

eta0 1.79e-5

SETTINGS POINT 1

constr -psi 0
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3 Enter the following boundary coefficients:

4 Click OK.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

2 On the Γ and F tabs, respectively, enter the PDE coefficients from the following 
table:

3 Click the Element tab.

4 In the Shape edit field, type sharg_2_5('psi').

5 In the gporder edit field, type 8 8.

6 Click OK.

The standard integration order for the Argyris element is 10. In this case only 
derivatives of psi appear in equations and boundary conditions. Therefore order 8 is 
sufficient. Reducing the order improves assembly time.

Expression Variables
1 From the Options menu, select Expressions>Subdomain Expressions.

2 In the resulting dialog box, define the following variables.

SETTINGS BOUNDARY 1 BOUNDARIES 2–5 BOUNDARY 6

R(1) Vmean*6*s*(1-s)-u -u 0

R(2) -v -v 0

SETTINGS SUBDOMAIN 1

 Γ(1,1) 2*eta0*ux

 Γ(1,2) eta0*(uy+vx)

 Γ(2,1) eta0*(uy+vx)

 Γ(2,2) 2*eta0*vy

 F(1) rho0*(u*ux+v*uy)

 F(2) rho0*(u*vx+v*vy)

VARIABLE NAME LEVEL DOMAIN EXPRESSION

u Subdomain 1 psiy

ux Subdomain 1 psiyx

uy Subdomain 1 psiyy

v Subdomain 1 -psix
B A C K S T E P  W I T H  A R G Y R I S  E L E M E N T  |  195



196 |  C H A P T E
3 From the Options menu select Expressions>Boundary Expressions.

4 In the resulting dialog box define the following variables.

5 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

2 In the Free Mesh Parameters dialog box, click the Custom mesh size button, then type 
2e-3 in the Maximum element size edit field.

3 Click the Point tab.

4 Select Point 4 and in the Maximum element size edit field type 4e-4.

5 Click the Remesh button, then click OK.

C O M P U T I N G  T H E  S O L U T I O N

It is possible to use the parametric solver to increase the velocity—and thereby the 
Reynolds number—step by step. Either give an explicit list of parameter values or let 
the solver automatically decide an optimum step length. The last option is usually the 
proper choice when using the parametric solver for difficult problems such as those 
with medium to high Reynolds number flows.

1 From the Solve menu, choose Solver Parameters.

2 In the Solver list, select Parametric.

3 Go to the Parameter area. In the Parameter name edit field, enter Vmean. Then, in 
the Parameter values edit field, type 0.1 0.544.

4 Click the Advanced tab.

5 In the Null-space function list, select Orthonormal.

6 In the Solution form list, select General. This is because the weak form results in 
expressions that include u, which is not a dependent variable when you use Argyris 
elements.

vx Subdomain 1 -psixx

vy Subdomain 1 -psixy

VARIABLE NAME LEVEL DOMAIN EXPRESSION

u Boundary 1:6 psiy

v Boundary 1:6 -psix

VARIABLE NAME LEVEL DOMAIN EXPRESSION
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7 Click OK, then click the Solve button on the Main toolbar to start the simulation.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The software displays the solution for the last parameter value. The value of the stream 
function itself is hardly interesting, but you can take advantage of the fact that contour 
lines of the stream function are the same as streamlines of the velocity field. The 
zero-level contour is of particular interest because it immediately shows the extent of 
the recirculation region and the location of the stagnation point.

1 From the Postprocessing menu, open the Plot Parameters dialog box.

2 In the Plot type area, clear the Surface check box. Then, select the Contour check 
box.

3 Change the value in the Element refinement edit field to 10. Before you can enter the 
number, you must clear the Auto check box.

4 Click the Contour tab, then clear the Smooth check box.

5 In the Contour levels area, click the button under Vector with isolevels, and then type 
0:0.0005:0.003 in the edit field.

6 Click OK to close the dialog box and generate the following plot.
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F l ow Pa s t  a  C y l i n d e r

The flow of fluid behind a blunt body such as an automobile is difficult to compute 
due to the unsteady flows. The wake behind such a body consists of unordered eddies 
of all sizes that create large drag on the body. In contrast, the turbulence in the thin 
boundary layers next to the streamlined bodies of aircraft and fish create only weak 
disturbances of flow.

An exception to this occurs when you place a slender body at right angles to a slow 
flow because the eddies organize. A von Karman vortex street appears with a 
predictable frequency and involves the shedding of eddies from alternating sides. 
Everyday examples of this phenomenon include singing telephone wires and an 
automobile radio antenna vibrating in an air stream.

From an engineering standpoint, it is important to predict the frequency of vibrations 
at various fluid speeds and thereby avoid undesirable resonances between the 
vibrations of the solid structures and the vortex shedding. To help reduce such effects, 
plant engineers put a spiral on the upper part of high smokestacks; the resulting 
variation in shape prohibits the constructive interference of the vortex elements that 
the structure sheds from different positions.

Model Definition

To illustrate how you can study such effects, the following model examines unsteady, 
incompressible flow past a long cylinder placed in a channel at right angle to the 
oncoming fluid. The cylinder is offset somewhat from the center of the flow to 
destabilize what otherwise would be steady-state symmetrical flow. The simulation 
time necessary for a periodic flow pattern to appear is difficult to predict. A key 
predictor is the Reynolds number, which is based on cylinder diameter. For low values 
(below 100) the flow is steady. In this simulation, the Reynolds number equals 100, 
which gives a developed Karman vortex street, but the flow still is not fully turbulent.

The frequency and amplitude of oscillations are stable features, but flow details are 
extremely sensitive to perturbations. To gain an appreciation for this sensitivity, you 
can compare flow images taken at the same time but with such minor differences as are 
created by different tolerances for the time stepping. It is important to note that this 
sensitivity is a physical reality and not simply a numerical artifact.
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Before calculating the time-varying forces on the cylinder, you can validate the method 
of computation at a lower Reynolds number using the direct nonlinear solver. This 
saves time because you can find and correct simple errors and mistakes before the final 
time-dependent simulation, which requires considerable time.

The viscous forces on the cylinder are proportional to the gradient of the velocity field 
at the cylinder surface. Evaluating the velocity gradient on the boundary by directly 
differentiating the FEM solution is possible but not very accurate. The differentiation 
produces 1st-order polynomials when 2nd-order elements are used for the velocity 
field. A far better approach is to use a pair of weak-constraint variables to enforce the 
no-slip condition; at the same time they collect 2nd-order accurate information on the 
viscous forces.

The drag and lift forces themselves are not as interesting as the dimensionless drag and 
lift coefficients. These depend only on the Reynolds number and an object’s shape, not 
its size. The coefficients are defined as

using the following parameters:

• FD and FL are the drag and lift forces

• ρ is the fluid’s density

• Umean is the mean velocity

• D is the characteristic length, in this case the cylinder’s diameter

CD
2FD

ρUmean
2 D

--------------------------=

CL
2FL

ρUmean
2 D

--------------------------=
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Results

Figure 6-1 shows the flow pattern resulting from the geometry.

Figure 6-1: A plot of the last time step clearly shows the von Karman path.

The flow around a cylinder is a common benchmark test for CFD algorithms. Various 
research teams have tried their strengths on this problem using different techniques. 
Results from some of these experiments have been collected by Schäfer and Turek (Ref. 
1), who also used them to compute a probable value for the “real” answer.

Reference

1. M. Schäfer and S. Turek, “Benchmark computations of laminar flow around 
cylinder”, E.H. Hirschel (editor), Flow Simulation with High-Performance 
Computers II, Volume 52 of Notes on Numerical Fluid Mechanics, Vieweg, 1996, 
pp. 547–566.

Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/cylinder_flow
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 In the list of application modes, select 
COMSOL Multiphysics>Fluid Dynamics>Incompressible Navier-Stokes, Steady-state 

analysis. Accept the default entry in the Element list, Lagrange - P2 P1 elements.

3 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, select Axes/Grid Settings.

2 In the Axes/Grid Settings dialog box, specify the following settings. To enter the grid 
spacing, first click the Grid tab and clear the Auto check box.

3 Click OK.

4 From the Options menu, select Constants.

5 Enter the following names, expressions, and descriptions (optional):

6 Click OK.

These values together with the cylinder having a diameter of 0.1 m lead to a Reynolds 
number of 20.

G E O M E T R Y  M O D E L I N G

1 From the Draw menu, select the Rectangle/Square button. With the mouse, create a 
rectangle R1 from (0, 0) to (2.2, 0.41).

AXIS GRID

x min -0.3 x spacing 0.2

x max 2.5 Extra x

y min -0.3 y spacing 0.05

y max 0.7 Extra y 0.41

NAME EXPRESSION DESCRIPTION

rho0 1[kg/m^3] Density

eta0 1e-3[Pa*s] Dynamic viscosity

Umax 0.3[m/s] Maximum inlet velocity
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2 From the Draw menu, select the Ellipse/Circle (Centered) button. Using the mouse, 
create a circle C1 with center at (0.2, 0.2) and a radius of 0.05. Use the right mouse 
button to ensure that you are creating a circle and use the tick mark at  y = 0.15 to 
obtain the correct radius.

3 Create the composite object. From the Draw toolbar, click the Create Composite 

Object button. In the Set formula edit field enter R1-C1. Click OK.

P H Y S I C S  S E T T I N G S

Application Mode Properties
You must first enable the weak constraints in the Application Mode Properties dialog 
box.

1 From the Physics menu, choose Properties.

2 In the Application Mode Properties dialog box, go to the Weak constraints list and 
select On. From the Constraint type list, select Non-ideal.

3 Click OK.

Boundary Conditions
First set the boundary conditions for the Incompressible Navier-Stokes equations as if 
the weak constraints did not exist. When you couple a constraint variable to a 
dependent variable inside the domain, the weak constraint mode analyzes the 
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constraints specified for the domain variable and replaces them with a weak term 
involving the constraint variable.

1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Settings dialog box, enter the following:

3 Click the Weak Constr. tab.

4 Select Boundaries 1–4 (the channel boundaries) and clear the Use weak constraints 

check box.

5 Click OK.

Subdomain Settings
Define the properties of the fluid and disable the streamline diffusion in the fluid 
subdomain. Streamline diffusion is not required to obtain good convergence for this 
model and by disabling it you also increase the accuracy of the solution.

1 From the Physics menu, select Subdomain Settings.

2 In the Subdomain Settings dialog box, enter the following material properties:

3 Click the Artificial Diffusion button.

4 In the Artificial Diffusion dialog box, clear the Streamline diffusion check box and click 
OK.

5 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

SETTINGS BOUNDARY 1 BOUNDARIES 2, 3, 5–8 BOUNDARY 4

Boundary type Inlet Wall Outlet

Boundary condition Velocity No slip Pressure,  
no viscous stress

u0 4*Umax*s*(1-s)

v0 0

p0 0

SETTINGS SUBDOMAIN 1

ρ rho0

η eta0
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2 Click the Custom mesh size button, enter 0.03 in the Maximum element size edit 
field, enter 1.2 in the Element growth rate edit field, and enter 0.1 in the Mesh 

curvature factor edit field.

3 Click OK.

4 Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar to solve the model.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The quantities in the benchmark study are the drag and lift coefficients. These you can 
calculate easily by integrating the weak constraint variables (which are really Lagrange 
multipliers corresponding to the viscous forces) and the pressure over the surface of 
the cylinder. First calculate the drag coefficient:

1 From the Postprocessing menu, choose Boundary Integration.

2 Select boundaries 5 to 8, corresponding to the cylinder surface. Enter the drag force 
expression -lm1*2/(rho0*(2*Umax/3)^2*0.1) in the Expression edit field.

3 Click Apply.

The result, 5.579263, appears in the message log and agrees well with the interval 
[5.57, 5.59] given in Ref. 1. Now calculate the lift coefficient.

4 Change the integrand in the Expression edit field to -lm2*2/(rho0*(2*Umax/
3)^2*0.1).

Also this value, 0.010675, is in perfect agreement with Schäfer and Turek (Ref. 1), 
who give the interval [0.0104, 0.0110] for acceptable solutions.

5 Click OK.

Time-Dependent Simulation

Now that you know that the machinery works for low Reynolds numbers and steady 
flow, you can do a time-dependent simulation at Re = 100.

O P T I O N S  A N D  S E T T I N G S

In the Constants dialog box change the maximum inflow velocity Umax to 1.5[m/s], 
corresponding to a Reynolds number of 100.
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C O M P U T I N G  T H E  S O L U T I O N

During the first few seconds of the simulation, before the system reaches a state of 
steady periodic motion, the output is not really interesting. Therefore you can save 
memory by saving only the value five times per second up to 3.5 seconds, and then fifty 
times per second for another second and a half. Perform the following steps for the 
time-dependent simulation of drag and lift:

1 From the Physics select Properties. 

2 Select Transient from the Analysis type list. Click OK.

1 From the Solve menu, choose Solver Parameters.

2 In the Solver list, select Time dependent.

3 In the Times edit field type [0:0.2:3.5 3.52:0.02:7].

4 In the Absolute tolerance edit field type 1e-4.

5 Click OK.

6 Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The difference from the former case can be seen immediately. Downstream of the 
cylinder, the Karman path is clearly visible (see Figure 6-1 earlier in this discussion).

To see the evolution of the vortex trail from zero velocity until the flow is fully 
developed, click the Animation button on the Plot toolbar on the left-hand side of the 
user interface. Notice that the time scale of the movie changes after 3.5 seconds.

You can also investigate the forces on the tube as a function of time by assigning the 
surface integral to a so-called integration-coupling variable:

1 Select the menu item Options>Integration Coupling Variables>Boundary Variables. 

2 Ctrl-click Boundaries 5 to 8 to select them as a group. As the first Name item type 
Lift and in the Expression edit field type -lm2*2/(rho0*(2*Umax/3)^2*0.1).

3 Clear the Global destination check box. This saves memory because you define the 
integral value to be stored only in one node instead of all the nodes in the model.

4 Click the Destination tab and select Point 1. Select the Use selected points as 

destination check box. Click OK.

5 Select the menu item Solve>Update Model. This calculates the integral without 
re-solving the problem.

6 From the Postprocessing menu, select Domain Plot Parameters. Select all the time 
steps, then click Plot type: Point plot. Go to the Point tab, select Point 1, and type 
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Lift in the Expression edit field, then click OK. The plot clearly shows the oscillations 
in the lift force.

Figure 6-2: Time evolution of the total lift force on the cylinder.

Finally, you can investigate how suspended particles behave in the flow stream. 
Consider, for example, small water droplets entering with the air flow.

1 In the Plot Parameters dialog box, go to the Particle Tracing page.

2 Select the Particle tracing plot check box.

3 In the Plot type list, select Points.

4 In the Predefined forces list, select the Khan and Richardson force (ns).

5 On the Start Points tab, enter 0 in the x edit field and then enter 0.1:0.05:0.3 in 
the y edit field.

6 Go to the Initial Values page. Clear the Auto check box and enter 3.6 in the Start 
time edit field to study the particles only for fully developed flow.

7 In the Initial velocity edit fields, type u and v to give the particles the same initial 
velocity as the inflow.

8 Go to the Point Settings page, find the When particles leaves the domain list, and 
select Disappear.

9 On the Release page, select Time between releases and specify the time as 0.4.

10 Click the Advanced button.

11 Select the Manual tuning of step size check box and enter 0.02 in the Initial time step 
edit field and 0.01 for Maximum time step.

12 Click OK to close the Advanced Parameters window.
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13 Go to the Animate tab and click Start Animation. Remember that the time scale of 
the movie changes after 3.5 seconds.
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F l u i d  V a l v e

Introduction

Many different applications such as printers involve the periodic opening and closing 
of fluid-flow channels. This is generally a difficult problem to model as it implies a 
moving boundary condition for the part of the geometry that acts as an obstacle for 
the flow.

An alternative is to use a material property (viscosity), which is easy to vary over time. 
In this case, specify a very large viscosity (ideally it should be an infinite viscosity) that 
in effect stops the flow in regions where this large viscosity is present. To simulate the 
movement of this region of large viscosity, the model includes a logical expression in 
the subdomain settings.

The model describes a valve where it is possible to direct the flow into one of the two 
channels. Flow of varying degrees can also occur in both channels during the opening 
and closing stages.

Model Definition

Figure 6-3 shows the model domain.

Figure 6-3: Depiction of the geometry and the operation of the fluid valve. Flow enters 
from one inlet at the left, but can leave the valve through two outlets at the right. The choice 
of outlet depends upon the position of the valve pin. In this model, two valve pins oscillate 
between the following positions: in front of one outlet channel to in front of the other. 
Sometimes flow is possible through both outlets, depending on the position of the pins.

Valve pin

Inlet

Outlet

Outlet
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In this model, the valve pin moves according to a sinusoidal function of time. The inlet 
velocity is constant.

D O M A I N  E Q U A T I O N S

The fluid flow is described by the Navier-Stokes equations:

 (6-1)

where ρ denotes the density (kg/m3), u the velocity vector (m/s), η the viscosity (Ns/
m2), and p the pressure (Pa). The modeled fluid is air with viscosity 10−5 Ns/m2 and 
density 1 kg/m3.

The movement of the valve is described with an analytic expression pin, which returns 
the value of one in the area corresponding to the valve pin and zero elsewhere. The 
viscosity is then expressed by

 (6-2)

where η0 is the fluid viscosity, is a very large viscosity (ideally infinite), and pin is 
described by

 (6-3)

where

 (6-4)

 (6-5)

y1 and y2 depend on time, t, according to:

 (6-6)

and where y0, x0, x1, and ymax are fixed in time and describe the size of the valve pin 
and the amplitude with which the pin moves.

B O U N D A R Y  C O N D I T I O N S

At the inlet, the model uses a fully developed laminar flow. The velocity is set to a 
parabolic velocity profile with maximum velocity vmax equal to 0.25 m/s. At the 

ρ
t∂

∂u ∇ η ∇u ∇u( )T
+( )⋅– ρu ∇⋅ u ∇p+ + 0=

∇ u⋅ 0=

η η0 pin η∞⋅+=

η∞

pin xpinypin=

xpin x x0>( ) x x1<( )=

ypin 1 y y1>( )– y y2>( )+=

y1 y0– ymax 2πt( )sin+=

y2 y0 ymax 2πt( )sin+=
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outlets, a neutral boundary condition states that the normal component of the stress 
tensor is zero:

 (6-7)

All other boundaries have a no-slip condition

 (6-8)

Results

Figure 6-4 shows the velocity field (modulus of the velocity vector) when the valve is 
completely open. Firstly, the plot shows that the inlet is smaller than the compartment 
that it enters, so that some distance is required before the flow reaches another 
parabolic profile for the main body of the inlet chamber. If you investigate the velocity 
vector, some recirculation occurring at the corners of the chamber beside the inlet is 
visible.

n pI– η ∇u ∇u( )T
+( )+[ ]⋅ 0=

u 0=
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Secondly, the structure of the outlet channels leads to a slight thinning toward the 
middle of the channels. This provides a slight acceleration, and subsequently greater 
velocity magnitude, in these regions.

Figure 6-4: Velocity field when the valve is completely open.

Figure 6-5 shows the velocity field when the valve is halfway closed from above and 
fully closed from below. The use of a very large viscosity not only simulates the solidity 
F L U I D  V A L V E  |  211



212 |  C H A P T E
of the valve pin but also does a good job of providing a no-slip boundary condition at 
the edge of the valve pin.

Figure 6-5: Velocity field when the valve is half way closed from above (top) and fully closed 
from below (bottom).
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Figure 6-6 shows a plot of the flow rates (integral of the velocity vector over the 
outlets) in the upper and lower channels as well as the total flow rate. The figure 
illustrates the periodic flow due to the periodic motion of the valve pin.

Figure 6-6: The blue line (solid) shows flow rate in the upper branch as a function of time, 
while the dotted line shows the flow rate in the lower branch. The dashed line shows the sum 
of the flow in the two branches.

Modeling in COMSOL Multiphysics

The inequalities used to describe the pin motion are, in the COMSOL Multiphysics 
implementation, replaced by smooth step functions. The smooth step function in this 
model is flc2hs, which returns a C2-continuous step with a given step width.

Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/fluid_valve

Modeling Using the Graphical User Interface

1 Start COMSOL Multiphysics.
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2 In the Model Navigator on the New page, select 2D from the Space dimension list.

3 From the list of application modes, select COMSOL Multiphysics> 

Fluid Dynamics>Incompressible Navier-Stokes>Transient analysis.

4 Click OK.

G E O M E T R Y  M O D E L I N G

1 Shift-click the Rectangle/Square button in the Draw toolbar. 

2 Specify the rectangle settings according to the following table; when done, click OK.

3 Click the Zoom Extents button on the Main toolbar.

4 Draw another rectangle according to:

5 Open the Axes/Grid Settings dialog box from the Options menu.

6 Enter the following axis settings:

7 Click the Grid page, clear the Auto check box and set y spacing to 5e-4.

8 Click OK.

PROPERTY EXPRESSION

Width 0.01

Height 3e-3

Position: Base Corner

Position: x 0

Position: y -1.5e-3

PROPERTY EXPRESSION

Width 5e-4

Height 3e-3

Position: Base Center

Position: x 9e-3

Position: y 0

PROPERTY EXPRESSION

x min 0.009

x max 0.019

y min 0

y max 5e-3
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9 Click the 3rd Degree Bézier Curve button in the Draw toolbar.

10 Click in the points (0.01, 0.0015), (0.013, 0.0015), (0.013, 0.0045), and (0.016, 
0.0045).

11 Switch to the Line tool by clicking the Line button in the Draw toolbar.

12 Click the points (0.018, 0.0045), (0.018, 0.0035), and (0.016, 0.0035).

13 Switch back to the 3rd Degree Bézier Curve and click the points (0.013, 0.0035), 
(0.013, 5·10−4), and (0.01, 5·10−4).

14 Close the geometry object by right-clicking anywhere in the drawing area.

15 To make the lower branch, use the mirror tool. Make sure that the upper branch 
geometry object is selected and click the Mirror button in the Draw toolbar.

16 Let the Point on line settings remain at the default settings. Change the Normal 

vector from (1, 0) to (0, 1).

17 Click OK.

18 Draw a circle with radius 5·10−4 centred in the point (0.01, 0).

19 Click the Zoom Extents button.

20 Click the Create Composite Object button in the Draw toolbar to open the Create 

Composite Object dialog box.

21 Clear the Keep interior boundaries check box, type R1+CO1+CO2-C1 in the Set 
formula edit field, and click Apply.

22 Select the Keep interior boundaries check box, type R2+CO3 in the Set formula edit 
field, and click OK.

23 The last step of the geometry modeling is to fillet the left corners. Click the Fillet/
Chamfer button in the Draw toolbar.

24 Select Points 1 and 2, enter 1e-3 in the Radius edit field and click OK.

O P T I O N S  A N D  S E T T I N G S

1 Open the Constants dialog box from the Options menu and enter constants 
according to the following table. When done, click OK.

NAME EXPRESSION DESCRIPTION

x0 8.7[mm] Valve left end point

x1 9.2[mm] Valve right end point

scale 1e-4 Step function scaling

y_max 1.5[mm] Valve pin amplitude

eta_0 1e-5[Pa*s] Fluid viscosity
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2 From the Options menu, choose Expressions>Scalar Expressions.

3 Enter scalar expressions according to the following table. When done, click OK.

The reason for the [1/m] entries for the input arguments to flc2hs is to make them 
dimensionless. Likewise, the input argument to the sin and cos functions must be 
dimensionless; appending [1/s] to the variable t for time accomplishes this.

4 Select Integration Coupling Variables>Boundary Variables from the Options menu.

5 Select Boundary 15 from the Boundary selection list. Type u_up in the Name edit 
field and u in the Expression edit field. Leave the Integration order at 4 and Global 

destination active.

6 Select Boundary 14 from the Boundary selection list. On the second row, type 
u_down in the Name edit field and u in the Expression edit field. Leave the Integration 

order at 4 and Global destination active.

7 Click OK.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Open the Boundary Settings dialog box from the Physics menu and enter boundary 
conditions according to the following table. When done, click OK.

eta_inf 1[Pa*s] Large viscosity

rho 1[kg/m^3] Fluid density

v_max 0.25[m/s] Maximum inlet velocity

NAME EXPRESSION

x_range flc2hs((x-x0)[1/m],scale)*(1-flc2hs((x-x1)[1/m],scale))

y_range 1-flc2hs((y-y1)[1/m],scale)+flc2hs((y-y2)[1/m],scale)

y1 -1.5[mm]+y_max*sin(2*pi*t[1/s])

y2 1.5[mm]+y_max*sin(2*pi*t[1/s])

pin y_range*x_range

eta eta_0+eta_inf*pin

pin_vel y_max*pi*2[1/s]*cos(2*pi*t[1/s])

SETTINGS BOUNDARY 1 BOUNDARIES 5, 6 BOUNDARIES 14, 15 ALL OTHERS

Boundary type Inlet Inlet Open boundary Wall

Boundary condition Velocity Velocity Normal stress No slip

NAME EXPRESSION DESCRIPTION
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Subdomain Settings
Define the properties of the fluid and disable the streamline diffusion in the fluid 
subdomain. Streamline diffusion is not required to obtain good convergence for this 
model because the fluid velocity is relatively low.

1 Open the Subdomain Settings dialog box from the Physics menu.

2 Select all subdomains.

3 Set the Density to rho and the Dynamic viscosity to eta.

4 Click the Artificial Diffusion button.

5 In the Artificial Diffusion dialog box, clear the Streamline diffusion check box and click 
OK.

6 Click OK.

M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box from the Mesh menu.

2 On the Global page, click the Custom mesh size button, and then set Maximum 

element size to 0.0004 and Element growth rate to 1.5.

3 Click the Subdomain tab.

4 Select Subdomain 2 from the Subdomain selection list. Set Maximum element size to 
0.0001.

5 Click Remesh and then OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box from the Solve menu.

2 In the Time stepping area, set Times to 0:0.02:1.5, Relative tolerance to 0.001, and 
Absolute tolerance to 0.0001.

3 Click OK.

4 Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To create the image in Figure 6-4, do the following steps.

u0 4*v_max*s* 
(1-s)

0 - -

v0 0 pin_vel - -

f0 - - 0 -

SETTINGS BOUNDARY 1 BOUNDARIES 5, 6 BOUNDARIES 14, 15 ALL OTHERS
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1 Open the Plot Parameters dialog box from the Postprocessing menu.

2 On the General page, clear the Geometry edges check box and make sure that the 
Surface check box is selected.

3 On the Surface page, select Velocity field from the Predefined quantities list on the 
Surface Data tab and click Apply.

To create the images in Figure 6-5 do the following steps:

4 On the General page, select the time step at 0.22 from the Solution at time list.

5 Select the Contour plot type.

6 On the Contour page, type eta in the Expression edit field.

7 In the Contour levels frame, select the Vector with isolevels and type 
linspace(1e-3,1.1e-3,10).

8 In the Contour color area, select Uniform color, click the Color button, and select white 
color. Click OK to close the Contour Color dialog box. Clear the Color scale check box.

9 Click Apply in the Plot Parameters dialog box.

To create the top image, repeat the above steps but for time step 0.92. 

Use the following steps to create Figure 6-6:

1 Open the Domain Plot Parameters dialog box from the Postprocessing menu.

2 On the General page, select the Keep current plot check box.

3 Click the Point tab and select Point 1 from the Point selection list.

4 Type u_up in the Expression edit field.

5 Click the Line Settings button and set Line color to a blue color by first selecting Color 
from the Line color list and then clicking the Color button. Select Solid line from the 
Line style list. Click OK.

6 Click Apply.

7 Type u_down in the Expression edit field.

8 Click the Line Settings button and set Line color to a red color and Line style to 
Dotted line. Click OK.

9 Click Apply.

10 Repeat for the expression u_down+u_up with a dashed, black line.
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M i c r om i x e r

Introduction

This example studies a laminar static mixer with two parallel sets of split-reshape- 
recombine mixing elements. Figure 6-7 shows the geometry of a single mixing 
element.

Figure 6-7: The micromixer splits the incoming fluid in the direction perpendicular to the 
interface separating the two fluid layers. After recombining them, the mixer stacks the two 
flows on top of each other, resulting in four fluid layers.

Each mixing element doubles the number of fluid layers, resulting in a fast mixing 
process. This technique is suited for laminar flow mixing and has small pressure losses. 
In this model, the mixing structure consists of two parallel sets of mixing elements, 
where each set is two elements long. You measure the mixing quality with the relative 
variance of the concentration profile, S, calculated as

where Kx is the yz-plane intersecting the mixing structure at coordinate x, and c is the 
mean concentration.

Inlet

Outlet

S
sx

sinlet
--------------=

sx c c–( )
2

Ad
Kx

∫=
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Model Definition

D O M A I N  E Q U A T I O N S

The fluid flow is described by the Navier-Stokes equations

where ρ denotes the density (kg/m3), u the velocity (m/s), η denotes the viscosity 
(N·s/m2), and p represents the pressure (Pa). The modeled fluid is water with a 
viscosity of 1·10−3 N·s/m2 and a density of 1000 kg/m3.

The mass flux is given by diffusion and convection, and the resulting mass balance is

where D denotes the diffusion coefficient (m2/s) and c gives the concentration (mol/
m3). The modeled species is bicarbonate ions with a diffusion coefficient of 
1.49 · 10−9 m2/s.

B O U N D A R Y  C O N D I T I O N S

At the inlet the model assumes fully developed laminar flow. It sets the velocity to a 
parabolic profile with a mean velocity of 0.01 m/s. At the outlet, the model sets the 
pressure to zero. All other boundaries have a no-slip condition

The inlet concentration has a discontinuous profile where the upper half has a 
concentration of 27 mol/m3 and the lower half is pure water. The boundary condition 
is defined such that

ρ
t∂

∂u ∇ η ∇u ∇u( )T
+( )⋅– ρu ∇⋅ u ∇p+ + 0=

∇ u⋅ 0=

∇ D c cu )+∇–(⋅ 0=

u 0.=

c inlet

c0 z 0>

0 z 0.≤⎩
⎨
⎧

=
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Results

Figure 6-8 shows the final concentration profile. 

Figure 6-8: Following three split-reshape-recombine cycles, the outflow has eight fluid 
layers.

Using boundary integration to calculate the relative variance of the concentration at 
the inlet and outlet, this setup reaches a mixing quality of 0.31 (for perfect mixing this 
value would be 0, and a value of  1 means no mixing at all). To improve this quality, 
add mixing elements.

Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/micromixer

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Open the Model Navigator, go to the Space dimension list and select 3D. Click the 
Multiphysics button.
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2 Select the application mode  
COMSOL Multiphysics>Fluid Dynamics>Incompressible Navier-Stokes>Steady-state 

analysis, then click the Add button.

3 Select COMSOL Multiphysics>Convection and Diffusion>Convection and Diffusion. Click 
the Add button once again.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu select Constants.

2 Define the following names, expressions, and (optionally) descriptions:

3 Click OK.

G E O M E T R Y  M O D E L I N G

The geometry consists of a rectangular channel that is split and recombines several 
times. Start by defining a work plane.

1 From the Draw menu select Work-Plane Settings. Click OK to select the default x-y 
work plane at z = 0.

2 Select the menu item Options>Axes/Grid Settings. 

3 Verify that you are on the Axis page. Enter the following settings:

4 Go to the Grid page. Clear the Auto check box, then in both the x spacing and y 
spacing edit fields enter 1e-4.

5 Click OK.

NAME EXPRESSION DESCRIPTION

rho 1e3[kg/m^3] Density

eta 1e-3[Pa*s] Dynamic viscosity

U_mean 0.01[m/s] Mean inlet velocity

c0 27[mol/m^3] Inlet concentration

D 1.49e-9[m^2/s] Diffusion coefficient

PROPERTY EXPRESSION

x min -1e-3

x max  3e-3

y min -1e-3

y max  1e-3
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Constructing a Single Mixing Element
1 Go to the Draw toolbar on the left side of the user interface and click the Line 

button. Draw a seven-sided polygon in the drawing area by clicking, in order, the 
coordinates (0, 0), (0, 0.5·10−3), (0.7·10−3, 0.7·10−3), (1.3·10−3, 0.7·10−3), 
(2·10−3, 0.5·10−3), (2·10−3, −0.5·10−3), (1·10−3, 0.1·10−3), and (0, 0). Finally, 
click the right mouse button to create the solid object. (Soon you will learn about 
an alternative method for creating polygons.)

2 From the Draw menu choose Extrude. In the Distance edit field enter 2e-3, then click 
OK.

3 Click the Move button on the Draw toolbar. Set the Displacement: z to -1e-3, then 
click OK.

4 Press Ctrl+C and then Ctrl+V to make a copy of the extruded object and paste it. 
Let all Displacements equal 0, then click OK.

5 On the Draw toolbar click the Rotate button. Set the Rotation angle to 90, then set 
the Rotation axis direction vector to x, y, and z values of 1, 0, and 0, respectively. Click 
OK.

6 Return to the Draw toolbar and again click the Rotate button. Set the Rotation angle 
to 180. This time go to the Point on rotation axis area, and in the x, y, and z edit 
fields enter 1e-3, 0, and 0, respectively. Click OK.

7 Press Ctrl+A to select both objects, then click the Intersection button on the Draw 
toolbar.

8 Make a copy of the object by pressing Ctrl+C, then Ctrl+V, and choosing OK.

9 Go to the Draw toolbar and click the Rotate button. Set the Rotation angle to 180, 
then set the Rotation axis direction vector to x, y, and z values of 1, 0, and 0, 
respectively. Click OK.

Connecting a Second Mixing Element in the Series
1 Press Ctrl+A to select both objects.

2 Go to the Draw toolbar and click the Mirror button and in the Normal vector row 
enter values for x, y, and z of 0, 1, and 0, respectively. Click OK.

3 Click the Move button on the Draw toolbar. Set the Displacement: x to 2.5e-3. Click 
OK.

Making Square Channel Connections Between the Mixing Elements
1 From the Draw menu select the Geom2 work plane.

2 From the Draw menu select the Rectangle/Square button and note that the cursor 
changes to a crosshair (alternatively, select Draw>Draw Objects>Rectangle/Square). 
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Using the mouse, drag the cursor to create a rectangle with its base corner at 
(−0.5·10−3, −0.5·10−3), a width of 0.5·10−3, and a height of 1·10−3.

3 Select the menu item Draw>Extrude. In the Distance edit field enter 1e-3, then click 
OK.

4 On the Draw toolbar click the Move button. Set the Displacement: z to -0.5e-3.

5 On the Draw toolbar click the Array button. Change the Displacement: x to 2.5e-3 
and the Array size: x to 3. Click OK to create the array.

Getting Two Mixing Channels in Parallel
1 Press Ctrl+A to select all the objects.

2 From the Draw toolbar select Move. Set the Displacement: y to 1e-3. Click OK.

3 Press Ctrl+C and Ctrl+V to copy and paste the objects. Set the Displacement: y to 
-2e-3, then click OK.

Connecting the Two Parallel Channels to a Single Channel at Both Ends
1 From the Draw menu select the Geom2 work plane.

2 On the Draw toolbar, Shift-click the Rectangle/Square button. In the Rectangle dialog 
box create a rectangle with its base corner at (−3.5·10−3, −0.7·10−3), a width of 
 10−3, and a height of 1.4·10−3.

3 From the Draw menu choose Extrude. Set the Distance to 1.4e-3, then click OK.

4 Go to the Draw toolbar and click the Move button. Set the Displacement: z to 
-0.7e-3, then click OK.

5 Press Ctrl+C and Ctrl+V to copy and paste the objects; set the Displacement: x to 
10.5e-3, then click OK.

6 Click on the tab at the top of the drawing area to return to the Geom2 work plane. 
On the Visualization/Selection toolbar on the left side of the user interface choose 
Projection of All 3D Geometries.

7 Draw a four-sided polygon with corners at the points (−2.5·10−3, 0), 
(−0.5·10−3, 0.5·10−3), (−0.5·10−3, 1.5·10−3), and (−2.5·10−3, 0.7·10−3). To do 
so, select the menu item Draw>Specify Objects>Line (or Shift-click the Line button in 
the Draw toolbar). In the resulting dialog box find the Style list and select Closed 

polyline (solid). In the x edit field enter the sequence of x-coordinates from the 
coordinate pairs just given, then do the same for the y-coordinates in the y edit field. 
Click OK.

8 Next, extrude the polygon: select the menu item Draw>Extrude, then in the Distance 
edit field type 2e-3. Click OK.
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9 Move the extruded polygon. From the Draw toolbar select the Move tool. You 
default to the Displacement area, and in the z edit field enter -1e-3.

Setting Up a Second Work Plane
1 From the Draw menu select Work-Plane Settings, then click Add. A new work plane, 

Geom3, appears. Select the z-x plane and click OK.

2 On the Visualization/Selection toolbar choose Projection of All 3D Geometries.

3 Click the Zoom Extents button on the Main toolbar.

4 From the Options menu open the Axes/Grid Settings dialog box. On the Grid page 
clear the Auto check box. In both the x spacing and y spacing edit fields enter 1e-4.

5 Using the Closed polyline (solid) technique already described, draw a four-sided 
polygon with corners at the points (−0.7·10−3, −2.5·10−3), (0.7·10−3, −2.5·10−3), 
(0.5·10−3, −0.5·10−3), and (−0.5·10−3, −0.5·10−3).

6 Select Draw>Extrude, then in the Distance edit field type 2e-3. Click OK.

7 Select the two extruded geometries (EXT9 and EXT10). Go to the Draw toolbar 
and click the Intersection button.

8 Go back to the Draw toolbar and click the Mirror button. Set the x, y, and z values 
of the Normal vector to 0, 1, and 0, respectively. Click OK.

Doubling the Number of Fluid Layers
When building the outflow connections, notice that you can double the fluid layers 
one more time by guiding the channels properly. 

1 Click the appropriate tab at the top of the drawing area to return to the Geom2 
work plane.

2 Using the Closed polyline (solid) technique already described, draw a five-sided 
polygon with corners at the points (5·10−3, 0.5·10−3), (6·10−3, 0.1·10−3), 
(7·10−3, −0.7·10−3), (7·10−3, 0.7·10−3), and (5·10−3, 1.5·10−3).

3 Select Draw>Extrude, then in the Distance edit field type 2e-3. Click OK.

4 Move the extruded polygon. From the Draw toolbar select the Move tool. You 
default to the Displacement area, and in the z edit field enter -1e-3. Click OK.

5 Go to the Geom3 work plane.

6 Using the Closed polyline (solid) technique already described, draw a six-sided 
polygon with corners at the points (0.5·10−3, 5·10−3), (0.8·10−3, 6·10−3), 
(0.7·10−3, 7·10−3), (0, 7·10−3), (0.1·10−3, 6·10−3), and (−0.5·10−3, 5·10−3).

7 Select Draw>Extrude, then in the Distance edit field type 3e-3. Click OK.
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8 From the Draw toolbar select the Move tool. You default to the Displacement area, 
and in the y edit field enter -1e-3. Click OK.

9 Select the EXT9 and EXT10 geometries; on the Draw toolbar click the Intersection 
button.

10 Press Ctrl+C and Ctrl+V to make a copy of the new object. Let all Displacements 
equal 0. Click OK.

11 Go to the Draw toolbar and click the Rotate button. Set the Rotation angle to 180, 
then set the Rotation axis direction vector to x, y, and z values of 1, 0, and 0, 
respectively. Click OK.

12 Press Ctrl+A to select all the geometry objects.

13 From the Draw toolbar choose Create Composite Object. Clear the Keep interior 

boundaries check box, then click OK.

This completes the geometry-modeling stage. The resulting geometry should look like 
that in the figure below.

Model geometry.

P H Y S I C S  S E T T I N G S — I N C O M P R E S S I B L E  N A V I E R - S T O K E S

Boundary Conditions
1 From the Multiphysics menu select 1 Incompressible Navier-Stokes (ns).

2 From the Physics menu open the Boundary Settings dialog box. Enter settings from 
the following table; when done, click OK.

SETTINGS BOUNDARY 1 BOUNDARY 136 ALL OTHERS

Boundary type Inlet Outlet Wall

Boundary condition Velocity Pressure, no viscous 
stress

No slip
R  6 :  F L U I D  D Y N A M I C S  M O D E L S



Subdomain Settings
1 Select the menu item Physics>Subdomain Settings.

2 Select Subdomain 1. Set the Density to rho and the Dynamic viscosity to eta.

3 Click the Init tab and then select Subdomain 1. Set the following initial conditions; 
when finished, click OK.

P H Y S I C S  S E T T I N G S — C O N V E C T I O N  A N D  D I F F U S I O N

Boundary Conditions
1 From the Multiphysics menu select 2 Convection and Diffusion (cd).

2 Select the menu item Physics>Boundary Settings. Enter the following settings, then 
click OK:

Subdomain Settings
1 From the Physics menu open the Subdomain Settings dialog box.

2 Select all the subdomains, then enter coefficients from the following table:

u0 (9/4)*U_mean*16*s1* 
(1-s1)*s2*(1-s2)

- -

v0 0 - -

w0 0 - -

p0 - 0 -

VARIABLE VALUE

u(t0) U_mean

v(t0) 0

w(t0) 0

p(t0) 0

SETTINGS BOUNDARY 1 BOUNDARY 136 ALL OTHERS

Type Concentration Convective flux Insulation/Symmetry

c0 c0*(z<0)

NAME EXPRESSION

D (isotropic) D

R 0

u u

SETTINGS BOUNDARY 1 BOUNDARY 136 ALL OTHERS
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3 Click the Artificial Diffusion button. In the resulting dialog box, select the Streamline 

diffusion check box. Click OK.

4 Click the Init tab. In the c(t0) edit field enter c0.

5 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu select Free Mesh Parameters.

2 Click the Custom mesh size button and enter 3e-4 in the Maximum element size edit 
field.

3 Click Remesh, then click OK.

C O M P U T I N G  T H E  S O L U T I O N

Because the fluid’s properties do not change with concentration, this example solves 
the Navier-Stokes equations independently.

1 Click the Solver Manager button on the Main toolbar.

2 Go to the Solve For page. Select Incompressible Navier-Stokes (ns), then click OK.

3 Click the Solver Parameters button on the Main toolbar.

4 On the General page, select Geometric multigrid from the Linear system solver list; 
then click OK. This also sets up the Vanka smoother with pressure as the so-called 
Vanka variable.

5 Click the Solve button on the Main toolbar to calculate the flow field.

Solving the Mass Balance
With the flow field computed, it is time to turn to the mass balance equation. The 
example solves the mass balance on a finer mesh so it can resolve the high gradients in 
the interface between the fluid layers.

1 From the Mesh menu open the Free Mesh Parameters dialog box.

2 Click the Custom mesh size button and in the Maximum element size edit field enter 
1.25e-4.

3 Click Remesh, then click OK.

Adjust the solver settings to solve for the mass balance. Because the 
convection-diffusion equation is linear, use the linear solver.

v v

w w

NAME EXPRESSION
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1 From the Solve menu open the Solver Manager dialog box.

2 Click the Solve For tab. Select Convection and Diffusion (cd).

3 Click the Initial Value tab, then click the Store Solution button.

4 In the Initial value area, click the Stored solution option button. Click OK.

5 From the Solve menu open the Solver Parameters dialog box.

6 From the Linear system solver list choose GMRES. Click OK.

7 Compute the final solution by clicking the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Follow these instructions to reproduce the plot in Figure 6-8.

1 From the Postprocessing menu open the Plot Parameters dialog box.

2 On the General page, locate the Element refinement label, clear the Auto check box, 
then in the associated edit field enter 2.

3 In the Plot type area clear the Slice check box and select the Boundary check box.

4 Go to the Boundary page. In the Predefined quantities list select 
Convection and Diffusion (cd)>Concentration, c.

5 Click OK.

Finally calculate the mixing quality.

1 From the Postprocessing menu open the Boundary Integration dialog box.

2 Select Boundary 1 (the inlet), then in the Expression edit field enter (c-c0/2)^2.

3 Click Apply to perform the integration. The result appears in the report log at the 
bottom of the user interface. 

4 Select Boundary 136 (the outlet). Click OK to perform the integration and close the 
dialog box.

5 Dividing the outlet value by the inlet value gives a measure of the mixing quality.
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S h o c k  Tub e

Shock waves arise from sudden jumps in gas properties such as temperature or 
pressure. We generally associate shock waves with violent processes such as supersonic 
flight or explosion blasts. However, even the slow movement of a piston in a tube can 
create flows that eventually turn into shock waves due to the inherent dynamics of the 
conservation of mass, momentum, and energy.

Discontinuities in flows were the topic of debate in the late 19th century, and even 
Lord Rayleigh at some point concluded they could not exist. What finally settled the 
issue was photographic evidence from a shock-tube experiment such as that described 
here.

Introduction

A shock tube is a device for studying shock waves. Prior to starting an experiment, a 
diaphragm inside the tube blocks any flow. You then increase the pressure on one side, 
for example, by using a compressor, and start the flow by rupturing the diaphragm. 
The gas then expands down the other half of the tube. Through optical means you can 
observe the flow and model the action of shocks. A pressurized tube of this type can 
store substantial amounts of energy, allowing for the study of quite violent flows—
albeit for only very short periods.

Model Definition

The effects of viscosity and heat conduction are small for the time scales of interest 
here. Therefore the Euler equations of gas dynamics define the flow as movement of a 
compressible inviscid gas in the tube according to

where u is the velocity, ρ is the density, and p is the pressure.

The speed of sound a in a polytropic gas is given by:

ρt uρx uxρ+ + 0=

ut uux
px
ρ
------+ + 0=

pt upx a2ρux+ + 0=
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Here γ gives the ratio of specific heats at constant pressure to constant volume; for a 
diatomic gas such as air, γ is 7/5. Thus you can write the equations as

Modeling in COMSOL Multiphysics

A clever way to conserve on model development time and computational cost is to 
solve this problem in a 2D geometry, using the y-coordinate as time. To do so, set up 
a rectangular domain in the ranges –1.5 < x < 1.5 and 0 < y < 1. As initial conditions, 
use the following values:

As these equations are numerically difficult to solve, stabilization with streamline 
diffusion facilitates convergence of the numerical scheme.

To derive the streamline-diffusion contributions, create a test function by taking each 
of the original equations and replacing the first-order derivatives with the 
corresponding test functions. Multiply the results by δh and the original equations to 
obtain equations for the streamline-diffusion contributions

a2 γ p
ρ
---=

0 ρt uρx ux ρ+ +( )–=

0 ut uux
px

ρ
------+ +⎝ ⎠

⎛ ⎞–=

0 pt upx γ pux+ +( )–=

u 0=

ρ 2 x 0<
1 x 0>⎩

⎨
⎧

=

p 2 x 0<
1 x 0 >⎩

⎨
⎧

=

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

δh ρ̂t uρ̂x ûx ρ+ +( ) ρt uρx ux ρ+ +( )–

δh ût uûx
p̂x

ρ
------+ +⎝ ⎠

⎛ ⎞ ut uux
px

ρ
------+ +⎝ ⎠

⎛ ⎞–

δh p̂t up̂x γ pûx+ +( ) pt upx γpux+ +( )–
S H O C K  TU B E  |  231



232 |  C H A P T E
The above equations denote test functions using the “hat” symbol. This streamline 
diffusion is of the Petrov-Galerkin type, which is one of the predefined types of 
artificial diffusion that you find, for example, in the Incompressible Navier-Stokes 
application mode.

In the model, you enter the Euler equations using a general form PDE with three 
dependent variables for pressure, density, and velocity. Use a weak term to add the 
streamline diffusion.

To resolve the shock wave, use the adaptive mesh generation in COMSOL 
Multiphysics.

Results

The plots below show distance across the tube’s diaphragm on the horizontal axis and 
time along the vertical axis, where temperature and pressure are color coded. At  t = 0 
you can see constant states on both sides of the membrane, which is centered at x = 0. 
Specifically, in Figure 6-9, pressure is high to the left and low to the right; in 
Figure 6-10, temperature is uniform throughout the tube.

Figure 6-9: The pressure distribution in the shock tube. The y-axis represents time.
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Figure 6-10: The nondimensional temperature distribution. The y-axis represents time.

The plots show the typical flow features of shock-tube problems. There are two 
possible types of jump solutions. At the time of a shock, all variables have jump 
discontinuities, and the second type of jump solution is a contact surface where 
pressure is continuous.

This case shows a shock traveling right, a contact surface moving more slowly to the 
right, and finally an expansion fan receding to the left into the denser, undisturbed gas.

Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/shock_tube

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 Click the Multiphysics button.
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3 Click the Add Geometry button.

4 Keep 2D in the Space dimension list and type x time z in the Independent variables 
edit field.

5 Click OK.

6 In the COMSOL Multiphysics>PDE Modes folder, select PDE, General Form.

7 Type rho u p in the Dependent variables edit field.

8 Click Add and then click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 In the Constants dialog box, define the following constants with names and 
expressions:

3 Click OK.

4 From the Options menu, choose Axes/Grid Settings.

5 Enter axis settings:

6 Click OK.

G E O M E T R Y  M O D E L I N G

1 Click the Rectangle/Square button in the Draw toolbar.

2 Draw a rectangle with opposite corners in the points(−1.5, 0) and (1.5, 1).

P H Y S I C S  S E T T I N G S

Expression Variables
1 On the Options menu, point to Expressions and then click Subdomain Expressions.

NAME EXPRESSION

gamma 1.4

delta 1

AXIS

x min -1.5

x max 1.5

time min -0.5

time max 1.5
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2 Select Subdomain 1 and enter the following expression variables:

3 Click OK.

Boundary Conditions
1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Settings dialog box, enter the following settings:

3 Click OK.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

2 In the Subdomain Settings dialog box, enter the following settings:

PROPERTY VALUE

F1 -(rhotime+u*rhox+rho*ux)

F2 -(utime+u*ux+px/rho)

F3 -(ptime+u*px+gamma*p*ux)

SETTINGS BOUNDARIES 1, 4 BOUNDARY 2 BOUNDARY 3

G(1) 0 0 0

G(2) 0 0 0

G(3) 0 0 0

R(1) 0 (x<0)+1-rho 0

R(2) -u -u 0

R(3) 0 (x<0)+1-p 0

PROPERTY VALUE

 Γ(1) 0 0

 Γ(2) 0 0

 Γ(3) 0 0

F(1) F1

F(2) F2

F(3) F3
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3 Click the Init tab and set the following initial conditions:

4 Click the Weak tab.

5 In the weak edit field, type the following streamline diffusion contributions as one 
single line, separating each contribution with a space:

delta*h*(rhotime_test+u*rhox_test+rho*ux_test)*F1 
delta*h*(utime_test+u*ux_test+px_test/rho)*F2 
delta*h*(ptime_test+u*px_test+gamma*p*ux_test)*F3

6 Click OK.

M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu, choose Solver Parameters.

2 Select the Adaptive mesh refinement check box.

3 Click the Advanced tab.

4 In the Scaling of variables area, select None in the Type of scaling list.

5 Click OK.

6 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 Open the Plot Parameters dialog box.

2 On the Surface tab, visualize the pressure by selecting PDE, General Form (g)>p from 
the Predefined quantities list on the Surface Data tab.

3 Click Apply.

This generates the plot in Figure 6-9.

4 Similarly, to visualize the nondimensional temperature, type p/rho in the Expression 
edit field on the Surface Data tab.

5 Click OK.

This closes the Plot Parameters dialog box and generates the plot in Figure 6-10.

PROPERTY VALUE

rho(t0) 1

u(t0) 0

p(t0) 1
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T e rm i n a l  F a l l i n g  V e l o c i t y  o f  a  S and 
G r a i n

Introduction

The first stop for polluted water entering a water work is normally a large tank, where 
large particles are left to settle. More generally, gravity settling is an economical 
method of separating particles. If the fluid in the tank is moving at a controlled low 
velocity, the particles can be sorted in separate containers according to the time it takes 
for them to reach the bottom.

This model simulates a spherical sand grain falling in water. The grain accelerates from 
standstill and rapidly reaches its terminal velocity. The results agree very well with 
experimental studies. The model is an axially symmetric fluid-flow simulation in a 
moving coordinate system, coupled to an ordinary differential equation (ODE) 
describing the grain’s motion.
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Model Definition

The model couples the flow simulation in cylindrical coordinates with an ODE for the 
force balance of the particle. Due to axial symmetry, you can model the flow in 2D 
instead of 3D. The figure below shows the modeling domain.

D O M A I N  E Q U A T I O N S

The fluid flow is described by the Navier-Stokes equations

where ρ denotes the density (kg/m3), u the velocity vector (m/s), η the viscosity (Ns/
m2), and p the pressure (Pa). The fluid is water with a viscosity of 1.51·10−3 Ns/m2 
and a density of 1000 kg/m3. The problem is solved in the accelerating reference 
system of the sand grain. This means that the volume force density F is given by:

where a (m/s2) is the acceleration of the grain and g = 9.81 m/s2 is the acceleration 
due to gravity. The ODE that describes the force balance is:

ρ
t∂

∂u ∇ η ∇u ∇u( )T
+( )⋅– ρu ∇⋅ u ∇p+ + F=

∇ u⋅ 0=

Fr 0,= Fz ρ a g+( )–=

mx·· Fg Fz+=
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where m (kg) denotes the mass of the particle, x (m) the position of the particle, Fg 
(N) the gravitational force, and Fz the z-component of the force that the water exerts 
on the sand grain. The gravitational force is given by:

where Vgrain (m3) is the volume of the sand grain and ρgrain (kg/m3) its density. The 
force that the water exerts on the grain is calculated by integrating the normal 
component of the stress tensor over the surface of the particle. Because the model is 
axially symmetric, the force only has a nonzero z-component:

where r (m) is the radial coordinate and n is the normal vector on the surface of the 
grain.

The problem is solved using the initial values . 

B O U N D A R Y  C O N D I T I O N S

At the surface of the sphere, the velocity relative the sphere is zero. Therefore, a no-slip 
condition, u = 0, is used. The velocity at the inlet of the fluid domain is set to the 
falling velocity: . Symmetry (or the slip  condition), n · u = 0, is set at the 
z-axis, and a neutral  condition, , describes the 
outlet.

Results

The following series of snapshots are of the velocity field, from a moment just after the 
sand grain is released until it is approaching steady state. Notice the recirculation 

Fg ρgrain– Vgraing=

Fz 2π rn pI– η ∇u ∇u( )T
+( )+[ ]⋅ Sd

S
∫=

u0 v0 x0 x0
· 0= = = =

u 0 x·,( )=

n pI– η ∇u ∇u( )T
+( )+[ ]⋅ 0=
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forming above the grain.

Figure 6-11: The velocity field around the sand grain at a series of times.
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Figure 6-12 below shows the falling velocity of the grain as a function of time. The 

Figure 6-12: Falling velocity (m/s) of the grain versus time. After the solution time of 1 s, 
the velocity approaches the terminal velocity.

terminal velocity equals 0.291 m/s. When this state is reached, the gravity and the 
forces from the water cancel out. Figure 6-13 below shows the forces on the sand 
grain.

Figure 6-13: The forces on the sand grain. The force that the water exerts on the sphere 
(upper line) increases as the grain gains speed. The gravity force (lower line) remains the 
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same, and the total force (middle line) tends toward zero as the solution approaches steady 
state.

Figure 6-14 below shows the velocity field at steady state. 

Figure 6-14: The velocity field at steady state. Note that the velocities are plotted in the 
reference system of the sand grain.

Several approximate equations have been proposed for the terminal velocity of a sphere 
falling in a fluid. Ref. 1 cites the following expression for the total force that the fluid 
exerts on the sphere, as a function of the velocity:

where d (m) is the diameter of the sphere, ρ (kg/m3) the fluid density, v (m/s) the 
velocity, and Re = (ρ v d)/µ is the Reynolds number, with µ (Ns/m2) being the 
viscosity of the fluid. The gravity force is given analytically as Fg = π d3 (ρ − ρs) g/6, 
where ρs (kg/m3) is the density of the sphere. Equating the two forces and 
introducing the values used in the simulation gives an approximate terminal velocity of 
0.284 m/s. 

The same reference discusses correction factors for non-spherical particles. You can 
easily adapt the model to hold for a general axially symmetric object (by redrawing the 
geometry) or even an arbitrarily shaped object (by modeling in 3D).

F π
4
---d2ρv2 1.84Re 0.31– 0.293Re0.06

+( )
3.45

=
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Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/falling_sand

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select Axial symmetry (2D) from the Space dimension list.

2 In the list of application modes, select COMSOL Multiphysics>Fluid 

Dynamics>Incompressible Navier-Stokes>Transient analysis.

3 Click Multiphysics, and then Add.

4 Click the Application Mode Properties button and set Weak constraints to On and 
Constraint type to Non-ideal.

5 Click OK to close the dialog box.

O P T I O N S  A N D  S E T T I N G S

1 Enter the following constant names and expressions in the Constants dialog box:

2 Click OK to close the dialog box.

NAME EXPRESSION

rho_water 1000

eta_water 1.51e-3

r_grain 1e-3

V_grain 4/3*pi*r_grain^3

rho_grain 2900

m_grain V_grain*rho_grain

g 9.81

Fg -m_grain*g
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G E O M E T R Y  M O D E L I N G

1 Go to Draw>Specify Objects and specify a rectangle with the following properties:

2 Click the Zoom Extents button to see the rectangle you just created. 

3 Specify a circle centered at (0, 0) with the radius 10−3.

4 Select both objects and click the Difference button.

P H Y S I C S  S E T T I N G S

Space-Independent Equations
1 Choose Physics>Space-Independent Equations to open the Space-Independent 

Equations dialog box.

2 Enter the following ODEs:.

Boundary Conditions.
1 In the Boundary Settings dialog box, enter boundary coefficients as indicated in the 

table below:

2 Choose Options>Integration Coupling Variables>Boundary Variables.

3 On the Source tab, select Boundaries 6 and 7. Specify a boundary integration 
coupling variable with the Name Fz and the Expression -2*pi*lm2. Leave the 
Integration order at the default value 4 and the Global destination set to on. The 

PROPERTY EXPRESSION

Width 6e-3

Height 14e-3

Position: Base Corner

Position: r 0

Position: z -6e-3

NAME EQUATION INIT (U) INIT (UT)

X Xt-Xdot 0 0

Xdot Xdott-(Fz+Fg)/m_grain 0 0

SETTINGS BOUNDARIES 1, 3, 5 BOUNDARY 2 BOUNDARY 4 BOUNDARIES 6, 7

Type Symmetry boundary Inlet Open boundary Wall

Condition Symmetry Velocity Normal stress No slip

v0 -Xdot

f0 0
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Lagrange multiplier lm2 is equal to the z component of the total stress tensor times 
the r coordinate. Using the expression -T_z_ns*2*pi*r would give a similar 
solution but with a worse accuracy and a slightly higher memory consumption.

4 Click OK to close the dialog box.

Subdomain Settings
In the Subdomain Settings dialog box, enter the subdomain settings indicated in the 
table below.

M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box

2 Select Fine among the Predefined mesh sizes.

3 Click the Custom mesh size button and Set the Element growth rate to 1.1.

4 On the Boundary tab, set the Maximum element size for Boundary 3 to 2e-4, and for 
Boundaries 6 and 7 to 1e-4.

5 Click the Remesh button.

6 Click OK to close the dialog box.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Manager.

2 On the Output tab, select the Include time derivatives check box.

3 Click OK to close the dialog box.

1 Open the Solver Parameters dialog box.

2 On the General tab, select the Time dependent solver.

3 In the Times text field, enter 0:0.025:1.

4 In the Absolute tolerance text field, enter 1e-5.

5 Click OK to close the dialog box.

6 Click the Solve button.

SETTINGS SUBDOMAIN 1

 ρ rho_water

 η eta_water

 Fr 0

 Fz -rho_water*(Xdott+g)
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P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot shows the velocity field in the reference system of the grain.

1 Open the Plot Parameters dialog box.

2 On the Streamline tab, click to select the Streamline plot check box.

3 Click the Color button on the Line Color tab and select a black color.

4 Click OK to see the streamline plot.

You can also visualize the velocity and the forces on the grain as functions of time:

5 Choose Postprocessing>Domain Plot Parameters.

6 On the Point tab, select an arbitrary point and enter -Xdot in the Expression text 
field. 

7 Click Apply to plot the velocity against time.

It is possible to view all the forces in the same figure:

8 On the Point tab, select an arbitrary point and enter Fz in the Expression text field.

9 Click Apply to plot the viscous and pressure contributions to the force against time.

10 On the General tab, click to select the Keep current plot check box.

11 On the Point tab, click the Line Settings button and select a red color.

12 In the Expression text field, enter Fg.

13 Click Apply.

14 Click the Line settings button again and select a black color.

15 In the Expression text field, enter Fg+Fz.

16 Click OK to reproduce the plot in Figure 6-14 and close the dialog box.
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Introduction

This 2D model demonstrates the ability of COMSOL Multiphysics to simulate 
dynamic free surface flow with the help of a moving mesh. The study models fluid 
motion with the incompressible Navier-Stokes equations. The fluid is initially at rest in 
a rectangular tank. The motion is driven by the gravity vector swinging back and forth, 
pointing up to 4 degrees away from the downward  y direction at its extremes.

Figure 6-15: Snapshots of the velocity field at t = 1 s, t = 1.2 s, t = 1.4 s, and t = 1.6 s. The 
inclination of the gravity vector is indicated by the leaning of the tank.

Because the surface of the fluid is free to move, this model is a nonstandard 
computational task. The ALE (arbitrary Lagrangian-Eulerian) technique is, however, 
well suited for addressing such problems. Not only is it easy to set up using the Moving 
Mesh (ALE) application mode in COMSOL Multiphysics, but it also has the 
advantage that it represents the free surface boundary with a domain boundary on the 
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moving mesh. This allows for the accurate evaluation of surface properties such as 
curvature, making surface tension analysis possible. Note, however, that this example 
model neglects surface tension effects.

Model Definition

D O M A I N  E Q U A T I O N S

This model describes the fluid dynamics with the incompressible Navier-Stokes 
equations:

where ρ is the density, u = (u, v) is the fluid velocity,  p is the pressure, I is the unit 
diagonal matrix, η is the viscosity, and F is the volume force. In this example model, 
the material properties are for glycerol: η = 1.49 Pa·s, and ρ = 1.27·103 kg/m3. The 
gravity vector enters the force term as

where g = 9.81 m/s2, , and f = 1 Hz.

With the help of the Moving Mesh (ALE) application mode, you can solve these 
equations on a freely moving deformed mesh, which constitutes the fluid domain. The 
deformation of this mesh relative to the initial shape of the domain is computed using 
Winslow smoothing. For more information, please refer to “The Moving Mesh 
Application Mode” on page 401 in the COMSOL Multiphysics Modeling Guide. 
COMSOL Multiphysics takes care of the transformation of the Navier-Stokes 
equations to the formulation on the moving mesh.

B O U N D A R Y  C O N D I T I O N S  F O R  T H E  F L U I D

There are two types of boundaries in the model domain. Three solid walls, that are 
modeled with slip conditions, and one free boundary (the top boundary). The slip 
boundary condition for the Navier-Stokes equations is

ρ
t∂

∂u ρu ∇⋅ u ∇ pI– η ∇u ∇u( )T
+( )+( )⋅–+ F=

∇ u⋅ 0=

Fx ρg φmax 2πft( )sin( )sin=

Fy ρ– g φmax 2πft( )sin( )cos=

φmax 4π 180⁄=

u n⋅ 0=
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where n = (nx, ny)
T is the boundary normal. To enforce this boundary condition, 

select the Symmetry boundary type in the Incompressible Navier-Stokes application 
mode. Because the normal vector depends on the degrees of freedom for the moving 
mesh, a constraint force would act not only on the fluid equations but also on the 
moving mesh equations. This effect would not be correct, and one remedy is to use 
non-ideal weak constraints. Ideal weak constraints (the other type of weak constraints) 
do not remove this effect of the constraint force. For more information about weak 
constraints, see “Using Weak Constraints” on page 300 in the COMSOL Multiphysics 
Modeling Guide. The Incompressible Navier-Stokes application mode does not make 
use of weak constraints by default, so you need to activate the non-ideal weak 
constraints.

The following weak expression, which you add to the model, enforces the slip 
boundary condition without a constraint force acting on the moving mesh equations:

 (6-9)

for some Lagrange multiplier variable λ. Here λ and u denote test functions. See the 
step-by-step instructions later in this model documentation for details.

The fluid is free to move on the top boundary. The stress in the surrounding 
environment is neglected. Therefore the stress continuity condition on the free 
boundary reads

where p0 is the surrounding (constant) pressure and η the viscosity in the fluid. 
Without loss of generality, p0 = 0 for this model.

B O U N D A R Y  C O N D I T I O N S  F O R  T H E  M E S H

In order to follow the motion of the fluid with the moving mesh, it is necessary to (at 
least) couple the mesh motion to the fluid motion normal to the surface. It turns out 
that for this type of free surface motion, it is important to not couple the mesh motion 
to the fluid motion in the tangential direction. If you would do so, the mesh soon 
becomes so deformed that the solution no longer converges. The boundary condition 
for the mesh equations on the free surface is therefore

where n is the boundary normal and (xt, yt)
T the velocity of mesh (see “Mathematical 

Description of the Mesh Movement” on page 392 in the COMSOL Multiphysics 

λ̂ u n⋅( ) λ û n⋅( )–

pI– η u∇ u∇( )T
+( )+( ) n⋅ p0– n=

xt yt( , )
T n⋅ u n⋅=
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Modeling Guide). In the Moving Mesh (ALE) application mode, you specify this 
boundary condition by selecting the tangent and normal coordinate system in the 
deformed mesh and by specifying a mesh velocity in the normal direction, where you 
enter the right-hand side expression from above as u*nx+v*ny. The Moving Mesh 
(ALE) application mode uses non-ideal weak constraints by default, and for this 
boundary condition it adds the weak expression

to ensure that there are no constraint forces acting on the fluid equations. Here again,  
λ denotes some Lagrange multiplier variable (not the same as before) and λ, x, and y 
denote test functions. There is no need to modify this expression. Choose 
Physics>Equation System>Boundary Settings and select the free boundary (boundary 3) 
to see how to enter this expression in COMSOL Multiphysics. The expression implies 
that there is a flux (or force) on the free boundary for the moving mesh coordinate 
equations  and , respectively. Furthermore, to be able to 
follow the fluid motion with the mesh motion, the moving mesh must not be 
constrained in the tangential direction on the side walls. In the Moving Mesh (ALE) 
application mode, you specify this boundary condition by using the global coordinate 
system and setting the mesh displacement to zero in the x direction. At the bottom of 
the tank the mesh is fixed, which you obtain in a similar way by setting the mesh 
displacements to zero in both the x and y directions.

Results

Figure 6-15 on page 247 shows the tank at a few different points in time. The colors 
represent the velocity field. Whereas the modeling is set up using a fixed tank and a 
swinging gravity vector, postprocessing using a deformation plot gives the tank a 
corresponding inclination. The inclination angle of the tank is exactly the same as the 
angle of the gravity vector from its initial vertical position.

λ̂ xt yt( , )
T u–( ) n⋅( ) λ x̂ ŷ( , )

T
n⋅( )–

x∇ n⋅ λnx= y∇ n⋅ λny=
R  6 :  F L U I D  D Y N A M I C S  M O D E L S



To illustrate the dynamics in the tank, you can plot the wave height versus time at one 
of the vertical walls, as in the following plot.

Figure 6-16: Wave height at X = 0.5 m for 0 ≤ t ≤ 20 s.

The movie file that accompanies this model shows the waves in the swinging tank, with 
a color scale indicating the vorticity.

Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/sloshing_tank

Modeling Using the Graphical User Interface

1 Start COMSOL Multiphysics.

2 In the Model Navigator, click the Multiphysics button.

3 Select 2D from the Space dimension list.

4 Select COMSOL Multiphysics>Deformed Mesh>Moving Mesh (ALE)>Transient analysis 
and click Add.

5 Click the Application Mode Properties button.

6 Select Winslow from the Smoothing method list. Click OK.

7 Select COMSOL Multiphysics>Fluid Dynamics>Incompressible Navier-Stokes>Transient 

analysis and click Add.
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8 Click OK.

G E O M E T R Y  M O D E L I N G

1 Shift-click the Rectangle/Square button in the Draw toolbar.

2 Specify the rectangle settings according to the table below

3 Click the Zoom Extents button on the Main toolbar.

O P T I O N S  A N D  S E T T I N G S

1 Open the Constants dialog box from the Options menu and enter the following 
constants. The descriptions are optional. When done, click OK.

2 From the Options menu, choose Expressions>Scalar Expressions.

3 Enter the following scalar variables with names, expressions, and descriptions (the 
descriptions are optional); when done, click OK.

PROPERTY EXPRESSION

Width 1

Height 0.3

Position: Base Corner

Position: x -0.5

Position: y 0

NAME EXPRESSION DESCRIPTION

rho 1270[kg/m^3] Glycerol density

nu 1.49[Pa*s] Glycerol viscosity

phi_max (4*pi/180)[rad] Maximum angle of inclination

freq 1[Hz] Frequency

g 9.81[m/s^2] Acceleration due to gravity

NAME EXPRESSION DESCRIPTION

phi phi_max*sin(2*pi*freq*t) Angle of inclination

grav_x g*sin(phi) Gravity vector x component

grav_y -g*cos(phi) Gravity vector y component
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Properties
1 In the Incompressible Navier-Stokes application mode, choose Properties from the 

Physics menu.

2 In the Application Mode Properties dialog box, select On from the Weak constraints 
list and Non-ideal from the Constraint type list; then click OK.

Subdomain Settings
Open the Subdomain Settings dialog box and apply the settings in the table below.

Boundary Conditions
1 Open the Boundary Settings dialog box from the Physics menu and enter boundary 

conditions according to the table below.

2 Click OK.

3 Go to the Multiphysics menu and select Moving Mesh (ALE).

4 In the Boundary Settings dialog box, apply the following boundary conditions for the 
mesh displacements (only tangential movements on the sides and a fixed mesh at the 
bottom):

5 On Boundary 3, select Tangent and normal coord. sys. in deformed mesh in the 
Coordinate system list. Then click the Mesh velocity button and type u*nx+v*ny in 
the vn edit field to specify the normal mesh velocity as u · n.

SETTINGS SUBDOMAIN 1

 ρ rho

 η nu

 Fx grav_x*rho

 Fy grav_y*rho

SETTINGS BOUNDARIES 1, 2, 4 BOUNDARY 3

Boundary type Wall Open boundary

Boundary condition Slip Normal stress

f0 0

SETTINGS BOUNDARIES 1, 4 BOUNDARY 2

dx 0 0

dy 0
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6 On the Weak Constr. tab of the Boundary Settings dialog box, clear the Use weak 

constraints check box on Boundaries 1, 2, and 4. The strong constraints that you 
specified in the previous step are sufficient on these boundaries. Leave the Use weak 

constraints check box selected on Boundary 3.

7 Click OK to close the dialog box.

M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar to initialize the mesh.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters window from the Solve menu.

2 Select Time dependent from the Solver list.

3 Enter 0:0.1:6 in the Times edit field.

4 Type 0.001 in the Relative tolerance edit field. This provides a 0.1% relative 
tolerance, which is one order of magnitude less than the default value.

5 Click the Time Stepping tab.

6 Select Exclude algebraic in the Error estimation strategy list. This excludes the 
pressure and the moving mesh variables from the error estimation. The equations 
for those variables do not include time derivatives and become algebraic when 
solving the equation system using the method of lines.

7 Click OK.

8 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot shows the x-component of the moving mesh deformation, in the 
spatial frame.

1 To plot the velocity field of the glycerol instead, go to the Surface tab in the Plot 

Parameters dialog box and select Incompressible Navier-Stokes (ns)>Velocity field 
from the list of expressions.

2 On the General page, clear the Geometry edges check box. Click Apply to see the plot 
and use the Solution at time list on the General tab to browse through the output 
times.

It is possible to visualize the inclination of the tank by clever use of the deformation 
plot feature:
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3 On the Deform page, select the Deformed shape plot check box and Set the Scale 
factor to 1. Enter Y*sin(phi) in the X component edit field and -X*sin(phi) in 
the Y component edit field on the Subdomain Data tab.

4 Still on the Deform page, click the Boundary Data tab. Once again, enter Y*sin(phi) 
in the X component edit field and -X*sin(phi) in the Y component edit field.

5 On the Boundary tab, select the Boundary plot check box. Enter 1 in the Expression 
edit field. Select to use a Uniform color and pick a black color using the Color button.

6 To get a more liquid-looking plot, you may want to go to the Surface page and set 
the Colormap to bone.

7 Click Apply to see the plot.

8 To see the waves in action, go to the Animate tab and click Start Animation, then click 
OK.

To get a more comprehensive overview of the sloshing, you can plot the 
y-displacement from equilibrium in a point:

1 Open the Domain Plot Parameters dialog box from the Postprocessing menu.

2 On the Point tab, select Point 4 from the Point selection list.

3 Enter dy_ale in the Expression edit field, then click OK to see the plot.
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 7
G e o p h y s i c s  M o d e l s  
This chapter presents models of geophysics applications such as groundwater flow, 
contaminant transport, and the flow of fluids in rock fractures. You will find many 
more models and specialized application modes in the Earth Science Module.
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Groundwa t e r  F l ow and S o l u t e  
T r a n s p o r t

Introduction

This model demonstrates the application of COMSOL Multiphysics to a benchmark 
case of steady-state subsurface fluid flow and transient solute transport along a vertical 
cross section in an unconfined aquifer. Because of profound geologic heterogeneity, 
the model must estimate solute transport subject to highly irregular flow conditions 
with strong anisotropic dispersion. Van der Heijde (Ref. 1) classifies this case as 
“Level 2,” with enough potentially difficult parameter combinations to test a code’s 
ability to tackle realistic hydrologic situations. Sudicky (Ref. 2) developed this problem 
to demonstrate a Laplace transform Galerkin code. This problem subsequently has 
been used to evaluate other flow and transport models, including MT3DMS by Zheng 
and Wang (Ref. 3).

This model makes use of several useful COMSOL Multiphysics features:

• Multiphysics coupling between fluid flow and solute transport

• Freely defined equations using the PDE, Coefficient Form application mode

• Upper boundary is water table with time-dependent solute source

• Incorporation of subsurface geological heterogeneity

• Customized expressions used to create anisotropic dispersion tensor

Model Definition

The hydrologic setting for this problem is described in Figure 7-1 (a) (see Ref. 2), for 
groundwater flow at steady state. The aquifer is composed largely of fine-grained silty 
sand of hydraulic conductivity K1 = 5·10−4 cm/s, equivalent to K1 = 5·10−6 m/s, 
with lenses of relatively course material of hydraulic conductivity K2 = 1·10−2 cm/s, 
equivalent to K2 = 1·10−4 m/s. Generally, groundwater moves from the upper surface 
of the saturated zone, the water table, to the outlet at x = 250 m. The water table is a 
free surface, that is, fluid pressure equals zero, across which there is vertical recharge, 
denoted R, of 10 cm/yr equivalent to 3.215·10−9 m/s. The groundwater divide, a 
line of symmetry, occurs at x = 0. The base of the aquifer is impermeable.
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Figure 7-1 (b) shows conditions related to solute transport. The aquifer initially is 
pristine, and concentrations equal zero. For the first five years, a relative concentration 
of 1.0 is loaded over the interval 40 m < x < 80 m at the water table. The solute source 
is removed in year 5, and the concentration along this segment immediately drops to 
zero. The contaminant migrates within the aquifer via advection and dispersion. 
Throughout the domain, porosity, denoted n, is 0.35, the longitudinal dispersivity, αL, 
and transverse vertical dispersivity, αT, are 0.5 m and 0.005 m, respectively, and the 
effective molecular diffusion coefficient, Dm, is 1.34·10−5 cm2/s, equivalent to 
1.34·10−9 m2/s.

Figure 7-1: Definition of the flow-field problem (a) and the transport-of-solute problem 
(b).

F L U I D  F L O W :  D O M A I N  E Q U A T I O N S  A N D  B O U N D A R Y  C O N D I T I O N S

Governing equations for fluid flow and solute transport were specified in separate 
PDE, Coefficient Form application modes in COMSOL Multiphysics.

Steady groundwater flow generally is expressed with a conservation equation built with 
Darcy’s law (Ref. 4, Ref. 5):

(a)

(b)
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where K is hydraulic conductivity (L/T); xi is spatial distance in direction i (L); R is 
the volumetric rate of recharge to water table per unit volume of aquifer (T−1), and 
the dependent variable h is hydraulic head (L). Hydraulic head, a function of pressure 
and gravitational potential, is defined

 (7-1)

where hp is pressure head (L); and y is elevation (L). Equation 7-1 states the driving 
force for groundwater flow at field scales is h. For any given water particle, h equals 
the height of the water column hp above the particle plus the particle’s elevation y. It 
should be pointed out here that y is the name assigned to the independent variable xi 
for the vertical direction.

The equations for groundwater flow and solute transport are linked by the average 
linear velocity v, or seepage velocity:

 (7-2)

where n is porosity (L3/L3), or the fraction of the aquifer containing water. n appears 
in the denominator of Equation 7-2 because only a portion of a given aquifer block is 
available for flow. 

The boundary conditions for the groundwater flow problem are shown in Figure 7-1 
(a) and stated below. A zero flux Neumann condition represents the symmetry 
boundary at x = 0 m and the impermeable boundary at y = 0 m as follows:

Hydraulic head is specified at x = 250 m with a Dirichlet condition:

Representing the water table is slightly more complicated. A Neumann boundary is 
used to model the known recharge:

∇ K h∇( ) R+⋅ 0=

h hp y+=

vi
K
n
----

xi∂
∂h

–=

x∂
∂h

x 0=
y∂

∂h

y 0=

0= =

h x t,( ) h0=

K
y∂

∂h
– R=
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Specifying that this flux is entirely vertical requires multiplication by the y component 
of the normal vector n in COMSOL Multiphysics.

An important advantage of specifying a flux condition on the water table is the 
opportunity to fine tune the model setup. If the flow problem is well posed, h naturally 
equals y at the water table, because hp is zero (that is, atmospheric pressure) at a free 
surface. In this model, the water table geometry is first determined by educated guess 
and is fine tuned manually in successive simulations until there is a good match 
between elevations and hydraulic head predictions on the boundary (Ref. 2). 

S O L U T E  TR A N S P O R T :  D O M A I N  E Q U A T I O N S ,  B O U N D A R Y  C O N D I T I O N S ,  

A N D  I N I T I A L  C O N D I T I O N S

Solute transport typically is time dependent for geologic problems and is described 
with the advection-dispersion equation (Ref. 4, Ref. 5):

where Dij is the hydrodynamic dispersion tensor (L2/T); C is the dissolved 
concentration (M/L3); vi is the average linear velocity (defined above); and t is time.

The dispersion tensor defines solute spreading by mechanical mixing and molecular 
diffusion. Equations for the tensor entries are:

where Dii are the principal components of the dispersion tensor (L2/T); Dij, Dji are 
the cross terms of the dispersion tensor (L2/T); the subscript L denotes longitudinal 
dispersivity (L); the subscript T denotes transverse dispersivity (L);  is 
the magnitude of the velocity vector (L/T); and D* represents effective molecular 
diffusion Dm in saturated porous media, (L2/T), where D* < Dm << Dii and typically 
is neglected.

The boundary and initial conditions for solute transport, shown in Figure 7-1 (b), are 
expressed below. Dirichlet conditions are used at the water table, where C(x,h,t) = 0, 
except for the segment 40 m < x < 80 m in which

xi∂
∂ Dij xj∂

∂C viC+⎝ ⎠
⎛ ⎞

t∂
∂C

=

Dii αL
vi

2

v
------ αT

vj
2

v
------ D∗+ +=

Dij Dji αL αT–( )
vivj

v
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where the relative concentration C0 is 1.0 through year 5 (t0). After the solute source 
is removed, the concentration along this segment drops to zero. Here, the time 
dependence of the source is implemented using logical expressions with COMSOL 
Multiphysics boundary settings.

The Dirichlet condition at the left boundary is

A Neumann condition is needed for the zero gradient boundaries:

Finally, the initial condition specifies that the aquifer is pristine, when

Results

F L U I D  F L O W

Figure 7-2 provides hydraulic heads estimated with the COMSOL Multiphysics 
steady-state groundwater flow simulation. The hydraulic heads and streamlines shown 
in Figure 7-2 correspond nicely to the benchmark results provided by Sudicky (Ref. 
2). The slight differences between the two plots are attributable to meshing: the mesh 
size varies naturally with the geometry.

The water table geometry determined for the simulation (see Figure 7-2) nearly 
duplicates the benchmark geometry obtained in Ref. 2. The good match between the 
flow fields is expected as the initial water table geometry used with COMSOL 
Multiphysics was designed to closely resemble the benchmark geometry. In the 
simulations reported here, therefore, only nuances of geometry were resolved through 
iteration. Figure 7-3 provides residuals from the geometry fitting; that is, the fractional 

C
C0,   0 t t0< <

0,           t t0>⎩
⎨
⎧

=

C 0 y t, ,( ) 0=

x∂
∂h

x 250=
y∂

∂h

y 0=

0= =

C x y 0, ,( ) 0=
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difference between h and y along the final water table boundary. As Figure 7-3 
illustrates, the error in the geometry settings are 0.1% or less.

Figure 7-2: COMSOL Multiphysics estimates of hydraulic head and flow lines. The 
solution reproduces the results in Ref. 3.

Figure 7-3: Fractional error in water table geometry computed with hydraulic head 
predicted with COMSOL Multiphysics, H, and water table elevation, y.
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S O L U T E  TR A N S P O R T

Solute transport solutions from the model are almost identical to the ones presented 
in Ref. 2. This is clearly shown in the contour intervals for three times in Figure 7-4. 
The minor variation between the COMSOL Multiphysics and benchmark solutions 
results from different mesh densities. In 1989, Sudicky concluded that the results 
illustrated in Ref. 2 are relatively free of numerical dispersion, as the low concentration 
contours closely follow the flow pattern. The surface plot for COMSOL also displays 
this property, in that even the lowest concentrations in Figure 7-4 still follow the 
irregular flow lines of Figure 7-2.

Figure 7-4: Plume concentrations calculated with COMSOL Multiphysics at three times: 
(a) t = 8 years, (b) t = 12 years, and (c) t = 20 years.

(c)

(b)

(a)
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The results from this model show that COMSOL Multiphysics is an effective tool for 
simulating fluid flow and solute transport in the heterogeneous porous media and 
highly irregular flow fields that are common to field scale applications.
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Model Library path: COMSOL_Multiphysics/Geophysics/groundwater_flow

Modeling Using the Graphical User Interface

1 Start COMSOL Multiphysics.

2 In the Model Navigator click the Multiphysics button.

3 Select COMSOL Multiphysics>PDE Modes>PDE, Coefficient Form and type H in the 
Dependent variables edit field.

4 Click the Add button.

5 Select PDE, Coefficient Form again.

6 Change the name of the dependent variable to C in the Dependent variables edit field.

7 Click the Add button.

8 Click OK.
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1 Choose Axes/Grid Settings from the Options menu.

2 Clear the Axis equal check box.

3 Set the x-y limits according to following table:

4 Click the Grid tab.

5 Clear the Auto check box.

6 Type 10 in the x spacing edit field and 2 in the y spacing edit field.

7 Add extra grid lines by typing 155 127 in the Extra x edit field and 5.35 5.575 
6.045 6.455 6.603 6.645 in the Extra y edit field. Click OK.

8 Choose Constants from the Options menu and define the following constants:

G E O M E T R Y  M O D E L I N G

1 Click the Line button to draw the geometry of the domain by clicking in the points 
(0, 0), (250, 0), (250, 5.35), (180, 5.575), (155, 6.045), (127, 6.455), 
(80, 6.603), (0, 6.645).

2 Click the Rectangle/Square button and click the points (0, 2) and (120, 4) to draw a 
rectangle.

3 Draw a second rectangle with corners in the points (180, 2) and (250, 4).

LIMIT VALUES

x min 0

x max 270

y min -2

y max 10

NAME EXPRESSION

R 3.215e-9

Hin 5.3486

K1 5e-6

K2 0.0001

Cin 1

n 0.35

alphaL 0.5

alphaT 0.005

Dm 1.34e-9
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Subdomain Expressions
1 On the Options menu, point to Expressions and then click Subdomain Expressions.

2 Enter the following expressions in the Subdomain Expressions dialog box:

3 Click OK.

Boundary Conditions—Darcy’s Law
1 Choose 1 PDE, Coefficient Form (c) from the Multiphysics menu.

2 Open the Boundary Settings dialog box and enter the boundary condition according 
to the following table:

Subdomain Settings—Darcy’s Law
1 Select Subdomain 1 and set c equal to -K1. All the other coefficients should be 0.

2 Select Subdomains 2 and 3.

3 Set c equal to -K2. All the other coefficients should be 0.

Boundary Conditions—Advection-Dispersion Equation
1 Choose 2 PDE, Coefficient Form (c2) from the Multiphysics menu.

NAME EXPRESSION IN SUBDOMAIN 1 EXPRESSION IN SUBDOMAIN 2 AND 3

vx -K1*Hx/n -K2*Hx/n

vy -K1*Hy/n -K2*Hy/n

absv sqrt(vx^2+vy^2) sqrt(vx^2+vy^2)

Dxx alphaL*vx^2/
absv+alphaT*vy^2/absv+Dm

alphaL*vx^2/
absv+alphaT*vy^2/absv+Dm

Dyy alphaL*vy^2/
absv+alphaT*vx^2/absv+Dm

alphaL*vy^2/
absv+alphaT*vx^2/absv+Dm

Dxy (alphaL-alphaT)*vx*vy/absv (alphaL-alphaT)*vx*vy/absv

SETTINGS BOUNDARIES1–3, 5 BOUNDARIES 7, 8, 10, 11, 15 BOUNDARIES 16–18

Type Neumann Neumann Dirichlet

q 0 0

g 0 -ny*R

h 1

r Hin
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2 Enter the boundary conditions according to the following table:

Subdomain Settings—Advection-Dispersion Equation
Select all domains and enter the coefficients according to the following table:

M E S H  G E N E R A T I O N

Click the Refine Mesh button on the Main toolbar to initialize an unstructured 
triangular mesh and then refine it once.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Manager dialog box and click the Solve For tab.

2 Select PDE, Coefficient Form (c), then click Solve.

3 Select PDE, Coefficient Form (c2), then click OK.

4 Open the Solver Parameters dialog box.

5 Select Time dependent in the Solver list.

6 Type 0:360*86400:20*360*86400 in the Times edit field. Click OK.

7 Click the Restart button to compute a new solution.

SETTINGS BOUNDARIES 
1, 3, 5, 8, 10, 11, 15

BOUNDARY 2 BOUNDARY 7 BOUNDARIES
16, 18

BOUNDARY 17

Type Dirichlet Neumann Dirichlet Neumann Neumann

q 0 0 0

g 0 K1*Hx/n*C K2*Hx/n*C

h 1 1

r 0 Cin*(40<=x&t<=
5*360*86400)

COEFFICIENT VALUE

c Dxx Dxy Dyy

a 0

f 0

da 1

α -vx -vy

β 0 0

γ 0 0
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Use the first sequence of commands to plot Figure 7-2 on page 263:

1 From the Postprocessing menu, choose Plot Parameters.

2 Click the Surface tab.

3 On the Surface Data tab, select PDE, Coefficient Form (c)>H from the Predefined 

quantities list.

4 Click the Streamline tab.

5 Select the Streamline plot check box.

6 On the Streamline Data tab, select PDE, Coefficient Form (c)>grad(H) from the 
Predefined quantities list.

7 Click the Specify start point coordinates button and enter the following values 

8 Click the Advanced button and enter 40000 in the Maximum number of integration 

steps edit field. Click OK.

9 Click OK.

You can also plot the plum concentrations in Figure 7-4 on page 264:

1 Open Plot Parameters dialog box again.

2 Click the Surface tab and select PDE, Coefficient Form (c2)>C from the Predefined 

quantities list on the Surface Data tab.

3 Click the Contour tab and select PDE, Coefficient Form (c2)>C from the Predefined 

quantities list on the Contour Data tab.

4 In the Contour levels area, click the Vector with isolevels button and enter 0.05 0.1 
0.15 0.19 0.25 0.30 0.35 0.4 0.45 0.5 in the edit field.

5 Click the General tab, select the Contour check box, and clear the Streamline check 
box. Click OK.

6 To get a good view of the solution, double-click EQUAL on the status bar and then 
click the Zoom Extents button on the Main toolbar.

To plot this concentration for a different time you can select the time you want in the 
Solution at time list on the General page in the Plot Parameters dialog box (for 
Figure 7-4 (a) select 2.48832e8, for Figure 7-4 (b) select 3.73248e8, and for Figure 7-4 
(c) select 6.2208e8, that is, the concentration after 8, 12, and 20 years).

x 15 30 45 60 75 90 130 145 160 175 190 205 220 235

y 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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Introduction

A potential flow model describing fluid movement in a rock fracture uses the so-called 
Reynolds equation, also known as the “cubic law” equation

which involves the following variables:

• Fluid density, ρ

• The gravitational constant, g

• The fluid’s dynamic viscosity, µ

• The fracture’s aperture or width, a(x,  y)

• The scaled pressure, h = h(x,  y), also called hydraulic head

This model uses interpolation of aperture data defined in a text file. Alternatively, you 
can use COMSOL Multiphysics’ ability to call M-file functions. To do so, you need to 
use COMSOL Multiphysics with COMSOL Script or MATLAB.

Model Definition

The definition of that last variable, hydraulic head is

where z equals the height and p represents fluid pressure.

After eliminating the constant factor in the diffusion coefficient, you end up with the 
equation

Notice that you cannot eliminate the aperture expression a3 because this example 
assumes that a is a nonconstant function of x and y, and thus it falls under the influence 
of the divergence operator.

∇ ρg
12µ
----------a3 h∇⎝ ⎠
⎛ ⎞⋅ 0=

h z p
ρg
------+=

∇ a3 h∇( )⋅ 0=
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Modeling in COMSOL Multiphysics

COMSOL Multiphysics does not include an application mode for potential flow, but 
you can use the Diffusion application mode for this model; the PDE solved here is 
identical to the Reynolds equation. You must make one minor mental adjustment here: 
In the user interface you refer to hydraulic head as a concentration (c).

The computational domain is rectangular and well inside the sampled aperture data 
matrix. Set an hydraulic head of 20 mm at the upper boundary, and 0 mm at the lower 
boundary. This creates a pressure difference of 20 mm that drives the fluid flow. Both 
the left and right boundaries have insulation/symmetry boundary conditions.

I N T E R P O L A T I N G  U S I N G  T H E  A P E R T U R E  D A T A

The COMSOL CD provides two files containing the sample aperture data for this 
model. This synthetically generated data set corresponds to an aperture with a fractal 
dimension of 2.6. The 100-by-100 matrix of data is available as a text file, 
aperture_data.txt, for use with the COMSOL Multiphysics interpolation feature 
and as a MAT-file, flaperture.mat. If you use COMSOL Multiphysics with 
COMSOL Script or MATLAB, you can load the aperture data from the workspace 
using the command

load flaperture

To plot the aperture data, type

surf(aperture)

The surf command uses bilinear interpolation for visualizing the data. To rotate the 
plot from COMSOL Script, just click and drag in the COMSOL figure window. In 
MATLAB, you can rotate the 3D surface plot by pressing the Rotate 3D toolbar button 
in the plot window.

To interpolate the rectangular grid data to the nodes of the unstructured mesh, use the 
function flafun. To display that function, type the following at command prompt:

type flafun

Next note that the function interp2 uses linear interpolation as its default method. 
For more information on this function, type help interp2 at the command line.

When modeling this problem in the COMSOL Multiphysics user interface, the 
software uses flafun (either defined directly as an interpolation function or using the 
M-file) as the aperture a in the cubic-law equation.
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Model Library path: COMSOL_Multiphysics/Geophysics/rock_fracture

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D in the Space dimension list.

2 In the COMSOL Multiphysics>Convection and Diffusion folder, select Diffusion and then 
Steady-state analysis. Make sure Lagrange - Quadratic is selected in the Element list.

3 Click OK.

O P T I O N S  A N D  S E T T I N G S

Set axis and grid settings:

1 From the Options menu, choose Axes/Grid Settings.

2 Enter the axes limits and grid spacings from the table below. To enter the grid 
spacings, first click the Grid tab and click to clear the Auto check box.

3 Click OK.

Define the interpolation function for the aperture data:

1 From the Options menu, choose Functions.

2 In the Functions dialog box, click the New button.

3 In the New Function dialog box, type flafun in the Function name edit field.

4 Click Interpolation and select File in the Use data from list.

5 Click Browse and browse to /models/COMSOL_Multiphysics/Geophysics/
aperture_data.txt in the COMSOL installation directory.

6 Click Open to select this file and close the Open Data dialog box and then click OK to 
close the New Function dialog box.

AXIS GRID

x min 0 x spacing 10

x max 100 Extra x

y min 0 y spacing 10

y max 100 Extra y
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7 Click OK.

Alternatively, if you use COMSOL Multiphysics with COMSOL Script or MATLAB, 
define the function flafun:

1 Open the Functions dialog box from the Options menu.

2 Click New to define a new function

3 Type flafun in the Function name edit field and select Analytic in the New Function 
dialog box. Click OK.

4 Type x,y in the Arguments edit field and then type flafun(x,y) in the Expression 
edit field.

5 Click OK.

Defining the flafun function in this way is not strictly necessary because COMSOL 
Multiphysics assumes that an undefined function name is a COMSOL Script or 
MATLAB function. The derivative is set to zero if you do not define a function. In 
cases where a dependent variable is used as function argument, or if the function has 
complex output for real input, the function definition is necessary.

G E O M E T R Y  M O D E L I N G

1 Draw a rectangle with corners at (10, 20) and (90, 70).

2 Click the Zoom Extents button on the main toolbar to adjust the coordinate system 
with respect to the size of the rectangle.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Enter boundary coefficients as below:

Subdomain Settings
Enter the following PDE coefficients:

SETTINGS BOUNDARIES 1, 4 BOUNDARY 2 BOUNDARY 3

Type Insulation/Symmetry Concentration Concentration

c0 0 20

SETTINGS SUBDOMAIN 1

D (isotropic) flafun(x[1/m],y[1/m])^3

R 0
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C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box.

2 Select the Adaptive mesh refinement check box on the General page.

3 Click the Adaptive tab.

4 Type 10 in the Maximum number of refinements edit field and 10000 in the Maximum 

number of elements edit field. This number might be too high depending on the 
amount of memory in your system. Users uncertain of available memory should 
start with a lower number.

5 Click OK to close the dialog box.

6 Click the Solve button on the Main toolbar to compute the solution.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 Open the Plot Parameters dialog box from the Postprocessing menu.

2 Click the Surface tab, and then on the Surface Data page, select Diffusion (di)>Diffusive 

flux, c from the Predefined quantities list.

3 Still on the Surface page, click the Height Data tab. Select the Height data check box 
and then select Diffusion (di)>Concentration, c from the Predefined quantities list.

4 On the General page, open the Title dialog box. Click the right button to specify the 
title manually and type hydraulic head.

5 Click OK to close the Title dialog box, and then click Apply to plot.
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6 To view the aperture data, click the Surface tab and type flafun(x,y) in the 
Expression edit field on the Height Data tab.

7 On the General page, open the Title dialog box. Click the right button to specify the 
title manually and type aperture (flafun(x,y)).

8 Click OK twice.
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 8
H e a t  T r a n s f e r  M o d e l s  
The following models illustrate heat transfer using the Conduction application 
mode. Heat transfer also takes part in many multiphysics models. For more 
information about the heat transfer application modes and three introductory 
models, see “Heat Transfer” on page 163 in the COMSOL Multiphysics Modeling 
Guide.
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Hea t i n g  w i t h  a  Mov i n g  L a s e r

Laser beams are commonly used to locally heat the surface of various substrates, for 
example, in laser welding or thermal annealing such as on layered silicon devices. The 
laser beam typically moves over a surface in a periodic fashion to produce the desired 
localized heating. In case of layered silicon devices, each layer is very thin, making the 
modeling of the penetration depth caused by the moving laser a strongly 
time-dependent problem.

Figure 8-1: A moving laser heats a thin silicon substrate.

This example models the localized transient heating caused by a laser beam that moves 
in circles over a silicon substrate. The beam’s penetration depth, which you can 
describe with an absorption coefficient, depends on the ambient temperature. The 
geometry under study represents the top layer of a silicon device. The model examines 
the penetration depth and the influence of the laser motion on the transient 
temperature distribution.

This model considers the laser beam as having an infinitesimal width and thus treats it 
as a line heat source. As such it is not meaningful to study the maximum temperature 
because it is mesh dependent. However, the overall heat flux and temperature 
distribution on a macroscopic level are both accurate.

Laser

Silicon substrate

Motion
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Model Definitions

The model simulates the substrate as a 3D object (Figure 8-1) with these dimensions:

• Thickness: 1 mm

• Width: 10  mm-by-10 mm

It handles the variation of laser intensity with penetration depth using a 1D geometry 
that representing the substrate’s thickness. 

Figure 8-2: The 1D model geometry.

The model makes use of the Conduction application mode to describe the transient 
heat transfer in the 3D geometry. The transient energy-balance equation for heat 
conduction is

where ρ is the density, Cp is the specific heat capacity, is the thermal conductivity, 
and Q is the heat source term, here set to zero (this case models the source in a 
different way).

The material properties are those of silicon, using an anisotropic conductivity of 
(kx, ky, kz) = (163, 163, 16) in units of W/(m·K), a density of 2330 kg/m3, and a 
specific heat capacity of 703 J/(kg·K).

For the model, assume the boundaries are insulating.

In the 1D geometry, this model uses the Weak Form, Subdomain application mode to 
model the laser penetration. In the equation describing the penetration

x

Bottom Top

ρCp t∂
∂T ∇+ k– ∇T( )⋅ Q=

k

x∂
∂I k– absI=
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I represents the relative laser intensity (the variable in the Weak Form, Subdomain 
application mode) and kabs is the absorption coefficient. The absorption coefficient 
can depend on the temperature, and the expression used in this model is

 (m−1)

The volumetric heat source term, Q, in the 3D geometry is then

where Pin is the total power of the incoming laser beam.

Both of these equations are included in the Weak Form, Subdomain application mode, 
where they become one equation:

I_test*(Ix-k_abs*I)+k_abs*I*P_in*T_test

The first part of this expression describes the penetration equation, and the second part 
comes from the heat-source term in the 3D Heat Transfer application mode.

At the left boundary the model applies a homogeneous Neumann condition, and at 
the right boundary it sets the relative intensity, I, to unity. The total incoming laser 
power, Pin, is 50 W.

The model implements the heat source’s motion when coupling the 3D temperature 
variable, T, to the 1D equation. It does so with a subdomain extrusion coupling 
variable using a general transformation. A time-dependent transformation expression 
results in a moving heat source. This case describes a circular repeating motion using 
the transformation expressions

x = R  sin(ωt),    y = R cos(ωt),   z = x’

where x, y, and z correspond to the 3D coordinates, and x’ represents the 1D 
coordinate. Furthermore, R is the radius of circular motion, ω is the angular velocity, 
and t is time. The model uses the parameter values R = 0.02 m and ω = 10 rad/s.

This method—using a separate geometry and equation to model the source term—is 
very useful because it provides that term directly at the test-function level. 
Furthermore, it models the source motion separately with the transformation 
expressions, making it simple to alter. It is indeed the best way to model a moving point 
or line source.

The 3D model makes use of an extruded triangular mesh, which has a fine resolution 
close to the laser incident line and is coarse elsewhere. This results in a high-resolution 

kabs 8·103 10 T 300 K–( )–=

Q PinkabsI=
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solution with minimum computation requirements. The mesh results in around 
10,000 elements and 6200 degrees of freedom. 

Figure 8-3: The 3D mesh produced by extruding a 2D triangular mesh, refined along the 
circular laser incident line.
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Results and Discussion

Figure 8-4 depicts the temperature distribution at the laser-beam incident surface. 

Figure 8-4: Temperature distribution after 1 s of laser heating.

The figure clearly shows a hot spot where the laser beam is located at a specific time. 
Furthermore, the results show a cold side and a warm side next to the vertical line 
below the laser beam. The warm side represents the area where the beam has just swept 
through.
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A better way to study these effects is by plotting the temperature at the top surface 
along the circular laser-beam incident pattern as in Figure 8-5.

Figure 8-5: Temperature distribution along the laser-beam incident trajectory on the top 
surface after 0.7 s.

Here the laser beam moves from right to left, and the warm side is on the right side of 
the peak. Locally the temperature reaches around 510 K, but this value is completely 
mesh dependent. Nevertheless, the temperature distribution just a few mesh elements 
away represents the real temperature quite well.
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Finally, Figure 8-6 shows beam penetration into the substrate. The heating at the 
bottom of the substrate is practically zero.

Figure 8-6: Relative laser-beam intensity as a function of sample depth.

Model Library path: COMSOL_Multiphysics/Heat_Transfer/laser_heating

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 3D in the Space dimension list and click the Multiphysics 
button.

2 Select Heat Transfer>Conduction>Transient analysis in the list of application modes 
(in the COMSOL Multiphysics folder if the license contains additional modules). 

3 Select Lagrange - Linear in the Element list and click Add.

4 Click Add Geometry and select 1D in the Space dimension list. Click OK to close the 
dialog box.
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5 Select COMSOL Multiphysics>PDE Modes>Weak form, Subdomain>Time-dependent 

analysis in the list of application modes. 

6 Enter I in the Dependent variables text field.

7 Click Add.

8 Click OK to exit the Model Navigator and begin modeling.

O P T I O N S  A N D  S E T T I N G S

In the Constants dialog box enter the following names and expressions. The 
descriptions are optional.

G E O M E T R Y  M O D E L I N G  3 D

1 Click the Geom1 tab to go to the 3D geometry.

2 Open the Work-Plane Settings dialog box in the Draw menu. Click OK to get a default 
xy work plane at z = 0.

3 Select Draw>Specify Objects>Square to create a square with the width 0.1 m, 
centered at the origin (select Center from the Base list).

4 Select Draw>Specify Objects>Circle to create a circle with the radius 0.02 m, centered 
at the origin.

5 Click the Zoom Extents button on the Main toolbar.

M E S H  G E N E R A T I O N  3 D

1 Open the Mesh>Free Mesh Parameters dialog box.

2 Select Coarser from the Predefined mesh sizes list.

3 On the Boundary page select Boundaries 5–8 and enter 1e-3 in the Maximum 

element size text field.

4 Click OK to close the dialog box.

5 Click the Initialize Mesh button to generate the mesh.

6 Select Mesh>Extrude Mesh and enter 1e-3 in the Distance text field.

7 On the Mesh page enter 5 for the Number of element layers and click OK.

NAME EXPRESSION DESCRIPTION

P_in 50[W] Laser beam power

r 2[cm] Radius of trajectory circle

omega 10[rad/s] Angular velocity
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G E O M E T R Y  M O D E L I N G  1 D

1 Click the Geom2 tab to go to the 1D geometry.

2 Specify a line from 0 to 1e-3, then click the Zoom Extents button.

M E S H  G E N E R A T I O N  1 D

1 Open the Free Mesh Parameters dialog box.

2 On the Boundary page select Boundary 2. Enter 1e-5 for the Maximum element size 

and 1.1 for the Element growth rate.

3 Click OK to close the dialog box.

4 Click the Initialize Mesh button to generate the mesh.

P H Y S I C S  S E T T I N G S  3 D

Subdomain Settings
1 Click the Geom1 tab to go to the 3D geometry.

1 Open the Physics>Subdomain Settings dialog box and select both subdomains.

2 Click Load and select Silicon from the Materials/Coefficients Library. Click OK when 
done.

3 Select k (anisotropic) and enter 163, 163, and 16 for the diagonal elements kxx, kyy, 
and kzz, respectively.

4 On the Init page enter 300 for the initial temperature.

5 Click OK to close the dialog box.

Boundary Conditions
Use the default Thermal insulation boundary condition for all exterior boundaries. 

Coupling Variables
1  Select Options>Extrusion Coupling Variables>Subdomain Variables.

2 Select both subdomains and define a variable with the Name T and the Expression T. 
Select to use a General transformation and make sure the source transformation reads 
x: x, y: y, z: z.

3 On the Destination page select Geometry: Geom2 and Level: Subdomain. Select the 
check box in front of Subdomain 1 and apply the destination transformation  
x: r*sin(omega*t), y: r*cos(omega*t), z: x.

4 Click OK to close the dialog box.
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P H Y S I C S  S E T T I N G S  1 D

Subdomain Settings
1 Click the Geom2 tab to go to the 1D geometry.

2 Open the Physics>Subdomain Settings dialog box and select Subdomain 1.

3 On the Weak page enter (Ix-I_abs)*I_test+I_abs*P_in*T_test in the weak 
text field and 0 in the dweak text field. 

4 On the Init page enter 1 for the Initial value I(t0).

5 Click OK to close the dialog box.

Boundary Settings
1 Open the Physics>Boundary Settings dialog box, 

2 Enter 0 in the constr text field for Boundary 1, then enter 1-I in the same text field 
for Boundary 2.

3 Click OK to close the dialog box.

Scalar Expressions
In the Scalar Expressions dialog box make the following entries; when done, click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 In the Solve>Solver Parameters dialog box make the following changes, then click 
OK.

2 Click the Solve button on the Main menu to compute the solution.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 If you are still in the 1D geometry, click the Geom1 tab and then the Postprocessing 

Mode button to go over to postprocessing in 3D.

The default plot shows the temperature distribution in five slices of the substrate.

NAME EXPRESSION DESCRIPTION

k_abs 8e3[1/m]-10[1/(m*K)]*(T-300[K]) Absorption coefficient

I_abs k_abs*I Relative absorption

FIELD VALUE

Times 0:0.02:1

Absolute tolerance 1

Linear system solver Direct (UMFPACK)

Matrix symmetry Nonsymmetric
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2 Open the Plot Parameters dialog box. Clear the Slice check box and select the 
Boundary check box. On the Boundary page select hot in the Colormap list. Click OK 
to see a boundary plot of the temperature.

3 Because the substrate is very thin you can get a better view of it by rescaling the 
z-axis. Select Options>Axes/Grid Settings and clear the Axis equal check box. After 
clicking OK to close the dialog box, click the Zoom Extents button on the Main 
toolbar.

4 To see what goes on inside the silicon substrate, hide the boundaries that are in the 
way. To do so, open the Suppress Boundaries dialog box from the Options menu and 
suppress Boundaries 1, 2, 4, 5, and 12. Then click the Postprocessing Mode button 
once again.

5 To see the temperature distribution along the trajectory, open the Domain Plot 

Parameters dialog box from the Plot menu and pick a time from the Solutions to use 
list on the General page. On the Line/Extrusion page select Edges 13, 16, and 19. 
Click Apply to see the plot.
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Hea t - S i n k  Exp e r imen t s  U s i n g  t h e  
Componen t  L i b r a r y

Introduction

The most common method for investigating a process or system is to first study the 
individual components in detail. You would probably start by setting up detailed 
models for the various components and then try to merge them in some way to 
describe the system as a whole. With COMSOL Multiphysics you can merge individual 
models to investigate how they interact as components in a system.

This exercise illustrates the use of the component library to merge different types of 
heat sinks with a heating device. The resulting models give an estimate of the thermal 
resistance of each heat sink and of the temperature distribution in the heating device. 
The model set up is similar to the benchmarking method for heat sinks used by Alpha 
Company Ltd. in Japan.

The models defined here are rather simple as they use a semi-empirical expression for 
the heat transfer coefficient between the heat sink and the air that flows over it. It is 
also possible to simulate the air flow in detail and thus the coupled heat transfer-flow 
problem in COMSOL Multiphysics, but this is outside the scope of this specific 
example.

The purpose of this example is to guide you through the procedure for merging 
different components into a single model of a system.

Model Definition

In this study, four different heat sinks from Alpha Company Ltd. are combined with 
one heating device. All the heat sinks have a base of 19 mm-by-19 mm and a height of 
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10 mm. The following figure shows the geometry of the heat sinks, all of which are 
made of aluminum 6063.

Figure 8-7: The four heat sinks are the types lpd19, n19, s1519, and ub19, all from Alpha 
Company Ltd.

The heating device measures 12.7 mm-by-12.7 mm and is 3 mm thick. It consists of 
an aluminum block with three heating elements made of steel. The next figure shows 
its geometry.

Figure 8-8: The heating device consists of three heating elements embedded in an 
aluminum block.

lpd19 n19

s1519 ub19
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The physics inside the heat sinks is described by a heat balance where heat flux takes 
place by conduction. The thermal conductivity of aluminum 6063 is available in the 
material properties database in COMSOL Multiphysics.

The boundary condition at the top surface of the heat sinks sets the heat flux 
perpendicular to the boundary proportional to the temperature difference between the 
heat sink and the surrounding air according to the following equation:

.  (8-1)

The heat transfer coefficient, h, is obtained using a semi-empirical expression as a 
function of temperature and distance from the leading edge of the heat sink, in this 
case as a function of x in the next figure. In the previous equation, k denotes the 
thermal conductivity, T equals the temperature, and n is the normal vector to the 
boundary. The boundary conditions at the bottom of the heat sink describe an influx 
of heat from the device being cooled.

The physics in the heating device is described by a heat balance, with the flux given by 
conduction, and with a heat-source term in each of the heating elements. The heating 
elements are made of steel, while the aluminum block is made of aluminum 6063. The 
thermal transport properties are available in the material properties database.

The boundary conditions describe thermal insulation at all boundaries except for the 
top surface, which is in contact with a heat sink. At this boundary the temperature is 
equal to that of the heat sink.

The top surface of the heating device has the dimensions of 12.7 mm-by-12.7 mm, 
while the bottom surface of the heat sink is 19 mm-by-19 mm. After the merger of one 
of the heat sinks and the heating device, the part of the bottom surface of the heat sink 

k∇T– n⋅ h T Tamb–( )=
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that does not make contact with the heating device is thermally insulated as shown in 
the next figure.

Figure 8-9: The surface is the part of the heat sink that is insulated.

Once the two components are merged, all physics and boundary conditions are 
obtained from the components except for the insulation boundary condition shown in 
Figure 8-9. This boundary condition is actively defined in the model of the entire 
system.

Results

Figure 8-10 shows the calculated thermal resistance for the four heat sinks for the 
models when they are merged to the heating device. The thermal resistance is 
calculated as

 (8-2)

where Tcontact denotes the temperature in the middle of the contact surface between 
the heat sink and the heating device, and Power equals the total heating power of 5 
W. The definition of the thermal resistance is taken from Alpha Company, Ltd.

Insulated surface

Thermal resistance
Tcontact Tamb–( )

Power
-----------------------------------------------=
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The models seem to overestimate the thermal resistances of the n19 heat sink but are 
otherwise in decent agreement with the experiments reported by Alpha Company, Ltd.

Figure 8-10: Thermal resistance as a function of the rate of air flowing over the heat sink.

The next figure shows the temperature distribution in the lpd19 heat sink in the cases 
where it is modeled by itself with a constant heat flux at the bottom surface, and then 
when the heating device is attached at the bottom. In both cases the heating power is 
5 W and the flow rate of the cooling air is 4 m/s. The results are very similar except 
for the almost circular-shaped isosurface that is present in the merged model. In all 
cases the thermal resistance is slightly larger for the heat sink when attached to the 
heating device compared to the standalone model, where a constant heat flux is set at 
the base surface. This is an expected behavior because the flux is limited to the contact 
surface in the model of the entire system.

Figure 8-11: Temperature distribution in the standalone model of a lpd19 heat sink and 
in the model merged with the heating device (right).

The n19 heat sink displays a higher thermal resistance, which results in a maximum 
temperature of roughly 329 K, which is slightly higher than that for the lpd19 heat 
sink. The s1519 heat sink displays a lower resistance than that of the n19 but a 
resistance higher than that for the lpd19. The heat sink denoted ub19 is the one with 
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the best cooling performance in this study. Under the same conditions as shown in the 
previous figure it gives a maximum temperature of approximately 317 K. 

In experiments performed by Alpha Company Ltd. the difference in performance 
between the lpd19, n19, and s1519 heat sinks is very small, smaller than the 
simulations in this study. However, this might be caused by the fact that the n19 and 
s1519 heat sinks are better inducers of turbulence, which improves the cooling 
performance. This is in line with the measured pressure losses, which are higher for the 
n19 and s1519. In addition, both of these models show a nonlinear dependence on 
the pressure drop as a function of flow, a behavior typical for turbulent flow. The 
experiments and the models both agree that the ub19 heat sink has the best 
performance under the testing conditions.

Model Library path: Component_Library/lpd19_heat_sink

Modeling Using the Graphical User Interface

1 Start COMSOL Multiphysics.

2 In the Model Navigator select 3D in the Space dimension list.

3 Choose the application mode Comsol Multiphysics>Heat Transfer>Conduction.

4 Click OK.

G E O M E T R Y  M O D E L I N G

1 From the File menu select Import>CAD Data From File.

2 Choose the COMSOL Multiphysics file file type and select the file lpd19_geo.mphbin. 
Click Import.

O P T I O N S  A N D  S E T T I N G S

1 Open the Options>Constants dialog box. Enter the following constants for later use 
(the descriptions are optional); when done, click OK:

NAME EXPRESSION DESCRIPTION

Tam 25[degC] Ambient temperature

mass_norm 3.590681[cm^3]*2700[kg/m^3] Mass of clad

Uav 1[m/s] Average velocity

dw 2.9[g] Mass of device
R  8 :  H E A T  TR A N S F E R  M O D E L S



locity

fficient
2 Open the Options>Expressions>Global Expressions dialog box. Enter the following 
expressions (the descriptions are optional). Click OK when done.

3 Open the Options>Integration Coupling Variables>Boundary Variables dialog box. 
Select Boundary 3 and create a boundary integration variable with Name area, 
Expression 1, Integration order 4, and Global destination. Click OK.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 Open the Subdomain Settings dialog box from the Physics menu and select 

Subdomain 1. 

2 Click the Load button to open the Materials/Coefficients Library dialog box.

3 Select Aluminum 6063-T83 from the list and click OK. 

4 Click the Init tab. In the Initial value area, enter Tam in the T(t0) edit field.

5 Click the Element tab. Then select Lagrange - Linear from the Predefined elements list 
to use linear elements for the temperature field.

6 Click OK.

fact mass_norm/(mass_norm-dw) Velocity scaling

pow 5[W] Power

NAME EXPRESSION DESCRIPTION

NAME EXPRESSION DESCRIPTION

Lin x+9.5005e-3 Inlet distance

Uavn Uav*fact Average scaled ve

hcoef 10^(0.8616*log10((T+Tam)/2)-3.7142)/
Lin*(0.332*(0.1949*(log10((T+Tam)/
2))^2-1.3494*log10((T+Tam)/
2)+2.8469)^0.33*((350.9/T)*Uavn*Lin/
(-8E-12*T^2+4E-08*T+5E-06))^0.5)*flc2hs(5e5-
(350.9/T)*Uavn*Lin/
(-8E-12*T^2+4E-08*T+5E-06),1e5)+(10^(0.8616*
log10((T+Tam)/2)-3.7142))/
Lin*0.0296*((350.9/T)*Uavn*Lin/
(-8E-12*T^2+4E-08*T+5E-06))^0.8*(0.1949*(log
10((T+Tam)/2))^2-1.3494*log10((T+Tam)/
2)+2.8469)^0.33*flc2hs((350.9/T)*Uavn*Lin/
(-8E-12*T^2+4E-08*T+5E-06)-5e5,1e5)

Heat transfer coe

powdens pow/area Heat flux
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Boundary Conditions
1 Open the Boundary Settings dialog box from the Physics menu.

2 Enter the boundary conditions from the following table; when done, click OK.

Notice that COMSOL Multiphysics indicates that the units for the hcoef and 
powdens expression variables are inconsistent if the highlighting of inconsistent units 
is active. This is due to the use of smoothing functions in the heat transfer coefficient 
(which require a nondimensional input) and the use of an integration coupling variable 
to compute the area. You can disregard these warnings.

M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box from the Solve menu.

2 From the Solver list select Parametric.

3 Type Uav in the Parameter name edit field.

4 Type 1:0.2:4 in the Parameter values edit field. 

5 Click OK to close the dialog box. Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To generate Figure 8-11 follow these instructions:

1 From the Postprocessing menu open the Plot Parameters dialog box. On the General 
page clear the Slice check box. Select the Isosurface check box.

2 Click the Isosurface tab. In the Isosurface levels area set the Number of levels to 10.

3 Click OK to close the dialog box and plot the isosurfaces.

Continue to model the second component, which is the heating device being cooled 
by the heat sink.

SETTINGS BOUNDARY 3 BOUNDARIES 1, 2, 4–118

Boundary condition Heat flux Heat flux

q0 powdens 0

h 0 hcoef

Tinf 0 Tam
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Model Library path: Component_Library/heating_device

1 Start COMSOL Multiphysics.

2 In the Model Navigator select 3D in the Space dimension list.

3 In the list of application modes select 
COMSOL Multiphysics>Heat Transfer>Conduction.

4 Click OK. 

G E O M E T R Y  M O D E L I N G

1 Select Work-Plane Settings from the Draw menu. Click OK.

2 Shift-click the Rectangle/Square (Centered) button on the Draw toolbar. In he Width 
field enter 12.7e-3, and set the Base to Center. 

3 Click OK. 

4 Click the Zoom Extents button on the Main toolbar to center the geometry.

5 From the Draw menu select Extrude. Set the Distance to -2e-3 and click OK.

6 Select Work-Plane Settings from the Draw menu. In the Plane area select the y-z 
option button. Click OK.

7 Click the Projection of All 3D Geometries button on the Draw toolbar.

8 Draw a circle of radius 0.7·10−3 centered at the point (0, −0.001).

9 Select the circle by left-clicking on it. Press Ctrl+C to make a copy of the object.

10 Press Crtl+V, set -3.5e-3 as its displacement in the x direction, and click OK.

11 Press Crtl+V again, and this time use 3.5e-3 as the x displacement. Click OK.

12 Select the three circles by holding down the shift key and clicking on each of them.

13 From the Draw menu select Extrude. Set the Distance to 6e-3 and click OK.

14 Click the Move button on the Draw toolbar. Set the distance in x direction to -3e-3, 
then click OK.

15 Select all objects (press Ctrl+A) and then click the Union button on the Draw toolbar.
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O P T I O N S  A N D  S E T T I N G S

1 Open the Options>Constants dialog box. Enter the following constants for later use 
(the descriptions are optional); when done, click OK:

2 Open the Options>Integration Coupling Variables>Subdomain Variables dialog box. 
Select Subdomain 4 and create a subdomain integration variable with Name volume, 
Expression 1, Integration order 4, and Global destination. Click OK.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 Open the Subdomain Settings dialog box from the Physics menu. Select Subdomains 

2, 3, and 4. 

2 Click the Load button to open the Materials Library dialog box.

3 Select Steel AISI 4340 from the list and click OK. 

4 In the Heat source field enter power/volume.

5 Choose Subdomain 1 and click the Load button.

6 Select Aluminum 6063-T83 from the list and click OK. 

7 Click the Init tab. Select all subdomains and then, in the Initial value area, enter Tout 
in the T(t0) edit field to specify the initial value.

8 Click the Element tab and select Lagrange - Linear for all subdomains.

9 Click OK to close the dialog box.

Boundary Conditions
Open the Boundary Settings dialog box from the Physics menu. Enter the boundary 
conditions as in the following table; when done, click OK:

NAME EXPRESSION DESCRIPTION

htc 200[W/(m^2*K)] Heat transfer coefficient

Tout 40[degC] Outer temperature

power 5[W]/3 Power per heater

SETTINGS BOUNDARY 4 BOUNDARIES 1–3, 5

Boundary condition Heat flux Thermal insulation

q0 0

h htc

Tinf Tout
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M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

Now merge the two components into a single COMSOL Multiphysics model.

Model Library path: COMSOL_Multiphysics/Heat_Transfer/lpd19_dev_merge

1 Start COMSOL Multiphysics.

2 In the Model Navigator select 3D in the Space dimension list.

3 Click OK. 

4 From the File menu select Open Component library. Choose the heating device 
component and press the Merge button. 

5 Press the Merge button a second time in the Merge Component dialog box. The 
component is now inserted into Geometry 1.

6 From the File menu select Open Component library. This time choose the 
ldp19 heat sink component and press the Merge button.

7 Press the Merge button again to merge the components into a a single geometry with 
a single application mode.

8 Mate the two objects by choosing Create pairs from the Draw menu, then click OK.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 Open the Subdomain Settings dialog box from the Physics menu.

2 Click the Init tab. Select all subdomains and then, in the Initial value area, enter Tam 
in the T(t0) edit field to specify the initial value

3 Click the Element tab and select Lagrange - Linear for all subdomains.

4 Click OK to close the dialog box.

Boundary Conditions
Open the Boundary Settings dialog box from the Physics menu. Select Boundary 3 and 
change the condition to Thermal insulation. Press OK to close the dialog box.
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M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box from the Solve menu.

2 From the Solver list select Parametric.

3 Type Uav in the Parameter name edit field.

4 Type 1:0.2:4 in the Parameter values edit field.

5 Click OK to close the dialog box, then click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To generate Figure 8-10 follow these steps:

1 From the Postprocessing menu open the Domain Plot Parameters dialog box. On the 
Point page select 226, then type (T-Tam)/pow in the Expression field.

2 Click the Line Settings button to choose Circle as Line marker, then select the Legend 
check box. 

3 Click OK twice to close the dialog box and create the plot.

4 Repeat the merging process to create similar plots for the other three heat sinks from 
Alpha Company Ltd.: types n19, s1519, and ub19.
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M u l t i d i s c i p l i n a r y  M o d e l s  
Multidisciplinary models combine finite element analysis with other 
computational engineering tools and applications such as control system design, 
signal processing, state-space modeling, and dynamic simulations. Typically, the 
finite element model is embedded in the multidisciplinary model to detail physical 
processes.
 301
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Magne t i c  B r a ke

Introduction

A magnet brake in its simplest form consists of a disk of conductive material and a 
permanent magnet. The magnet generates a constant magnetic field, in which the disk 
is rotating. When a conductor moves in a magnetic field it induces currents, and the 
Lorentz forces from the currents slow the disk.

Model Definition

For a disk rotating with angular velocity ω about the z-axis, the velocity v at a point 
(x, y) is given by

When the disk is inserted in the air gap and it encounters the magnetic field B0, the 
configuration induces a current density j according to Lorentz’ equation

v ω y x 0, ,–( ).=

E v B B0+( )×+
1

σd
-------j=

∇ E× 0=

∇ B× µj.=⎩
⎪
⎪
⎨
⎪
⎪
⎧
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These equations use the following variables and material properties:

• B represents the magnetic field

• E is the electric field

• µ is the permeability

• σ is the electric conductivity

• d is the plate’s thickness

This example uses the Dirichlet boundary condition B = 0.

In this model, the magnetic flux B has only a vertical component, and the currents and 
electric field have no z-components. Solving for B gives the following scalar partial 
differential equation:

where B is the z-component of B and B0 equals the z-component of B0.

Now consider how the system evolves over time. The induced torque slows the disc 
down, and you must set up an ordinary differential equation (ODE) to model the 
angular velocity ω.

To obtain the time derivative of the angular velocity ω, compute the torque arising 
from the induced currents. For a small surface element, the force equals

and integrating over the disk gives the total torque:

In this case, M has only a z-component with the value

Thus the ODE for the angular velocity ω can be formulated as

,

div B∇ µσdω B B0+( ) y
x–⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞– 0=

dF j B B0+( )× dxdy=

M 1
µ
---r ∇ B×( ) B B0+( )×{ }dxdy.×

Disk
∫=

M 1
µ
--- y B∂

x∂
------- x B∂

y∂
-------–⎝ ⎠

⎛ ⎞ B B0+( )⋅ dxdy.
Disk
∫=

J ωd
dt
------- M=
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where the moment of inertia J for a disk with radius r equals

Modeling in COMSOL Multiphysics

The models show different ways to solve this problem:

1 Start by determining the magnetic field for a given angular velocity.

2 Continue by exporting to Simulink getting a time-dependent solution. Simulink 
models the additional ODE for the angular velocity of the disk. For each time step 
in Simulink, COMSOL Multiphysics solves a stationary PDE for the magnetic field 
given the current angular velocity.

3 Finish by doing the same thing entirely within COMSOL Multiphysics using 
coupling variables and an additional ODE for the angular velocity. Now COMSOL 
Multiphysics solves for the angular velocity and the magnetic field simultaneously. 
The discretized problem is a differential-algebraic equation system (DAE).

Results

There is agreement between the results from the Simulink simulation and the results 
from COMSOL Multiphysics. In the plots for ω and dω/dt against time, dω/dt is 
proportional to the torque on the disk.

J mr2

2
----- ρdr4π

2
----------------.= =
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Model Library path: COMSOL_Multiphysics/Multidisciplinary/
magnet_brake_simulink

Modeling Using the Graphical User Interface—Fixed ω

M O D E L  N A V I G A T O R

1 Select 2D in the Space dimension list.

2 In the list of application modes, open the COMSOL Multiphysics>PDE Modes folder and 
then the PDE, Coefficient Form node.

3 Select Stationary analysis.

4 Type B in the Dependent variables edit field.

5 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 Enter the following constants:

The variable w represents the fixed angular velocity ω. The variable K is the product of 
µ, σ, and d.

G E O M E T R Y  M O D E L I N G

1 In the Draw menu, point to Specify Objects and then click Circle.

2 In the Circle dialog box, type 0.1 in the Radius edit field and keep the center in the 
origin.

3 Click OK.

4 In the Draw menu, point to Specify Objects and then click Square.

NAME EXPRESSION

K mu*5.99e7*0.02

w 2*pi*200

J 8960*0.02*0.1^4*pi/2

mu 4e-7*pi

B0_2 0.1
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5 In the Square dialog box, type 0.04 in the Width edit field. In the Position area, select 
Center in the Base list, and enter 0.05 and 0 in the x and y edit fields, respectively.

6 Click OK.

7 In the Draw menu, point to Specify Objects and click Point.

8 In the Point dialog box, type -0.1 and -0.1 in the x and y edit fields, respectively.

9 Click OK.

10 Click the Zoom Extents button.

You will use the point at (−0.1, −0.1) to introduce an additional scalar state variable 
corresponding to the angular velocity in the final version of this model.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Use the default Dirichlet boundary conditions.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.
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2 Enter PDE settings as shown in the following table:

Expression Variables
Define a variable B0 which is different in the two subdomains using an expression 
variable:

1 On the Options menu, point to Expressions and then click Subdomain Expressions.

2 Select Subdomain 1 and enter the name B0 in the Name column and 0 in the 
Expression column.

3 Select Subdomain 2 and enter the expression B0_2.

4 Click OK.

Coupling Variables
Define a coupling variable for the torque divided by the moment of inertia:

1 On the Options menu, point to Integration Coupling Variables and then click 
Subdomain Variables.

2 Select Subdomain 1 and 2 and enter the variable MdivJ in the Name column.

3 Enter the expression (B+B0)*(y*Bx-x*By)/mu/J. Keep the default integration 
order 4 and the default global destination.

4 Click OK.

SETTINGS SUBDOMAINS 1, 2

 c 1

 a, f, da 0

 α K*w*y -K*w*x

 γ -K*w*B0*y K*w*B0*x
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M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box by selecting Free Mesh Parameters from 
the Mesh menu, click the Custom mesh size button and type in the 0.04 in the 
Maximum element size edit field.

2 Click the Subdomain tab.

3 Select Subdomain 2 and type 0.01 in Maximum element size.

4 Click OK and then click the Initialize Mesh button.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button to solve the problem.
R  9 :  M U L T I D I S C I P L I N A R Y  M O D E L S



Modeling Using the Programming Language—Fixed ω

1 Clear the FEM structure, set the variable name and choose quadratic elements:

clear fem
fem.dim = 'B';
fem.shape = 2;

2 Specify the constants K, w, J, mu, and B0_2:

fem.const = {...
  'K','mu*5.99e7*0.02',...
  'w','2*pi*100',...
  'J','8960*0.02*0.1^4*pi/2',...
  'mu','4e-7*pi',...
  'B0_2',0.1};

3 Create the geometry:

fem.geom = circ2(0.1)+square2(0.04,'pos',[0.05,0],'base','cent');

4 Specify the boundary conditions: homogeneous Dirichlet conditions at the edge of 
the disk (boundary elements 5, 6, 7, and 8):

fem.bnd.h = 1;
fem.bnd.r = 0;
fem.bnd.ind = {5:8};

5 Specify the PDE coefficients:

fem.equ.c = 1;
fem.equ.al = {{{'K*w*y' '-K*w*x'}}};
fem.equ.ga = {{{'-K*w*B0*y' 'K*w*B0*x'}}};
fem.equ.expr = {'B0' {'0' 'B0_2'}};

6 Specify the integration coupling variable MdivJ from Subdomains 1 and 2:

clear el
el.elem = 'elcplscalar';
el.var = {'MdivJ'};
el.g = {'1'};
clear src
src.expr{1} = {'(B+B0)*(y*Bx-x*By)/mu/J'};
src.ipoints{1} = {'4'};
src.ind{1} = {'1' '2'};
el.src{1} = {{},{},src};
el.geomdim = {{}};
el.global = {'1'};
fem.elemcpl = {el};

7 Generate the mesh:

fem.mesh = meshinit(fem,'hmax',0.04,'hmaxsub',[2 0.01]);

8 Solve the problem using the stationary solver and plot the solution:
M A G N E T I C  B R A K E  |  309



310 |  C H A P T E
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','B','tribar','on',...
  'trirefine',10,'axisequal','on');

Exporting to Simulink—Time-Dependent ω

This example begins in the same way as the previous model, except the solution of the 
time-dependent problem is obtained using Simulink instead of extended multiphysics.

Note: This section requires that you run COMSOL Multiphysics with MATLAB and 
Simulink.

Set up Problem for Fixed ω
1 Make sure you are running COMSOL Multiphysics with MATLAB, and that you 

have installed Simulink along with MATLAB.

2 First set up the problem for fixed ω as described from page 305 or on page page 309 
if you are using the programming language.

Export the Model to Simulink
1 On the File menu, point to Export and then click Simulink Model to open the Export 

Simulink Model dialog box.

2 Select Export>Simulink on the File menu.

3 Enter magnet_struct as the model name. Use General static as the Simulink block 
type.

4 Click the Variables tab and type w B0_2 in the Variables edit field in the Input area. 
To add the variable dwdt in the origin, click Add, type dwdt in the Variable name edit 
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field, and make sure that the Subdomain button is selected. Type 0 and 0 in the x and 
y edit field, respectively, and type MdivJ in the Expression field.

This creates a structure that the COMSOL Multiphysics block in Simulink can use 
to run the COMSOL Multiphysics model as part of the Simulink simulation.

5 Open a Simulink model that can use the COMSOL Multiphysics model by typing 
magnet_break_mdl. As an alternative you can enter the Simulink model by 
following the instructions in the following section.

U S I N G  T H E  P R O G R A M M I N G  L A N G U A G E

You can also perform the Simulink export on the MATLAB command line.

1 Start by exporting the FEM structure to MATLAB by selecting Export>FEM 

Structure on the File menu. If you are using the programming language to enter the 
model you can ignore this step.

2 Then type the command.

magnet_struct = femsim(fem,'input',{'w' 'B0_2'},...
'output',{{'MdivJ' [0 0]'}},...
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'outnames',{'dwdt'},'static','on')

This creates a structure which the COMSOL Multiphysics block within Simulink 
can use to run the COMSOL Multiphysics model as part of the Simulink simulation.

The syntax {'MdivJ' [0 0]'} means the output dwdt is computed by evaluating 
the expression MdivJ in the point (0, 0). Use the syntax of the postinterp 
command to specify outputs in this way.

3 Open a Simulink model that can use the COMSOL Multiphysics model by typing 
magnet_break_mdl. As an alternative you can enter the Simulink model by 
following the instructions in the following section.

D E S I G N  I N  S I M U L I N K

Start Simulink and draw a model as in the following figure. You find the COMSOL 

Multiphysics Subsystem block in the COMSOL Multiphysics block library. To set up the 
input and the output ports, double-click the COMSOL Multiphysics Subsystem block and 
enter the Simulink Structure name magnet_struct.

1 Set the initial condition for the Integrator block to 2*pi*200.

2 In the Simulation Parameters dialog box set the solver type to ode15s, set the relative 
tolerance to 1e-2 and the absolute tolerance to 1e-3.

3 Start the simulation.

The scopes show graphs of ω and dω/dt against time that correspond to the plots on 
page 304.
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Model Library path: COMSOL_Multiphysics/Multidisciplinary/
magnet_brake

Modeling Using the Graphical User Interface —Time-Dependent ω

The modeling approach in this section uses the extended multiphysics feature to solve 
the time-dependent problem. Introduce a new variable w, active at a single point within 
the geometry using a Weak Form, Point application mode.

U S I N G  T H E  P R E V I O U S  M O D E L

First set up the problem for fixed ω as described from page 305, but click the Refine 

Mesh button on the Main toolbar for a finer mesh. Without the export to Simulink, 
you can afford a finer mesh that increases the accuracy.

M O D E L  N A V I G A T O R

1 Open the Model Navigator from the Multiphysics menu.

2 In the list of application modes, open the COMSOL Multiphysics>PDE Modes folder, 
and select Weak Form, Point.

3 Type w in the Dependent variables edit field.

4 Click Add.

5 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 Open the Constants dialog box from the Options menu.

1 Select the variable w in the list and rename it w0. Later on, use this constant as initial 
value for w, the angular velocity.

2 Click OK.

P H Y S I C S  S E T T I N G S

Point Settings
1 Open the Point Settings dialog box from the Physics menu.

2 Click the Init tab.

3 Select Point 1 and enter w0 as initial value in the w(t0) edit field.

4 Click the Weak tab.
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5 Enter PDE settings as shown for the weak point mode.

6 Select Points 2 through 9 and clear the Active in this domain check box.

7 Click OK.

Defining Coupling Variables
The coupling variable MdivJ that integrates the torque has already been set up. You 
need to add a coupling variable that makes the angular velocity, w, available throughout 
the domain.

1 On the Options menu, point to Extrusion Coupling Variables and then click Point 

Variables.

2 Select Point 1 and enter the variable name w and the expression w.

3 Click the General transformation button.

4 Click the Destination tab.

WEAK TERM POINT 1

weak w_test*MdivJ

dweak w_test*w_time

constr 0
R  9 :  M U L T I D I S C I P L I N A R Y  M O D E L S



5 Select Subdomain in the Level list and then select the check boxes for Subdomains 1 
and 2.

6 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box and select Time dependent in the Solver list.

2 Type 0:0.2:8 in the Times edit field and then type 1e-3 in the Relative tolerance 
edit field and 1e-5 in the Absolute tolerance edit field.

3 Click the Time Stepping tab.

4 Select the Time steps from solver in the Times to store in output list.

5 Click OK.

6 Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Using the solution data, you can visualize the results in a number of ways:

• Click the Animate button to create an animation of the dissipation of B over time.

• For a graph of the ω against time, open the Cross-Section Plot Parameters dialog box 
from the Postprocessing menu. On the General page, select all the time steps in the 
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list and select Point plot. Click the Point tab and type w in the Expression edit field. 
Click OK.

• For a graph of dω/dt against time, follow the same procedure as for ω but type 
MdivJ in the Expression edit field instead.
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P r o c e s s  C on t r o l  U s i n g  a  P ID 
Con t r o l l e r

In the chemical process industry it is often important to control a specific process. PID 
control (proportional-integral-derivative-control) is one way to achieve that, but it can 
be difficult to optimize the parameters in the PID algorithm. This example illustrates 
how you can implement a PID control algorithm to simulate a process control system 
and to find the optimal PID parameters.

This model is a generic example but could resemble the environment in a combustion 
chamber where the concentration at the ignition point is crucial. Two gas streams with 
different oxygen concentrations are mixed in the combustion chamber. The 
concentration is measured at the ignition point before complete mixing of the streams 
is reached. The control algorithm alters the inlet velocity of the gas with the lower 
oxygen content to achieve the desired total concentration at the ignition point.

Model Definition

The model geometry appears in the following figure. At the upper inlet, a gas stream 
with high oxygen content enters the reactor at a velocity of  10 mm/s, while a gas with 
a lower oxygen level enters from the left. The oxygen concentration is measured at a 
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measurement point, and the inlet velocity of the less concentrated stream is altered by 
the PID control algorithm to achieve the desired concentration at that point.

The model uses the Navier-Stokes equations to describe the fluid flow and the 
Convection and Diffusion application mode for the mass balance.

 (9-1)

 (9-2)

It is possible to formulate the boundary conditions for the mass-transport equation by 
assuming that you know the two inlet concentrations. In addition, assume that the 
reactant transport at the outlet is mainly driven by convection, that is, neglect diffusion 
in the main direction of the convective flow. An insulation/symmetry boundary 
condition describes all walls. The applied boundary conditions for the mass balance 
are:

BOUNDARY CONSTRAINT

Upper inlet  c = cin,top

Controlled inlet  c = cin,inlet

Outlet

Walls

Upper inlet

Controlled inlet

Measurement point

Outlet

ρ
t∂

∂u ∇ η ∇u ∇u( )T
+( )[ ]⋅– ρu ∇⋅ u ∇p+ + F=

∇ u⋅ 0=

δts
c∂
t∂

----- ∇ D c∇–( )⋅+ R u ∇c⋅–=

n D c∇–( )⋅ 0=

N n 0=⋅
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where  c is the concentration; cin,top and cin,inlet are the inlet concentrations (mol/m3) 
for the upper and controlled inlets, respectively; D is the applied diffusivity (m2/s); 
and N is the molar flux (mol/(m2·s)).

The model uses the following boundary conditions for the fluid flow:

where u is the velocity vector (m/s), vin,top is the inlet velocity at the top inlet, and 
uin is the PID controlled velocity. At the outlet, set the pressure to p0 (Pa). No-slip 
boundary conditions describe all walls except the inlet sections where slip conditions 
apply, allowing for a smooth transition to a laminar velocity profile.

The PID control algorithm used to calculate uin is defined as follows:

 (9-3)

using the following parameters:

In practice, the derivative constant, kD, is set to 0 in most cases as this parameter can 
be difficult to determine and the term may increase the fluctuations in the system.

Results

The two plots in Figure 9-1 show the oxygen concentration and the velocity stream 
lines in the chamber after approximately 0.04 s and 1.4 s, respectively. The figures 
show that the measured concentration depends strongly on the flow field. At start-up, 

BOUNDARY CONSTRAINT

Upper inlet  u =(0, −vin,top)

Controlled inlet  u = (uin, 0)

Outlet  p0 = 0

Inlet sections n · u = 0

Walls u = 0

PARAMETER VALUE

 cset 0.5 mol/m3

 kP 0.5 m4/(mol·s)

 kI 1 m4/(mol·s2)

 kD 10-3 m4/mol

uin kP c cset–( )= kI c cset–( )

0

t

∫ dt kD
∂
∂t
-----+ + c cset–( )
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when the inlet velocity of the stream entering from the left is very low, the sensor is 
entirely exposed to the highly concentrated stream, and as the inlet velocity increases 
the opposite relation occurs.

Figure 9-1: Oxygen concentration and velocity streamlines after approximately 0.04 s 
(top) and 1.4 s (bottom).

Figure 9-2 shows the inlet velocity and concentration in the measurement point as a 
function of time for two different values for the kP parameter. The solid line represents 
the results for a kP value of 0.5 m4/(mol·s) while the dashed line corresponds to kP 
equal to 0.1 m4/(mol·s). The results evaluated for the smaller kP value oscillate more 
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before stabilizing. Thus, it is clear that for this case the higher kP value yields a more 
stable process control.

Figure 9-2: PID-controlled inlet velocity (top) and concentration in the measurement 
point as a function of time for kP = 0.5 m4/(mol·s) (solid) and kP = 0.1 m4/(mol·s) 
(dashed).

Model Library path: COMSOL_Multiphysics/Multidisciplinary/PID_control
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Go to the Model Navigator and select 2D in the Space dimension list.

2 In the list of application modes select COMSOL Multiphysics>Fluid 

Dynamics>Incompressible Navier-Stokes>Transient analysis.

3 Click the Multiphysics button in the lower right corner, then click Add.

4 Similarly, add the COMSOL Multiphysics>Convection and Diffusion>Convection and 

Diffusion>Transient analysis application mode.

5 Click OK.

O P T I O N S  A N D  S E T T I N G S

Constants
1 Go to the Options menu and choose Constants.

2 Make the following entries in the Constants dialog box; when finished, click OK.

Grid Settings
1 Go to the Options menu and select Axes/Grid Settings.

NAME EXPRESSION DESCRIPTION

v_in_top 0.01[m/s] Velocity, upper inlet

cin_top 1[mol/m^3] Concentration, upper inlet

cin_inlet 0.2[mol/m^3] Concentration, controlled inlet

c00 0.5[mol/m^3] Initial concentration, chamber interior

eta 3e-5[Pa*s] Dynamic viscosity

rho 1.2[kg/m^3] Density

D 1e-4[m^2/s] Diffusivity

c_set 0.5[mol/m^3] Setpoint concentration

k_P_ctrl 0.5[m^4/(mol*s)] Proportional parameter

k_I_ctrl 1[m^4/(mol*s^2)] Integral parameter

k_D_ctrl 1e-3[m^4/mol] Derivative parameter
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2 On the Axis page enter x-y limits (expressed in the default length unit meters) for the 
axes as displayed below.

3 Click the Grid tab.

4 Clear the Auto check box and enter the following extra grid values.

5 Click OK.

G E O M E T R Y  M O D E L I N G

1 When creating the geometry you alternate between using the Line and 2nd Degree 

Bézier Curve tools located on the Draw toolbar to the left. For curved shapes use the 
curve tool, and for straight lines use the line tool. Click on the points given in the 
following table using the corresponding drawing tool. Use the coordinates 
displayed in the lower-left corner of the screen to find the points.  

AXIS VALUE

x min -0.015

x max 0.015

y min -0.01

y max 0.02

GRID VALUE

Extra x -0.014 -0.012 -0.01 -0.004 -0.002 0 0.002 0.008 0.01 0.012

Extra y -0.004 -0.002 0 0.002 0.004 0.008

DRAW TOOL POINTS (X, Y)

Line (0.012,-0.002) (0.012,-0.004) (-0.01,-0.004)

Curve (-0.01,-0.002) (-0.012,-0.002)

Line (-0.014,-0.002) (-0.014,0) (-0.012,0)

Curve (-0.01,0) (-0.01,0.002)

Line (-0.004,0.002)

Curve (-0.002,0.002) (-0.002,0.004)

Line (-0.002,0.008) (0,0.008) (0,0.004)

Curve (0,0.002) (0.002,0.002)

Line (0.008,0.002) (0.008,0)

Curve (0.008,-0.002) (0.01,-0.002)

Line Right-click to close the geometry
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2 To add the measurement point, click the Point button in the Draw toolbar to the 
left and click on the coordinates (0, −2·10−3).

3 Click the Zoom Extents button on the Main toolbar to center the geometry.

P H Y S I C S  S E T T I N G S

Subdomain Settings—Incompressible Navier-Stokes
1 Go to the Multiphysics menu and select Incompressible Navier-Stokes (ns).

2 From the Physics menu, choose Subdomain Settings.

3 In the Subdomain Settings dialog box select Subdomain 1 and type rho in the Density 
edit field.

4 In the Dynamic viscosity edit field type eta.

5 Click OK.

Boundary Conditions—Incompressible Navier-Stokes
1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Conditions dialog box enter the following boundary conditions.

You will define u_in_ctrl as a scalar expression shortly.

3 Click OK.

Subdomain Settings—Convection and Diffusion
1 From the Multiphysics menu, choose Convection and Diffusion (cd).

2 From the Physics menu, choose Subdomain Settings select Subdomain 1.

3 In the Diffusion (isotropic) edit field type D to define an isotropic diffusion 
coefficient.

4 In the x-velocity edit field type u.

5 In the y-velocity edit field type v.

SETTINGS BOUNDARY 1 BOUNDARY 7 BOUNDARIES 
2, 3, 6, 8

BOUNDARIES 
4, 5, 9–11, 13–17

BOUNDARY 12

Type Inlet Inlet Symmetry Wall Outlet

Condition Velocity Velocity - No slip Pressure, no 
viscous stress

u0 u_in_ctrl* 
(u_in_ctrl>=0)

0

v0 0 -v_in_top

p0 0
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6 Click the Init tab.

7 In the c(t0) edit field enter the initial concentration c00.

8 Click OK.

Boundary Conditions—Convection and Diffusion
1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Conditions dialog box enter the following boundary conditions.

3 Click OK.

P I D  A L G O R I T H M  S E T U P

It is possible to specify the PID algorithm as a scalar expression. However, some of the 
terms in the algorithm require some additional specifications. The algorithm contains 
the concentration in the measurement point, the time derivative of the concentration 
in the point, and the time integration of the concentration difference between the 
measured and wanted concentration.

1 Go to the Options menu and choose Expressions>Scalar Expressions.

2 Set the Name to u_in_ctrl and define the Expression as 
nojac(k_P_ctrl*(conc-c_set)+k_I_ctrl*Int+k_D_ctrl*ctime). The nojac 
operator makes sure the above expression gives no Jacobian contribution. The 
resulting effect is the same as using nonideal weak constraints, namely a one-way 
coupling instead of the normal two-way coupling. Because of the use of a coupling 
variable, the unit becomes undefined for this variable and other quantities where 
you use it.

3 Click OK.

4 To specify the concentration and its time derivative in the point, go to the Options 
menu and choose Integration Coupling Variables>Point Variables.

5 Select Point 10 and enter conc in the Name edit field and c in the Expression edit 
field.

6 For the same point enter ctime in the Name edit field and ct in the Expression edit 
field. ct is the predefined expression for the time derivative of the concentration.

SETTINGS BOUNDARY 1 BOUNDARIES 2–6, 
8–11, 13–17

BOUNDARY 7 BOUNDARY 12

Type Concentration Insulation/
Symmetry

Concentration Convective flux

c0 cin_inlet cin_top
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7 Click OK.

8 To specify the time integral of the concentration difference in the point, go to the 
Physics menu and open the Space-Independent Equations dialog box.

9 Enter Int in the Name (u) edit field.

10 In the Equation edit field type Intt-(conc-c_set).

11 Click OK to exit the Space-Independent Equations dialog box.

M E S H  G E N E R A T I O N

1 Go to the Mesh menu and choose Free Mesh Parameters.

2 On the Global tab, select Finer in the Predefined mesh sizes list.

3 To reduce the number of elements along the curved boundaries, click the Custom 

mesh size button and type 0.5 in the Mesh curvature factor edit field.

4 Click Remesh and OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Go to the Solve menu and select Solver Parameters.

2 Select the Transient from the Analysis list.

3 On the General page, set the Times vector to 0:0.04:6.

4 On the Time Stepping page, select Time steps from solver from the Times to store in 

output list to make all time steps the solver takes available for postprocessing.

5 Select Intermediate from the Time steps taken by solver list to give the solver some 
freedom to set its own time steps. Using this option restricts the solver to take at 
least one time step in each subinterval of the time list.

6 Click OK to exit the Solver Parameters dialog box.

7 Click the Solve button on the Main toolbar to start the simulation.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default visualization plots the magnitude of the velocity field at the end of the 
simulation interval. Follow the instructions below to reproduce the simultaneous plots 
of the oxygen concentration and the velocity stream lines at two different times 
presented in Figure 9-1 on page 320.

1 Go to the Postprocessing menu and choose Plot Parameters to open the Plot 

Parameters dialog box.

2 On the General page, select the solution near t = 0.04 s from the Solution at time list.

3 On the Surface page, click the Surface Data tab.
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4 In the Predefined quantities list, select Convection and Diffusion (cd)>Concentration, c.

5 Click the Streamline tab.

6 Select the Streamline plot check box. In the Predefined quantities list on the 
Streamline Data tab keep the default selection, Incompressible 

Navier-Stokes (ns)>Velocity field.

7 From the Streamline plot type list select Magnitude controlled.

8 Click Apply to view the upper plot in Figure 9-1.

9 Return to the General tab, then select the solution at t = 1.4 s from the Solution at 

time list. Click OK to generate the lower plot in Figure 9-1.

To visualize the inlet velocity and the measured concentration as functions of time, use 
domain plots:

1 Open the Domain Plot Parameters dialog box from the Postprocessing menu.

2 Click the Point tab.

3 Select Point 1 and enter u_in_ctrl*(u_in_ctrl>=0) in the Expression edit field.

4 Click Apply.

5 Click the General tab and select to plot in New figure in the Plot in list.

6 Click the Point tab, select Point 10, and select Concentration, c from the Predefined 

quantities list.

7 Click OK.

To see the above plots for different values of kP, alter the kP value and solve the model 
again without closing the plot frames:

1 Open the Constants dialog box from the Options menu and change the value of 
k_P_ctrl to 0.1 [m^4/(mol*s)].

2 Click the Solve button to solve the model for the new parameter value.

3 Open the Domain Plot Parameters dialog box from the Postprocessing menu.

4 On the General page, select to plot in Figure 2 and select the Keep current plot check 
box.

5 Click the Point tab and make sure Point 10 and Concentration, c are selected.

6 Click the Line Settings button. Set the Line style to Dashed line and click OK.

7 Click Apply to generate the lower plot in Figure 9-2 on page 321.

8 Click the General tab, select to plot in Figure 1, and select the Keep current plot check 
box.
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9 Click the Point tab, select Point 1, and type u_in_ctrl*(u_in_ctrl>=0) in the 
Expression edit field.

10 Click OK to close the dialog box and generate the upper plot in Figure 9-2.
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Con t r o l l i n g  T empe r a t u r e

Introduction

This example demonstrates two approaches to controlling the temperature in a heated 
metal block using a thermal controller. The first model uses an on-off controller. You 
make this model in COMSOL Multiphysics and export it to Simulink. The second 
approach uses a PI controller to control the temperature.

Model Definition

The study of this thermal controller involves two distinct modeling situations:

• Taken as a whole, this dynamic system assumes only a small number of states, 
making it a good candidate for modeling and simulation with Simulink.

• One of the model’s elements, the controller, contains a subsystem that involves heat 
distribution, which is described with a PDE, the heat equation. It is easy to break 
this portion of the problem down and model it in COMSOL Multiphysics.

The dynamic system consists of a metal block that exchanges heat with the 
environment. A heater and a thermostat switch are situated inside the glass-enclosed 
system. The system works as follows: The thermostat turns the heater on or off when 
the temperature becomes too low or too high.

The finite-element model of the metal block requires two inputs:

• The state of the heater, which can be On (1) or Off (0)

• The exterior temperature, Tout

Thermostat Heater
Metal Block

Exterior

Temperature

Temperature
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As its output, the model supplies the temperature at the thermostat’s location. 

The PDE describes the overall system’s temperature distribution given the 
temperature of the heater and the exterior environment. If the heat transfer is so fast 
that the heat distribution is more or less constant (in space, not in time), a single state 
is sufficient. Otherwise, controlling the temperature requires modeling a PDE in 
COMSOL Multiphysics and then including those results in the Simulink environment 
as illustrated here.

The heat equation is:

The boundary conditions come from the level of insulation around the system. On 
well-insulated sides the temperature flux is zero, which gives the Neumann boundary 
condition . The poorly insulated sides involve the Neumann condition 

, where kg and lg are the thermal conductivity and the 
thickness of the glass sheet that separates the metal block and the exterior.

Because only temperature distribution in the xy-plane are of interest, you can use a 2D 
model. For the units to make sense, think of the domain as having a depth (z direction) 
of 1 m.

Modeling in COMSOL Multiphysics

This model is based on the SI system, but to more appropriately represent the time 
scale of the problem, the time is counted in minutes. This means that you must scale 
all quantities with units that contain the basic unit of time by a factor 60 compared to 

ρC∂T
∂t
------- ∇– k∇T( )⋅ Q.=

n k T∇( )⋅ 0=

n k T∇( )⋅ kg lg⁄ Tout T–( )⋅=

Heat source

Thermostat

Insulation

Glass

layer
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their standard SI values. This model data in the following lists includes this conversion 
for the thermal conductivity k and the heat source Q.

Metal block:

• Dimensions 30 × 20 × 100 cm = 0.3 × 0.2 × 1 m

• Density ρ = 7.82·103 kg/m3

• Heat capacity C = 449 J/(kg·K)

• Thermal conductivity k = 82 W/(m·K) = 4.92·103 J/(m·min·K)

Glass sheet:

• Thermal conductivity kg = 0.9 W/(m·K) = 54 J/(m·min·K)

• Thickness lg = 1 mm = 10−3 m

Heater:

• Dimensions 4 × 4 × 100 cm = 0.04 × 0.04 × 1 m

• Heat source Q = 2 kW/Vheater = 2·103 / (1·0.042) W/m3 = 7.5·107 J/(m3·min)

Do the modeling in COMSOL Multiphysics in three steps:

1 Start by setting up a basic model of the steel plate for the Simulink export.

2 Continue by making the model of the on-off controller in Simulink.

3 Finish by using a PI controller in a model implemented entirely within COMSOL 
Multiphysics using coupling variables and the Weak Point application mode to add 
the ODE.

Results

The first model uses Simulink to simulate the on-off controller. Simulink handles the 
nonlinear behavior of the on-off controller well. The PDE model for the plate is linear, 
you can do the Simulink export using the linearized state-space form to improve 
performance. You can also use the mode reduction facility of the Simulink export to 
improve performance in Simulink, but it only works for linear or linearized PDE 
models.

It is easy to create the second model entirely within COMSOL Multiphysics, modeling 
the PI controller with an ODE.
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The first set of images show the result of the Simulink simulation with the on-off 
controller. The left figure shows the thermostat temperature at node 3 and the right 
figure shows the result when the thermostat has been move to node 8.

Notice a few interesting details in the solutions. For instance, the distance between the 
thermostat and the exterior has an effect on the delay between the peaks of the two 
curves. Node 8 is further from the exterior than node 3, so the delay is larger in the 
second plot than in the first.

Notice also the qualitative differences between the two simulations. This extra 
information comes as a bonus for solving a detailed heat-flow problem that accounts 
for the geometry and the heat-diffusion properties.

The second set of images show the result of the simulation of the PI-controlled metal 
plate, illustrating the ability of the PI controller to keep the temperature close to 20 
degrees. The left figure shows the thermostat temperature, the right figure shows the 
external temperature, and the last figure shows the controller output level.
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Model Library path: COMSOL_Multiphysics/Multidisciplinary/
thermal_controller_simulink

Using the Graphical User Interface—No Controller

Before exporting the model description to Simulink, run a time-dependent simulation 
in COMSOL Multiphysics, running with the heater turned on with an initial 
temperature of 20 degrees in the plate.

M O D E L  N A V I G A T O R

1 Select 2D in the Space dimension list.

2 In the list of application mode, open COMSOL Multiphysics>Heat Transfer and then 
select Conduction and finally Transient analysis.

3 Use the default dependent variable name T. Make sure Lagrange - Quadratic elements 
are selected in the Elements list.

4 Click OK.

G E O M E T R Y  M O D E L I N G

1 In the Draw menu, point to Specify Objects and then click Rectangle.

2 In the Rectangle dialog box, type 0.3 and 0.2 in the Width and Height edit fields.

3 Click OK.

4 Click the Zoom Extents button.
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5 In the Draw menu, point to Specify Objects and then click Square.

6 In the Square dialog box, type 0.04 in the Width edit field. In then Position area, 
select Center in the Base list and enter 0.1 and 0.1 in the x and y edit fields.

7 In the Draw menu, point to Specify Objects and then click Point.

8 In the Point dialog box, type 0.05 0.2 and 0.1 0.1 in the x and y edit fields, 
respectively, to create two points at (0.05, 0.1) and (0.2, 0.1).

9 Click OK.

O P T I O N S  A N D  S E T T I N G S  

1 From the Options menu, choose Constants.

2 Enter the following constants:

3 Click OK.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu, choose Boundary Settings.

NAME EXPRESSION

HeatState 1

Tout 20
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2 Enter the following boundary conditions.

3 Click OK.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

2 Enter the following material properties.

3 Click the Init tab.

4 Enter the following initial values.

5 Click OK.

M E S H  G E N E R A T I O N

To speed up the computation within Simulink, use a coarse mesh.

1 Open the Free Mesh Parameters dialog box, click the Custom mesh size button and 
enter 0.05 in the Maximum element size edit field.

2 Click OK to close the dialog box.

3 Initialize the mesh.

C O M P U T I N G  T H E  S O L U T I O N

Solve the heat equation using 21 equal steps for 20 minutes, starting at time = 0:

1 Open the Solver Parameters dialog box from the Solve menu.

2 Enter 0:1:20 in the Times edit field.

SETTINGS BOUNDARY 1 BOUNDARIES 2, 3, 8

Type Heat flux Thermal insulation

h 54/1e-3

Tinf Tout

SETTINGS SUBDOMAIN 1 SUBDOMAIN 2

k 4.92e3 4.92e3

ρ 7.82e3 7.82e3

Cp 449 449

Q 0 7.5e7*HeatState

SETTINGS SUBDOMAINS 1, 2

T(t0) 20
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3 Click OK.

4 Click the Solve button to start the simulation.

A plot of the surface temperature at Time = 20 appears as in this figure:

Exporting to Simulink—Temperature Control

The result of exporting a model from COMSOL Multiphysics to Simulink is a 
structure variable in the MATLAB workspace. To use the model in Simulink, simply 
drag the COMSOL Multiphysics Subsystem block to your Simulink model as described in 
“Modeling in Simulink” on page 337.

The following variables affect the temperature of the metal block:

• Exterior temperature, Tout

• The state of the heater, HeatState, which can have the values 1 or 0, corresponding 
to on or off

The output from the COMSOL Multiphysics model is the temperature in the block 
where the thermostat is located:

• Thermostat temperature, Temp

You need this variable to control the heater.

E X P O R T I N G  T O  S I M U L I N K

1 Enter the model as described on page 333.
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2 On the File menu, point to Export and then click Simulink Model to open the Export 

Simulink Model dialog box.

3 Enter blocksct in Structure name and change Simulink block type to Linearized 

dynamic. On the Variables tab, enter HeatState Tout in Input. To add the output 
variable Temp, click Add and enter Variable name Temp. Click Point, and select point 
3 in the list. Keep the Expression T. Click OK.

4 Open a Simulink model that can use the COMSOL Multiphysics model by typing 
in MATLAB

thermal_controller_mdl

As an alternative you can enter the Simulink model by following the instructions in 
the section “Modeling in Simulink” below.

U S I N G  T H E  P R O G R A M M I N G  L A N G U A G E

1 Enter the model as described on page 333.

2 On the File menu, point to Export and then click FEM Structure to export the FEM 
Structure to MATLAB.

3 Type the command 

blocksct = femsim(fem,'input',{'HeatState' 'Tout'},...
'output',{{'T' zeros(0,1) 'dom' 3}},...
'outnames',{'Temp'},'state','on');

This creates a structure which the COMSOL Multiphysics block within Simulink 
can use to run the COMSOL Multiphysics model as part of the Simulink simulation.

The syntax {'T' zeros(0,1) 'dom' 3} means the output Temp is computed by 
evaluating the expression T in point 3. Use the syntax of the postinterp command 
to specify outputs in this way.

4 Open a Simulink model that can use the COMSOL Multiphysics model by typing

thermal_controller_mdl

As an alternative you can enter the Simulink model by following the instructions 
below.

M O D E L I N G  I N  S I M U L I N K

1 Start Simulink by typing simulink in the MATLAB Command Window. Draw a 
model as shown below. You find the COMSOL Multiphysics Subsystem block under 
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COMSOL Multiphysics in the Simulink block library. See the Simulink documentation 
for more information about creating models.

2 To set up the input and output ports of the COMSOL Multiphysics Subsystem block, 
double-click that block and set the structure name to blocksct. Click OK.

3 Specify the values of the constant blocks for Thermostat Setting and Average Exterior 

Temperature as in the previous figure.
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4 In the Relay block, enter the value 1 as the Switch on point and -1 as the Switch off 

point.

5 In the Sine Wave block, set the amplitude to 10 and the frequency to 2*pi/120, 
which corresponds to a period of 120 minutes.

6 Open the Simulation Parameters dialog box by making a selection from the 
Simulation menu. Set the Stop time to 240 minutes and the Solver to ode15s. The 
stability of discrete heat equations is known to put severe constraints on the time 
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step of explicit methods. Thus you should select the ode15s solver (implicit) rather 
than the explicit integrators.

7 Now solve the system by selecting Start from the Simulation menu.

8 To view the temperature at node 3, double-click the Scope block. 

9 Finally switch the thermostat from node 3 to node 8. On the File menu, point to 
Export and then click Simulink Model to open the Export Simulink Model dialog box.

10 Select point 8 in the list. Click OK.

11 Restart the simulation in Simulink.
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M u l t i p h y s i c s  M o d e l s  
Multiphysics models include the coupling of several dependent variables from 
different physics in the same model. Typical multiphysics applications include 
fluid-structure, thermal-structure, and thermal-electric couplings. In COMSOL 
Multiphysics, you can also build extended multiphysics models, which contain 
several kinds of physics and equations on more than one geometry. Extended 
multiphysics model can include any mix of 0D (ODEs or algebraic equations), 1D, 
2D, and 3D geometries.
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Magne t i c  D r ug  T a r g e t i n g  i n  C an c e r  
T h e r a py

Introduction

Current research on methods to target chemotherapy drugs in the human body 
includes the investigation of so-called bio-compatible magnetic nanocarrier systems. 
For example, magnetic liquids such as ferrofluids can play an important role as drug 
carriers in the human body (Ref. 1). As such, they can be used for drug targeting in 
modern locoregional cancer treatment. A remaining challenge for this medical 
application is the choice of clinical setting. Important parameters are optimal 
adjustment of the external magnetic field and the choice of ferrofluid properties.

Avoiding damage on healthy human cells from chemotherapy drugs, imposes an upper 
limit in the treatment dose. This limit impedes the chances of successful treatment of 
the tumor cells. One objective of modern cancer research is therefore to concentrate 
chemotherapy drugs locally to tumor tissue and to weaken the global exposure to the 
organism.

This model of the ferrohydrodynamics of blood demonstrates a simple setup for 
investigating an external magnetic field and its interaction with blood flow containing 
a magnetic carrier substance. The model treats the liquid as a continuum, which is a 
good first step. You can extend this model by particle tracing, making it a multiscale 
model. The equations and theory are based on Maxwell’s equations and the 
Navier-Stokes equations. You first solve Maxwell’s equations in the full modeling 
domain formed by permanent-magnet, blood-vessel, tissue, and air subdomains. A 
magnetic volume force, couples the resulting magnetic field to a fluid-flow problem in 
the blood-vessel domain described by the Navier-Stokes equations.

Model Definition1

The model geometry represents a blood vessel, a permanent magnet, surrounding 
tissue, and air in 2D. Blood feeds into the vessel from the left in Figure 10-1. The 
velocity and pressure fields are calculated in the blood stream. COMSOL Multiphysics 
computes the magnetic field (magnetic vector potential) generated by the permanent 

1. This model was provided by Dr. Daniel J. Strauss, The Institute for New Materials, Inc., 
www.inm-gmbh.de.
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magnet. This magnetic field generates a magnetic volume force that affects the flow 
field in the blood vessel.

Figure 10-1: Geometric representation of the model.

M A G N E T O S T A T I C  E Q U A T I O N S

Because the magnetic part of this problem is static, Maxwell-Ampere’s law for the 
magnetic field H (A/m) and the current density J (A/m2) applies:

 (10-1)

Furthermore, Gauss’ law for the magnetic flux density B (Vs/m2) states that

.  (10-2)

The constitutive equations describing the relation between B and H in the different 
parts of the modeling domain read:

 (10-3)

Here µ0 is the magnetic permeability of vacuum (Vs/(A·m)); µr is the relative 
magnetic permeability of the permanent magnet (dimensionless); Brem is the 
remanent magnetic flux (A/m); and Mff is the magnetization vector in the blood 
stream (A/m), which is a function of the magnetic field, H.

Defining a magnetic vector potential A such that

,  (10-4)
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System boundary
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you finally, by substitution in Equation 10-1 through Equation 10-3, arrive at the 
following vector equation to solve:

Simplifying to a 2D problem with no perpendicular currents, this equation reduces to

.  (10-5)

Note that this equation assumes that the magnetic vector potential has a nonzero 
component only perpendicularly to the plane, A = (0, 0, Az).

An arc tangent expression with two material parameters α (A/m) and β (m/A) 
characterizes the induced magnetization Mff(x, y) = (Mffx, Mffy) of a ferrofluid  
(Ref. 2):

For the magnetic fields of interest, it is possible to linearize these expressions to obtain

 (10-6)

where χ = αβ is the magnetic susceptibility.

Boundary Conditions
Along a system boundary reasonably far away from the magnet (see Figure 10-1) you 
can apply a magnetic insulation boundary condition, Az = 0.

F L U I D  F L O W  E Q U A T I O N S

The Navier-Stokes equations describe the time-dependent mass and momentum 
balances for an incompressible flow:

∇ 1
µ
---∇ A M–×⎝ ⎠
⎛ ⎞× J=

∇ 1
µ0
------∇ A M–×⎝ ⎠
⎛ ⎞× 0=

Mx α β
µ0
------

∂Az

∂y
---------⎝ ⎠

⎛ ⎞atan=

My α β
µ0
------–

∂Az
∂x

---------⎝ ⎠
⎛ ⎞atan=

Mx
χ
µ0
------

∂Az

∂y
---------=

My
χ
µ0
------–

∂Az
∂x

---------=
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 (10-7)

where η denotes the dynamic viscosity (kg/(m·s)), u the velocity (m/s), ρ the fluid 
density (kg/m3), p the pressure (N/m2), and F a volume force (N/m3).

With the assumption that the magnetic nanoparticles in the fluid do not interact, the 
magnetic force F = (Fx, Fy) on the ferrofluid for relatively weak fields is given by 

. Using Equation 10-3, Equation 10-4, and Equation 10-6 then leads 
to the expressions

To get the final expression for the volume force in the blood stream, multiply these 
expressions by the ferrofluid mass fraction, kff.

Boundary Conditions
On the vessel walls, apply no-slip conditions, u = v = 0. At the outlet, you can set an 
outlet pressure condition, p = 0. At the inlet boundary, specify a parabolic flow profile 
on the normal inflow velocity according to 4 Um s(1−s), where s is a boundary segment 
length parameter that goes from 0 to 1 along the inlet boundary segment and U is the 
maximal flow velocity. To emulate the heart beat, the inflow velocity follows a 
sinusoidal expression in time:

ρ
t∂

∂u ∇ η ∇u ∇u( )T
+( )⋅– ρu ∇⋅ u ∇p+ + F=

∇ u⋅ 0=
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Selecting the angular velocity ω to be 2π rad/s gives a heart beat rate of 60 beats per 
minute. Figure 10-2 displays the resulting expression (normalized to unity).

Figure 10-2: Simulated heart beat.

Model Data

Table 10-1 lists the relevant material properties for the model.

Results

Figure 10-2 shows a detail from the plot of the magnetic field strength. The highest 
B-field strength clearly occurs inside the magnet. To see the low-level variations in the 
surrounding tissue and vessels, the plot does not show magnetic flux densities above 
0.17 T. The geometric form of the magnet generates strong fields just outside of the 
rounded corners. Sharper corners generate even stronger local fields.

TABLE 10-1:  MODEL DATA

QUANTITY DESCRIPTION VALUE

 µr,mag Relative permeability, magnet 5·103

 Brem Remanent flux density, magnet 0.5 T

 α Ferrofluid magnetization-curve parameter 10-4 A/m

 β Ferrofluid magnetization-curve parameter 3·10-5 (A/m)-1

 ρ Density, blood 1000 kg/m3

 η Dynamic viscosity, blood 5·10-3 kg/(m·s)
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Figure 10-3: Magnetic vector potential and magnetic flux density, B field (white areas 
surpass the plot color range).

Figure 10-4 shows the velocity field at a heart beat where there is a maximum mean 
throughput in the vessel. At the left end there is a parabolic laminar flow profile. 
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Figure 10-4: Velocity field at maximum blood throughput (t = 0.25).

Figure 10-5 reveals the velocity field between two heart beats, where the net 
throughput is zero.
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Figure 10-5: Velocity field at zero blood throughput (t = 1).

Modeling in COMSOL Multiphysics

E Q U A T I O N S

To model Equation 10-5, use the Magnetostatics application mode in 2D. In the 
Subdomain Settings dialog box, choose the constitutive relation

and make use of the fact that the remanent flux density Br = µ0χM, where χ is the 
magnetic susceptibility.

S T A G E D  S O L U T I O N

Because the magnetostatic problem is a stationary nonlinear problem that is 
independent of the fluid-flow problem, you only need to solve that once. You can 
therefore start by solving only Equation 10-5 with the stationary solver. Then proceed 
with solving only the fluid-flow problem, Equation 10-7, with the static magnetic 

B µ0µrH Br+=
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potential as input. Solve the fluid-flow problem using the time-dependent solver. This 
strategy reduces RAM memory allocation and speeds up the solution.

S O L V E R  S E T T I N G S

The convergence tolerance for the time-stepping algorithm should only be based on 
the truly time-dependent equations. The continuity equation (second line in 
Equation 10-7) is stationary and describes the pressure distribution. Therefore, you 
can exclude p from the time-stepping tolerance checks. To do so, select Exclude 

algebraic in the Error estimation strategy list on the Time Stepping page of the Solver 

Parameters dialog box.

F I N I T E  E L E M E N T  S H A P E  F U N C T I O N S

This problem includes second-order space derivatives of A in some coefficients. To get 
acceptable accuracy, use third-order Lagrange elements in the Magnetostatics 
application mode. The default setting in this application mode is second-order 
elements.
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Model Library path: COMSOL_Multiphysics/Multiphysics/
magnetic_drug_targeting

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Start COMSOL Multiphysics.

2 In the Model Navigator, select 2D from the Space dimension list.
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3 Select COMSOL Multiphysics>Fluid Dynamics>Incompressible Navier-Stokes>Transient 

analysis.

4 Click first the Multiphysics button and then the Add button.

5 From the list of application modes, select COMSOL 

Multiphysics>Electromagnetics>Magnetostatics>Stationary analysis. Click Add.

6 Click OK.

G E O M E T R Y  M O D E L I N G

1 Click the Rectangle/Square button on the top of the Draw toolbar. Draw an arbitrary 
rectangle by clicking in the drawing area and dragging the mouse.

2 Double-click the rectangle.

3 Make the following changes in the dialog box; when done, click OK.

4 Click the Zoom Extents button on the Main toolbar.

5 From the Draw menu, choose Fillet/Chamfer. Click on the rectangle R1 and select all 
four vertices by Ctrl-clicking them.

6 Type 1e-3 in the Radius edit field, then click OK.

7 Draw three additional arbitrary rectangles using the Rectangle/Square button and set 
the object properties like the first one according to the following table:

PROPERTY VALUE

Width 0.02

Height 0.06

Base x -0.05

Base y 0

RECTANGLE WIDTH HEIGHT BASE X BASE Y

R2 0.22 0.05 -0.14 -0.07

R3 0.22 0.02 -0.14 -0.02

R4 0.22 0.13 -0.14 -0.01
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8 Click the Zoom Extents button on the Main toolbar.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 Enter constants with names, expressions (values and units), and descriptions (the 
descriptions are optional) according to the following table; when done, click OK.

NAME EXPRESSION DESCRIPTION

mur_mag 1 Relative permeability, magnet

B_rem 1[T] Remanent flux density, magnet

alpha 1e4[A/m] Ferrofluid magnetization-curve parameter

beta 3e-5[m/A] Ferrofluid magnetization-curve parameter

chi_ff alpha*beta Magnetic susceptibility, ferrofluid

k_ff 0.1 Ferrofluid mass fraction in blood stream

rho 1000[kg/m^3] Density, blood

eta 0.005[Pa*s] Dynamic viscosity, blood

U_m 50[cm/s] Maximum flow velocity

f 60[1/min] Heart-beat rate

omega 2*pi[rad]*f Pulse angular velocity
R  1 0 :  M U L T I P H Y S I C S  M O D E L S



Scalar Expressions
1 On the Options menu, point to Expressions and then click Scalar Expressions.

2 Define the following expressions (the descriptions are optional):

3 Click OK.

P H Y S I C S  S E T T I N G S

Application Mode Properties
Change the default element type to be a cubic Lagrange element:

1 From the Multiphysics menu, choose Magnetostatics (qa).

2 From the Physics menu, choose Properties.

3 In the Application Mode Properties dialog box, select Lagrange - Cubic in the Default 

element type list. Click OK.

Subdomain Settings—Magnetostatics
1 From the Physics menu, choose Subdomain Settings.

2 On the Physics page, select Subdomain 2.

3 Set the Constitutive relation to B = µ0 H + µ0 M.

4 In the left and right M edit fields, enter M_ffx and M_ffy, respectively.

5 Select Subdomain 5, then set the Constitutive relation to B = µ0µr H +  Br .

6 In the µr edit field, enter mur_mag. In the right Br edit field for the y-component of 
the remanent flux density, enter B_rem. Leave the corresponding x-component at 
zero.

7 Click OK.

NAME EXPRESSION DESCRIPTION

mu0 mu0_qa Permeability of vacuum

M_ffx k_ff*(chi_ff/mu0)*Azy Induced ferrofluid 
magnetization, x-component

M_ffy -k_ff*(chi_ff/mu0)*Azx Induced ferrofluid 
magnetization, y-component

F_ffx k_ff*(Azx*Azxx+Azy*Azxy)* 
chi_ff/(mu0*(1+chi_ff)^2)

Ferrofluid volume force, 
x-component

F_ffy k_ff*(Azx*Azxy+Azy*Azyy)* 
chi_ff/(mu0*(1+chi_ff)^2)

Ferrofluid volume force, 
y-component
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Boundary Conditions—Magnetostatics
The default setting is magnetic insulation, so you do not have to make any changes. 
To be reassured, choose Physics>Boundary Settings and inspect the boundaries.

Subdomain Settings—Navier-Stokes
1 From the Multiphysics menu, choose Incompressible Navier-Stokes (ns).

2 From the Physics menu, choose Subdomain Settings.

3 Press Ctrl+A to select all five subdomains. 

4 Clear the Active in this domain check box.

5 Select Subdomain 2 from the list and select the Active in this domain check box.

6 Specify the fluid properties according to the following table:

7 Click the Artificial Diffusion button to add streamline diffusion to the model. This is 
necessary because of the high Reynolds number flow.

8 In the Artificial Diffusion dialog box, select the Streamline diffusion check box and 
then click OK.

9 On the Init page, leave all initial conditions at zero.

10 Click OK.

Boundary Conditions—Navier-Stokes
1 From the Physics menu, choose Boundary Settings.

2 Specify boundary conditions according to the following table:

QUANTITY VALUE/EXPRESSION

 ρ rho

 η eta

 Fx F_ffx

 Fy F_ffy

SETTINGS BOUNDARY 3 BOUNDARIES 4, 6 BOUNDARY 16

Boundary 
type

Inlet Wall Outlet

Boundary 
condition

Velocity No slip Pressure, no 
viscous stress

U0 2*s*(1-s)*U*(sin(omega*t)+ 
sqrt(sin(omega*t)^2))

p0 0
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3 Click OK.

M E S H  G E N E R A T I O N

1 Choose Mesh>Free Mesh Parameters, and in the dialog box that opens, click the 
Subdomain tab.

2 Select Subdomain 2 from the list and enter 0.001 in the Maximum element size edit 
field. Click Remesh and OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Click the Solver Manager button on the Main toolbar. 

2 On the Solve For page, select only Magnetostatics (qa). Click OK.

3 Click the Solver Parameters button on the Main toolbar.

4 On the General page, select Stationary from the Analysis list. Click OK.

5 Click the Solve button on the Main toolbar to compute the solution for Az.

6 When the solver has finished, click the Solver Manager button.

7 On the Initial Value page, go to the Values of variables not solved for and linearization 

point area and click the Current solution option button.

8 On the Solve For page, select only Incompressible Navier-Stokes (ns). Click OK.

9 Click the Solver Parameters button on the Main toolbar.
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10 On the General page, select Transient from the Analysis list and type 0:0.05:2 in the 
Times edit field.

11 On the Time Stepping page, select Exclude algebraic from the Error estimation strategy 
list (see “Solver Settings” on page 350 for an explanation). Click OK.

12 Click the Solve button on the Main toolbar.

The solution takes a few minutes to compute.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

To generate Figure 10-3 on page 347, follow these instructions.

1 Click the Plot Parameters button on the Main toolbar.

2 On the General page, select the Surface and Contour and check boxes in the Plot type 
area.

3 Click the Surface tab. On the Surface Data page, select Magnetostatics (qa)>Magnetic 

flux density, norm from the Predefined quantities list.

4 On the Contour page, select Magnetostatics (qa)>Magnetic potential, z component.

5 Click OK.

To generate Figure 10-4 on page 348 and Figure 10-5 on page 349, proceed in the 
following way:

1 Click the Plot Parameters button on the Main toolbar.

2 On the General page, select 0.25 from the Solution at time list.

3 Click the Surface tab. On the Surface Data page, select Incompressible Navier-Stokes 

(ns)>Velocity field from the Predefined quantities list.

4 Click Apply to generate the plot in Figure 10-4.

5 On the General page, change the entry in the Solution at time list to 1.

6 Click OK to generate the plot in Figure 10-5.

To generate a movie, do as follows:

1 Open the Plot Parameters dialog box again and go to the Animate tab.

2 Click OK and wait for the movie to be generated (this step can take some time).

When the movie is finished, you can save it as an AVI or QuickTime file using the 
Save button in the movie window.
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F r e e  C onv e c t i o n

Introduction

This example describes a fluid flow problem with heat transfer in the fluid. An array of 
heating tubes is submerged in a vessel with fluid flow entering at the bottom. 
Figure 10-6 shows the setup.

Figure 10-6: Heating tubes and direction of the fluid flow

Model Definition

The first consideration when modeling should always be the true dimension of the 
problem. Sometimes there are no variations in the third dimensions, and it can be 
extrapolated from the solution of a related 2D case. Neglecting any end effects from 

Heating tubes

Fluid flow
direction
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the walls of the vessel, the solution is constant in the direction of the heating tubes, 
therefore you can reduce the model to a 2D domain.

Figure 10-7: Using symmetry to reduce computation time and complexity. The model 
describes one section of the array of heating tubes (indicated by the dashed lines).

The next step is finding symmetries. In this case, using symmetry planes, it suffices to 
model the thin domain indicated in Figure 10-7.

G O V E R N I N G  E Q U A T I O N S

This is a multiphysics model because it involves more than one kind of physics. The 
incompressible Navier-Stokes equations from fluid dynamics work together with a heat 
transfer equation. There are four unknown field variables (dependent variables):

• The velocity field components, u and v

• The pressure, p

• The temperature, T

They are all related through bidirectional multiphysics couplings.

The incompressible Navier-Stokes equations consist of a momentum balance (a vector 
equation) and a mass conservation and incompressibility condition. The equations are:
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with the following variables:

• u is the velocity field.

• p is the pressure.

• F is a volume force.

• ρ is the fluid density.

• η is the dynamic viscosity.

•  is the vector differential operator.

The heat equation is an energy conservation equation that says that the change in 
energy is equal to the heat source minus the divergence of the diffusive heat flux:

where cp is the heat capacity of the fluid, and ρ is fluid density. Q represents a source 
term. The velocity field comes from the incompressible Navier-Stokes equation.

Modeling in COMSOL Multiphysics

To build a model in COMSOL Multiphysics using the above equations, use two 
application modes: the Incompressible Navier-Stokes application mode for fluid flow 
and the Convection and Conduction application mode for heat transfer. The 
multiphysics couplings enter directly into the physics settings in the application modes.

In this model, the equations are coupled in both directions. First, add free convection 
to the momentum balance with the Boussinesq approximation. This approximation 
ignores variations in density with temperature, except that the variations give rise to a 
buoyancy force lifting the fluid. This force enters the F term in the incompressible 
Navier-Stokes equations.

At the same time, the heat equation must account for the velocity field. Using the 
predefined Fluid-Thermal Incompressible Flow coupled multiphysics entry, the 
velocity components from the incompressible Navier-Stokes equations appear 

ρ
t∂

∂u ρu ∇⋅ u+ ∇– p η+ ∇2u F+=

∇ u⋅ 0=⎝
⎜
⎜
⎜
⎛

∇

ρcp t∂
∂T u ∇T⋅+⎝ ⎠
⎛ ⎞ ∇+ k∇T–( )⋅ Q=
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automatically as the velocity field for the convective heat transfer in the Convection 
and Conduction application mode.

Results

The analysis of the coupled thermal-fluid model provides the velocity field, pressure 
distribution, and temperature distribution in the fluid. Figure 10-8 shows a 
postprocessing plot of the velocity field and the temperature. Without heating, you 
would expect an exit y-velocity that is slightly lower toward the left side, behind the 
heating tube (wake effect). In this case, however, you see that the y-velocity is higher 
on the left side. This is because of the buoyancy effect of the free convection.

Figure 10-8: The velocity field and temperature distribution in the fluid.

Using integration to find the mean temperature at the outlet shows that the 
temperature increases roughly 0.75 K from the inlet to the outlet.

For further analysis, see “Time-Dependent Simulation” on page 373.

Model Library path: COMSOL Multiphysics/Multiphysics/free_convection
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

Use the following steps to create a new multiphysics model:

1 Click the New tab, and check that 2D is selected in the Space dimension list. The space 
dimension must always be selected first, because the available application modes 
vary depending on the space dimension.

2 In the application modes list on the left, open the COMSOL Multiphysics folder, open 
the Fluid-Thermal Interaction folder, and then click Fluid-Thermal Incompressible Flow.

3 Click OK to close the Model Navigator and create a new model.

Figure 10-9: Selecting the Fluid-Thermal Incompressible Flow predefined multiphysics 
coupling in the Model Navigator.

O P T I O N S  A N D  S E T T I N G S

Later in this model you need the fluid properties of the water, the temperatures at the 
inlet and on the surface of the heating tubes, and the inlet velocity. It is convenient to 
enter this data as constants in the Constants dialog box. In this model, all values are 
given in SI units.

1 From the Options menu, choose Constants.

2 First add the density of the fluid:

Enter rho0 in the Name field. Press the Tab key to move the cursor to the Expression 
field and enter 1e3[kg/m^3]. The value is saved when you press Enter, click Apply, 
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or otherwise leave the Expression field. In the Description column, type Fluid 
density (adding a description is optional).

3 Continue by adding the remaining properties

4 When you have entered all constants, click OK.

The model size is in the order of a few centimeters, while the area visible in the 
graphical interface is in the order of meters (remember that you are modeling in SI 
units). Before you start drawing the geometry, change the size of the visible drawing 
area and the grid spacing:

1 From Options menu, choose Axes/Grid Settings.

NAME EXPRESSION DESCRIPTION

rho0 1e3[kg/m^3] Fluid density

mu 1e-3[Pa*s] Dynamic viscosity

Cp 4.2e3[J/(kg*K)] Heat capacity

kc 0.6[W/(m*K)] Thermal conductivity

alpha0 0.18e-3[1/K] Thermal expansion coefficient

g0 9.8[m/s^2] Acceleration due to gravity

vin 5e-3[m/s] Inlet velocity

Tin 293[K] Inlet temperature

Theat 303[K] Heater temperature
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2 In the Axes/Grid Settings dialog box, type -0.01, 0.01, -0.01, and 0.05 in the x 
min, x max, y min, and y max edit fields, respectively.

3 Click the Grid tab and then click to clear the Auto check box. Enter 0.005 in both 
the x spacing and y spacing edit fields.

4 Click OK to close the dialog box and apply the settings.

G E O M E T R Y  M O D E L I N G

The next step is to create the model geometry. This is easy, involving only a rectangle 
and circle geometry object, subtracting one from the other.

1 Draw a rectangle of width 0.005 and height 0.04, with the lower left corner at the 
origin. Click the Rectangle/Square toolbar button. It is the first button on the Draw 
toolbar, on the left side of the drawing area. Then click at (0,0) using the left mouse 
button, and drag the mouse to (0.005,0.04). Release the button.

2 Draw a circle with radius 0.005 centered at (0, 0.015). Click the fourth button on 
the Draw toolbar, Ellipse/Circle (Centered). Then, using the right mouse button, 
click at (0, 0.015) and drag the mouse in any direction, keeping the button down, 
until the circle has a radius of 0.005. Using the right mouse button constrains the 
ellipse to a circle.

3 The desired radius of the circle is not 0.005, however, but is 0.0025. To fix this, 
double-click the circle object or select Object Properties from the Draw menu. In the 
Circle dialog box, enter 0.0025 as Radius and click OK.
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4 Select both the circle and the rectangle. Either draw a rubber-band box around both 
them, or press the shortcut key Ctrl+A to select all objects.
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5 Click the Difference button on the Draw toolbar and then the Zoom Extents button 
on the Main toolbar. The Zoom Extents button adjusts the axes settings so that the 
geometry fits nicely into the drawing area.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Specify the boundary conditions, first for the Convection and Conduction application 
mode and then for the Incompressible Navier-Stokes application mode.

1 From the Physics menu, choose Boundary Settings. This opens the Boundary Setting 
dialog box and transfers COMSOL Multiphysics to the boundary selection mode. 
The contents of this dialog box vary depending on the application mode.

2 Start by insulating all boundaries. This is the default boundary condition, so you do 
not need to change anything.

3 Select the inflow boundary by clicking at the corresponding edge in the geometry 
or by selecting Boundary 2 from the Boundary selection list. Select Temperature from 
the Boundary conditions list and type Tin in the Temperature edit field.
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4 Select the heater that exists along Boundaries 6 and 7 from the Boundary selection 
list. Then select Temperature in the Boundary conditions list and type Theat in the 
Temperature edit field.

Figure 10-10: Specifying a temperature of Theat on boundaries 6 and 7.

5 Click the outflow boundary (Boundary 4) and select Convective flux in the Boundary 

conditions list.

6 Click Apply to confirm the settings for the Convection and Conduction application 
mode.

7 Switch to the Incompressible Navier-Stokes application mode by selecting this 
mode from the Multiphysics menu. You can now open the corresponding Boundary 

Settings dialog box from the Physics menu (you can also use the Model Tree to 
access the settings for both applications modes).

8 Select any boundary in the Boundary selection list and then press Ctrl+A to select all 
boundaries in the list and then select the Symmetry boundary from the Boundary type 

list.
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9 For the inflow boundary, select Boundary 2 and then choose Inlet from the Boundary 

type list and Velocity from the Boundary condition list. Type vin in the Normal inflow 

velocity edit field.

Figure 10-11: Specifying the velocity in the normal direction.

10 Continue by selecting the outflow boundary (Boundary 4). From the Boundary type 
list, select Outlet. The default condition Pressure, no viscous stress is correct.

11 Finally select Boundaries 6 and 7 and then select the type Wall and the condition No 

slip. Click OK to confirm your choices and close the dialog box.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings to open the Subdomain Settings 

dialog box and put the user interface in the Subdomain Selection mode.
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2 Select the single subdomain, Subdomain 1, and use the already defined constants to 
set the density and the viscosity. Type rho0 and mu in the Density and Dynamic 

viscosity fields, respectively.

Figure 10-12: Providing fluid properties and a volume force in the Subdomain Settings 
dialog box.

3 To model the effect of temperature on the density of the fluid as a buoyancy force 
in the y direction, type alpha0*g0*rho0*(T-Tin) in the Volume force, y dir. edit 
field (Fy). Remember that T is the dependent variable from the Convection and 
Conduction application mode. Notice that an extended edit field displays the entire 
expression.

In the Subdomain Settings dialog box you can also set initial values. The Navier-Stokes 
equations are nonlinear and therefore require an educated guess as an initial solution 
to the nonlinear solver. A good initial value is necessary for the model to converge. The 
initial values also serve as initial conditions for the time-dependent solver. In this case, 
a constant velocity field vin has sufficient quality.
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1 Click the Init tab in the Subdomain Settings dialog box. Set the initial value v(t0) to 
vin.

Figure 10-13: The initial values for the velocity components.

2 Click OK.

Continue with the subdomain settings for the Convection and Conduction application 
mode:

1 Use the Multiphysics menu to switch to the Convection and Conduction application 
mode.
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2 From the Physics menu, choose Subdomain Settings to open the Subdomain Settings 
dialog box for the Convection and Conduction application mode.

Figure 10-14: Specifying the thermal properties.

3 Type rho0, Cp, and kc in the Density, Heat capacity, and Thermal conductivity 
(isotropic) edit fields, respectively.

4 Notice that u and v appear in the x-velocity and y-velocity edit fields. They are the 
dependent variables for the velocity components from the Incompressible 
Navier-Stokes application mode, which account for the convective transport of heat. 
This is the predefined multiphysics coupling that the Fluid-Thermal Incompressible 
Flow coupled multiphysics entry sets up automatically.
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5 The temperature also needs an initial value. Use the inlet temperature as the starting 
temperature in the entire domain. Click the Init tab and enter Tin in the T(t0) field. 
Then click OK to confirm all settings and close the dialog box.

Figure 10-15: The initial value for the temperature.

M E S H  G E N E R A T I O N

In this model, use a predefined setting for a fine mesh:

1 From the Mesh menu, choose Free Mesh Parameters.

2 In the Free Mesh Parameters dialog box, select Finer in the Predefined mesh sizes list.

3 Click OK.

4 Initialize the default mesh clicking the Initialize Mesh button on the Main toolbar.

Later you can refine the mesh to further improve the accuracy of the solution. If 
solving again using a finer mesh gives similar results, the mesh resolution is sufficient. 
Otherwise, you must refine the mesh again.

C O M P U T I N G  T H E  S O L U T I O N

The required nonlinear solver is the default solver, so you start the solver directly.

From the Solve menu choose Solve Problem, or click the Solve button on the Main 
toolbar. Notice the solution progress window where you can monitor and stop the 
solution process. The solution converges quickly in this case.
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As soon as the solution is ready, COMSOL Multiphysics displays a default plot. In this 
case, you get a surface plot of the velocity field.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

In postprocessing mode you can select from many different plot types and set 
parameters for the different plots. Using the postprocessing utilities you can visualize 
the solution variables, their derivatives, and the space coordinates. Many frequently 
used expressions are predefined as application mode variables, directly available from 
lists in the Plot Parameters dialog box. Perform the following steps to create the plot 
in Figure 10-8:

1 Click the Plot Parameters button on the Main toolbar. This opens the Plot 

Parameters dialog box.

2 To obtain a surface plot with superimposed velocity vectors, select the Surface and 
Arrow check boxes in the Plot type area on the General tab.

3 Click the Surface tab.

4 On the Surface Data tab, select Convection and Conduction (cc)>Temperature from the 

Predefined quantities list.

5 Click the Arrow tab.

6 Select Incompressible Navier-Stokes (ns)>Velocity field from the Predefined quantities 
list on the Subdomain Data tab.

7 In the Arrow positioning area, type 10 and 15 in the x points and y points edit fields, 
respectively.

8 Finally, in the Arrow parameters area, click the Color button to choose a suitable 
arrow color, for example, white. When you have selected a color, click OK to close 
the Arrow Color dialog box.

9 Click OK.

A D V A N C E D  P O S T P R O C E S S I N G

Integrating to Find the Mean Temperature
Because both the velocity and temperature vary along the outlet at the top, you must 
use additional postprocessing to get the mean temperature at the exit. The bulk 
temperature, or the “cup mixing temperature” is the temperature that the fluid has if 
it is collected in a cup at the outflow and is properly mixed. For this 2D example, 
assuming constant cp and ρ, the cup mixing temperature is given by the following 
expression on boundary 4 (the outlet):
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where u is the velocity vector and the n is the unit normal vector of the boundary.

1 To obtain the denominator, choose Boundary Integration from the Postprocessing 
menu.

2 Select Boundary 4.

3 Type nx*u+ny*v in the Expression edit field.

4 Click Apply.

5 The message log at the bottom of the main user interface shows the value of the 
denominator:

Value of integral: 2.5e-5 [m^2/s], Expression: nx*u+ny*v, Boundary: 
4.

6 In the Boundary Integration dialog box, type T*(nx*u+ny*v)/2.5e-5 in the 
Expression edit field. This computes the resulting mean temperature.

7 Click OK. The result is displayed in the message log.

You should get a mean temperature of roughly 293.8 K, that is, a temperature rise of 
approximately 0.8 K between inlet and outlet.

Time-Dependent Simulation

This example is an extension of the stationary free convection model from the previous 
section. In the first step of modeling the heat transfer by forced and free convection, 
we found a steady-state solution. See “Modeling Using the Graphical User Interface” 
on page 361 on how to create and save the first part of the model.

Modeling Using the Graphical User Interface

The following section assumes that you start from the final state of the steady-state 
model.

L O A D I N G  A  P R E V I O U S L Y  S A V E D  M O D E L

If you have previously saved the results from the first part of the model as a Model 
MPH-file, now load it into COMSOL Multiphysics (if you are continuing from the 
previous steady-state model, skip the following three steps):

T〈 〉
T n u⋅( ) sd∫

n u⋅( ) sd∫
--------------------------------=
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1 From the File menu, choose Open. You can also click the Open button on the main 
toolbar to load a Model MPH-file. 

2 Browse to locate the Model MPH-file and select it.

3 Click Open.

S E L E C T I N G  T R A N S I E N T  A N A L Y S I S

Before solving the model with the time dependent solver, we need to set the analysis 
type to transient for both application modes:

1 For the current application mode (Convection and Conduction), select Properties 
from the Physics menu.

2 In the dialog that appears, set Analysis type to Transient and click OK.

3 Select Incompressible Navier-Stokes (ns) from the Multiphysics menu.

4 Select Properties from the Physics menu.

5 In the dialog that appears, set Analysis type to Transient and click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Click the General tab in the Solver Parameters dialog box.

2 The General page for the time-stepping algorithms is now active. The output times 
can be a vector, specifying for which times the solution should be saved for 
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postprocessing. Type 0:1:30 in the Times edit field to specify that the solution will 
be sampled every second during 30 seconds.

Figure 10-16: Setting the parameters for the time-dependent analysis.

3 Click OK to confirm the choices.

4 Click the Solve button on the Main toolbar to start the time-dependent analysis.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The plot shows the solution for the last time step using the same plot settings as before. 
Select which time step to display in the Plot Parameters dialog box:

1 Click the Plot Parameters button to open the Plot Parameters dialog box.

2 Click the General tab and select the time step that you want to see from the Solution 

at time list.
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3 Click Apply to plot the solution at that time.
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Ma r angon i  C on v e c t i o n

Introduction

Marangoni convection occurs when the surface tension of an interface (generally 
liquid-air) depends on the concentration of a species or on the temperature 
distribution. In the case of temperature dependence, the Marangoni effect is also called 
thermo-capillary convection. It is of primary importance in the fields of:

• Welding

• Crystal growth

• Electron beam melting of metals

Direct experimental studies are not easy to carry out in these systems because the 
materials are often metals and temperatures are very high. One possibility is to replace 
the real system with an experimental setup using a transparent liquid at ambient 
temperatures.

Model Definition

This model describes the 2D stationary behavior of a vessel filled with silicone oil, for 
which the thermo-physical properties are known. The aim of the study is to compute 
the temperature field that induces a flow through the Marangoni effect. The model 
shows this effect using the simple geometry in the figure below.

G OV E R N I N G  E Q U A T I O N S

A stationary momentum balance describes the velocity field and the pressure 
distribution (Navier-Stokes equations):
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The first term gives the rate of momentum gain by viscous transfer, the second by 
convection, and the third by pressure forces. The equation contains the following 
variables and properties:

• η is the dynamic viscosity (kg/(m·s)).

• u is the velocity vector (m/s).

• ρ is the density (kg/m3)

• p is the pressure (Pa).

The F term is a source term representing external forces per unit volume.

To include the heating of the fluid, couple the fluid flow to an energy balance 
according to

The expression within the brackets is the heat flux vector, containing a conductive and 
a convective part. The equation contains the following variables and properties:

• k is the thermal conductivity (W/(m·K)).

• T is the temperature (K).

• Cp is the heat capacity (J/(kg·K)).

• Q (W/m3) represents a source term.

You can use the Boussinesq approximation to include the effect of temperature on the 
velocity field. In this approximation, variations in temperature produce a buoyancy 
force (or Archimedes’ force) that lifts the fluid. Enter this force into the F term in the 
Navier-Stokes equation as:

where α is the thermal expansion coefficient (1/K), g is the acceleration due to gravity 
(m/s2), and ∆T is the temperature difference (K) between the right and left wall in the 
model geometry.

η– ∇2u ρu ∇⋅ u ∇p+ + F=

∇ u⋅ 0=

∇ k∇T– ρcpTu+( )⋅ Q=

F Fx
Fy⎝ ⎠
⎛ ⎞

0

αgρ T ∆T
2

--------–⎝ ⎠
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =
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Equation 10-8 describes the forces that the Marangoni effect induces on the interface 
(liquid/air):

 (10-8)

where γ is the temperature derivative of the surface tension (N/(m·K)). This equation 
states that the shear stress on a surface is proportional to the temperature gradient 
(Ref. 1).

Modeling in COMSOL Multiphysics

To solve the momentum balance equations, use the Incompressible Navier-Stokes 
application mode. For the heat transfer by convection and conduction, use the 
Convection and Conduction application mode. There are two multiphysics couplings, 
one in each direction:

• The Boussinesq approximation means that an expression including temperature acts 
as a force in the y direction in the momentum balance.

• The convective heat transfer depends on the velocities from the momentum balance.

This means that you must solve the coupled system directly using the nonlinear solver. 

To implement the condition that the shear stress is proportional to the temperature 
gradient on the surface, use a Weak Form, Boundary application mode where you can 
implement Equation  using a weak formulation:

lm_test*(eta1*uy-gamma*Tx)+u_test*lm

The last term makes sure that this condition replaces the condition on the x-velocity 
from the Slip/Symmetry boundary condition in the Incompressible Navier-Stokes 
application mode.

It is also necessary to omit the Dirichlet boundary condition for T at the surface level 
to get consistent boundary conditions. To do this, adjust the boundary conditions on 
the equation system level.

Finally, to study the Marangoni effect, increase the temperature difference between the 
right and left wall in steps. With the restart option, the solver uses the previous solution 
as initial value providing fast convergence.

η u∂
y∂

------ γ T∂
x∂

-------=
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Results

The Marangoni effect becomes more pronounced as the temperature difference 
increases:

Figure 10-17: Marangoni convection with a temperature difference of 0.001 K.

For the very low temperature difference of 0.001 K, the temperature field is almost 
decoupled from the velocity field. Therefore, the temperature decreases almost linearly 
from left to right.
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Figure 10-18: Marangoni convection with a temperature difference of 0.05 K.

For the temperature difference of 0.05 K notice how the Marangoni convection 
influences the flow of fluid and the distribution of temperature. The temperature is no 
longer decreasing linearly and you can clearly see the advection of the isotherms caused 
by the flow.
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Figure 10-19: Marangoni convection with a temperature difference of 2 K.

At higher temperature differences (2 K in Figure 10-19 above), the physical coupling 
between the temperature and the velocity field is clearly visible. The heat conduction 
is small compared to the convection, and at the surface the fluid accelerates where the 
temperature gradient is high.

Reference

1. V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, N.J., 1962.

Model Library path: COMSOL_Multiphysics/Multiphysics/marangoni

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.
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2 Click the Multiphysics button.

3 In the COMSOL Multiphysics>Fluid Dynamics folder, select Incompressible Navier-Stokes 
and then Steady-state analysis. Make sure Lagrange - P2 P1 is selected in the Element 
list.

4 Click Add.

5 In the Heat Transfer folder, select Convection and Conduction and then Steady-state 

analysis. Make sure Lagrange - Quadratic is selected in the Element list.

6 Click Add.

7 In the PDE Modes folder, select Weak Form, Boundary and then Stationary analysis.

8 Type lm in the Dependent variables edit field.

9 Select Lagrange - Linear in the Element list.

10 Click Add.

11 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 In the Constants dialog box, define the following constants with names, expressions, 
and descriptions (the descriptions are optional). When done, click OK.

G E O M E T R Y  M O D E L I N G

1 On the Draw menu, point to Specify Objects and then click Rectangle.

1 In the Rectangle dialog box, type 0.01 in the Width edit field and type 0.005 in the 
Height edit field.

2 Click OK.

NAME EXPRESSION DESCRIPTION

deltaT 1e-3[K] Temperature difference

gamma -8e-5 Temperature derivative of the 
surface tension

rho1 760[kg/m^3] Fluid density

eta1 4.94e-4[Pa*s] Dynamic viscosity

k1 0.1[W/(m*K)] Thermal conductivity

Cp1 2090[J/(kg*K)] Heat capacity

alpha1 1.3e-3[1/K] Thermal expansion coefficient

g 9.8[m/s^2] Acceleration due to gravity
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3 Click the Zoom Extents button on the Main toolbar.

P H Y S I C S  S E T T I N G S

Boundary Conditions—Momentum Balance
1 From the Multiphysics menu, choose Incompressible Navier-Stokes (ns).

2 From the Physics menu, choose Boundary Settings.

3 In the Boundary Settings dialog box, enter boundary conditions for the 
Incompressible Navier-Stokes mode according to the table below:

4 Click OK.

Point Settings—Momentum Balance
Set the pressure to zero in the point (0,0) to get a well-defined condition on the 
pressure:

1 From the Physics menu, choose Point Settings.

2 In the Point Settings dialog box, select Point 1.

3 Select the Point constraint check box

4 Click OK.

Boundary Conditions—Heat Transfer
1 From the Multiphysics menu, choose Convection and Conduction (cc).

2 From the Physics menu, choose Boundary Settings.

3 In the Boundary Settings dialog box, enter boundary conditions for the Convection 
and Conduction mode according to the table below:

4 Click OK.

Boundary Conditions—Liquid/Air Interface
1 From the Multiphysics menu, choose Weak Form, Boundary (wb).

2 From the Physics menu, choose Boundary Settings.

SETTINGS BOUNDARIES 1, 2, 4 BOUNDARY 3

Boundary type Wall Symmetry boundary

Boundary condition No slip -

SETTINGS BOUNDARY 1 BOUNDARIES 2, 3 BOUNDARY 4

Boundary condition Temperature Thermal insulation Temperature

T0 deltaT 0
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3 In the Boundary Settings dialog box, clear the Active in this domain check box for 
Boundaries 1, 2, and 4.

4 Click the Weak tab.

5 Select Boundary 3 and type lm_test*(eta1*uy-gamma*Tx)+u_test*lm in the 
weak edit field. This implements Equation 10-8, which states that the shear stress 
on a surface is proportional to the temperature gradient.

6 Click OK.

Boundary Conditions—Equation System Level
To get consistent boundary conditions, omit the Dirichlet boundary condition for T 
on the vertex connecting Boundary 1 and Boundary 3 and on the vertex connecting 
Boundary 4 and Boundary 3:

1 On the Physics menu, point to Equation System and then click Boundary Settings.

2 In the Boundary Settings - Equation System dialog box, click the r tab.

3 Select Boundary 1 and type (s<1)*(T0_cc-T) in edit field in row 4. s is the 
boundary parameterization variable, which varies from 0 to 1 in the direction of the 
boundary arrow. That means that (s<1) is 1 only at the vertex at the end of the 
boundary.

4 Click the Differentiate button to get the h coefficient.

5 Select Boundary 4 and type -(s<1)*T in the edit field in row 4.

6 Click the Differentiate button to get the h coefficient.

7 Click OK.
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Subdomain Settings—Momentum Balance
1 From the Multiphysics menu, choose Incompressible Navier-Stokes (ns).

2 From the Physics menu, choose Subdomain Settings.

3 In the Subdomain Settings dialog box, select Subdomain 1 and enter the material 
properties and buoyancy force term below for the Incompressible Navier-Stokes 
application mode:

4 Click OK.

Subdomain Settings—Heat Transfer
1 From the Multiphysics menu, choose Convection and Conduction (cc).

2 From the Physics menu, choose Subdomain Settings.

3 In the Subdomain Settings dialog box, enter the material properties and velocities 
below for the Convection and Conduction mode:

4 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

2 In the Free Mesh Parameters dialog box, click the Custom mesh size button and type 
1.1 in the Element growth rate edit field.

3 Click the Boundary tab.

4 Select Boundary 3 and type 2e-4 in the Maximum element size edit field.

5 Click the Point tab.

6 Select Point 2 and 4 and type 5e-5 in the Maximum element size edit field.

SETTINGS SUBDOMAIN 1

ρ rho1

η eta1

Fy alpha1*g*rho1*(T-deltaT/2)

SETTINGS SUBDOMAIN 1

k (isotropic) k1

ρ rho1

Cp Cp1

u u

v v
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7 Click Remesh and then click OK.

These settings provide a finer mesh close to the liquid surface and especially toward the 
right end.

C O M P U T I N G  T H E  S O L U T I O N

First solve the problem with the small temperature difference, ∆T = 10−3 K, specified 
above. Click the Solve button to compute the solution. See the section “Postprocessing 
an Visualization” below on how to plot the temperature and velocity field.

Increase the temperature difference to 0.05 K to make the Marangoni effect more 
visible:

1 Set deltaT to 0.05[K] in the Constants dialog box.

2 Click the Restart button.

Finally increase the temperature difference even more (to 2 K):

1 Set deltaT to 2[K] in the Constants dialog box.

2 Click the Restart button
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P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Show the temperature field as a surface plot with overlaid contours and the velocity 
field using arrows as in the results plots earlier in this model documentation:

1 From the Postprocessing menu, choose Plot Parameters.

2 Under Plot type in the Plot Parameters dialog box, select the Surface, Contour, and 
Arrow check boxes.

3 Click the Surface tab.

4 On the Surface Data tab, select Convection and Conduction (cc)>Temperature in the 
predefined quantities list.

5 Click the Contour tab.

6 On the Contour Data tab, select Convection and Conduction (cc)>Temperature in the 
predefined quantities list.

7 In the Contour color area, click the Uniform color button and then click the Color 
button.

8 Select black in the Contour Color dialog box and click OK.

9 Click the Arrow tab.

10 Verify that the predefined quantity for the arrow data is the velocity field.

11 Click OK.
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S imu l a t i o n  o f  a  M i c r o r o bo t 2

Introduction

This example describes the modeling of one of the legs of a silicon microrobot in 
COMSOL Multiphysics. The image below shows the microrobot.

The microrobot uses a technique based on polyimide V-groove joints to get each of 
the legs to move. The polyimide has a relatively high coefficient of thermal expansion 
α, and this causes the leg to bend slightly when the polyimide is heated. Putting several 
V-grooves on each leg provides sufficient deflection (see the following figure).

See Ref. 1 for a more detailed description of the microrobot.

Model Definition

E Q U A T I O N S

The model couples a Heat Transfer application mode to a Plane Strain structural 
application mode to simulate the bending.

The unknowns of the system are:

• u, the displacement along the x-axis

• v, the displacement along the y-axis

• T, the temperature

2. Model courtesy of Thorbjörn Ebefors, Dept. of Signals, Sensors and Systems (S3), Royal Institute of 
Technology (KTH), Stockholm, Sweden.

Heating
resistors Silicon leg 

Cured
polyimide 
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Time scales for the structural mechanics problem are much smaller than for the heat 
transfer problem so you can neglect them and analyze the structural model as a static 
model. The time dependence of the system is retained through the heat transfer 
equation. This assumption is well motivated and results in a shorter simulation time. 
The discretized system becomes a differential-algebraic equation system (DAE) 
containing the following equations:

• The principle of virtual work for plane strain condition states that:

where W is the total stored energy. The stress-strain relation including thermal 
expansion reads:

where α is the thermal expansion coefficient.

See “The Plane Strain Application Mode” on page 217 in the Modeling Guide for 
details.

• The transient heat equation:

where ρ is the density, CP is the heat capacity, k is the thermal conduction, and Q is 
the heat source.

M A T E R I A L  P R O P E R T I E S

To represent the model use several subdomains corresponding to the different parts. 
You need six property sets to define each part of the leg of the microrobot (Si, SiNa, 
Al, P, SiO, and pSi).

T H E R M A L  L O A D

A heat source of 2·1013 W/m3, corresponding to 100 mW, is turned on in each of the 
two heating resistors during the first 10 ms of the 20 ms simulation.

δW ε– xtestσx εytest– σy 2εxytest– τxy utest
t FV+( ) V +d

V
∫=

utest
t FS s utest

t FS sd
S
∫+d

S
∫ 0=

σ Dεel σ0+ D ε αT–( )= =

ρCP t∂
∂T ∇ k T∇( )⋅+ Q t( )=
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B O U N D A R Y  C O N D I T I O N S

An important part of the simulation is the modeling of the cooling effect at the 
boundaries. Experiments have verified that most of the heat dissipates in the silicon 
structure (the “body” of the robot). Also, the experiments show a minor cooling effect 
at the tip of the leg.

Motivated by this, use a heat transfer coefficient of 106 W/(m2·K) on the part of the 
leg connected to the rest of the robot, a coefficient of 105 W/(m2·K) on the tip of the 
leg, and insulation on the rest of the structure. These values are somewhat arbitrary, 
but the simulation results have been calibrated with experimental data.

The boundary conditions for the structural mechanics part are simply constrained 
displacement at the left end of the robot leg and zero force on the rest of the structure.
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Results and Discussion

As expected, the following plots show that the microrobot leg bends when there is a 
heat source and come back to its initial shape with the decrease of the temperature. 
The plot sequence shows the temperature increase from 0 s to 20 ms every 5 ms.

The animation shows how the temperature in the robot leg increases and how it bends 
downward, as expected. Note that the temperature should be interpreted as a deviation 
from the initial state, which is room temperature. After 10 ms, the power is turned off, 
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and the leg returns toward its undeformed initial state. It is of great interest to 
optimize the model, for example, the shape of the V-grooves and the power in each 
heating resistance, so that the bending process becomes as fast as possible.

Modeling in COMSOL Multiphysics

To model such a system with COMSOL Multiphysics you need to select two 
application modes: Heat Transfer and Plane Strain.

The coupling appears in the definition of the stress variables by adding the thermal 
strain.

The coupling is one-way only (from the heat source to the displacements due to the 
heat source).

Reference

1. T. Ebefors, “Polyimide V-groove Joints for Three-Dimensional Silicon 
Transducers.” Ph.D. thesis, May 2000, Dept. of Signal, Sensors and Systems (S3), 
Royal Institute of Technology (KTH), Stockholm, Sweden.

Model Library path: COMSOL_Multiphysics/Multiphysics/microrobot

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Start COMSOL Multiphysics or click the New button to open the Model Navigator.

2 Select 2D from the Space dimension list.

3 Click the Multiphysics button.

4 Select the COMSOL Multiphysics>Heat Transfer>Conduction application mode and 
then Transient analysis.

5 Click Add.

6 Open the Structural Mechanics application modes folder and then the Plane Strain 
application mode, and select Static analysis.

7 Click Add.
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8 Click OK.

G E O M E T R Y  M O D E L I N G

The geometry of this model is provided as a DXF file as it is quite complicated.

1 On the File menu, point to Import and then click CAD Data From File. Select DXF file 

(*.dxf) in the Files of type list.

2 Browse to models/COMSOL_Multiphysics/Multiphysics under the COMSOL 
installation directory.

3 Select microrobot.dxf. Click Import.

4 On the Draw menu, point to Coerce To and then click Solid.

P H Y S I C S  S E T T I N G S

Because the microrobot legs are composed of several materials with different material 
properties, you have to define subdomain settings for each materials. Using subdomain 
expression variables makes it easier to enter the subdomain properties of the model.

Define the following parameters for the materials:

• The thermal conductivity k_mat

• The heat capacity C_mat

• The density: rho_mat
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S

• Young’s modulus: E_mat

• The Poisson ratio: nu_mat

• The thermal expansion coefficient: al_mat

• The heat source: heat

Subdomain Expressions
1 On the Options menu, point to Expressions and then click Subdomain Expressions.

2 In the Subdomain Expressions dialog box, enter the following material properties:

From left to right the material properties represent Si, SiN, Al, P, SiO, and pSi.

3 Click OK.

Model Settings
The default equation system form for models including the heat transfer application 
modes is the general form, but this is a linear problem, so you can use the coefficient 
form. This makes it easier to identify the thermal expansion coefficient in the equation 
system.

1 From the Physics menu, choose Model Settings.

2 Select Coefficient from the Equation system form list.

3 Click OK.

Boundary Settings
1 In the Physics menu open the Boundary Settings dialog box.

2 Select Boundaries 1, 3, and 5.

3 Select the Rx and Ry check boxes. This locks the displacement to zero in both the x 
and y directions.

4 Click OK.

PROPERTY SUBDOMAINS 
1, 6, 10, 14

SUBDOMAINS 
2, 7, 11, 15

SUBDOMAIN 3 SUBDOMAIN 4 SUBDOMAINS 
5, 9, 13

SUBDOMAIN
8, 12

k_mat 140 15 238 0.16 1.4 20

C_mat 707 1000 900 2000 1000 707

rho_mat 2300 2865 1410 2700 2200 2300

E_mat 130e9 95e9 70e9 2e9 70e9 160e9

nu_mat 0.3 0.25 0.3 0.35 0.22 0.3

al_mat 2.5e-6 0.8e-6 23e-6 140e-6 0.5e-6 2e-6

heat 0 0 0 0 0 2e13
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5 Change the application mode to Heat Transfer by Conduction (ht) in the Multiphysics 
menu.

6 Open the Boundary Settings dialog box and enter the following settings:

7 Click OK.

Subdomain settings
1 Change the application mode to Plane Strain (pn) in the Multiphysics menu.

2 In the Physics menu, open the Subdomain Settings dialog box.

3 Enter following settings for the material properties on the Material page:

The density ρ is set to zero to remove all the dynamics in the model.

4 Click OK.

5 Change the application mode to Heat Transfer by Conduction (ht) in the Multiphysics 
menu.

6 Open the Subdomain Settings dialog box, and set the material properties for the Heat 
Transfer equation:

Notice the logical expression (t<1e-2) in the heat source coefficient, which is used 
to get full heating power (heat) for 10 ms, and after that no power. When done, 
click OK.

Next, include the thermal strain in the stress variables definition:

SETTINGS ALL BOUNDARIES 
EXCEPT 1, 3, 5, 95, 96

BOUNDARIES 1, 3, 5 BOUNDARIES 95, 96

Type Thermal insulation Heat flux Heat flux

h 1e6 1e5

SETTINGS ALL SUBDOMAINS

E E_mat

ν nu_mat

ρ 0

SETTINGS ALL SUBDOMAINS

k (isotropic) k_mat

ρ rho_mat

Cp C_mat

Q (t<1e-2)*heat
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7 On the Physics menu, point to Equations System and then click Subdomain Settings.

8 In the Subdomain Settings - Equation System dialog box for the equation system, click 
the Variables tab.

9 Select all the subdomains.

10 Change the normal stress variables definition according to the following table:

These editings of the stress variables, indicated by the bold font in the previous 
table, specify the coupling between the heat-transfer problem and the structural 
mechanics problem.

11 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

2 On the Global tab, click the Custom mesh size button and type 1.7 in the Element 

growth rate edit field. This reduces the mesh by allowing the element size to grow 
faster away from a region with small details.

3 Click the Remesh button to initialize the mesh, and then click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box by clicking on the corresponding icon in the 
Main toolbar.

2 On the General page, type 0:0.005:0.02 in the Times edit field. This provides the 
solution at 5 equally spaced time steps from 0 to 20 ms or every 5 ms. The tolerances 
for the time-dependent solver control the actual time stepping.

3 Type 1e-6 in the Absolute tolerance edit field. The absolute tolerance should be 
smaller than the typical displacements by at least an order of magnitude.

VARIABLE DEFINITION

sx_pn E_pn*(1-nu_pn)*(ex_pn-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))+

E_pn*nu_pn*(ey_pn-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))+

E_pn*nu_pn*(-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))

sy_pn E_pn*nu_pn*(ex_pn-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))+

E_pn*(1-nu_pn)*(ey_pn-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))+

E_pn*nu_pn*(-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))

sz_pn E_pn*nu_pn*(ex_pn-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))+

E_pn*nu_pn*(ey_pn-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))+

E_pn*(1-nu_pn)*(-al_mat*T)/((1+nu_pn)*(1-2*nu_pn))
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4 Click OK.

5 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 From the Postprocessing menu, open the Plot Parameters dialog box.

2 On the General page, select the Deformed shape check box to plot using a deformed 
shape.

3 Click the Deform tab.

4 On the Subdomain Data tab in the Deformation data area, select 
Plane Strain (pn)>Displacement in the Predefined quantities list.

5 To get the following plot, clear the Auto check box for automatic scaling of the 
deformed shape. Then type 1 in the Scale factor edit field.

6 Click OK.

7 To get an animation of the results, click the Animate button in the Plot toolbar.
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V i b r a t i o n s  i n  M i l k  C on t a i n e r s

This example illustrates a multiphysics application that involves a fluid-structure 
interaction. It simulates a filled milk container on a conveyor belt that starts moving. 
The methodology presented here defines two subproblems, one for the container walls 
and another for the fluid. The two problems merge into one using special interface 
conditions that impose continuous normal displacements and normal forces across the 
interface boundary.

Model Definition

With all variables having a harmonic time dependence, you solve for only one complex 
amplitude.

D O M A I N  E Q U A T I O N S

In the container walls, use Navier’s equation for plane stress to find the displacements 
u and v:

Plane stress (E2, ν, ρ2)

Fluid (E1, ρ1)

Asinωt
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where ρ2 is density, E2 is the elasticity modulus (Young’s modulus), and ν is Poisson’s 
ratio.

For the fluid assume irrotational flow. Thus you can give the displacements with the 
gradient of a displacement potential G:

and the equation for sound waves becomes

where E1 is the elasticity modulus for the fluid, and ρ1 the fluid density.

I N T E R F A C E  C O N D I T I O N S

At the interface, the normal displacements should be continuous, so

where n is the outward-pointing normal. Pressure in the gas, p, follows the 
relationship

and force continuity across the interface gives

where n is the inward-pointing normal.

Modeling in COMSOL Multiphysics

This model uses an equation-based approach, where the modeling of both the Navier’s 
equation and the equation for the sound waves uses PDE modes for PDEs in 
coefficient form. The Navier’s equation is active in the wall only, and the equation for 

ρ– 2ω2u
E2

1 ν2
–

--------------- ux νvy+( )x

E2
2 1 ν+( )
--------------------- uy vx+( )y+ + 0=

ρ– 2ω2v
E2

1 ν2
–

--------------- vy νux+( )y

E2
2 1 ν+( )
--------------------- uy vx+( )x+ + 0=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

U Gx= , V Gy=

ρ1ω2G E1 G∆+ 0=

n E1 G E1n u
v

⋅–∇⋅ 0=

p ρ1ωG,=

n σ ρ1ω2Gn+⋅ 0=
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the sound waves is active in the fluid domain only. For the coupling, you use the 
equation system view to define the fluid-structure interaction at the boundaries 
between the two domains.

Results

The solution shows the deformations that occur in the container. Figure 10-20 shows 
the deformations (scaled) for a container filled with milk. A second analysis provides 
the deformations for a container filled with gas (see Figure 10-21).

Figure 10-20: The deformation (exaggerated) of the container filled with milk.
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Figure 10-21: The deformation (exaggerated) of the container filled with gas.

Model Library path: COMSOL_Multiphysics/Multiphysics/milk_container

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, click the Multiphysics button.

2 Select the first application mode from the table below in the COMSOL 

Multiphysics>PDE Modes section and rename it by typing the name in the Application 

mode name edit field.

3 Define the dependent variables by typing the variable names in the table below in 
the Dependent variables edit field.
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4 Click the Add button.

5 Add the second application mode following the same procedure and then click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 In the Constants dialog box, add the following constants for the material properties 
and the angular frequency (the constant w):

APPLICATION MODE APPLICATION 
MODE NAME

DEPENDENT 
VARIABLES

ELEMENT TYPE

PDE, coefficient 
form

wall u v Lagrange - Quadratic

PDE, coefficient 
form

fluid G Lagrange - Quadratic

NAME EXPRESSION

E1 1e10

rho1 1e3

E2 1e8

rho2 1e3

nu 0.3

w 2*pi*10
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3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Shift-click the Rectangle/Square button in the Draw toolbar.

2 In the Rectangle dialog box, specify a rectangle with a lower-left corner at 
(0.001, 0.001), a width of 0.063, and a height of 0.163.

3 Click OK and then click the Zoom Extents button.

4 Draw another rectangle using the same method. This rectangle’s lower-left corner 
is at (0, 0), the width is 0.065, and the height is 0.165.

5 Press Ctrl+A to select both objects and then click the Union button on the Draw 
toolbar.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Multiphysics menu, select the wall application mode.

2 From the Physics menu, choose Boundary settings.

3 In the Boundary Settings dialog box, select the Interior boundaries check box.

4 Specify the boundary conditions from the table below. Start with boundary 2. You 
can the select the Select by group check box to set Neumann conditions on the 
remaining boundaries in one step.

5 Click OK.

You do not need to define boundary conditions for the fluid because the fluid domain 
consists of interior boundaries only.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

SETTINGS BOUNDARIES 1,3-8 BOUNDARY 2

Type Neumann Dirichlet

h(1,1) 1

h(1,2) 0

h(2,1) 0

h(2,2) 1

r(1) 0.001

r(2) 0
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2 In the Subdomain Settings dialog box, select Subdomain 2 from the Subdomain 

selection list and then clear the Active in this domain check box to deactivate the fluid 
domain.

3 Select Subdomain 1 and then click the c, a, and f tabs and enter the PDE coefficients 
for the wall domain according to the following table:

4 Click OK.

5 From the Multiphysics menu, select the fluid application mode.

6 From the Physics menu, choose Subdomain Settings.

7 In the Subdomain Settings dialog box, select Subdomain 1 in the Subdomain selection 
list and then clear the Active in this domain check box to deactivate the wall domain.

8 Select Subdomain 2 and enter the PDE coefficients for the fluid domain according 
to the following table:

COEFFICIENT SUBDOMAIN 1

c(1,1) E2/(1-nu^2) E2/2/(1+nu)

c(1,2) 0 E2/2/(1+nu) E2*nu/(1-nu^2) 0

c(2,1) 0 E2*nu/(1-nu^2) E2/2/(1+nu) 0

c(2,2) E2/2/(1+nu) E2/(1-nu^2)

a(1,1) -w^2*rho2

a(1,2) 0

a(2,1) 0

a(2,2) -w^2*rho2

f(1) 0

f(2) 0

COEFFICIENT SUBDOMAIN 2

c E1

a -w^2*rho1

f 0
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9 Click OK.

Boundary Conditions—Equation System
To get continuous normal forces and normal displacements on the interior boundaries, 
use the Boundary Settings dialog box for the equation system.

1 On the Physics menu, point to Equation System and then click Boundary Settings. 

2 Specify the following components for the q coefficient on Boundaries 4, 5, 6, and 
7 that separate the fluid and the wall:

3 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

COMPONENT BOUNDARY 4 BOUNDARY 5 BOUNDARY 6 BOUNDARY 7

q(1,1) 0 0 0 0

q(1,2) 0 0 0 0

q(1,3) w*rho1 0 0 -w*rho1

q(2,1) 0 0 0 0

q(2,2) 0 0 0 0

q(2,3) 0 w*rho1 -w*rho1 0

q(3,1) E1 0 0 -E1

q(3,2) 0 E1 -E1 0

q(3,3) 0 0 0 0
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2 Click the Custom mesh size button and type 1.7 in the Element growth rate edit field.

3 Click OK.

4 Click the Initialize Mesh button.

C O M P U T I N G  T H E  S O L U T I O N

For this model, use the stationary solver (the default solver). Click the Solve button to 
solve the problem.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 From the Postprocessing menu, choose Plot Parameters.

2 In the Plot type area on the General page, select the Deformed shape check box.

3 Click the Surface tab.

4 On the Surface Data tab, select Geometry and Mesh>y-coordinate from the Predefined 

quantities list.

5 Click the Deform tab.

6 In the Deformation data area, select PDE, Coefficient Form (wall)>u, v from the 
Predefined quantities list on the Subdomain Data tab to use the x- and 
y-displacements for the deformed shape.

7 Click OK.

S E C O N D  A N A L Y S I S — U S I N G  A  G A S - F I L L E D  C O N T A I N E R

To model a container filled with gas instead of milk, update the fluid parameters:

O P T I O N S  A N D  S E T T I N G S

Change the following constants in the Constants dialog box:

C O M P U T I N G  T H E  S O L U T I O N

Solve the problem again with the new material properties for the fluid. You get a 
similar plot of the solution from the second analysis.

NAME EXPRESSION

E1 1e5

rho1 1
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Pe r i s t a l t i c  Pump

Introduction

In a peristaltic pump, rotating rollers are squeezing a flexible tube. As the pushed down 
rollers move along the tube, the fluid in the tube follows the motion. The main 
advantage of the peristaltic pump is that no seals, valves, or other internal parts ever 
touch the fluid. Due to their cleanliness, peristaltic pumps have found many 
applications in the pharmaceutical, chemical, and food industries. Besides this, the 
action of a peristaltic pump is very gentle, which is important if the fluid is easily 
damaged. Peristaltic pumps are therefore used in medical applications, one of which is 
moving the blood through the body during open heart surgery. Other pumps would 
risk destroying the blood cells.

This COMSOL Multiphysics model of a peristaltic pump is a combination of structural 
mechanics, for modeling the squeezing of the tube, and fluid dynamics, for computing 
the motion of the fluid (fluid-structure interaction, FSI). As it is the deformations of 
the tube that drive the fluid, the fluid part of the simulation needs to be done in a 
deforming geometry, defined by COMSOL Multiphysics’ Moving Mesh (ALE) 
application mode.

Model Definition

The model is set up in 2D axial symmetry (Figure 10-22). A vinyl tube of length 0.1 
m, inner radius 1 cm, and outer radius 1.5 cm, contains a gas of density ρ = 1 kg/m3 
and viscosity η = 3·10−5 Pa·s. A time- and position-dependent force density is applied 
to the outer wall of the tube, in the radial direction. This force density could have been 
taken from real data from a peristaltic pump, but is for simplicity modeled as a Gaussian 
distribution along the length of the tube. The Gaussian has a width of 1 cm and is 
moving with the constant velocity 0.03 m/s in the positive z direction. To represent 
the engagement of the roll, the force density, multiplied by a smoothed Heaviside 
function, kicks in at t = 0.1 s and takes the force to its full development at t = 0.5 s. 
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Likewise, the disengagement of the roll starts at t = 1.0 s and ends at t = 1.4 s. The 
deformations of the tube are modeled during a full cycle of 1.5 s.

Figure 10-22: The geometry of the peristaltic pump in its initial shape (left) and as it is 
deforming under the pressure of the roll. The tube is rotationally symmetric with respect to 
the z axis. The color scale shows the deformation of the tube material.

D O M A I N  E Q U A T I O N S

The structural mechanics computations are done using a 2D axially symmetric 
stress-strain formulation. The model uses the assumption that the material is linear and 
elastic and does not take geometric nonlinearities into account. With the capabilities 
in the COMSOL Structural Mechanics Module, you could easily extend this model to 
include large deformations and a more complicated material model.

The fluid flow is described by the Navier-Stokes equations:

 (10-9)

where ρ denotes the density (kg/m3)(, u the velocity vector (m/s), η the viscosity 
(Pa·s), and p the pressure (Pa). The equations are set up and solved in axial symmetry 
on a deformed mesh inside the tube.

ρ
t∂

∂u ∇ η ∇u ∇u( )T
+( )⋅– ρu ∇⋅ u ∇p+ + 0=

∇ u⋅ 0=
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The motion of the deformed mesh is modeled using Winslow smoothing. For more 
information, please refer to “The Moving Mesh Application Mode” on page 401 in 
the COMSOL Multiphysics Modeling Guide.

B O U N D A R Y  C O N D I T I O N S

For the structural mechanics computations, the time and coordinate dependent load 
described above is the boundary condition at the outer surface of the tube. Whereas 
the top and bottom ends of the tube are constrained along both coordinate axes, the 
inner surface is free. The reaction forces from the fluid on the tube are very small, so 
this model does not take them into account. This way you can solve first for the 
structural mechanics and then for the fluid dynamics, reducing solution time and 
memory consumption.

The inner surface is free, and the top and bottom ends of the tube are constrained 
along both coordinate axes.

For the fluid simulation, the boundary condition at the inlet and the outlet assumes 
that the total stress is zero, that is:

 (10-10)

Inside the wall of the tube, the moving mesh follows the deformations of the tube. The 
mesh deformations being the same as the structural deformations is also used as the 
moving mesh boundary condition where the fluid meets the tube wall. The mesh is 
fixed to a zero r displacement at the symmetry axis and a zero z displacement at the 
top and the bottom of the tube.

Results

Figure 10-23 shows three snapshots from the peristaltic pump in action, and 
Figure 10-25 shows the inner volume of the tube as a function of time. At t = 0.3 s, 
the roll has begun its engagement phase and is increasing its pressure on the tube. As 
less space is left for the gas, it is streaming out of the tube, through both the inlet and 
the outlet. At t = 0.7 s, the roll has been fully engaged for a while. As it is moving up 
the tube, so is the gas, both at the inlet and at the outlet. This is where most of the net 
flow in the direction from the inlet to the outlet is created. Finally, at t = 1.2 s, the 

n pI– η ∇u ∇u( )T
+( )+[ ]⋅ 0=
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engagement process is reversed as the roll is disengaging. Fluid is streaming into the 
tube from both ends.

Figure 10-23: Snapshots of the velocity field and the shape of the inside of the tube at t = 
0.3 s, t = 0.7 s, and t = 1.2 s. The colors represent the magnitude of the velocity, and the 
arrows its direction. 
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Figure 10-24: The inner volume (m3) of the tube as a function of time (s).

Figure 10-25 shows the inlet and outlet flows. The overall behavior indicated in the 
velocity snapshots is confirmed. As the roll is engaged, gas is squeezed out through 
both the inlet and the outlet. When the fully engaged roll is moving along the tube, 
gas is steadily flowing in through the inlet and out through the outlet. As the roll is 
disengaging, the gas is being sucked back into the tube. In a real peristaltic pump, the 
peaks associated with the volume changes are usually removed or kept to a minimum, 
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by another roll engaging at the same time as the first roll is disengaging. This way, there 
are hardly any volume changes, and the fluid is flowing forward all the time.

Figure 10-25: Inlet (blue solid line) and outlet (red dashed line) flow in m3/s as functions 
of time. Positive values indicate that the gas is flowing in through the inlet and out 
through the outlet. 
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Figure 10-26 sums up the process, plotting the accumulated net flow versus time. It is 
worth noting that although the accumulated flow during the first 0.5 s of the cycle is 
zero or negative, it is well above zero after the full cycle.

Figure 10-26: Accumulated flow (m3) through the pump versus time (s). 

Modeling in COMSOL Multiphysics

This model is primarily intended to demonstrate the use of the Moving Mesh (ALE) 
application mode, but it also shows some postprocessing features. Integration coupling 
variables are defined for the flow computations and for evaluating the inside volume of 
the tube. An ordinary differential equation is used for calculating the accumulated 
flow. The smooth step function in this model is flc2hs, which is a C2-continuous step 
with a given step width.

Model Library path: COMSOL_Multiphysics/Multiphysics/peristaltic_pump

Modeling Using the Graphical User Interface

1 Start COMSOL Multiphysics.
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2 In the Model Navigator, set the Space dimension to Axial symmetry (2D) and click the 
Multiphysics button.

3 Select COMSOL Multiphysics>Structural Mechanics>Axial Symmetry, 

Stress-Strain>Transient analysis in the list of application modes and click Add.

4 Select COMSOL Multiphysics>Deformed Mesh>Moving Mesh (ALE)>Transient analysis 
and click Add.

5 Click the Application Mode Properties button and set the Smoothing method to 
Winslow. Click OK.

6 Select COMSOL Multiphysics>Fluid Dynamics>Incompressible Navier-Stokes>Transient 

analysis and click Add.

7 Click OK to close the Model Navigator.

G E O M E T R Y  M O D E L I N G

8 Specify two rectangles according to the table below

9 Click the Zoom Extents button in the Main toolbar.

O P T I O N S  A N D  S E T T I N G S

1 Open the Constants dialog box from the Options menu and enter constants 
according to the following table. The descriptions are optional. When done, click 
OK.

NAME WIDTH HEIGHT BASE R Z

R1 0.01 0.1 Corner 0 0

R2 5e-3 0.1 Corner 0.01 0

NAME EXPRESSION DESCRIPTION

t_on 0.3[s] Time when roll is engaged

t_off 1.2[s] Time when roll is disengaged

dt 0.2[s] Time to reach full force

z0 0.03[m] z coordinate where roll starts

v0 0.03[m/s] Vertical velocity of roll

width 0.01[m] Width of Gaussian force distribution

Ttot 1.5[s] Total time for a pump cycle

Lmax 4e6[N/m^2] Max load
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2 In the Options menu, go to Functions and define a new function according to 
following table. When done, click OK.

3 Go to Physics>Space-Independent Equations and define an ordinary differential 
equation with the following settings, When done, click OK.

4 Select Integration Coupling Variables>Boundary Variables from the Options menu and 
specify the following boundary integration variables, each on a separate row in the 
table. When done, click OK.

5 Select Integration Coupling Variables>Subdomain Variables from the Options menu and 
specify the following subdomain integration variables. When done, click OK,.

P H Y S I C S  S E T T I N G S — S T R E S S - S T R A I N

Subdomain Settings
1 In the Multiphysics menu, select Axial Symmetry, Stress-Strain.

2 Open the Subdomain Settings dialog box. Select Subdomain 1 and clear the Active in 

this domain check box.

3 Select Subdomain 2 and click Load. Select Nylon from the list of materials and click 
OK.

4 Click OK to close the Subdomain Settings dialog box.

NAME ARGUMENTS EXPRESSION

gauss x, sigma 1/(sigma*sqrt(2*pi))*exp(-x^2/(2*sigma^2))

NAME (U) EQUATION INIT(U) INIT (UT)

netflow netflowt-(inflow+outflow)/(2*Ttot) 0 0

SOURCE BOUNDARY NAME EXPRESSION INTEGRATION ORDER GLOBAL DESTINATION 

2 inflow 2*pi*r*v 4 checked

3 outflow 2*pi*r*v 4 checked

SOURCE SUBDOMAIN NAME EXPRESSION INTEGRATION ORDER GLOBAL DESTINATION 

1 Vol 2*pi*r 4 checked
R  1 0 :  M U L T I P H Y S I C S  M O D E L S



Boundary Conditions
Open the Boundary Settings dialog box from the Physics menu and apply the following 
boundary settings. When done, click OK.

For the Fr load on Boundary 7, enter the following expression:

 -Lmax*flc2hs((t-t_on)[1/s],dt[1/s])*gauss((z-z0-v0*t)[1/m], 

width[1/m])*flc2hs((t_off-t)[1/s],dt[1/s])

The reason for the unit conversions [1/s] and [1/m] is to make the input to the 
flc2hs and gauss functions dimensionless.

M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box from the Mesh menu.

2 On the Global page, click the Custom mesh size button and set Maximum element size 
to 2e-3.

3 Click Remesh and then OK.

C O M P U T I N G  T H E  S O L U T I O N

1 In the Solver Manager, go to the Solve For tab and select Axial Symmetry, Stress-Strain. 
Only this application mode and its solution variables uor and w should be selected. 
Click OK to close the dialog box.

2 In the Solver Parameters dialog box, select Time dependent from the Solver list. Set 
Times to 0:0.01:1.5, Relative tolerance to 0.001 and Absolute tolerance to 1e-5.

3 On the Time Stepping tab, set Time steps taken by solver to Strict.

4 Click OK and then Solve.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot shows the von Mises stress distribution.

1 In the Plot Parameters dialog box, click the Deform tab.

2 Select the Deformed shape plot check box and set the Scale factor to 1.

SETTINGS BOUNDARY 4 BOUNDARIES 5, 6 BOUNDARY 7

Constraint RR 0

Constraint RZ 0

Load FR See below

Load FZ 0
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3 Use the Solution at time list on the General tab and click Apply to study the stress 
distribution and the deformation of the tube at a few points in time.

P H Y S I C S  S E T T I N G S — I N C O M P R E S S I B L E  N A V I E R - S T O K E S

Subdomain Settings
1 In the Multiphysics menu, select Incompressible Navier-Stokes.

2 Open the Subdomain Settings dialog box. Select Subdomain 2 and clear the Active in 

this domain check box.

3 In Subdomain 1, set the Density to 1 (kg/m3) and the Dynamic viscosity to 3e-5 
(Pa·s).

4 Click OK to close the Subdomain Settings dialog box.

Boundary Conditions
Open the Boundary Settings dialog box from the Physics menu and apply the following 
boundary settings.

P H Y S I C S  S E T T I N G S — M O V I N G  M E S H

Subdomain Settings
1 In the Multiphysics menu, select Moving Mesh (ALE).

2 Open the Subdomain Settings dialog box. Keep the default Free displacement in 
Subdomain 1.

3 In Subdomain 2, select Prescribed displacement. Enter uaxi_axi for dr and w for dz. 
These are the structural r and z deformations. The reason you cannot use 
physics-induced displacements here is that uaxi_axi is not a solution variable in the 
Stress-Strain application mode.

4 Click OK to close the Subdomain Settings dialog box.

SETTINGS BOUNDARY 1 BOUNDARY 2 BOUNDARY 3 BOUNDARY4

Type Symmetry Open Open Inlet

Condition Axial symmetry Normal stress Normal stress Velocity

u0 uaxi_t_axi

v0 wt

f0 0 0
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Boundary Conditions
Open the Boundary Settings dialog box from the Physics menu and apply the following 
boundary settings.

C O M P U T I N G  T H E  S O L U T I O N

1 In the Solver Manager, go to the Initial Value tab and click the Store Solution button. 
By default, all solutions are selected in the Store Solution dialog box. Click OK to 
confirm the selection.

2 In the Values of variables not solved for and linearization point area, click the 
Stored solution option button and select All in the Solution at time list. This makes 
the solver use the solution for the deformation of the tube when computing the 
fluid flow.

3 On the Solve For tab, select all variables but uor and w. Click OK.

4 Open the Solver Parameters dialog box, go to the General tab. Set the Absolute 

tolerance to 1e-3 and the Relative tolerance to 0.01. 

5 On the Time Stepping tab, set the Error estimation strategy to Exclude algebraic.

6 Click OK and then Solve.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The plot still shows the deformations from the stress-strain computation. To see the 
velocity field as in Figure 10-23 on page 411, do the following:

1 In the Plot Parameters dialog box, go to the General tab and clear the Deformed shape 
check box.

2 On the Surface tab, select Incompressible Navier Stokes (ns)>Velocity field among the 
Predefined quantities.

3 On the Arrow tab, select Incompressible Navier Stokes (ns)>Velocity field among the 
Predefined quantities. Click the Color button and choose a black color; then click OK. 
Select the Arrow plot check box and click Apply.

4 Once more, you can select different times to look at on the General tab. You will see 
the deformations even though you are not making a deformation plot, because the 
mesh is deformed.

SETTINGS BOUNDARY 1 BOUNDARIES 2–3 BOUNDARY 4

Type Mesh displacement Mesh displacement Mesh displacement

dr 0 uaxi_axi

dz 0 w
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5 If you want to animate the velocity field as a function of time, go to the Animate tab 
and click Start Animation. It may take some time for your computer to render the 
animation.

6 After closing the Plot Parameters dialog box, go to Postprocessing> 
Domain Plot Parameters. 

7 Use the Expression field on the Point tab to plot, for instance, the expressions 
inflow, outflow, netflow, or Vol. Because these variables are defined with a global 
destination and do not depend on the location, the coordinates do not matter. If 
you want to show more than one curve at the same time, use the Keep current plot 
check box on the General page.
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Q u a n t u m  M e c h a n i c s  M o d e l s
This chapter contains quantum mechanics models that center on solutions of the 
Schrödinger equation.
 421
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T h e  S c h r öd i n g e r  Equa t i o n  f o r  t h e  
Hyd r o g en A t om

Introduction

This example shows how to compute energy levels and electron orbits for the 
hydrogen atom. It models the atom as a 1-particle system using the stationary 
Schrödinger equation.

The equation parameters are:

• h (6.626·10−34 Js) is Planck’s constant.

• µ is the reduced mass

• V is the potential energy.

• E is the unknown energy eigenvalue.

• Ψ is the quantum mechanical wave function.

Model Definition

The quantity⏐Ψ⏐2 corresponds to the probability density function of the electron’s 
position. In this example,

where M equals the mass of the nucleus and me represents the mass of an electron 
(9.1094·10−31 kg). The hydrogen nucleus consists of a single proton (more than 
1,800 times heavier than the electron), so the approximation of µ is valid. Thus you 
can treat the problem as a one-particle system.

The system’s potential energy is

∇ h2

8µπ2
-------------∇Ψ⎝ ⎠
⎛ ⎞⋅– VΨ+  = EΨ

µ
Mme

M me+
------------------- me≈=

V e2

4πε0r
---------------–=
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where e equals the electron charge (1.602e-19 C), ε0 represents electric capacitivity in 
a vacuum (8.854e-12 F/m), and r gives the distance from the center of the atom.

Results

The solution provides a number of the lowest eigenvalues.

Three quantum numbers (n, l, m) characterize the eigenstates of a hydrogen atom: 

• n is the principal quantum number.

• l is the angular quantum number.

• m is the magnetic quantum number that appears in the equations above.

These quantum numbers are not independent but have the following mutual 
relationships:

An analytical expression exists for the energy eigenvalues in terms of the quantum 
number n

n 1 2 3 …, , ,=

0 l n 1–≤ ≤
l– m l.≤ ≤
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where

 (11-1)

This expression is called the Bohr radius and has an approximate value of 3·10−11 m.

The first three energy eigenvalues, according to the above expression with µ ≈ me, are:

• E1 ≈ –2.180·10−18 J

• E2 ≈ –5.450·10−19 J

• E3 ≈ –2.422·10−19 J

Comparing these numbers with the computed eigenvalues, you can see a 2-fold 
degeneracy for n = 2 and a 3-fold degeneracy for n = 3. This degeneracy corresponds 
to the following quantum triplets (2,0,0), (2,1,0) and (3,0,0), (3,1,0), (3,2,0). The 
computed values are separated due to the approximate numerical solution.

By refining the mesh and solving again, the results are more accurate. The states with 
l = 0 correspond to spherically symmetric solutions, while states with l = 1 or 2 
correspond to states with one or two radial node surfaces. The 0 energy level 
corresponds to the energy of a free electron no longer bounded to the nucleus. Energy 
levels closer to 0 correspond to excited states.

The wave function by itself has no direct physical interpretation. Another quantity to 
plot is ⏐u⏐2, which is proportional to the probability density (unnormalized) function 
⏐Ψ⏐2 for the electron position after integration about the z-axis. The plot shows the 
unnormalized probability density function.

You can now solve the problem for a different integer value of m as well as with a 
different eigenvalue search range. Remember that high energy levels correspond to 
large radial components in the solution, so you may have to enlarge the geometry to 
produce correct results. Also, try to solve the problem using a asymmetric domain.

To determine the ground state energy, use the adaptive solver. Using as many elements 
as before, the software now adapts the mesh to the first eigenfunction in an attempt to 
equidistribute the error. This yields an approximation of the ground state energy with 

En
h2

8π2µa0
2n2

---------------------------–=

a0
h2ε0

πµe2
------------- .=
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a relative error less than 1e-5, about two orders of magnitude better than the error in 
the solution using the initial mesh.

Modeling in COMSOL Multiphysics

To solve this problem in COMSOL Multiphysics, reduce the dimension of the 
problem from three to two by using cylindrical coordinates (ρ, , z). The Schrödinger 
equation transforms into

and you can write the potential energy as

Consider the wave function Ψ as the product of two functions, one with an angular 
dependence and the other with a radial and z-coordinate dependence,

ϕ

h2

8µπ2
------------- 1

ρ
---

ρ∂
∂ ρ

ρ∂
∂Ψ

⎝ ⎠
⎛ ⎞ 1

ρ2
------

ϕ2

2

∂
∂ Ψ

z2

2

∂
∂ Ψ

+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

– VΨ+ EΨ=

V ρ z,( ) e2

4πε0 ρ2 z2+( )
---------------------------------------- .–=

Ψ Ψ1 ϕ( )Ψ2 ρ z,( )=
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Substituting this expression into the equation gives

Multiplying by  and rearranging terms results in

where , or equivalently:

The left side is independent of , and the right side is independent of z and ρ, so the 
equation is equal to a constant, which you can call –m2. Thus you can split the 
equation into two parts:

and

The equation for Ψ1 gives the solution

where A and B are arbitrary real constants, and m = 0, ±1, ±2, … due to the periodic 
boundary condition Ψ1(0) = Ψ2(2πk), k = any integer.

Using the equation for Ψ2 with m included and multiplying by Ψ2/ρ, you arrive at

The equation now exists in a form that you can immediately transfer into COMSOL 
Multiphysics. The coordinate variables x and y replace ρ and z, and Ψ2 becomes u.

h2

8µπ2
------------- Ψ1

1
ρ
---

ρ∂
∂ ρ

ρ∂
∂Ψ2

⎝ ⎠
⎛ ⎞ Ψ2

1

ρ2
------

ϕ2

2

∂

∂ Ψ1 Ψ1
z2

2

∂

∂ Ψ2+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

– VΨ1Ψ2+ EΨ1Ψ2=

8µπ2 h2⁄( )ρ2 Ψ1Ψ2( )⁄

ρ
Ψ2
-------

ρ∂
∂ ρ

ρ∂
∂Ψ2

⎝ ⎠
⎛ ⎞ ρ

Ψ2
-------

z∂
∂ ρ

z∂
∂Ψ2

⎝ ⎠
⎛ ⎞+

⎝ ⎠
⎜ ⎟
⎛ ⎞

– Cρ2V Cρ2E–+
1

Ψ1
-------

ϕ2

2

∂

∂ Ψ1,=

C 8µπ2 h2⁄=

ρ
Ψ2
------- ∇ ρ∇Ψ2( )⋅( )⎝ ⎠
⎛ ⎞– Cρ2V ρ z,( ) Cρ2E–+

1
Ψ1
-------

ϕ2

2

∂

∂ Ψ1=

ϕ

ρ
Ψ2
------- ∇ ρ∇Ψ2( )⋅( )⎝ ⎠
⎛ ⎞– Cρ2V ρ z,( ) Cρ2E–+ m2–=

1
Ψ1
-------

ϕ2

2

∂

∂ Ψ1 m2–=

Ψ1 A mϕ( ) B mϕ( ),cos+sin=

∇ ρ∇Ψ2( )⋅( )– CρV ρ z,( ) m2

ρ
--------+⎝ ⎠

⎛ ⎞Ψ2+ CρEΨ2.=
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COMSOL Multiphysics describes the coefficient form eigenvalue PDE as

.

For this problem, use the following coefficient values:

Set all other coefficient values to 0.

The geometry consists of two concentric semicircular solids. The circles have centers 
at (0, 0) with radii of 3·10−9 m and 5·10−10 m. Remove the portions to the left of the 
y-axis by subtracting a rectangular solid with corners at (−1·10−9, −1·10−9) and 
(0, 1·10−9), to avoid negative x-values, because the use of cylindrical coordinates 
makes ρ positive.

The boundary conditions are as follows: 

• The cylinder axis x = 0 is not a boundary in the original problem, but here it 
becomes one. You must give the artificial boundary condition n · (c∇u) = 0. 
Because c = 0 on the cylinder axis, you should not view this boundary condition as 
a Neumann condition that imposes a constraint. Rather it indicates the absence of 
constraints.

• On the outer circular boundary, the Dirichlet condition u = 0 applies.

The Dirichlet condition corresponds to a zero probability for the electron to be 
outside the specified domain. This means that the probability of finding the electron 
inside the domain is 1. It is important to have this approximation in mind when solving 
for higher-energy eigenvalues because the solution of the physical problem might fall 
outside the domain, and no eigenvalues are found for the discretized problem. Ideally 
the domain is infinite and higher-energy eigenvalues correspond to the electron being 
further away from the nucleus.

Model Library path:  

COMSOL_Multiphysics/Quantum_Mechanics/hydrogen_atom

∇ c∇u αu+( )⋅– β∇u au+ +  = daλu

c x=

a C xe2

4πε0 x2 y2+
-----------------------------------–

m2

x
--------+=

da Cx=⎩
⎪
⎪
⎨
⎪
⎪
⎧
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 2D from the Space dimension list.

2 In the list of application modes, open COMSOL Multiphysics>PDE Modes and then PDE, 

Coefficient Form.

3 Select Eigenvalue analysis. Make sure that Lagrange - Quadratic elements are selected 
in the Element list.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 Open the Axes/Grid Settings dialog box.

2 Set axis and grid values:

3 Open the Constants dialog box.

4 Enter the following constants and expressions:

These names correspond to the constants me, e, h, ε0, C, and the quantum number m. 
First set m equal to 0 to catch the ground state energy among the energy eigenvalues.

G E O M E T R Y  M O D E L I N G

1 Draw a circle centered at (0, 0) with a radius of 3 x 10-9.

AXIS GRID

x min -4.5e-9 x spacing 1e-9

x max 4.5e-9 Extra x

y min -3.1e-9 y spacing 1e-9

y max 3.1e-9 Extra y 5e-10

NAME EXPRESSION

me 9.10939e-31

e 1.6021773e-19

hp 6.626076e-34

e0 8.8541878e-12

C (8*me*pi^2)/hp^2

m 0
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2 Draw a circle centered at (0, 0) with a radius of 0.5·10−9. Use the tick mark at y = 
0.5·10−9 to assist in placing the radius correctly.

3 Draw a rectangle from (−3·10−9, −3·10−9) to (0, 3·10−9).

4 From the Draw menu, choose Create Composite Object.

5 Enter (C1+C2)-R1 in the Set formula edit field.

6 Click OK.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 Open the Boundary Settings dialog box.

2 Enter boundary coefficients as indicated in the table below:

Subdomain Settings
1 Open the Subdomain Settings dialog box.

2 Enter the following PDE coefficients.

M E S H  G E N E R A T I O N

Use a finer mesh in the inner circular domain, because the solution shows greater 
variations in the center region than in the outer regions for low-energy eigenvalues.

1 Open the Free Mesh Parameters dialog box

2 Click the Custom mesh size button and type 1.1 in the Element growth rate edit field.

3 Click the Subdomain tab.

SETTINGS BOUNDARIES 1-3 BOUNDARIES 4,7

Type Neumann Dirichlet

q 0 0

g 0 0

h 1

r 0

COEFFICIENT ALL SUBDOMAINS

c x

a -C*(x*e^2)/(4*pi*e0*sqrt(x^2+y^2))+(m^2)/x

da C*x
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4 Select Subdomain 2 and enter 0.05e-9 in the Maximum element size edit field. This 
ensures that Subdomain 2 (the inner domain) has a finer mesh than the outer 
subdomain.

5 Click the Remesh button.

6 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box.

2 On the General page, type 10 in the Desired number of eigenvalues edit field.

3 Type -2e-18 in the Search for eigenvalues around edit field.

4 Click OK.

5 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot shows the lowest energy eigenvalue, or ground state, of approximately 
–2·10−18 J.

1 Open the Plot Parameters dialog box.

2 Plot some of the eigenfunctions by selecting the corresponding eigenvalue from the 
Eigenvalue list on the General page.

3 Click the Surface tab.

4 On the Surface Data tab, type abs(u)^2 in the Expression edit field.

5 Click OK to plot the probability density function.

Finally, try to determine the ground state energy accurately by enabling the adaptive 
solver. Use approximately as many elements as before, but the solver now adapts the 
mesh for the first eigenvalue in an attempt to equidistribute the error.

M E S H  G E N E R A T I O N

1 Open the Free Mesh Parameters dialog box.

2 On the General page, click the Custom mesh size button and type 1.5 in the Element 

growth rate edit field.

3 Click the Subdomain tab and clear the entry in the Maximum element size edit field 
for Subdomain 2.

4 Click the Remesh button and then click OK.
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C O M P U T I N G  T H E  S O L U T I O N

Search for a single eigenvalue using the approximate ground state energy -2e-18 as 
shift. This ensures that the eigenvalue solver finds the lowest state.

1 Open the Solver Parameters dialog box.

2 On the General page, select the Adaptive mesh refinement check box.

3 Type 1 in the Desired number of eigenvalues edit field.

4 Click the Adaptive tab.

5 Type 2500 in the Maximum number of elements edit field.

6 Type 10 in the Maximum number of refinements edit field.

7 Click OK.

8 Click the Solve button on the Main toolbar.
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Con i c a l  Quan t um Do t s

This model computes the electronic states for a quantum-dot/wetting-layer system. It 
was inspired largely from the work of Dr. M. Willatzen and Dr. R. Melnik (Ref. 1) as 
well as B. Lassen.

Introduction

Quantum dots are nano- or microscale devices created by confining free electrons in a 
3D semiconducting matrix. Those tiny islands or droplets of confined “free electrons” 
(those with no potential energy) present many interesting electronic properties. They 
are of potential importance for applications in quantum computing, biological 
labeling, and lasers, to name only a few.

Scientists can create such structures experimentally using the Stranski-Krastanow 
molecular beam-epitaxy technique. In that way they obtain 3D confinement regions 
(the quantum dots) by growth of a thin layer of material (the wetting layer) onto a 
semiconducting matrix. Quantum dots can have many geometries including 
cylindrical, conical, or pyramidal. This model studies the electronic states of a conical 
InAs quantum dot grown on a GaAs substrate.

To compute the electronic states taken on by the quantum dot/wetting layer assembly 
embedded in the GaAs surrounding matrix, you must solve the 1-band Schrödinger 
equation in the effective mass approximation:

where h is Planck’s constant, Ψ is the eigenwave function, E is the eigenvalue (energy), 
and me is the effective electron mass (to account for screening effects).

Model Definition

The model works with the 1-particle stationary Schrödinger equation

h2

8π2
--------- ∇ 1

me r( )
--------------- Ψ r( )∇⎝ ⎠
⎛ ⎞⋅⎝ ⎠

⎛ ⎞– V r( )Ψ r( )+ EΨ r( )=

∇ h2

8mπ2
---------------∇Ψ
⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅– VΨ+ EΨ=
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It solves this eigenvalue problem for the quantum-dot/wetting-layer system using the 
step potential barrier and effective-mass approximations: V = 0 for the InAs quantum 
dot/wetting layer and V = 0.697 eV for GaAs.

The effective masses me are 0.023 m for InAs and 0.067 m for GaAs.

Assume the quantum dot has perfect cylindrical symmetry. In that case you can model 
the overall structure in 2D as shown in the following figure.

2D geometry of a perfectly cylindrical quantum dot and wetting layer.

You can now separate the total wave function Ψ into

where is the azimuthal angle. Then rewrite the Schrödinger equation in cylindrical 
coordinates as

Ψ χ z r,( )Θ ϕ( )=

ϕ

h2

8π2
---------

z∂
∂ 1

me
-------

z∂
∂χ

⎝ ⎠
⎛ ⎞ 1

r
---

r∂
∂ r

me
-------

r∂
∂χ

⎝ ⎠
⎛ ⎞– Θ–

h2

8meπ2
-----------------χ

r
---

ϕ2

2

∂
∂ Θ

– VeχΘ+ EχΘ=
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Dividing this equation by

and rearranging its terms lead to the two independent equations

 (11-2)

and

 (11-3)

Equation 11-3 has obvious solutions of the form

where acts as a phase factor, and l is the principal quantum number. You also need 
to solve Equation , which for clarity you can rewrite as

Note that this is an instance of a PDE on coefficient form,

where the coefficients become

and

χ z r,( )

mer
2

----------------Θ ϕ( )

me– r2 h2

8π2
---------

z∂
∂ 1

me
-------

z∂
∂χl

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1

χl
----- 1

r
---

r∂
∂ r

me
-------

r∂
∂χl

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1

χl
-----+ mer

2 Ve E–[ ]+
h2

8π
------l2

–=

h2

8π2
---------

ϕ2

2

∂
∂ Θ 1

Θ
---- h2

8π2
---------l2

–=

Θ ilϕ[ ]exp=

ϕ

h2

8π2
---------

z∂
∂ 1

me
-------

z∂
∂χl

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
h2

8π2
---------1

r
---

r∂
∂ r

me
-------

r∂
∂χl

⎝ ⎠
⎜ ⎟
⎛ ⎞ h2

8meπ2
-----------------+

l2

r2
-----χl– Veχl+ Elχl=

∇ c u αu– γ+∇–( ) au β u∇⋅+ +( )⋅ daλu=

c h2

8π2me

-----------------→

a h2

8π2mex
2

-----------------------l2 Ve+→
R  1 1 :  Q U A N T U M  M E C H A N I C S  M O D E L S



Results

This exercise models the eigenvalues for the four lowest electronic energy levels 
corresponding to a value of  l = 0. The following plots show the eigenwave functions 
for those four states:

The four lowest electronic-energy levels corresponding to a value of l = 0.

Modeling in COMSOL Multiphysics

To solve this problem use the PDE, Coefficient Form version of the PDE modes in the 
Model Navigator. The model solves for an eigenvalue/eigenfunction, for which you 
must input appropriate physical data and constants.

βx
h2

8π2mex
---------------------–→
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Reference

1. R. Melnik and M. Willatzen, “Band structure of conical quantum dots with wetting 
layers,” Nanotechnology, vol. 15, pp. 1–8, 2004.

Model Library path:  
COMSOL_Multiphysics/Quantum_Mechanics/conical_quantum_dot

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Open the Model Navigator. In the Space dimension list select 2D.

2 In the list of application modes select COMSOL Multiphysics>PDE Modes> 

PDE, Coefficient Form>Eigenvalue analysis.

3 Verify in the Element list that Lagrange - Quadratic is selected.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu select Constants.

2 Enter the following constants, and when done, click OK.

Note that ec1 and ec2 are the step potentials in eV (assuming the electrons are free 
within the InAs quantum dot/wetting layer), and l is a quantum number.

3 From the Options menu choose Expressions>Scalar Expressions.

NAME EXPRESSION

m 5.68e-12

hbar 6.58e-16

ec1 0.697

ec2 0

l 0
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4 Enter the following expressions; when done, click OK:

5 From the Options menu select Axes/Grid Settings.

6 Enter the following axis definitions on the Axis page and the Grid page; on the Grid 
page you might need to clear the Auto check box. When done, click OK.

G E O M E T R Y  M O D E L I N G

1 From the Draw menu select Specify Objects>Rectangle, then enter these settings; 
when done, click OK:

2 From the Draw menu select Specify Objects>Rectangle, then enter these settings; 
when done, click OK:

3 On the Draw toolbar click the Line button. Then draw a triangle with vertices at the 
coordinate pairs (0, 0), (12, 0), and (0, 3.6). Use the right mouse button to 
complete this object, which becomes CO1.

4 On the Draw toolbar click the Create Composite Object button. Select the objects R2 
and CO1. Clear the Keep interior boundaries check box. Click OK.

NAME EXPRESSION

A1 hbar^2/(2*m*0.067)

A2 hbar^2/(2*m*0.023)

AXIS GRID

x min -5 x spacing 5

x max 30 Extra x 12

y min -60 y spacing 5

y max 60 Extra y -1,1,3.6

SIZE POSITION

Width 25 Base Center

Height 100 x 12.5

y 0

SIZE POSITION

Width 25 Base Center

Height 2 x 12.5

y 0
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5 On the Draw toolbar click the Create Composite Object button. Select the objects R1 
and CO2, make sure the Keep interior boundaries check box is selected, then click OK.

6 On the Draw toolbar click the Scale button, then, in the Scale factor area, enter a 
scale factor of 1e-9 for both the x and y axes. Click OK.

7 Click the Zoom Extents button on the Main toolbar. 

Boundary Conditions
1 From the Physics menu select Boundary Settings.

2 Enter the following boundary conditions:

3 When done, click OK.

Subdomain Settings
1 From the Physics menu select Subdomain Settings.

2 Enter the PDE coefficients from this table and then click OK.

M E S H  G E N E R A T I O N

From the Mesh menu select Initialize Mesh.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu select Solver Parameters.

2 On the General page, type 4 in the Desired number of eigenvalues edit field.

3 Click OK.

4 Click the Solve button.

SETTINGS BOUNDARIES 2, 9 ALL OTHERS BOUNDARIES

Type Dirichlet Neumann

q 0 0

g 0 0

h 1

r 0

SETTINGS SUBDOMAINS 1, 3 SUBDOMAIN 2

 c A1 A2

 a A1/(x^2)*l*l+ec1 A2/(x^2)*l*l+ec2

 β -A1/x, 0 -A2/x, 0
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 From the Postprocessing menu select Plot Parameters.

2 On the General page find the Solution to use area, then go to the Eigenvalue list, and 
select the desired eigenvalue (keep in mind that these solutions are for a quantum 
number l = 0).

3 Click Apply.

4 Click the Surface tab, then click the Height Data tab and select the Height data check 
box.

5 Click Apply, then click OK.
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 12
S e m i c o n d u c t o r  D e v i c e  M o d e l s  
Semiconductor device modeling involve diffusion processes for hole and electron 
concentrations as well as electric potential distribution. Thermal effects are also a 
factor. Semiconductor models often include multiphysics couplings and have 
highly nonlinear material properties, making them difficult to solve.
 441
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S em i c ondu c t o r  D i o d e 1

Introduction

A semiconductor diode consists of two regions with different doping: a p-type region 
with a dominant concentration of holes, and an n-type region with a dominant 
concentration of electrons. The anode contact ties to the p-type region, and the 
cathode connects to the n-type region. Impurities that the manufacturing process adds 
to the semiconductor material determine each region’s doping type. Scientists typically 
denote the dopant concentration with N. A negative value indicates acceptor atoms 
(p-type material), and a positive value indicates donor atoms (n-type material).

It is possible to derive a semiconductor model from Maxwell’s equations and 
Boltzmann transport theory with the aid of some generally accepted simplifications 
such as assuming the absence of magnetic fields and the constant density of states. The 
model presented here formulates the problem using three dependent variables: ψ, n, 
and p. Even in this model’s simplest form, strong nonlinear dependencies are present. 
The three basic semiconductor equations appear below (Ref. 1).

These equations contain the following variables:

• ψ indicates electrostatic potential

• q equals the elementary charge

• p and n are the hole and electron concentrations, respectively

• N represents the fixed charge associated with ionized donors

You can express the electron and hole current densities, Jn and Jp, in terms of ψ, n 
and p:

where µn and µp are the carrier mobilities, and Dn and Dp are the carrier diffusivities. 

1. Model provided by Erik Danielsson, Royal Institute of Technology, Stockholm.

∇– ε ψ∇( )⋅ q p n– N+( )=

∇– J⋅ n qRSRH–=

∇– Jp⋅ qRSRH=

Jn qnµn ψ∇– qDn n∇+=

Jp qpµp ψ∇– qDp p∇–=
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The term RSRH represents the Shockley-Read-Hall recombination, which is a general 
recombination process using traps in the forbidden band gap of the semiconductor.

Here ni is the intrinsic carrier concentration, τn and τp are the carrier lifetimes, and n1 
and p1 are parameters related to the trap energy level. If the trap level is located at the 
middle of the band gap (which the model assumes), then n1 and p1 equal ni.

B O U N D A R Y  C O N D I T I O N S

For boundaries in contact with an insulator, you can use symmetric boundary 
conditions. For boundaries far away from the active device area, the electric field and 
carrier currents have zero normal component. You can describe both of these types 
with Neumann boundary conditions

At boundaries in contact with a metal, the electrostatic potential is fixed. If you assume 
infinite recombination velocity at the contact, the mass action law is valid:

It is now possible to calculate the carrier concentrations using this law along with the 
dopant concentration N and the assumption that there is no charge at the contact. The 
applied voltage equals the Fermi level in the semiconductor at the contact, so the 
electrostatic potential at the contact is the applied voltage plus the energy difference 
between the Fermi level and the reference level used for the electrostatic potential. The 
energy difference has a logarithmic dependence of the carrier concentrations. The 
boundary conditions are

RSRH
np ni

2–

τp n n1+( ) τn p p1+( )+
------------------------------------------------------------=

n ψ∇⋅ 0=

n Jn⋅ 0=

n Jp⋅ 0=

ni
2 np.=
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where Va is the applied voltage. This is the simplest type of electrical contact. It is also 
possible to define a specific contact metal (some examples being aluminum or 
titanium) and to specify the current at the contact instead of the voltage.

Model Definition

D I O D E  G E O M E T R Y

The diode’s geometry appears below.

Thicker lines indicate electrical contacts. This example applies a potential Va to the 
anode, and the cathode is grounded.

ψ Va
kT
q

-------

N
2
---- N

2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++

ni
------------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

ln+=

n N
2
---- N

2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++=

p N
2
----–

N
2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++=

5.0 µm

7.0 µm

1.0 µm

2.0 µm 1.0 µm

Cathode

Anode
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Use the following notation for the dimensions of the device.

M E S H I N G

The large dynamic range of the carrier concentrations makes the numerical simulation 
of the semiconductor equations a difficult task, especially because the entire range 
changes in the vicinity of the junction. Therefore you must select the mesh quite 
carefully, otherwise the solution process might not converge or could give inaccurate 
results. Thus, this example places a subdomain boundary at the junction to establish 
high accuracy. You must make the mesh denser around the junction and at the cathode 
and anode. Use the adaptive solver to obtain additional accuracy.

M A T E R I A L  P R O P E R T I E S

The most common material used for semiconductor devices is silicon, and the 
following table summarizes some key material properties used in this model.

Mobilities and diffusivities often depend on N, but this effect is relatively small in the 
diode structure. The carrier lifetime can vary from a few picoseconds up to several 
microseconds and depends on parameters such as doping, temperature, and 
recombination centers.

VARIABLE VALUE

y1 7·10-6 m

x1 5·10-6 m

ju 1·10-6 m

ac 2·10-6 m

NOTATION VARIABLE VALUE

ni ni 1.46·1010 cm-3 (T = 300K)

εr epsilonr 11.8

µn mun 800 cm2/Vs (low conc.)

µp mup 200 cm2/Vs (low conc.)

Dn = µn kT/q Dn 20.7 cm2/s

Dp = µp kT/q Dp 5.17 cm2/s

τn taun ~0.1 µs

τp taup ~0.1 µs
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D O P A N T  C O N C E N T R A T I O N  F U N C T I O N

The p-type doping of the diode can be accomplished by implantation or diffusion of 
acceptor atoms. The resulting profile from these two steps is often approximated with 
a gauss function. In addition, the transition between the n-type doped substrate and 
the lower doped n-type epitaxial layer can also be approximated with a Gauss function, 
because the dopants diffuse from the highly doped substrate during the high 
temperature step of the epitaxial growth. The final expression for the diode doping is

where NDn is the doping of the epitaxial layer, NDnmax the doping of the substrate, 
and Napmax the peak of the implantation of diffusion profile. G is the Gauss function 
defined by

The following constants are used in the expression for N.

B O U N D A R Y  C O N D I T I O N S

The contact boundary conditions are 

NOTATION VARIABLE VALUE

NDn NDn 1015 cm-3

NDnmax NDnmax 1017 cm-3

Napmax NApmax 1017 cm-3

x1 ac 2 µm

y1 y1 7 µm

ch ch calculated from ju

N NDn NDnmaxG x y– ∞ y1, , ,( ) N– ApmaxG x y x1 0, , ,( )+=

G x y x1 y1, , ,( )

e

x x1–( )2

ch2
---------------------–

e

y y1–( )2

ch2
---------------------–

x x1> y y1>

e

x x1–( )2

ch2
---------------------–

x x1> y y1≤

e

y y1–( )2

ch2
---------------------–

x x1≤ y y1>

1 x x1≤ y y1≤⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

=
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To compute an accurate value of the current you can use weak constraints for the 
contact boundary conditions. To implement the weak boundary conditions on n and 
p you need to introduce Lagrange multipliers lm2 and lm3 on the anode and cathode. 
The variables lm2 and lm3 provide a more accurate value than what you obtain by the 
expression for the current densities. Therefore, the outward normal current densities 
are q*lm2 and -q*lm3, for electrons and holes, respectively. 

P A R A M E T R I C  S T U D Y

Solving the numerical problem for higher anode voltage is extremely difficult. You 
must increase the voltage from 0 V in small steps and use the solution from a previous 
step as the initial condition for the next one. The parametric solver takes care of this 
automatically. The anode voltage Va varies from 0 V to 1 V in steps of 0.025 V.

You must also provide the nonlinear solver with an initial guess for the solution 
corresponding to Va = 0 that is compatible with the boundary conditions.

The initial guess for lm2 and lm3 is zero. Because the problem is nonlinear, you should 
convert it to general form to get a correct Jacobian and fast convergence.

COMSOL Multiphysics lets you scale the degrees of freedoms by setting reference 
values for the degrees of freedom. The relative tolerance in the nonlinear solver is by 

ψ Va
kT
q

-------

N
2
---- N

2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++

ni
------------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

ln+=

n N
2
---- N

2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++=

p N
2
----–

N
2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++=

ψ kT
q

-------

N
2
---- N

2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++

ni
------------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

ln=

n N
2
---- N

2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++=

p N
2
----–

N
2
----⎝ ⎠
⎛ ⎞ 2

ni
2

++=
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default 10−6. The absolute tolerance is the scaling times the relative tolerance. The 
solver disregards errors that are below the absolute tolerance. In this case the absolute 
tolerance for the variables ψ, u, and v is 10−6, while the absolute tolerance for lm2 and 
lm3 is 10−4. The absolute tolerance for lm2 and lm3 should be at least 10−4, because 
the round-off errors in the equations induce errors of this magnitude in lm2 and lm3. 
For this problem, the parameter step length control works best if you use the highly 
nonlinear option.

Results

When no bias is applied, the hole concentration is at thermal equilibrium. With 0.5 V 
forward bias, the holes from the p-type region flow into and through the low doped 
n-type region without significant recombination (see Figure 12-1). As a result, the 
hole concentration increases several orders of magnitude in the n-type region.

Figure 12-1: The hole concentration at 0.5 V forward bias.

C O M P U T I N G  T H E  I V  C H A R A C T E R I S T I C S

To compute the currents through the anode and cathode you have to integrate the 
normal component of the current densities
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which are more accurately available by the Lagrange multipliers lm2 and lm3, 
respectively. The currents through the anode and cathode are

Because the geometry is 2D, the unit A/µm is used for the current. Note that Ia and 
Ic are vectors with one value for each value of the voltage. The exact agreement of the 
anode and cathode currents is a consequence of the finite element method. To see this, 
consider the weak equations

which are valid for all test functions utest and vtest in the finite element space. B is the 
union of the anode and the cathode. Taking utest = vtest = 1 and subtraction of these 
equations gives

which shows that Ia = Ic. The plot in Figure 12-2 shows the current versus the voltage.

n Jn⋅

n Jp⋅

Ia 10 6– q lmu lm2–( )–

anode
∫=

Ic 10 6– q lmu lm3–( )
cathode
∫=

0
RSRH

ni
---------------utest Jn utest∇⋅+⎝ ⎠
⎛ ⎞ Ad

Ω
∫ lm2 utest⋅ sd

B
∫–=

0
RSRH

ni
---------------vtest Jp vtest∇⋅+⎝ ⎠
⎛ ⎞ Ad

Ω
∫ lm3 vtest⋅ sd

B
∫–=

lm2 lm3–( ) sd
B
∫ 0=
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Because the current for zero voltage is zero (theoretically), it has been omitted from 
the plot.

Figure 12-2: The IV characteristics of the semiconductor diode plotted in a logarithmic 
scale.

One very important parameter in the diode equation is the ideality factor, η.

The factor η lies between 1 and 2, where η ~ 1 represents an ideal diode. In a diode 
with η ~ 2, the current is recombination/generation controlled (Ref. 1). In the 
IV-characteristic curve, you can identify two different slopes in the diode’s forward 
bias region. These slopes are dependent on the ideality factor, the first with η = 1.6 and 
the second with η = 1.08. This situation is common for ordinary silicon diodes; at low 
forward biases the current is almost recombination controlled, and when the bias is 
increased the current characteristics becomes almost ideal (η ~ 1).

I I0 e

qV
ηkT
-----------

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

.=
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Model Library path:  

COMSOL_Multiphysics/Semiconductor_Devices/semiconductor_diode

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 Click the Multiphysics button.

3 In the COMSOL Multiphysics>Electromagnetics folder, select Electrostatics. Make sure 
Lagrange - Quadratic is selected in the Element list.

4 Enter psi in the Dependent variables edit field.

5 Click Add.

6 In the COMSOL Multiphysics>Convection and Diffusion folder, select Convection and 

Diffusion and then Steady-state analysis. Make sure Lagrange - Quadratic is selected in 
the Element list.

7 Enter cn in the Dependent variables edit field.

8 Click Add.

9 Click the Application Mode Properties button, select Conservative from the Equation 

form list and On from the Weak constraints list. Click OK.

10 In the COMSOL Multiphysics>Convection and Diffusion folder, select Convection and 

Diffusion and then Steady-state analysis. Make sure Lagrange - Quadratic is selected in 
the Element list.

11 Enter cp in the Dependent variables edit field.

12 Click Add.

13 Click the Application Mode Properties button. Then select Conservative from the 
Equation form list and On from the Weak constraints list. Click OK.
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14 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 In the Constants dialog box, define the following constants with names and 
expressions:.

3 From the Options menu, choose Axes/Grid Settings.

4 Enter the axis and grid settings in the table below. To enter the grid spacing, first 
clear the Auto check box

NAME EXPRESSION DESCRIPTION

q 1.602e-19[C] Elementary charge

T 300[K] Room temperature

k 1.38e-23[J/K] Boltzmann’s constant

epsilonr 11.8 Rel. permittivity for Si

ni 1.46e10[1/cm^3] Intrinsic concentration for Si

mun 800[cm^2/(V*s)] Electron mobility for Si

mup 200[cm^2/(V*s)] Hole mobility for Si

Dn k*T/q*mun Electron diffusivity

Dp k*T/q*mup Hole diffusivity

taun 0.1[us] Electron life time

taup 0.1[us] Hole life time

c q/(k*T) Reciprocal thermal voltage

y1 7[um] Diode dimension

x1 5[um] Diode dimension

ju 1[um] Junction depth

ac 2[um] Anode dimension

NApmax 1e17[1/cm^3] Maximum p-type doping

NDn 1e15[1/cm^3] Drift layer n-type doping

NDnmax 1e17[1/cm^3] Maximum n-type doping

ch ju/sqrt(log(NApmax/NDn)) Doping fall-off constant

AXIS GRID

x min 0 x spacing 1e-6

x max 1e-5 Extra x
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5 Click OK.

G E O M E T R Y  M O D E L I N G

1 Draw a rectangle from (0, -7e-6) to (5e-6, 0).

2 Turn off the solidify feature by double-clicking the SOLID button on the status bar.

3 Click the Line button and draw a line from (0, -1e-6) to (2e-6, -1e-6).

4 Click the 2nd Degree Bézier Curve button and continue with an arc to (3e-6, -1e-6) 
and finish the arc at (3e-6, 0). 

5 Click the Point button and add a point at (2e-6, 0).

6 Click the Zoom Extents button on the Main toolbar.

P H Y S I C S  S E T T I N G S

Expression Variables
1 From the Options menu, point to Expressions, and then click Scalar Expressions.

2 Enter each item in the table below as a single line without the line break.

3 Click OK. The inconsistent unit warning for the variable RSH is due to the use of mol 
as unit For the solution variables in the Convection and Diffusion application 
modes. The convention in Semiconductor physics is to use 1/cm3 for 

y min -8e-6 y spacing 1e-6

y max 0 Extra y

AXIS GRID

NAME EXPRESSION DESCRIPTION

N NDn+NDnmax*exp(-((y+y1)/ch)^2)- 
NApmax*exp(-(y/ch)^2)*((x<ac)+ 
(x>=ac)*exp(-((x-ac)/ch)^2))

Doping concentration

RSRH (cn*cp-ni^2)/(taup*(cn+ni)+ 
taun*(cp+ni))

Recombination term

psi_init 1/c*(-log(p_init/ni)*(N<0)+ 
log(n_init/ni)*(N>=0))

Charge neutrality voltage

n_init (abs(N)/2+sqrt(N^2/4+ni^2))* 
(N>=0)+ni^2/(abs(N)/2+ 
sqrt(N^2/4+ni^2))*(N<0)

Charge neutrality electron 
concentration

p_init (abs(N)/2+sqrt(N^2/4+ni^2))* 
(N<0)+ni^2/(abs(N)/2+ 
sqrt(N^2/4+ni^2))*(N>=0)

Charge neutrality hole 
concentration
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concentrations, and this is the assumed unit for the solution variables. The units for 
solution variables cannot be changed by the user.

Integration Coupling Variables
The cathode current Ic is defined as an integral of the normal current density along 
the cathode. This can be implemented by using an integration coupling variable:

1 From the Options menu, point to Integration Coupling Variables and then click 
Boundary Variables.

2 Select Boundary 2 and then type Ic in the Name column, 1e-6*q*(lm2-lm3) in the 
Expression column, and 4 in the Integration order column. Click OK.

Boundary Conditions
1 On the Multiphysics menu, select the Electrostatics (es) application mode.

2 Open the Boundary Settings dialog box and enter the following settings:

3 On the Multiphysics menu, select the Convection and Diffusion (cd) application mode.

4 Open the Boundary Settings dialog box and enter the following settings:

5 On the Multiphysics menu, select the Convection and Diffusion (cd2) application 
mode.

6 Open the Boundary Settings dialog box and enter the following settings:

Subdomain Settings
1 On the Multiphysics menu, select the Electrostatics (es) application mode.

SETTINGS BOUNDARIES 1, 3, 6, 7, 8 BOUNDARY 2 BOUNDARY 5

Boundary condition Zero charge/Symmetry Electric potential Electric potential

V0 psi_init Va+psi_init

SETTINGS BOUNDARIES 1, 3, 6–8 BOUNDARIES 2, 5

Boundary condition Insulation/Symmetry Concentration

cn0 n_init

SETTINGS BOUNDARIES 1, 3, 6, 7, 8 BOUNDARIES 2, 5

Boundary condition Insulation/Symmetry Concentration

cp0 p_init
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2 Open the Subdomain Settings dialog box and enter the following settings:

3 Click the Init tab, and enter the following initial value:

4 On the Multiphysics menu, select the Convection and Diffusion (cd) application mode.

5 Open the Subdomain Settings dialog box and enter the following settings

6 Click the Init tab and enter the following initial value:

7 On the Multiphysics menu, select the Convection and Diffusion (cd2) application 
mode.

8 Open the Subdomain Settings dialog box and enter the following settings:

9 Click the Init tab, and enter the following initial value:

SETTINGS SUBDOMAINS 1, 2

εr (isotropic) epsilonr

ρ q*(N-cn+cp)

SETTING SUBDOMAINS 1, 2

psi(t0) psi_init

SETTINGS SUBDOMAINS 1, 2

D (isotropic) Dn

u mun*psix

v mun*psiy

R -RSRH

SETTING SUBDOMAINS 1, 2

cn(t0) n_init

SETTINGS SUBDOMAINS 1, 2

D (isotropic) Dp

u -mup*psix

v -mup*psiy

R -RSRH

SETTINGS SUBDOMAINS 1, 2

cp(t0) p_init
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M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

2 Click the Boundary tab.

3 Select Boundaries 2, 4, 5, and 9 and type 1e-7 in the Maximum element size edit 
field.

4 Click the Remesh button and then click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu, choose Solver Parameters.

2 In the Solver list, select Parametric.

3 Type Va in the Parameter name edit field and 0:0.025:1 in the Parameter values edit 
field.

4 Click the Stationary tab. Enter 50 in the Maximum number of iterations edit field.

5 Select the Highly nonlinear problem check box.

6 Click OK and then click the Solve button to start the simulation.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The plot visualizes the logarithm of the hole concentration for the parameter value, 
Va = 0.5 V.

1 Open the Plot Parameters dialog box.

2 On the General page, select 0.5 from the Parameter value list.

3 Click the Surface tab. Enter the expression log10(cp) in the Expression edit fields 
on the Surface Data tab and the Height Data tab. On the Height Data tab, select the 
Height data check box.

4 Click OK to get the plot shown in Figure 12-1 on page 448.

5 To plot the IV characteristics open the Domain Plot Parameters dialog box.

6 On the General page, click the Point plot button and select all parameters except 0 
from the Solutions to use list.

7 Click the Title/Axis button to open the Title/Axis Settings dialog box. Select the Log 

scale check box for the secondary axis. Click OK.

8 On the Point tab, type Ic in the Expression edit field.

9 Select Vertex 1 and click OK. As a separate window you see the plot in Figure 12-2 
on page 450.
R  1 2 :  S E M I C O N D U C T O R  D E V I C E  M O D E L S



D i s t r i b u t e d  SP I CE Mode l  o f  an 
I n t e g r a t e d B i p o l a r  T r a n s i s t o r

Introduction

Integrated semiconductor devices are used in almost all electrical equipment, and the 
bipolar junction transistor (BJT) is still a very important device although the MOS 
technology has taken over a large part of the market. Especially in technologies with 
new types of semiconductors the bipolar transistor can be the best choice for optimum 
performance. The BJT consists of three semiconductor layers of alternating dopant 
type (N-type and P-type) forming an NPN or a PNP structure. These structures can 
control a large current using a much smaller current.

This particular example describes a high-voltage NPN BJT fabricated from a 
semiconductor called silicon carbide (SiC). This semiconductor device combines high 
voltage properties (> 1000 V) and fast switching (> 1 MHz), which is impossible to 
achieve with comparable silicon devices. The applications for the device are in the drive 
electronics of electric motors and switched voltage supplies. A higher frequency 
decreases the size of the passive devices, like inductors and capacitors.

Due to the complicated system of PDEs necessary to calculate the behavior of a 
semiconductor device, 3D simulations are rather impractical. As a result, most such 
simulations are performed in 2D, and much effort is put into finding symmetries and 
removing inactive areas. However, several design considerations need a calculation 
including the full layout of the device, especially in cases where significant voltage 
drops from high currents are expected in the metal layers. Further simplifications are 
therefore necessary, and a powerful approach for BJT structures is to use distributed 
SPICE expressions on a 2D top view layout of the device.
D I S T R I B U T E D  S P I C E  M O D E L  O F  A N  I N T E G R A T E D  B I P O L A R  TR A N S I S T O R  |  457



458 |  C H A P T E
Figure 12-3: 3D view over the layers included in the model. The actual simulation is in 
2D, using the top view of this figure.

Model Definition

The potential in each layer obeys the equation

where Wn is the layer thickness, ρn the layer resistivity, and Vn the potential of layer n. 
The right side is just the sum of all currents going from layer n to layer m. These 
currents are calculated using SPICE expressions, which is a function on the layer 
potentials at each point (see Table 12-1 on page 459).

The boundary condition for all boundaries sets the outward current flow to zero.

The electrical connection to the BJT is modeled through point conditions to the base 
metal and the emitter metal layers. The entire collector layer is connected to a fixed 
applied voltage through a distributed resistance (models a backside contact). The point 
conditions can either model a probe tip in on-chip measurements or a bond wire in a 
packaged device. The emitter point condition is just a constraint to zero volts for the 
dependent variable of this layer. The base contact condition can either be a constraint 
on the applied voltage, or a constant current condition. For the latter condition the 
model uses a point source.

∇
Wn

ρn
--------∇Vn⎝ ⎠
⎛ ⎞⋅ Jn m→

m n≠
∑=
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Table 12-1 presents the different SPICE devices along with the expression for each 
device. Because the devices are distributed, the unit is per area where applicable.

Note the following about the expressions above:

• The subscripts n and m denote one of the subscripts e, b, c, or m, depending on the 
layer the expression refers to.

• The current always has a counterpart representing the flow in the opposite 
direction.

The variables not defined yet are SPICE parameters, which you define as constants in 
the COMSOL Multiphysics model. The SPICE expressions come from the 
Gummel-Poon model of the bipolar transistor with a few simplifications (Ref. 1). 
Because the distributed SPICE model is a transistor with no lateral extension, all 
parameters referring to lateral losses are ignored (the top view geometry takes the 
lateral part into account). The voltage dependence on junction capacitance is ignored 
along with some time constants, because the model is already quite complex. The 
parameter values are fitted to measurements and device simulations on a silicon carbide 
BJT fabricated at KTH (The Royal Institute of Technology), Stockholm, Sweden.

Results and Discussion

Figure 12-4 shows the base and collector currents as a function of time when the base 
is ramped from 2 V to 4 V in 100 ns at a constant collector voltage of 15 V. The figure 

TABLE 12-1:  SPICE DEVICES IN THE MODEL

SPICE MODEL EXPRESSION

Resistor

Capacitor (trans)

Capacitor (ac)

BJT

Jn m→ Vn Vm–( ) Rnm⁄=

Jn m→ Cnm td
d Vn Vm–( )=

Jn m→ jωCnm Vn Vm–( )=

Jb e→
Ibe1
BF
---------- Ibe2+=

Jb c→ Ibc2=

Jc e→
Ibe1
Kqb
----------=

Jn m→ Jm n→–=
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reveals that the transistor has no problem to follow the ramp, and only a small 
overshoot in the base current can be detected after 100 ns.

When the rise time is decreased to 10 ns the BJT runs into problems, and Figure 12-5 
shows that the actual turn on time is about 30 ns. If faster ramps are required the 
simulation results have the information about the details on the limiting factors, but in 
some cases an harmonic simulation is easier to interpret. The plot in Figure 12-6 shows 
the harmonic component of the collector current density, taken from a harmonic 
simulation performed at a bias point of 10 mA base current, 15 V collector voltage, 
and at a 100 MHz frequency. This result shows a significant density beneath the base 
pad, which does not take part in the current amplification. An improved design would 
be to use a second metal layer for the pads, resulting in a more efficiently used device 
area.

Figure 12-4: Turn on in 100 ns, where 
the red curve is the base current and the 
blue curve is the collector current.

Figure 12-5: Turn on in 10 ns, and 
now the transistor cannot follow the 
ramp.
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Figure 12-6: The harmonic part of the collector current density at 100 MHz.

These results only qualitatively estimate the switch speed of the device. In an 
experimental setup, other parasitic elements influence the result (for example, probes, 
package, and cables). The approximation on the capacitances also affects the result.

Modeling in COMSOL Multiphysics

Use four PDE, General Form application modes—one for each layer—to group the 
voltages. Within each application mode there are two dependent variables, one for the 
DC voltage and one for the AC voltage (complex valued).

To model the point current source, use a test function and the weak form settings.

Reference

1. H. K. Gummel and H.C. Poon, “An Integral Charge Control Model of Bipolar 
Transistors,” The Bell System Technical Journal, vol. 49, pp. 827–852, 1970.
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Model Library path: COMSOL_Multiphysics/Semiconductor_Devices/
bipolar_transistor

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Click the Multiphysics button in the Model Navigator.

2 Select 2D from the Space dimension list.

3 Select the COMSOL Multiphysics>PDE Modes>PDE, General Form application mode. In 
the Dependent variables edit field, enter the names of the variables: Vm_dc Vm_ac. 
Enter metal as the application mode name, and select the Lagrange - Linear element. 
Click the Add button to add the mode to the model.

4 Add the second application mode of the same type and with the same element. Use 
the variable names: Ve_dc Ve_ac. Enter emitter as the application mode name.

5 Add the third application mode of the same type and with the same element. Use 
the variable names: Vb_dc Vb_ac. Enter base as the application mode name.

6 And finally, add the fourth application mode of the same type and with the same 
element. Use the variable names: Vc_dc Vc_ac. Enter collector as the application 
mode name.

7 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 In the Constants dialog box, enter the following variable names and expressions. The 
variable t does not affect the time-dependent simulation, because the model uses 
the internal time variable.

NAME EXPRESSION DESCRIPTION

Vbe 2.0 Applied base-emitter voltage (V)

Vbe_on 4.0 Final voltage in transient simulations (V)

t_rise 10e-9 Rise time to reach Vbe_on (s)

Vce 15 Applied collector-emitter voltage (V)

Vac 1 Applied AC voltage (V)

Ib_a 0.0 Base current forced into base contact (A)
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2 In the Scalar Expressions dialog box, enter the following expressions.

Vt 0.0259 Thermal voltage

freq 10e6 Frequency (Hz)

omega 2*pi*freq Angular frequency (rad/s)

Wb 0.3e-6 Thickness of base layer (m)

We 0.5e-6 Thickness of emitter layer (m)

Ws 0.5e-6 Thickness of sub-collector layer (m)

Wm 0.2e-6 Thickness of metal layer (m)

rhoB0 4.54e-3 Max resistivity of base layer (Ω·m)

rhoBm 0.783e-3 Min resistivity of base layer (Ω·m)

rhoE 0.293e-3 Resistivity of emitter layer (Ω·m)

rhoS 0.290e-3 Resistivity of sub-collector layer (Ω·m)

rhoM 1e-6 Resistivity of metal layer (Ω·m)

Cbe 3.29e-3 Base-emitter capacitance (F/m2)

Cbc 3.38e-3 Base-collector capacitance (F/m2)

Rbm 1e-9 Resistance between metal and base layer (Ω·m2)

Rem 1e-10 Resistance between metal and emitter layer (Ω·m2)

Rs 7e-8 Resistance between the collector layer and the backside (Ω·m2)

Nf 1.0 Base-emitter ideality factor

Ne 1.2 Base-emitter second ideality factor

Nc 1.0 Base-collector ideality factor

Nk 0.867 Beta roll-off power factor

Vaf 979 Forward Early voltage (V)

Bf 27.0 Forward current gain

Is 9.37e-42 Base-emitter saturation current (A/m2)

Isc 1.91e-42 Base-collector saturation current (A/m2)

Ise 9.7e-35 Base-emitter second saturation current (A/m2)

Ikf 2.98e7 Beta roll-off current (A/m2)

t 0.0 Time for stationary solutions

NAME EXPRESSION DESCRIPTION

Ibc2 Isc*exp((Vb-Vc)/(Nc*Vt)) Base-collector current (A·m2)

Kq1 1/(1-(Vb-Vc)/Vaf) Voltage dependent factor

NAME EXPRESSION DESCRIPTION
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G E O M E T R Y  M O D E L I N G

The geometry is constructed from a layout drawing in the GDS file format, which is 
the most common format used in the fabrication process of reticles for lithography 
equipment. The file format can be converted to a DXF file and imported to COMSOL 
Multiphysics. The spatial unit in the GDS file are given in nanometers (nm). Because 
the length unit in COMSOL Multiphysics is meters and not nanometers, you must 
scale the geometry.

1 In the File menu, select Import and choose CAD Data From File. Click Browse and 
select the file bipolar_transistor.dxf, which you find in the models/
COMSOL_Multiphysics/Semiconductor_Devices folder. Click Import.

2 Click the Coerce to Solid button on the Draw toolbar to make it a solid geometry.

3 On the Draw menu, point to Modify, and then click Scale. In the x and y scale factor 
edit fields, type the value 1e-9. Click OK.

4 Click the Zoom Extents button on the Main toolbar.

Kq2 Ibe1/Ikf Current dependent factor

Kqb Kq1/2*(1+(1+4*Kq2)^Nk) Current and voltage dependent factor

rhoB rhoBm+(rhoB0-rhoBm)/Kqb Current dependent base resistivity (Ω·m2)

Vbe_t Vbe+(t/t_rise*(t<t_rise)+ 
(t>=t_rise))*(Vbe_on-Vbe)

Ramping of Vbe to final voltage (V)

Vm Vm_ac+Vm_dc Total metal layer potential (V)

Vmx Vm_acx+Vm_dcx X-derivative of layer potential (V/m)

Vmy Vm_acy+Vm_dcy Y-derivative of layer potential (V/m)

Ve Ve_ac+Ve_dc Total emitter layer potential (V)

Vex Ve_acx+Ve_dcx X-derivative of layer potential (V/m)

Vey Ve_acy+Ve_dcy Y-derivative of layer potential (V/m)

Vb Vb_ac+Vb_dc Total base layer potential (V)

Vbx Vb_acx+Vb_dcx X-derivative of layer potential (V/m)

Vby Vb_acy+Vb_dcy Y-derivative of layer potential (V/m)

Vc Vc_ac+Vc_dc Total collector layer potential (V)

Vcx Vc_acx+Vc_dcx X-derivative of layer potential (V/m)

Vcy Vc_acy+Vc_dcy Y-derivative of layer potential (V/m)

Jbc_ac j*omega*Cbc*(Vb_ac-Vc_ac)

NAME EXPRESSION DESCRIPTION
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5 Choose Draw>Specify Objects>Point. In the Point dialog box, type 70e-6 in the x 
edit field and 220e-6 in the y edit field in the Coordinates area. Click OK. This defines 
the point PT1 at the location of the emitter.

6 Choose Draw>Specify Objects>Point. In the Point dialog box, type 260e-6 in the x 
edit field and 70e-6 in the y edit field in the Coordinates area. Click OK. This defines 
the point PT2 at the location of the base.

P H Y S I C S  S E T T I N G S

To simplify the expressions in the subdomains and in the postprocessing, do the 
following steps:

1 In the Subdomain Expressions dialog box, type the following expressions for the 
given subdomains.

NAME EXPRESSION SUBDOMAIN DESCRIPTION

Ibe1 Is*exp((Vb-Ve)/(Nf*Vt)) 4, 5 Base-emitter current

Ibe2 Ise*exp((Vb-Ve)/(Ne*Vt)) 4, 5 2nd base-emitter current

Jbe_ac j*omega*Cbe*(Vb_ac-Ve_ac) 4, 5 Harmonic base-emitter 
current
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2 Select Subdomains 1–3, and the enter 0 in all three edit fields in the Expression 
columns to make all expression variables equal to zero in those subdomains.

3 In the Subdomain Integration Variables dialog box, type the expressions given in the 
table below.

Boundary Conditions
All boundaries should be of Neumann type with all parameters set to zero.

1 Select the metal application mode from the Multiphysics menu.

2 Open the Boundary Settings dialog box.

3 Select all boundaries and select the Neumann boundary condition.

4 Select each of the other modes from the Multiphysics menu and do the same 
operations there.

Subdomain Settings (Point Settings, Edge Settings)
There are five subdomains with somewhat different settings.

1 Select the metal application mode from the Multiphysics menu.

2 Open the Subdomain Settings dialog box.

3 Select Subdomains 1, 3, and 4 and then clear the Active in this domain check box.

4 Enter the expressions for the Γ, F, and da coefficients according to the three tables 
below and click OK.

NAME EXPRESSION SUBDOMAIN DESCRIPTION

Ib (Vm-Vb)/Rbm 2 Base current

Ic (Vce-Vc)/Rs all Collector current

Ie (Vm-Ve)/Rem 5 Emitter current

SETTINGS SUBDOMAINS 2, 5

 Γ1 Wm/rhoM*Vmx Wm/rhoM*Vmy

 Γ2 Wm/rhoM*Vmx Wm/rhoM*Vmy

SETTINGS SUBDOMAIN 2 SUBDOMAIN 5

F1 (Vm-Vb)/Rbm (Vm-Ve)/Rem

F2 (Vm-Vb)/Rbm (Vm-Ve)/Rem
R  1 2 :  S E M I C O N D U C T O R  D E V I C E  M O D E L S



5 Select the emitter application mode from the Multiphysics menu.

6 Open the Subdomain Settings dialog box, select Subdomains 1–3 and clear the Active 

in this domain check box.

7 Enter the expressions for the other subdomains according to the tables below and 
click OK.

8 Select the base application mode from the Multiphysics menu.

9 Open the Subdomain Settings dialog box. Enter the expressions for the subdomains 
according to the tables below, and click OK.

SETTINGS SUBDOMAINS 2, 5

da,1 0 0

da,2 0 0

SETTINGS SUBDOMAINS 4, 5

Γ1 We/rhoE*Vex We/rhoE*Vey

Γ2 We/rhoE*Vex We/rhoE*Vey

SETTINGS SUBDOMAIN 4 SUBDOMAIN 5

F1 -(Ibe1/Bf+Ibe2+Ibe1/Kqb) (Ve-Vm)/Rem-(Ibe1/Bf 
+Ibe2+Ibe1/Kqb)

F2 -(Ibe1/Bf+Ibe2+Ibe1/Kqb) 
-Jbe_ac

(Ve-Vm)/Rem-(Ibe1/Bf 
+Ibe2+Ibe1/Kqb)-Jbe_ac

SETTINGS SUBDOMAINS 4, 5

da,1 -Cbe 0

da,2 0 0

SETTINGS ALL SUBDOMAINS

 Γ1 Wb/rhoB*Vbx Wb/rhoB*Vby

 Γ2 Wb/rhoB*Vbx Wb/rhoB*Vby

SETTINGS SUBDOMAINS 1, 3 SUBDOMAIN 2 SUBDOMAINS 4, 5

F1 Ibc2 Ibc2+(Vb-Vm)/Rbm Ibc2+Ibe1/Bf+Ibe2

F2 Ibc2+Jbc_ac Ibc2+(Vb-Vm)/Rbm+Jbc_ac Ibc2+Ibe1/Bf+Ibe2+ 
Jbe_ac+Jbc_ac
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10 Select the collector application mode from the Multiphysics menu.

11 Open the Subdomain Settings dialog box. Enter the expressions for the subdomains 
according to the tables below, and click OK.

You must also specify the settings at the two points representing the probe or bond 
wire connections.

1 Select the metal application mode from the Multiphysics menu.

2 Open the Point Settings dialog box.

3 Enter the point expressions according to the table below.

Finally some cross time-derivative terms have to be specified, which you cannot specify 
from the Subdomain Settings dialog box. Use the equation-system settings for this.

1 Open the Subdomain Settings - Equation System dialog box by selecting 
Physics>Equation System>Subdomain Settings.

SETTINGS SUBDOMAINS 1–3 SUBDOMAINS 4, 5

da,1 -Cbc 0 -Cbe-Cbc 0

da,2 0 0 0 0

SETTINGS ALL SUBDOMAINS

 Γ1 Ws/rhoS*Vcx Ws/rhoS*Vcy

 Γ2 Ws/rhoS*Vcx Ws/rhoS*Vcy

SETTINGS UBDOMAINS 1–3 SUBDOMAINS 4,5

F1 -Ibc2+(Vc-Vce)/Rs -Ibc2+(Vc-Vce)/Rs+Ibe1/Kqb

F2 -Ibc2+(Vc-Vce)/Rs-Jbc_ac -Ibc2+(Vc-Vce)/Rs+Ibe1/Kqb 
-Jbc_ac

SETTINGS ALL SUBDOMAINS

da,1 -Cbc 0

da,2 0 0

SETTINGS POINT 131 POINT 412

weak term 0 0 -Ib_a*Vm_dc_test 0

constraint Vm_dc Vm_ac (Vbe_t-Vm_dc)*(Ib_a==0) Vac-Vm_ac
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2 Click the da tab and select Subdomains 1–3. Enter the fields specified in the table 
below. Leave all other existing expressions as is.

3 Select Subdomains 4 and 5 and fill in the fields specified below.

4 Click OK. Now this dialog box takes responsibility for the subdomain settings, which 
means that the software ignores all changes in the Subdomain Settings dialog box 
from now on. COMSOL Multiphysics indicates this with a padlock symbol next to 
all subdomain numbers. By clicking the Reset Equation button in the Subdomain 

Settings - Equation System dialog box, you set all parameters according to the 
Subdomain Settings dialog box and it is possible to do changes there again.

ROW NUMBER COLUMN NUMBER EXPRESSION

5 7 Cbc

7 5 Cbc

ROW NUMBER COLUMN NUMBER EXPRESSION

3 5 Cbe

5 3 Cbe

5 7 Cbc

7 5 Cbc
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Initial Conditions
To speed up the DC simulation, the initial conditions of the metal, base, and collector 
layer can be set equal to the constant variables, Vbe and Vce. Due to the changes in the 
Subdomain Settings - Equation System dialog box, you must specify all the initial 
conditions there.

1 Open the Subdomain Settings - Equation System dialog box, and click the Init tab.

2 Select Subdomain 2 and type Vbe in the Vm_dc(t0) edit field.

3 Select all subdomains and type Vbe in the Vb_dc(t0) edit field and Vce in the 
Vc_dc(t0) edit field.

4 Click OK.

M E S H  G E N E R A T I O N

Due to the small features in the defined geometry, it is possible to make the mesh 
coarser than the default.

1 In the Mesh menu, open the Free Mesh Parameters dialog box.

2 Select the Coarse predefined mesh size, and click the Remesh button.

3 Click the Boundary tab, select all boundaries that is part of the finger structure of the 
emitter and base, and enter 4e-6 in the Maximum element size edit field.

4 Click OK.

C O M P U T I N G  T H E  S O L U T I O N  ( T I M E - D E P E N D E N T )

This sequence first finds the initial solution and then continue with the 
time-dependent simulation.

1 Open the Solver Manager dialog box.

2 Click the Initial value expression button in the Initial value area.

3 Click the Solve For tab and expand all modes. Select all DC variables (ending with 
_dc). This makes the solver leave the AC application mode variables unchanged. 
Click OK.

4 Click the Solve button on the Main toolbar.

5 When the solution has been found, open the Solver Manager dialog box again.

6 Click the Initial Value tab. Click the Store Solution button, and then click the Stored 

solution button in the Initial value area to use the stored solution as the initial value. 
Click OK.
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7 Open the Solver Parameters dialog box, and select the Time dependent solver. In the 
Times edit field, type 0 1e-6. To avoid large time steps, type 1e-3 in the Relative 

tolerance edit field and 5e-4 in the Absolute tolerance edit field.

8 Click the Time Stepping tab, and select Time steps from solver from the Times to store 

in output list.

9 Click OK, then click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N  ( T I M E - D E P E N D E N T )

Use the defined coupling variables to plot the base and collector currents versus time:

1 In the Postprocessing menu, select Domain Plot Parameters.

2 Under the General tab select Point plot. In the Solutions to use area, select 
Interpolated times from the Select via list. In the Times edit field, type 
linspace(0,1e-7,100).

3 Click the Point tab and type Ib in the Expression edit field. Select point number 412 
(for example by clicking on the point in the middle of the base pad).

4 Click the Line Settings button. In the Line Settings dialog box, select Color from the 
Line color list, and select Triangle from the Line marker list. Click the Color button 
and select red color from the palette. Click OK.

5 In the Domain Plot Parameters dialog box, click Apply to view the base current.

6 Click the General tab and select the Keep current plot check box.

7 Go back to the Point tab and type Ic in the expression edit field.
D I S T R I B U T E D  S P I C E  M O D E L  O F  A N  I N T E G R A T E D  B I P O L A R  TR A N S I S T O R  |  471



472 |  C H A P T E
8 Change the color to blue and click the OK button. You now get the figure below, 
which shows how the currents behave during turn on.

C O M P U T I N G  T H E  S O L U T I O N  ( T I M E - H A R M O N I C )

This sequence first finds a stationary solution for a base current of 10 mA and then uses 
this solution as the linearization point for the time-harmonic simulation:

1 Open the Constants dialog box from the Options menu. Change the variable Vbe to 
2.5. Click OK. This gives a better initial condition for the constant current solution.

2 Open the Solver Parameters dialog box. Select the Parametric in the Solver list.

3 Type Ib_a in the Parameter name edit field and 1e-2 in the Parameter values edit 
field. Click OK.

4 Open the Solver Manager dialog box and select the Initial value expression option in 
the Initial value area. Click OK.

5 Click the Solve button.

6 When the analysis has finished, open the Solver Manager dialog box again.

7 Click the Store Solution button, and select the solution for the value of 0.01 in the 
Parameter value list. In the Values of variables not solved for and linearization point 

area, click the Stored solution option button.
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8 Under the Solve For tab, expand all modes, deselect all dc variables and select all ac 
variables (ending with _ac). Click OK.

9 Open the Solver Parameters dialog box, and select Parametric in the Solver list.

10 Enter freq in the Parameter name edit field, and enter the values 1e6 1e7 1e8 in 
the Parameter values edit field.

11 Click the Stationary tab. Select Linear in the Linearity list to ensure that the 
parametric sweep uses the linear solver.

12 Click OK.

13 Click the Solve toolbar button.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N  ( T I M E - H A R M O N I C )

1 Open the Plot Parameters dialog box.

2 Click the Surface tab and make sure that the Surface plot and (on the Height Data tab) 
Height data check boxes are selected. Type abs((Vce-Vc)/Rs) in the Expression 
edit fields on the Surface Data tab and Height Data tab. Click OK.

3 Click the Headlight button on the Camera toolbar to the left to make the plot look 
nicer. The plot should now look like the following figure. Notice the high collector 
current density under the base pad.
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DC Cha r a c t e r i s t i c s  o f  a  MOS 
T r a n s i s t o r  (MOS FE T )

This model calculates the DC characteristics of a MOS (metal-oxide semiconductor) 
transistor using standard semiconductor physics. In normal operation, a system turns 
on a MOS transistor by applying a voltage to the gate electrode. When the voltage on 
the drain increases, the drain current also increases until it reaches saturation. The 
saturation current depends on the gate voltage.

Introduction

The MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) is by far the most 
common semiconductor device, and the primary building block in all commercial 
processors, memories, and digital integrated circuits. During the past decades this 
device has experienced tremendous development, and today it is being manufactured 
with feature sizes of 90 nm and smaller.

Cross-section TEM (transmission electron microscope) image of a 70-nm MOSFET 
fabricated in the clean room at the Royal Institute of Technology in Kista, Sweden (a 
project of P.-E. Hellström and others).

This model shows the basic functionality of a MOS transistor, where the gate voltage 
controls the drain-source resistance and thus the drain current. At a certain gate 
voltage, VGS, and at low drain voltages, the drain current is almost linearly dependent 
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on the drain voltage. When the drain voltage increases, the drain current saturates. The 
level of saturation depends on the gate voltage.

The gate voltage also influences the coefficient describing the linear dependence 
between the gate voltage and gate current at low drain voltages. This coefficient is 
generally known as the On resistance (Ron). In digital devices the transistor operates 
as a switch, making Ron an important parameter influencing the transistor’s power loss 
and driving ability. Its ability to drive an output is of special importance. This 
characteristic is described by the fanout, the number of outputs that a device can drive. 
In high-speed systems, parasitic effects make the situation more complicated.

Model Definition

D E V I C E  G E O M E T R Y

The structure in Figure 12-7 is a cross section of a simplified MOS transistor. The 
electric field in the gate influences the low-doped p-type silicon; specifically, at a certain 
gate voltage a thin layer of it, close to the silicon-oxide surface, turns into an n-type 
material. This process, called inversion, creates a conducting channel between the 
highly doped n-type source and the drain regions. With this channel present, a voltage 
across the source and the drain drives a drain current. This model uses the following 
dimensions: a gate length of 0.2 µm, a gate oxide thickness of 5 nm, and a source-drain 
junction depth of 0.1 µm.

Figure 12-7: The model geometry. The simulation replaces the contacts with boundary 
conditions.

D O M A I N  E Q U A T I O N S

This example models a MOS transistor using the standard drift-diffusion 
approximation coupled with Poisson’s equation. With the aid of some generally 
accepted simplifications—such as neglecting magnetic fields, assuming a constant 
density of states in both the valence and the conductance bands, and assuming a 

p-Si

n+-Si n+-Si

SiO2

Source Drain

Gate

Poly-Si
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Boltzmann distribution of the carriers—it is possible to derive these equations from 
Maxwell’s equations and Boltzmann transport theory.

The model in this example formulates the problem using three dependent variables: ψ 
(the electrostatic potential), n, and p. The three basic semiconductor equations are

where p and n are the hole and electron concentrations, respectively, and N represents 
the fixed charge associated with ionized donors.

You can express the electron and hole current densities, Jn and Jp, with a drift term 
and a diffusion term

where µn and µp are the carrier mobilities, and Dn and Dp are the carrier diffusivities.

Another term, RSRH, represents the Shockley-Read-Hall recombination, which is a 
general recombination process using traps constituting energy levels in a 
semiconductor’s forbidden band gap. In the recombination equation

ni is the intrinsic carrier concentration, τn and τp are the carrier lifetimes, and n1 and 
p1 are parameters related to the trap energy level. If that level is located in the middle 
of the band gap (which this model assumes), then n1 and p1 equal the intrinsic carrier 
concentration, ni.

B O U N D A R Y  C O N D I T I O N S

For boundaries in contact with an insulator or far away from the active device area, you 
can use the symmetry or zero charge (flux) boundary condition for the electrostatic 
(diffusion) problem. At boundaries in contact with a metal, the electrostatic potential 
is fixed. Assuming infinite recombination velocity at the contact, the mass action law

∇– ε ψ∇( )⋅ q p n– N+( )=

∇– J⋅ n qRSRH–=

∇– Jp⋅ qRSRH=

Jn qnµn ψ∇– qDn n∇+=

Jp qpµp ψ∇– qDp p∇–=

RSRH
np ni

2–

τp n n1+( ) τn p p1+( )+
------------------------------------------------------------=

ni
2 np=
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is valid. Using this law along with the assumption that there is no charge at the contact, 
it is possible to calculate the carrier concentrations. The applied voltage equals the 
Fermi level in the semiconductor at the contact, so the electrostatic potential at the 
contact is the applied voltage plus the potential difference between the Fermi level and 
the electrostatic reference level:

where Va is the applied voltage. In this model the reference potential is the vacuum 
level. This is often a good choice when several materials with different affinities or work 
functions are present. As a result, the electrostatic potential is continuous across all 
material interfaces. This reference level also finds use in heterojunction device 
simulations. The band diagram in Figure 12-8 shows how this model represents the 
metal-oxide semiconductor material system.

Figure 12-8: A band diagram of the MOS material system. The necessary parameters to 
align the materials are the affinities of the oxide and semiconductor, plus the work 
function of the polysilicon gate, which this model assumes has the same properties as 
aluminum.
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The material parameters in the MOS transistor are:

I N I T I A L - V A L U E  C A L C U L A T I O N

The rapid changes and large dynamics of the solution variables in the PDEs require a 
special technique to calculate the initial value. This model solves an extra electrostatics 
application mode separately to get the initial value for the other application modes. 
This extra application mode also solves Poisson’s equation but with the difference that 
it replaces the carrier concentrations with the formulas

This step produces the exact solution for the full system when all applied voltages are 
zero. You perform the steps to get the initial condition with the solver scripting 
functionality in the Solver Manager dialog box.

NOTATION VARIABLE VALUE

ni(Si) ni_Si 1.46⋅1010 cm-3 (T = 300K)

εr(Si) epsilonr_Si 11.8

εr(SiO2) epsilonr_Si 4.2

µn(Si) mun 1000 cm2/Vs (low concentration)

µp(Si) mup 500 cm2/Vs (low concentration)

Dn = µn(Si) kT/q Dn 20.7 cm2/s

Dp = µp (Si)kT/q Dp 5.17 cm2/s

τn taun ~0.1 µs

τp taup ~0.1 µs

EG(Si) Eg_Si 1.08 eV

χSi X_Si 4.0 eV

χSiO2 X_SiO2 0.3 eV

χpoly X_poly 4.2 eV

n nie

qψ χSi
EG

2
-------+ +

kT
-----------------------------------

=

p nie

qψ χSi
EG

2
-------+ +

kT
-----------------------------------–

=
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Results and Discussion

The system’s nonlinear behavior makes it necessary to use the parametric solver to 
reach the desired voltage for each contact. This example first raises the gate voltage to 
0.8 V and then sweeps the drain voltage to 1 V. Including the first initial-value 
calculation, three solution steps are necessary, and by employing solver scripting you 
can execute all of them with one click on the Solve button. The result from the last step 
appears in Figure 12-9.

Figure 12-9: Drain current as a function of drain voltage for VGS = 0.8 V. Note that 
Ronis 1/ (slope of the curve) at the point where VDS = 0, which falls at the far left of the 
curve.
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A surface plot is useful to view the shape of the solution variables. Figure 12-10 shows 
the electrostatic potential at the final bias condition. The large negative shift for the 
potential is due to the vacuum reference potential.

Figure 12-10: Surface plot of the electrostatic potential inside the MOSFET.
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The conducting channel at the oxide-semiconductor interface becomes visible in a 
logarithmic surface plot of the electron concentration (Figure 12-11).

Figure 12-11: The channel close to the interface becomes visible in an 
electron-concentration plot. Notice the sharp drop in the channel concentration close to the 
drain contact, which is responsible for the saturation of the drain current.

Model Library path: COMSOL_Multiphysics/Semiconductor_Devices/
MOS_transistor

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 Click the Multiphysics button.

3 Select the COMSOL Multiphysics>Electromagnetics>Electrostatics application mode.

4 Enter phi0 in the Dependent variables edit field, and enter init in the Application 

mode name edit field.
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5 Click Add.

6 Enter phi in the Dependent variables edit field.

7 Click Add.

8 Select the COMSOL Multiphysics>Convection and Diffusion> 
Convection and Diffusion>Steady-state analysis application mode.

9 Enter nc in the Dependent variables edit field, and enter cde in the Application mode 

name edit field.

10 Click Add.

11 Click the Application Mode Properties button, select Conservative from the Equation 

form list and On from the Weak constraints list. Click OK.

12 Enter pc in the Dependent variables edit field, and enter cdh in the Application mode 

name edit field.

13 Click Add.

14 Click the Application Mode Properties button, select Conservative from the Equation 

form list and On from the Weak constraints list. Click OK.

15 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 In the Constants dialog box, define the following constants with names, expressions, 
and descriptions (the descriptions are optional):

NAME EXPRESSION DESCRIPTION

q 1.602e-19[C] Elementary charge

T0 300[K] Lattice temperature

k 1.38e-23[J/K] Boltzmann’s constant

epsilonr_si 11.8 Rel. permittivity for Si

epsilonr_sio2 4.2 Rel. permittivity for SiO2

ni 1.5e10[1/cm^3] Intrinsic carrier 
concentration for Si

mun_si 1000[cm^2/(V*s)] Electron mobility for Si

mup_si 500[cm^2/(V*s)] Hole mobility for Si

X_si 4.0[V] Electron affinity for Si

X_sio2 0.3[V] Electron affinity for SiO2

X_poly 4.5[V] Work function for poly-Si
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3 Click OK.

4 From the Options menu, choose Functions.

5 In the Functions dialog box, click the New button.

6 In the New Function dialog box, type flgauss in the Function name edit field. Click 
OK to create the new function.

7 Type x, y, x1, y1, ch in the Arguments edit field, and type the following in the 
Expression edit field: (exp(-((y-y1)/ch)^2)*(y<y1)+(y>=y1))* 

(exp(-((x-x1)/ch)^2)*(x>x1)+(x<=x1)).

8 In the Derivatives area, click the Manual button and type 
diff(flgauss(x,y,x1,y1,ch),x),diff(flgauss(x,y,x1,y1,ch),y),0,0,0 
in the corresponding edit field. The diff operator provides differentiation of the 
flgauss function with respect to x and y. The derivatives of flgauss with respect 
to x1, y1, and ch are all equal to 0.

9 Click OK.

G E O M E T R Y  M O D E L I N G

1 Draw rectangles with the properties according to the following table.

Eg_si 1.08[V] Band gap of Si

taun 0.1[um] Electron carrier life time

taup 0.1[um] Hole carrier life time

Vt k*T0/q Thermal voltage

x1 -0.1[um] Help coordinate

x2 0.2[um] Help coordinate

yj 0.1[um] Junction depth

NDimpl 1e19[1/cm^3] Peak concentration of 
implanted profile

NAsub 5e17[1/cm^3] Substrate doping

ch yj/sqrt(log( 
NDimpl/NAsub))

Characteristic length of 
implanted region

Vg 0.8[V] Gate voltage

Vd 0[V] Drain voltage

NAME WIDTH HEIGHT CORNER DESCRIPTION

R1 1e-6 5e-7 (-4e-7,-5e-7) Substrate

NAME EXPRESSION DESCRIPTION
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2 Click the Zoom Extents toolbar button.

3 Click the 2nd Degree Bézier Curve button and draw an arc from (-1e-7, -1e-7), with 
control point (0, -1e-7), ending it at (0, 0). 

4 Continue the arc with straight lines by clicking the Line button and then click the 
coordinate sequence (-4e-7, 0) and (-4e-7, -1e-7). Close to a solid by clicking the 
right mouse button.

Drawing a curve at coordinates with many decimals or using an expression can be 
difficult, and you might be forced to specify extra grid points. Here is an alternative 
approach. First draw a curve with a similar shape as the final curve, using the existing 
grid points. Then alter the properties of the curve segments with the Object 

Properties dialog box. Do the following to draw the small spacer regions on the sides 
of the poly-gate:

5 Click the 2nd Degree Bézier Curve button and draw an arc from (-1e-7, 0), with 
control point (-1e-7, 1e-7), ending it at (0, 1e-7). 

6 Continue the arc with straight lines by clicking the Line button and then click the 
coordinate sequence (0, 0) and (-1e-7, 0). Close to a solid by clicking the right 
mouse button.

7 From the Draw menu, choose Object Properties.

8 In the Object Properties dialog box, change the properties for each curve segment 
according the table below.

9 Select the objects CO1, CO2, and R3, then click the Mirror button on the Draw 
toolbar.

R2 2.2e-7 5e-9 (-1e-8,0) Gate oxide

R3 3.9e-7 5e-8 (-4e-7,0) Air region

CURVE NUMBER POINT NUMBER 
(ROW IN TABLE)

X Y WEIGHT

1 1 -5e-8 0 1

2 -1e-8 0 1

2 1 -1e-8 0 1

2 -1e-8 5e-8 1

3 1 -5e-8 0 1

2 -5e-8 5e-8 1/sqrt(2)

3 -1e-8 5e-8 1

NAME WIDTH HEIGHT CORNER DESCRIPTION
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10 In the Mirror dialog box, enter 1e-7 in the x edit field at the Point on line row. Leave 
all other fields at their default values and click OK. The geometry should look like 
the figure below.

P H Y S I C S  S E T T I N G S

Expression Variables
1 From the Options menu, choose Expressions>Scalar Expressions.

2 In the Scalar Expressions dialog box, define the following variables with names and 
expressions, and descriptions (the Description field is optional):

NAME EXPRESSION DESCRIPTION

Dn Vt*mun Electron diffusivity

Dp Vt*mup Hole diffusivity

n0 ni*exp((phi0+X_si+ 
0.5*Eg_si)/Vt)

Electron concentration in 
thermal equilibrium

p0 ni*exp(-(phi0+X_si+ 
0.5*Eg_si)/Vt)

Hole concentration in 
thermal equilibrium

R_srh (nc*pc-ni^2)/(taun*(pc+ni)+ 
taup*(nc+ni))

Shockley-Reed-Hall 
recombination term
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3 Click OK.

Subdomain Variables
1 From the Options menu, choose Expressions>Subdomain Expressions.

2 In the Subdomain Expressions dialog box, define the following variables:

3 Click OK.

Boundary Variables
1 From the Options menu, choose Expressions>Boundary Expressions.

2 In the Boundary Expressions dialog box, define the following variables with names 
and expressions:

phi_init Vt*(-log(p_init/ni)* 
(Ndoping<0)+log(n_init/ni)* 
(Ndoping>=0))-X_si 
-0.5*Eg_si

Initial guess for phi0

n_init (abs(Ndoping)/2+ 
sqrt(Ndoping^2/4+ni^2))* 
(Ndoping>=0)+ 
ni^2/(abs(Ndoping)/2+ 
sqrt(Ndoping^2/4+ni^2))* 
(Ndoping<0)

Electron concentration at 
thermal equilibrium and 
charge neutrality

p_init (abs(Ndoping)/2+ 
sqrt(Ndoping^2/4+ni^2))* 
(Ndoping<0)+ 
ni^2/(abs(Ndoping)/2+ 
sqrt(Ndoping^2/4+ni^2))* 
(Ndoping>=0)

Hole concentration at 
thermal equilibrium and 
charge neutrality

Ndoping NDimpl*flgauss(x,y,x1,0,ch)
-NAsub+NDimpl* 
flgauss(x2-x,y,x1,0,ch)

Doping concentration

VARIABLE SUBDOMAINS 1, 2, 6 SUBDOMAINS 4, 5, 7 ALL OTHER 
SUBDOMAINS

epsilonr epsilonr_si epsilonr_sio2 1

mun mun_si

mup mup_si

VARIABLE BOUNDARIES 6, 19 ALL OTHER BOUNDARIES

Jn -q*lm3

Jp q*lm4

NAME EXPRESSION DESCRIPTION
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3 Click OK.

Integration Coupling Variables
The drain current Id is defined as an integral of the normal current density along the 
drain contact. This can be implemented by using an integration coupling variable:

1 From the Options menu, select Integration Coupling Variables>Boundary Variables.

2 In the Boundary Integration Variables dialog box, select Boundary 19 and then type 
Id in the Name column, and type Jn+Jp in the Expression column. Click OK.

Subdomain Settings
1 On the Multiphysics menu, select the Electrostatics (init) application mode.

2 From the Physics menu, select Subdomain settings.

3 In the Subdomain Settings dialog box, enter the following settings:

4 Click the Init tab, and enter the following initial value:

5 Click OK.

6 On the Multiphysics menu, select the Electrostatics (es) application mode.

7 Open the Subdomain Settings dialog box and enter the following settings:

8 Click the Init tab, and enter the following initial value:

9 Click OK.

10 On the Multiphysics menu, select the Convection and Diffusion (cde) application 
mode.

SETTINGS SUBDOMAINS 1, 2, 6 ALL OTHER SUBDOMAINS

εr (isotropic) epsilonr epsilonr

ρ q*(p0-n0+Ndoping) 0

SETTING ALL SUBDOMAINS

phi0(t0) phi_init

SETTINGS SUBDOMAINS 1, 2, 6 ALL OTHER SUBDOMAIN

εr (isotropic) epsilonr epsilonr

ρ q*(pc-nc+Ndoping) 0

SETTING ALL SUBDOMAINS

phi(t0) phi0
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11 Open the Subdomain Settings dialog box, select Subdomains 3, 4, 5, 7, and 8, and 
clear the Active in this subdomain check box. Then enter the following settings for 
the other subdomains:

12 Click the Init tab and enter the following initial value:

13 Click OK.

14 On the Multiphysics menu, select the Convection and Diffusion (cdh) application 
mode.

15 Open the Subdomain Settings dialog box, select Subdomains 3, 4, 5, 7, and 8, and 
clear the Active in this subdomain check box. Then enter the following settings for 
the other subdomains

16 Click the Init tab, and enter the following initial value:

17 Click OK.

Boundary Conditions
1 On the Multiphysics menu, select the Electrostatics (init) application mode.

2 From the Physics menu, select Boundary Settings. Select the Interior boundaries check 
box.

SETTINGS SUBDOMAINS 1, 2, 6

D (isotropic) Dn

R -R_srh

u mun*phix

v mun*phiy

SETTING SUBDOMAINS 1, 2, 6

nc(t0) n0

SETTINGS SUBDOMAINS 1, 2, 6

D (isotropic) Dp

R -R_srh

u -mup*phix

v -mup*phiy

SETTING SUBDOMAIN 1, 2, 6

pc(t0) p0
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3 In the Boundary Settings dialog box, enter the following settings:

4 Click OK.

5 On the Multiphysics menu, select the Electrostatics (es) application mode.

6 Open the Boundary Settings dialog box, select the Interior boundaries check box, and 
enter the following settings:

7 Click OK.

8 On the Multiphysics menu, select the Convection and Diffusion (cde) application 
mode.

9 Open the Boundary Settings dialog box and enter the following settings:

10 Click OK.

11 On the Multiphysics menu, select the Convection and Diffusion (cdh) application 
mode.

12 Open the Boundary Settings dialog box and enter the following settings:

13 Click OK.

M E S H  G E N E R A T I O N

1 From the Mesh menu, choose Free Mesh Parameters.

SETTINGS BOUNDARIES 2, 6, 19 BOUNDARIES 11, 12, 17 BOUNDARIES 1, 3, 5, 7, 18, 
21–23

Boundary condition Electric potential Electric potential Zero charge/Symmetry

V0 phi_init Vg-X_poly

SETTINGS BOUNDARIES 2, 6 BOUNDARY 19 BOUNDARIES 
11, 12, 17

BOUNDARIES 
1, 3, 5, 7, 18, 21–23

Boundary condition Electric 
potential

Electric 
potential

Electric 
potential

Zero charge/ 
Symmetry

V0 phi_init phi_init+Vd Vg-X_poly

SETTINGS BOUNDARIES 2, 6, 19 ALL OTHER BOUNDARIES

Boundary condition Concentration Insulation/Symmetry

nc0 n_init

SETTINGS BOUNDARIES 2, 6, 19 ALL OTHER BOUNDARIES

Boundary condition Concentration Insulation/Symmetry

pc0 p_init
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2 Click the Custom mesh size button and enter 0.2 in the Mesh curvature factor edit 
field. This gives a slightly higher resolution of the curvature than the default setting.

3 Click the Subdomain tab.

4 Select Subdomains 2 and 6 and type 1e-8 in the Maximum element size edit field.

5 Click the Boundary tab.

6 Select Boundaries 4, 20, 24, and 26 and type 5e-9 in the Maximum element size edit 
field.

7 Select Boundary 13 and type 2e-9 in the Maximum element size edit field.

8 Click the Remesh button and then click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu, choose Solver Manager.

2 In the Solver Manager dialog box, click on the Script tab.

3 Click the Solve using a script check box, and enter the following script in the large 
text area.

init = asseminit(fem);
fem.sol = femstatic(fem, ...
  'init',init, ...
  'solcomp',{'phi0'}, ...
  'outcomp',{'lm3','phi','phi0','pc','nc','lm4'});
fem0 = fem;

init = asseminit(fem,'u',fem0.sol);
fem.sol = femstatic(fem, ...
  'init',init, ...
  'u',fem0.sol, ...
  'solcomp',{'lm3','phi','pc','nc','lm4'}, ...
  'outcomp',{'lm3','phi','phi0','pc','lm4','nc'}, ...
  'pname','Vd', ...
  'plist',[0:0.02:0.2 0.25:0.05:1]);
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fem0 = fem;

4 Click OK and then click the Solve button to start the simulation. Note that the script 
overrides all other settings in the Solver Parameters and Solver Manager dialog boxes.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 Open the Plot Parameters dialog box.

2 Click the Surface tab.

3 On the Surface page, enter phi in the Expression edit fields on both the Surface Data 
tab and the Height Data tab. Remember to select the Height data check box on the 
Height Data tab.
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4 Click OK to get the plot in the figure below.

5 To plot the drain characteristics open the Domain Plot Parameters dialog box from 
the Postprocessing menu.

6 Click the Point plot button to select that plot type and make sure that all parameter 
values are selected in the Solutions to use list.

7 On the Point tab, type Id in the Expression edit field in the y-axis data area.
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8 Select vertex 1 and click OK. In a separate window you should see the plot below.
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 13
S t r u c t u r a l  M e c h a n i c s  M o d e l s
This section contains a modal analysis of a crankshaft based on a NASTRAN mesh; 
a 3D model of a feeder clamp; a parametric study of the stresses in a pulley; a model 
of a communication mast’s diagonal mounting; and a model of a Formula One car’s 
front wing. The last two models, both in 3D, highlight the use of assemblies and 
interactive meshing. The COMSOL Multiphysics Modeling Guide includes two 
benchmark models using 2D stress analysis. A comprehensive set of solved 
examples is available in the Model Library that comes with the Structural 
Mechanics Module.
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E i g e n v a l u e  Ana l y s i s  o f  a  C r a nk s h a f t

This model describes a modal analysis of a crankshaft. The pistons’ reciprocating 
movement is transferred to the crankshaft through connecting rods by means of 
crankshaft throws. The forces, torques, and bending moments, which are highly 
variable both in time and space, subject the crankshaft to very high and complex 
loading. The crankshaft design must therefore incorporate careful and precise 
calculations of the vibrational characteristics.

Model Definition

G E O M E T R Y

The geometry comes from a NASTRAN mesh, which you import into the COMSOL 
Multiphysics user interface.

M A T E R I A L  P R O P E R T I E S  A N D  B O U N D A R Y  C O N D I T I O N S

The crankshaft geometry is in millimeters, and a suitable unit system for geometries 
given in millimeters is the MPa system. The crankshaft is made of solid steel, and you 
give the material properties in the MPa unit system; that is, express the Young’s 
modulus in MPa and the density in t/mm3. 

The boundary conditions are as follows:

• The crankshaft’s main bearing surfaces are constrained from moving in the normal 
directions; that is, the crankshaft is allowed to rotate and slide at the bearing 
surfaces.

• The axial movement is constrained at the rear axial bearing surface.

• The crankshaft is fixed at the rear surface where the flywheel is mounted.

Results

The analysis provides the 20 first eigenfrequencies, of which several of them show the 
same modal shapes. This first eigenmode has an eigenfrequency at approximately 
5778 Hz and it has a torsional characteristic. There are five additional eigenfrequencies 
in rather close vicinity to this frequency. Each of them also shows similar torsional 
characteristics, which suggests that they are all in fact showing the first torsional mode.
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Figure 13-1: The first torsional mode in the crankshaft.

The next distinctly shaped eigenmode has an eigenfrequency at 8132 Hz. It can be 
characterized as a bending mode in the crankshaft throws. Here there are also five 
additional eigenfrequencies in rather close vicinity to this frequency. Each of these 
frequencies shows similar bending shapes as in the previously mentioned eigenmode at 
8132 Hz. This suggests that they are all in fact showing the first bending mode in the 
crankshaft throws.
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Figure 13-2: The bending mode of the crankshaft throws.

The third distinctly shaped eigenmode has an eigenfrequency at 8891 Hz. This modal 
shape can be characterized as a twisting mode in the crankshaft throws. There are, in 
the same manner as earlier, five additional eigenfrequencies in rather close vicinity to 
this frequency. Each of these frequencies shows similar twisting shapes.
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Figure 13-3: The twisting mode of the crankshaft throws.

Model Library path: COMSOL_Multiphysics/Structural_Mechanics/
crankshaft

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Open the Model Navigator, and in the Space dimension list select 3D.

2 In the list of application modes select  
COMSOL Multiphysics>Structural Mechanics>Solid, Stress-Strain>Eigenfrequency 

analysis.

3 Click OK.
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G E O M E T R Y  M O D E L I N G

1 From the File menu choose Import and then Mesh from File.

2 Browse to the NASTRAN mesh file located at models/COMSOL_Multiphysics/
Structural_Mechanics/crankshaft.nas in the COMSOL installation 
directory.

3 Click the Import button.

P H Y S I C S  S E T T I N G S

Model Settings
1 From the Physics menu choose Model Settings.

2 In the Base unit system list select MPa.

3 Click OK.

Boundary Conditions
1 From the Physics menu choose Boundary Settings.
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2 In the Boundary selection list choose 27, 55, 65, and 68–74. 

3 Click the General notation, Hu=R button, then click the Edit button associated with 
the H matrix. In the matrix position (1, 1) enter nx, in the (1, 2) position enter ny, 
and in the (1, 3) position enter nz. Click OK.

These settings constrain the normal direction movements of the main bearing 
surfaces.

4 In the Boundary selection list choose 26.

5 Click the Standard notation button, then select the Rx, Ry, and Rz check boxes to fix 
this surface.

6 Click OK.

Subdomain Settings
The crankshaft geometry is in millimeters. This means that you must enter the material 
properties in the MPa unit system to avoid having to scale the geometry; that is, you 
specify the Young’s modulus in MPa and the density in t/mm3.

1 From the Physics menu choose Subdomain Settings.
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2 Enter the following material properties:

3 Click the Element tab.

4 Select Lagrange - Linear in the Predefined elements list. The model uses linear 
elements to conform with the NASTRAN mesh.

5 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu choose Solver Parameters.

2 In the General page go to the Desired number of eigenfrequencies edit field and enter 
20. Click OK.

3 Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

COMSOL Multiphysics plots the first eigenmode using a slice plot. To change the plot 
to show the deformed shape and other eigenmodes, follow these steps:

1 From the Postprocessing menu choose Plot Parameters.

2 In the Plot type area on the General page, clear the Slice check box, then select the 
Boundary and Deformed shape check boxes.

3 Select the second eigenfrequency in the Eigenfrequency list and click Apply to plot it.

4 Select the last eigenfrequency in the Eigenfrequency list and click OK to plot the 
twentieth eigenmode and close the Plot Parameters dialog box.

SUBDOMAIN 1

E 2.0e5

ν 0.33

ρ 7850e-12
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De f o rma t i on  o f  a  F e ed e r  C l amp

Introduction

This example, from the field of structural mechanics, analyzes the deformation of a 
feeder clamp under stress. The clamp secures a feeder that carries high-frequency 
electromagnetic fields, and it’s important that it remains as straight as possible.

This example analyzes deformations in the clamp with two key questions in mind:

• How much does the force from the feeder incline the clamp? The inclination must 
be less than 1 degree.

• Does a prestressed screw of a certain type have enough strength to deform the clamp 
so that it adequately anchors the feeder? The gap must shrink by at least 0.5 mm

Model Definition

Forces on the clamp include those from the feeder as well as those on the sleeve arising 
from the clamping screw. In this analysis, the feeder clamp is attached to a wall using 
only one of its two mounting holes, so that you can better analyze how it performs 
when poorly secured.
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.

L O A D I N G  D A T A

Assume that an installation technician fastens the feeder into the clamp using a 
standard metric M3 screw of Class 8.8 (where the first digit stands for a breaking load 
of 800 N/mm2, and the second digit indicates a yield strength of 80% of the breaking 
strength). Prestressing the screw to the yield limit results in a screw force of 4500 N. 
This model tests if a screw force of 80% of this is adequate. A 7-mm washer distributes 
the prestressed load evenly onto both sides of the sleeve. The maximum load from the 
feeder onto the clamp is 1000 N, and is applied evenly throughout the inside of the 
clamp.

Due to symmetry in both loading and the geometry, you can perform a complete 
model analysis while looking at only one half of the geometry. For illustrative purposes, 
though, this example models the entire geometry.

Ffeeder

Fscrew

Fscrew
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Results and Discussion

The z-deformation for the whole clamp is depicted in Figure 13-4.

Figure 13-4: z-deformation.

The maximum inclination about the z-axis can be derived from the difference between 
the maximum and the minimum deformation in the y direction.The maximum and 
minimum values can be found from the colormap at the right in Figure 13-5. It can 
be shown that the sine of the maximum inclination is equal to the difference between 
the maximum and the minimum y-deformation, divided by the width of the clamp in 
the z direction. For small angles, a, this becomes

α 0.094 0.014–( )–
20

-------------------------------------------- 180
π

----------⋅=
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which gives an inclination of 0.31 degrees which is less than the maximum allowed 
angle of 1 degree.

Figure 13-5: Maximum and minimum y-displacement at the center of the clamp cylinder.

To see the maximum displacement in the x direction, you can plot abs(u) >   0.25 mm. 
Figure 13-6 shows that the deformation in the feeder clamp gap is larger than 
0.25 mm on both sides, which is the minimum requirement for being able to fasten 
the feeder adequately. The boundary conditions in this model are valid only as long as 
the installation technician does not squeeze the gap in the clamping sleeve completely 
shut. However, if the gap is squeezed shut, you can be sure that the requirements are 
fulfilled.
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Figure 13-6: Clamp deformation due to the screw force.

Model Library path: COMSOL_Multiphysics/Structural_Mechanics/
feeder_clamp

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R  

1 Start COMSOL Multiphysics. This invokes the Model Navigator.

2 On the New page, select 3D from the Space dimension list.

3 Double-click the COMSOL Multiphysics>Structural Mechanics folder and select Solid, 

Stress-Strain>Static analysis.

4 Click OK.
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Notice that this gives you second-order elements, Lagrange - Quadratic, by default.

O P T I O N S  A N D  S E T T I N G S

1 Double-click AXIS on the status bar to turn off the 3D axis.

2 Choose Model Settings from the Physics menu and select MPa from the Base unit 

system list. Click OK.

3 Choose Constants from the Options menu.

4 Enter the following constant names, expressions, and descriptions (optional):

To add a constant, enter its name in the Name edit field and its corresponding 
constant value or defining equation in the Expression edit field. Adding a description 

NAME OF CONSTANT EXPRESSION DESCRIPTION

Ffeeder 1000 Feeder force

Afeeder pi*20*20 Feeder area

Fscrew 3600 Screw force

D 7 Outer diameter

d 3.75 Inner diameter

Awasher pi/4*(D^2-d^2) Washer area
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in the Description edit field is optional. After you finish entering constants, click 
Apply to evaluate all the expressions.

5 Click OK.

G E O M E T R Y  M O D E L I N G

Creating the First Work-Plane Geometry
1 Choose Work-Plane Settings from the Draw menu and click OK in the dialog box to 

enter the default work plane, which is the xy-plane. 

2 Choose Axes/Grid Settings from the Options menu to open the corresponding dialog 
box.

3 On the Axis page, type -40, 70, -5, and 65 in the x min, x max, y min, and y max edit 
fields, respectively. Click Apply to update the axis settings.

4 Click the Grid tab. Clear the Auto check box, and type 5 in both the x spacing and 
y spacing edit fields. Add extra grid lines at x = 14.25 and x = 15.75 by entering these 
values, with a space separating them, in the Extra x edit field. Click OK.

5 Using the left mouse button, draw a rectangle with corners at (5, 5) and (25, 60). 
Use the Rectangle/Square button on the Draw toolbar.
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6 Draw a circle with a radius of 15 by selecting the Ellipse/Circle (Centered) toolbar 
button. Using the right mouse button, place the center of the circle at (15, 35) and 
drag the mouse until you have the correct radius. During dragging, you can monitor 
the current value of the radius in the coordinate field to the left in the Status bar.

7 Press Ctrl+A to select both geometry objects.

8 Click the Difference button on the Draw toolbar to remove the circle from the 
rectangle.

9 Draw another circle with the same radius at the same position as the deleted one. 
Then draw yet another circle centered at (15, 35), but give this one a radius of 10. 
Select the Ellipse/Circle (Centered) button on the Draw toolbar and then 
click-and-drag using the right mouse button to create a circle.

10 Draw a rectangle with corners at (14.25, 40) and (15.75, 60) by choosing the 
Rectangle/Square button and using the extra grid lines.

11 Click the Create Composite Object button on the Draw toolbar. In the Set formula 
edit field of the dialog box that opens enter the Boolean expression 
(CO1+C1)-(C2+R1). Click OK to create the composite solid object CO2.
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12 If you make a mistake, choose Undo from the Edit menu to revert to the previous 
state.

13 Split the created composite solid object into its constituents. To do so, click the 
Split Object button on the Draw toolbar.

14 Click the Rectangle/Square toolbar button and use the left mouse button to make a 
rectangle with corners at (0, 0) and (30, 5).
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Extruding the 2D Geometry Objects into 3D Solid Objects
1 To extrude the 2D rectangle into a 3D object, choose Extrude from the Draw menu. 

This selection opens the Extrude dialog box. Make sure that the last created 
rectangle is selected and enter 40 in the Distance edit field before clicking OK.

2 The resulting 3D geometry object appears in a 3D view. Click Zoom Extents in the 
main toolbar to view the entire block.

3 Click the Move button in the Draw toolbar; in the resulting dialog box first make 
sure the 3D block is selected. Then enter a z-displacement of −10 and click OK.

4 Enter the work plane again by selecting 1 Geom2 (2D) from the Draw menu. Click 
the Projection of All 3D Geometries button at the lower part of the Draw toolbar.

5 While working in the plane, open the Extrude dialog box from the Draw menu and 
select the objects CO1, CO3, and CO5 that came from the first rectangle you 
created. Enter an extruding distance of 10. Click OK to extrude the 2D geometry 
and enter the 3D view.
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6 Make sure that the recently created 3D objects are selected. Click the Move button 
on the Draw toolbar. In the resulting dialog box enter 5 in the z edit field and click 
OK.

7 Re-enter the work plane by selecting 1 Geom2 (2D) from the Draw menu.

8 Select the circular-shaped solid object, object CO4, and open the Extrude dialog 
box. Enter a distance of 20 and click OK. Click Zoom Extents in the Main toolbar to 
see the entire resulting geometry. Click and drag in the figure to rotate the 
geometry to get the desired view.

Creating a Second Work Plane
1 It is now necessary to add a work plane, so choose Work-Plane Settings from the Draw 

menu. In the resulting dialog box, click the Add button. The software creates a work 
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plane and automatically assigns it the name Geom3. Select the Quick page. Click the 
y-z button and specify an offset of 5 in the x edit field.

2 Click OK to enter the work plane environment and then click the Zoom Extents 
button in the work plane. The 3D projection of the geometry onto the work plane 
is visible if any of the Projection of All 3D Geometries or Project Work-Plane 

Intersection buttons are selected at the bottom of the Draw toolbar. You can snap to 
the projection when drawing.

3 Choose Axes/Grid Settings from the Options menu. In the resulting dialog box, go to 
the Grid page, uncheck the Auto check box and enter a grid spacing of 5 in both the 
x spacing and y spacing fields. Add extra grid lines at x = 56.875 and x = 58.5 by 
entering these values, separated with a space, in the Extra x field. Click OK to close 
the dialog box.

4 Draw a circle with its center at (55, 10) by choosing Ellipse/Circle (Centered) and 
clicking the right mouse button. Drag the cursor from the center to the right and 
release the button over one of the extra grid lines. Draw another circle centered at 
the same position, but this time release the mouse button over the other extra grid 
line. Now you have two circles with radii of 1.875 and 3.5.

5 Press Ctrl+A to select both circles. Click the Difference button on the Draw toolbar 
to subtract the smaller circle from the larger one. The resulting object is given the 
name CO1.

6 Redraw the smaller of the two circles. The circle is given the name C1 by the 
software. Additionally draw a new circle with a radius of 5 with the same center 
coordinates. It will be named C2. Click the Rectangle/Square button and use the left 
mouse button to draw a rectangle with corners at (55, 5) and (60, 15).
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7 Open the Create Composite Object dialog box by Shift-clicking the associated button 
on the Draw toolbar. In the Set formula edit field type R1-C2+C1. Click OK to create 
the composite solid object CO2.

Figure 13-7: Extruding the 2D Geometry Object and Creating 3D Solid Object

1 Choose Extrude from the Draw menu. In the resulting dialog box make sure the last 
created object, CO2, is selected. Then enter 9.25 in the Distance edit field and click 
OK.

2 In 3D view, click the Copy button in the main toolbar and then click the Paste 
button. In the Displacements area, enter an x-displacement of 10.75 in the x edit 
field, and click OK.

3 Return to the work plane by clicking on the Geom3 tab above the drawing area.

4 To define the area of the washer that distributes pressure from the screw, choose 
Embed from the Draw menu. In the resulting dialog box, select CO1 and click OK.

5 In 3D view, click the Copy button in the main toolbar and then click the Paste 
button. In the Displacements area, enter an x-displacement of 20 in the x edit field, 
and click OK.
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6 To round off the top of the clamp and create a hole for the clamping screw, subtract 
solid object EXT6 and EXT7 from objects EXT3 and EXT4 using the Create 

Composite Object dialog box.

To do so, click the Create Composite Object toolbar button to open the dialog box 
and select the Solids option button in the Object type frame.

7 Type (EXT3+EXT4)-EXT6-EXT7 in the Set formula edit field. Click OK.

8 You can add lighting to the plot by clicking the Headlight button in the Camera 
toolbar.

Creating a Third Work Plane and the Final 3D Solid Model
1 Press Ctrl+A to select all geometry objects, then choose Work-Plane Settings from 

the Draw menu.

2 In the dialog box, click the Add button to create a new work plane, which 
automatically gets the name Geom4. On the Face Parallel page select the folder/
solid object EXT1 and the face number 2 from the list. Click the Downward normal 
button. Click OK to enter the new work plane.

3 Select Axes/Grid Settings from the Options menu. In the resulting dialog box, click 
the Grid tab, clear the Auto check box, and enter a grid spacing of 2.5 in both the 
x spacing and y spacing fields. Add extra grid lines at x = 9.5 and x = 20.5 by entering 
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these values, separated by a space, in the Extra x edit field. Click OK to close the 
dialog box.

4 Draw a rectangle with corners at (9.5, −10) and (20.5, −5) using the left mouse 
button and the Rectangle/Square toolbar button.

5 Click the Ellipse/Circle (Centered) button, and use the right mouse button to draw a 
circle centered at (9.5, −7.5) with a radius of 2.5. Draw a similar circle centered at 
(20.5, −7.5).

6 Press Ctrl+A to select all objects. Click the Copy button in the main toolbar, then 
click the Paste button. In the Displacements area, enter a y-displacement of -25 in 
the y edit field, and click OK.

7 Press Ctrl+A to select all objects and click the Union button in the Draw toolbar.

8 Choose Extrude from the Draw menu. In the dialog box, type 5 in the Distance edit 
field. Click OK to enter 3D view.

9 In 3D view, the recently extruded objects are already selected. Holding down the 
Shift key, click on the block you created first, EXT1, using the left mouse button to 
add it to the selection. Then click the Difference toolbar button to create the 
mounting holes in the clamp.
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Boundary Conditions
The boundary conditions consist of loads and constraints. The following tables list the 
loads (top) and constraints (bottom):

The constraint means that the feeder clamp is fixed (no displacements) at the mount. 
All other boundaries are free.

In relatively complicated geometries like this it is often convenient to arrange the 
different boundaries in groups. This allows you to set properties for a group of 
domains at once. To simplify the specification of the boundary conditions, create five 
groups: 

• clamp, containing the four boundaries which constitute the inside surface of the 
large cylinder. These are the boundaries where the feeder force is applied.

• mount, containing the six boundaries where the feeder clamp is attached.

• washer top, containing the top boundary where the screw force is applied.

• washer bottom, containing the bottom boundary, where the screw force is applied. 

• free, containing the rest of the boundaries, which are free of loads and constraints.

The following steps describe, in addition to the boundary settings, how to create the 
boundary domain groups.

1 Open the Boundary Settings dialog box by selecting Boundary Settings from the 
Physics menu. This dialog box enables you to select boundaries and enter 
expressions for boundary conditions.

2 To create the boundary groups, click the Groups tab. Select the existing group 
(unnamed1), enter the name free in the Name edit field, and press Enter.

BOUNDARY 25 BOUNDARY 68 1BOUNDARIES 7, 18, 45, 47

Page Load Load Load

Fx Fscrew/Awasher Fx -Fscrew/Awasher Fx 0

Fy 0 Fy 0 Fy 0

Fz 0 Fz 0 Fz -Ffeeder/Afeeder

BOUNDARIES 32, 33, 
36, 37, 60, 61

Page Constraint

Rx 0

Ry 0

Rz 0
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3 Click the New button and enter the name clamp, and press Enter. Similarly, add the 
remaining groups mount, washer top, and washer bottom.

Now enter the boundary conditions for the groups:

The free group should have the default settings, so make sure that all loads are zero for 
this group and that none of the displacement check boxes are selected on the Constraint 
tab.

1 Click the Boundaries tab and select Boundary 25, then choose washer top from the 
Group list.

2 Select Boundary 68, then choose washer bottom from the Group list.

3 Select Boundaries 17, 18, 45, and 47, then choose clamp from the Group list.

4 Select Boundaries 32, 33, 36, 37, 60, and 61, then choose mount from the Group 
drop down list.

5 Make sure the remaining boundaries belong to the free group.

6 Click OK to close the dialog box.

Subdomain Settings
The domain parameters for this model are:

GROUP WASHER TOP WASHER BOTTOM CLAMP

Page Load Load Load

Fx Fscrew/
Awasher

Fx -Fscrew/
Awasher

Fx 0

Fy 0 Fy 0 Fy 0

Fz 0 Fz 0 Fz -Ffeeder
/Afeeder

GROUP MOUNT

Page Constraint

Rx 0

Ry 0

Rz 0

SETTINGS SUBDOMAINS 1–5 

E 2.06e5

ν 0.3
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This example models the geometry in millimeters, which means that for consistency 
you must specify Young’s modulus, E, in N/mm².

1 Open the Subdomain Settings dialog box by selecting Subdomain Settings from the 
Physics menu

2 Select all subdomains by pressing Ctrl+A.

3 Click the Material tab.

4 Ignore the value for the density, a parameter that has no effect on the solution in 
this static simulation.

5 Type 2.06e5 in the E edit field.

6 Type 0.3 in the edit field for Poisson’s ratio, ν.

7 Click OK.

M E S H  G E N E R A T I O N

Change the default mesh parameters to distribute the mesh elements in a more 
reasonable way. The maximal stresses in this model will be found in the sleeve, on the 
side facing the wall. Therefore, it makes sense to require a finer mesh in the sleeve than 
in the rest of the geometry. To accomplish this, do the following:

1 Choose Free Mesh Parameters from the Mesh menu.

2 Select Coarser from the Predefined mesh sizes list, which saves memory and 
computation time.

3 To obtain a higher mesh resolution in the sleeve (Subdomain 2), click the Subdomain 
tab, select Subdomain 2, and type 3 in the Maximum element size edit field. This 
imposes an upper bound of 3 mm on the element edge lengths in Subdomain 2.
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4 Click the Remesh button.

5 Click OK.

C O M P U T I N G  T H E  S O L U T I O N

To start computing the solution, click the Solve toolbar button. COMSOL 
Multiphysics displays the results automatically as a slice plot of the von Mises stress.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 Choose Plot Parameters from the Postprocessing menu to open the Plot Parameters 
dialog box. On the General page, clear the Slice check box and then select the 
Boundary and Deformed shape check boxes to add the corresponding plot types. The 
Geometry edges plot is on by default.

2 To plot the deformation in the z direction, select z-displacement in the Predefined 

quantities field on the Boundary page. 

3 Click Apply to display a plot using the new settings (see Figure 13-4).

4 To change the view of the solution plot, work with the buttons in the Camera 
toolbar.

5 To compute the maximum inclination in the z direction, you can derive from the 
difference between the maximum and the minimum deformation in the y direction. 
Select y-displacement from the Predefined quantities list on the Boundary page in the 
Plot Parameters dialog box.

6 On the General page, select the Element selection check box and type x==5 & y==35 
in the Logical expression for inclusion edit field. Select At least one from the Element 

nodes to fulfill expression list and click OK. This plots the deformation on the inside 
of the feeder clamp. Click the Go to YZ View button to get a better view (see 
Figure 13-5).

7 To see the maximum displacement in the x direction, clear the Element selection 
check box on the General page in the Plot Parameters dialog box and type 
abs(u)>0.25 in the Expression edit field on the Boundary page. Then click OK.

To get a better view of the clamping sleeve, zoom in on the top of the clamp; click the 
Go to XY View button and use the Zoom Window button in the Main toolbar (see 
Figure 13-6).
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S t r e s s e s  i n  a  Pu l l e y

Introduction

This model contains a study of the stress distribution in a driving pulley. The analysis 
shows the stresses as functions of the pulley’s angular velocity.

Model Definition

Figure 13-8 shows the pulley under study (to the right) and the external forces applied 
due to the driving belt.

Figure 13-8: Pulley and driving belt with the external forces F1 and F2.

Here, F1 and F2 are the loads in the load side and in the slack side of the belt, 
respectively. The relationship between these forces is given by Reynold’s equation (or 
Eytelwein’s equation, as it is referred to in the German literature):

where µ is the coefficient of friction and β is the contact angle between the belt and 
the pulley. This equation is valid if a condition of impending slippage between the belt 
and the pulley prevails.

It is also necessary to state that the peripheral force (the force that transmits the power) 
is

It is then possible to define F2 as

ω

θ
F2

F1

β 170°=

F1
F2
------ eµ β⋅

=

Fu F1 F2–
M
r

-----= =
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Now that you know the force in the slack side of the belt, you can derive the loads on 
the boundary of the pulley. In mechanics and the theory for flexible wires the following 
equilibrium equations appear:

where Fn is the normal component and Ft the tangential component of the external 
forces, S is the tension force, and r is the radius.

If you apply these equations to this model, the loads on the boundary of the pulley 
become

and

where θ is the angle for which the forces are calculated (see Figure 13-8). 

Due to the rotation of the pulley, inertia loads are generated. These loads can be 
calculated as

where r is the radius, ω is the rotation speed, and ρ is the density.

The pulley is fixed at its inner diameter and the inertia loads are active in the entire 
geometry.

A parametric analysis shows how the rotational speed affects the stress distribution in 
the pulley. Because the power at the pulley shaft remains constant, the torque (defined 
as the ratio of the power by the rotational speed) decreases with increased speed. This 
means that with increased rotational speed, the inertial load increases while the 
driving-belt force decreases.

F2
Fu

eµ β⋅ 1–( )
-------------------------=

Fn
S
r
----=

Ft µ Fn⋅=

Fn θ( )
F2
r

------ eµ θ⋅⋅=

Ft θ( ) µ Fn θ( )⋅=

Fr r ω2 ρ⋅ ⋅=
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Results and Discussion

The following plots show the von Mises stress distribution inside the pulley for 
different rotational speeds in rpm (revolutions per minute).

As is evident from the plots, the stress distribution changes as the rotational speed 
increases.

Figure 13-9: von Mises stress distribution at n = 1000 rpm.
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Figure 13-10: von Mises stress distribution at n = 5000 rpm.

Figure 13-11: von Mises stress distribution at n = 9000 rpm.
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At the point (0.0179, 0.0535), the von Mises stress is maximal for the first rotational 
speed (n = 1000 rpm). The plot in Figure 13-12 shows how the rotational speed 
affects the von Mises stress at this specific point. First the stress decreases, but then the 
effect of the inertial loads becomes dominating and the stress begins to increase.

Figure 13-12: von Mises stress as function of rotational speed at point (0.0179, 0.0535).

Modeling in COMSOL Multiphysics

To build the geometry, and especially the shape of the holes, use the tangent drawing 
tool.

When solving, adaptive mesh refinement helps to compute accurate stresses, as the 
stress concentration is not known in advance.

Model Library path: COMSOL_Multiphysics/Structural_Mechanics/pulley
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 Select COMSOL Multiphysics>Structural Mechanics>Plane Stress, then click OK.

O P T I O N S  A N D  S E T T I N G S

1 In the Options menu, open the Constants dialog box.

2 Enter the following constants; when finished, click OK.

3 Open the Scalar Expressions dialog box available in the Options>Expressions menu 
and enter the following expressions:

NAME EXPRESSION DESCRIPTION

P 185[kW] Power at pulley shaft

mu 0.5 Coefficient of friction between pulley and belt

beta (170*pi/180)[rad] Contact angle between pulley and belt

d 5[cm] Thickness of the pulley

n 100 RPM

NAME EXPRESSION DESCRIPTION

r sqrt(x^2+y^2) Radius

theta atan2(y,x) Angle

omega n/1[min]*2*pi[rad] Rotational speed of the pulley

M P/omega Torque at pulley shaft

Fu M/r Peripheral force

F2 Fu/(exp(mu*beta)-1) Belt force in slack side

C F2/(r*d) Variable used in load mode

Fn -C*exp(mu*(theta+beta)) Normal component of the belt load

Ft mu*C*exp(mu*(theta+beta)) Tangential component of the belt 
load
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4 Choose Options>Axes/Grid Settings and give axis and grid settings according to the 
following table. On the Grid page, clear the Auto check box to enter the grid spacing 
and extra grid point. When done, click OK.

G E O M E T R Y  M O D E L I N G

1 Choose Draw>Specify Objects>Circle and define a circle centered at 
(1.2e-2, 8.5e-2) with a radius of 1.5e-2.

2 Draw another circle centered at (8e-3, 6e-2) with a radius of 1.2e-2.

3 Select both circles and click the Mirror button on the Draw toolbar. Use the default 
setting for the reflection line and click OK.

4 Click the Tangent button on the Draw toolbar.

5 In the Start area, select Edge 3 of CO1.

AXIS GRID

x min -0.03 x spacing 1e-2

x max 0.03 Extra x

y min 0.03 y spacing 1e-2

y max 0.11 Extra y 4.8e-2
R  1 3 :  S T R U C T U R A L  M E C H A N I C S  M O D E L S



6 Click the End button and select Edge 3 of C1.

7 Click OK.

8 Draw three other tangents following the previous indication but this time with the 
start and end edges as in the table below.

9 Press Ctrl+A to select all the geometry objects.

10 Click the Coerce to Solid button on the Draw toolbar.

START GEOMETRY OBJECT START EDGE END GEOMETRY OBJECT END EDGE

C1 2 C2 2

C2 2 CO2 2

CO2 2 CO1 3
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11 Click the Delete Interior Boundaries button on the Draw toolbar.

12 Press first Ctrl+C and then Ctrl+V to copy and paste the geometry.

13 Click OK in the Paste dialog box.

14 Click Rotate and enter -45 in the α edit field for the rotation angle.

15 Click OK.
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16 Select both geometries, copy and paste them at the same location, and rotate the 
new geometries with an angle of −90°.

17 Copy and paste the new geometries and rotate them with an angle of −90°.

18 Repeat the last step once.

19 Click Zoom Extents.

20 Draw two circles centered at the origin with the radii 0.025 and 0.125, respectively.

21 Click Zoom Extents.

Next, split the right side of the exterior boundary to model the belt contact boundary 
(the belt and the pulley are in contact over an angle of 170°).

1 Draw a line from (0, 0.11) to (0, 0.13).

2 Click the Rotate button and type -5 in the α edit field for the rotation angle.

3 Draw a line from (0, −0.11) to (0, −0.13).

4 Click the Rotate button and type 5 in the α edit field for the rotation angle.

5 Select the outer circle C2, and the two lines B1 and B2.

6 Click the Coerce to Solid button.

7 Select all objects (press Ctrl+A).
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8 Click the Difference button.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 In the Physics menu, open the Subdomain Settings dialog box.

2 On the Material page, click Load.

3 Select Aluminum from the library material.

4 In the thickness edit field type d.

5 Click the Load tab.

6 Type r*omega^2*rho_ps*cos(theta) in the Body load x dir. edit field and 
r*omega^2*rho_ps*sin(theta) in the Body load y dir. edit field.

This step is a transformation from cylindrical coordinates to the Cartesian 
coordinate system by entering the components of the radial load in the x and y 
directions.

7 Click the Body load is defined as force/volume using the thickness button.

8 Click OK.

Boundary Settings
1 Open the Boundary Settings dialog box from the Physics menu.
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2 Apply the following boundary conditions:

3 Click the Edge load is defined as force/area using the thickness button.

4 Click OK.

M E S H  G E N E R A T I O N

You can expect the rate of change of stresses in the corner region to be high. Use an 
adaptive mesh algorithm to get a more suitable mesh size according to the stress 
concentration. It is therefore not necessary to start with a fine mesh. COMSOL 
Multiphysics automatically detects areas with a high rate of change of stresses and 
refines them.

BOUNDARY 57, 58, 62, 63

Page Constraint

Rx 0

Ry 0

BOUNDARY 67, 68

Page Load

Fx Fn*cos(theta)-Ft*sin(theta)

Fy Fn*sin(theta)+Ft*cos(theta)
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Click the Initialize Mesh button on the Main toolbar.

The total number of degrees of freedom should be around 11,460 (2656 elements).

C O M P U T I N G  T H E  S O L U T I O N

The rotational speed is the parameter of the parametric solver and varies from 1000 to 
9000 rpm in steps of 500 rpm.

1 Open the Solver Parameters dialog box in the Solve menu.

2 Select Parametric from the Solver list.

3 Type n in the Parameter name edit field.

4 Type 1e3:5e2:9e3 in the Parameter values edit field.

5 Select Direct (SPOOLES) in the Linear system solver list. The system matrix becomes 
symmetric, and this solver can make use of that symmetry to save memory.

Use the adaptive mesh algorithm to refine the mesh during the calculation:

6 Select the Adaptive mesh refinement check box.

7 Click the Adaptive tab and type 1.3 in the Increase number of elements by edit field.

8 Click OK.

9 Click the Solve button on the Main toolbar.
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The default plot gives the von Mises stress distribution for the highest rotational speed 
(9000 rpm).

1 To visualize the results for different values of the rotational speed, open the Plot 

Parameters dialog box from the Postprocessing menu and use the solution for the 
desired rpm value by selecting from the Parameter value list.

2 To get a line plot of the von Mises stress at a specific point as a function of the 
rotational speed, open the Cross-Section Plot Parameters dialog box.

3 On the General page, select all the solutions to plot from the Solutions to use list.

4 In the Point page, enter the coordinate of the point (0.019, 0.054).

5 Click OK.

6 Figure 13-12 shows the resulting plot.

A Note About Adaptive Mesh Refinement

During the calculation the solver refines the mesh several time. You can verify this by 
looking at the message log.
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There are two mesh refinements: The first refinement gives about 19,500 DOFs, and 
the second refinement gives the final solution with about 31,200 DOFs.

Go to Mesh mode to see the refined mesh refined after the analysis.

The adaptive mesh algorithm, when coupled with a parametric analysis, only refines the 
mesh on the results based on the last parameter. In this specific case the variation of 
the gradient of the variable is not important enough to consider different meshes for 
the different parameters. In case of large variations of the gradients, we recommend to 
proceed using a manual mesh refinement in order to have a mesh that is suitable for all 
parameters.
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S t i f f n e s s  Ana l y s i s  o f  a  
Commun i c a t i o n  Ma s t ’ s  D i a g ona l  
Moun t i n g

Introduction

Communication masts usually have a framework with a bolted triangular lattice design 
as illustrated in Figure 13-13. The diagonals of the framework are assembled from 
several parts and welded together.

When operating under a given wind load at a specific location, the antenna’s total 
rotation angle should stay below a certain limit to ensure uninterrupted 
communications. For the type of mast in this model, the engineers have determined 
that its torsional stiffness is too low, and this effect is due to the geometry of the 
diagonal mountings. The goal is to increase the stiffness of such a diagonal mounting 
by first analyzing an existing 3D CAD geometry followed by an update of the 
geometry and a new analysis. 

The model demonstrates the import of 3D CAD assemblies into COMSOL 
Multiphysics from a file and through a live connection to the SolidWorks CAD 
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software. This case also demonstrates the individual meshing of parts with the 
interactive meshing tool.

Figure 13-13: Mounting detail of a mast diagonal.

Model Definition

Start by importing and analyzing the diagonal mounting CAD assembly. The assembly 
includes only a short section of the diagonal tubing together with the other parts of 
the mounting as illustrated in Figure 13-13. Although a symmetry exists in both the 
geometry and load for this problem, this example models the entire assembly for 
illustrative purposes.

The geometry file is included in the model folder (models/COMSOL_Multiphysics/
Structural_Mechanics in the COMSOL installation directory) both as a COMSOL 
Multiphysics binary file (mast_diagonal_mounting_pt10_mt10.mphbin) 

and as a Parasolid binary file  
(mast_diagonal_mounting_pt10_mt10.x_b).  
Importing the latter file requires the CAD Import Module. 

After obtaining the stiffness of the assembly, assume that the geometry has been 
updated to improve the stiffness. Originally 10 mm, the plate thickness and mount 
thickness (see Figure 13-13) have been changed to 12 mm and 15 mm, respectively. 
You import the updated geometry file for the new analysis. These files are also included 
in the model folder with the name mast_diagonal_mounting_pt12_mt15 with the 

TubePlate

Mount

plate thicknessmount thickness
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extensions .mphbin and .x_b for the COMSOL Multiphysics and the Parasolid binary 
format, respectively.

A third approach requires that both the CAD Import Module and SolidWorks software 
be installed on your computer. Here you use the SolidWorks live connection in 
COMSOL Multiphysics to import and update the geometry. This method has the 
advantage that the boundary settings are saved between geometry updates. For 
complex problems this can result in considerable time savings. The necessary 
SolidWorks assembly and part files are included in the model folder; these are 
mast_diagonal_mounting.sldasm, mount.sldprt, plate.sldprt, and 
tube.sldprt.

M A T E R I A L  P R O P E R T I E S

Assume that the material is a structural steel. This is the default material with a Young’s 
modulus of 2.0·1011 N/m2 and a Poisson’s ratio of 0.33.

B O U N D A R Y  C O N D I T I O N S

Figure 13-14 shows the boundaries with an applied load and constrained 
displacements. Assume that the diagonal is loaded in tension by a force, F = 30 kN, 
which is transferred through the bolt to the mounting.

Figure 13-14: Boundaries with constrained displacements and applied loads.

Applied load

Fixed displacement
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Neglect contact conditions between the bolt and the mounting hole, and also neglect 
the constraint imposed on the mount by the bolt. Assume that the bolt fills out the 
entire hole volume. The load is distributed on the appropriate halves of the hole 
surfaces according to

where rmh and bmh are the hole’s radius and the thickness, respectively.

T H E  F I N I T E  E L E M E N T  M E S H

Next use the interactive meshing tool to individually mesh different parts of the 
diagonal mounting assembly. This way you can use both structured and unstructured 
meshes with various sizes on the different parts.

During the meshing procedure keep this in mind: for the identity boundary pairs, the 
destination boundary should have a finer mesh than the source boundary. The 
finite-element mesh consists of roughly 9000 tetrahedral elements and about 250 
prism elements, giving a total number of approximately 50,000 degrees of freedom. 
Figure 13-15 shows a 3D view of the mesh.

Figure 13-15: Finite-element mesh of the diagonal mounting assembly.
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Results

Figure 13-16 shows the deformed shape of the diagonal mounting assembly with a 
boundary plot of the displacement in the axial direction of the diagonal. Calculate the 
stiffness of the mounting with the equation

where dz is the axial displacement at the midplane of the holes, and F is the applied 
load.

Compare this formula for the stiffness to an ideal stiffness, which would result if the 
diagonal tube were welded to the framework and placed under the same load. 
Calculate the ideal stiffness with the equation

where rtb and Rtb are the tube’s inner and outer radii, and L is the total length 
measured in the axial direction up to the mid-plane of the mount holes. For the 
material under study, E = 200 GPa is the Young’s modulus. 

S F
dz
------=

Sid
Eπ Rtb

2 rtb
2

–( )
L

-----------------------------------=
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The stiffness ratio,  is 0.42 for the case when the plate thickness and the 
mount thickness are 10 mm. With the updated geometry (plate thickness set to 12 mm 
and the mount thickness set to 15 mm), the stiffness ratio increases to 0.59.

Figure 13-16: Deformed shape and boundary plot of the axial displacement for the 
mounting assembly with an end-plate thickness of 10 mm and mount thickness of 10 mm.

Model Library path: COMSOL_Multiphysics/Structural_Mechanics/
mast_diagonal_mounting_mphbin, mast_diagonal_mounting_parasolid, 

mast_diagonal_mounting_swlive

Modeling using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator go to the New page and select 3D from the Space dimension 
list.

2 Select COMSOL Multiphysics>Structural Mechanics>Solid, Stress-Strain>Static analysis.

3 Click OK to close the Model Navigator.

SR S Sid⁄=
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I M P O R T I N G  T H E  C A D  G E O M E T R Y

Multiphysics Geometry File
1 On the File menu select Import>CAD Data From File.

2 In the Files of type list select COMSOL Multiphysics file.

3 Select the file mast_diagonal_mounting_pt10_mt10.mphbin.

4 Click Import.

Parasolid File
With the CAD Import Module you might also select the Parasolid file for import.

1 On the File menu select Import>CAD Data From File.

2 On the Files of type list select Parasolid file.

3 Select the file mast_diagonal_mounting_pt10_mt10.x_b.

4 Click Import.

SolidWorks Live Connection
With the CAD Import Module and SolidWorks software you might want to base the 
analysis on the SolidWorks assembly.

Have the file mast_diagonal_mounting.sldasm open in SolidWorks and carry out 
the following step in COMSOL Multiphysics:

On the File menu select SolidWorks Connection>Initialize to import the assembly into 
COMSOL Multiphysics.

Creating Boundary Pairs
1 Make sure all assembly parts are selected; if not, press Ctrl+A to select all parts.

The next step identifies the identity boundary pairs and creates the necessary identity 
constraints for the quantities that are equal on these boundaries.

2 Click the Create Pairs button on the Draw toolbar.

It is important that the source and destination domains be correctly defined for the 
identity pairs in the assembly. The destination should have a finer mesh than the 
source. For some of the identified identity boundaries you must interchange the source 
and destination so that they agree with the mesh you generate later on.

3 From the Physics menu select Identity Pairs>Identity Boundary Pairs.

4 In the Identity pairs list select Pair 1.

5 Click the Interchange Source and Destination button.
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6 Repeat the previous two steps for Pair 2 and Pair 3.

7 Click OK to close the Identity Boundary Pairs dialog box.

O P T I O N S  A N D  S E T T I N G S

Constants
1 On the Options menu select Constants.

2 Enter a variable with the Name Force and an Expression 30[kN].

3 Click OK.

Expressions
1 On the Options menu select Expressions>Global Expressions.

2 Enter expressions as given in the following table. Note that the last two expressions 
are for the load components; they specify both the magnitude and direction of the 
load that is applied in the opposite direction to the surface normal.

3 Click OK.

Integration Variables
Use integration coupling variables to make globally available the geometry dimensions 
as well as the displacement of a point.

1 On the Options menu select Integration Coupling Variables>Point Variables.

2 From the Point selection list choose 25.

NAME EXPRESSION

mount_th_ac mount_pos1-mount_pos2

mounthole_xarea mount_th_ac*2*mounthole_r

tube_xarea pi*(tube_R^2-tube_r^2)

Stiffness_ideal 2e11*tube_xarea/L_tot

Stiffness_current Force/z_displ

Stiffness_ratio Stiffness_current/Stiffness_ideal

mounthole_Fy -Force/2/mounthole_xarea*3/2*(1-(y/
mounthole_r)^2)*ny

mounthole_Fz -Force/2/mounthole_xarea*3/2*(1-(y/
mounthole_r)^2)*nz
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3 Enter an expression with the Name tube_r and an Expression x.

4 Repeat the previous two steps for the following points and the corresponding 
expressions.

5 Click OK.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 On the Physics menu select Boundary Settings.

2 On the Boundaries page locate the Boundary selection list and choose 22 and 30.

POINT SELECTION NAME EXPRESSION

27 tube_R x

44 mount_pos2 x

50 L_tot z

50 mounthole_r y

50 z_displ w

50 mount_pos1 x

Point 25

Point 27

Point 44 Point 50
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3 On the Load page enter mounthole_Fy in the Fy edit field and enter mounthole_Fz 
in the Fz edit field.

4 From the Boundary selection list choose 13.

5 On the Constraint page select the Rx, Ry, and Rz check boxes. Make sure their values 
are set to zero.

6 Click OK.

M E S H  G E N E R A T I O N

Generate the mesh individually for the parts using the interactive meshing tool. Start 
by meshing the parts that should have an unstructured mesh by using the free mesher.

1 On the Mesh menu select Free Mesh Parameters.

2 On the Global page locate the Predefined mesh sizes list and select Fine.

3 On the Subdomain page select Subdomains 3 and 4.

4 Click the Mesh Selected button.

5 On the Global page find the Predefined mesh sizes list and select Finer.

6 On the Subdomain page select Subdomain 1.

7 Click the Mesh Selected button. Click OK.

Now use the swept mesher on the tube.

1 On the Mesh menu select Swept Mesh Parameters.

2 From the Predefined mesh sizes list select Fine.

3 From the Subdomain selection list select 2.

4 Click the Mesh Selected button.

5 Click OK.

Figure 13-15 shows the meshed assembly.

C O M P U T I N G  T H E  S O L U T I O N

1 From the Solve menu select Solver Parameters.

2 On the Stationary page locate the Linearity list and select Linear.

3 Click OK.

4 Click the Solve button on the Main toolbar to start the analysis.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 On the Postprocessing menu select Plot Parameters.
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2 On the General page go to the Plot type area. Clear the Slice check box and select the 
Boundary and Deformed shape check boxes.

3 On the Boundary page go to the Predefined quantities list and select z-displacement.

4 Click OK to close the dialog box and to display the plot in Figure 13-16 on page 
542.

5 On the Postprocessing menu select Data Display>Global.

6 From the Predefined quantities list select Global Expressions>Stiffness_ratio.

7 Click OK. The value of the stiffness ratio, 0.42, appears in the message log at the 
bottom of the user interface.

U P D A T E  O F  C A D  G E O M E T R Y

Click the Draw Mode button on the Main toolbar.

The following steps describe how to import the CAD geometry from a COMSOL 
Multiphysics geometry file and from a Parasolid file.

Multiphysics Geometry File
1 Press Delete to delete the current geometry (first make sure that the geometry is 

selected).

2 On the File menu select Import>CAD Data From File.

3 In the Files of type list select COMSOL Multiphysics file.

4 Select the file mast_diagonal_mounting_pt12_mt15.mphbin.

5 Click Import.

Parasolid File
1 Press Delete to delete the current geometry.

2 On the File menu select Import>CAD Data From File.

3 On the Files of type list select Parasolid file.

4 Select the file mast_diagonal_mounting_pt12_mt15.x_b.

5 Click Import.

SolidWorks Live Connection
Now you can control the plate and mount thicknesses of the SolidWorks assembly from 
COMSOL Multiphysics. This is possible if you define constants that have the same 
name as the variables defining these dimensions in the SolidWorks file.

1 On the Options menu select Constants.

2 Enter a variable with the Name plate_thickness and an Expression 12e-3.
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3 Enter a variable with the Name mount_thickness and an Expression 15e-3.

4 Click OK.

5 On the File menu select SolidWorks Connection>Update to update and import the 
assembly into COMSOL Multiphysics.

Creating Boundary Pairs
Repeat the steps under “Creating Boundary Pairs” on page 543 only if you imported 
the COMSOL Multiphysics geometry or Parasolid file. Boundary pairs are retained 
with the SolidWorks live connection and do not need to be specified again.

O P T I O N S  S E T T I N G S

Integration Variables
The names of the variables are retained. Select the points and enter the corresponding 
expressions as described in “Integration Variables” on page 544.

P H Y S I C S  S E T T I N G S

Boundary Conditions
Repeat the steps under “Boundary Conditions” on page 545 only if you imported the 
COMSOL Multiphysics geometry or Parasolid file. Boundary conditions are retained 
with the SolidWorks live connection and need not be specified again.

M E S H  G E N E R A T I O N

Repeat the steps under “Mesh Generation” on page 546.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar to start the analysis.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 On the Postprocessing menu select Data Display>Global.

2 From the Predefined quantities list select Global Expressions>Stiffness_ratio.

3 Click OK. The value of the stiffness ratio, 0.59, appears in the message log at the 
bottom of the user interface.
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3D Ana l y s i s  o f  a  Fo rmu l a  One Ca r  
F r o n t  W in g

Introduction

The bodywork of Formula One (F1) cars is designed based on two important criteria: 
a car’s aerodynamics, and technical regulations (Ref. 1) set forth by the Federation 
Internationale de l’Automobile (FIA). These regulations specify a maximum allowable 
downforce, limits on body dimensions, as well as specific tests for body flexibility.

The flexibility test from Section 3.17.2 of the regulations dictates that a load be applied 
to an F1 car’s front wing with a load adaptor that has a specified geometry. The 
maximum deflection should be less than 10 mm.

This example models this test on a geometry that is based on the front wing of a Ferrari 
F1 2004 (F104001) as illustrated in Figure 13-17. The goal of this model is to 
demonstrate the use of assemblies in combination with interactive meshing while 
analyzing a body-flexibility test performed on F1 cars.

Figure 13-17: Formula One car and model of the front-wing assembly.

Model Definition

Assume that the problem is symmetric so you need to model only half of the front 
wing. Neglect contact phenomena between the load adaptor and the wing surface. A 
geometry file, f1_front_wing.mphbin, is included in the model folder 

Modeled wing assembly
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(models/COMSOL_Multiphysics/Structural_Mechanics) and consists of an 
assembly of several parts including the load adaptor (see Figure 13-18).

Figure 13-18: 3D CAD geometry of the front-wing assembly with the load adaptor for the 
flexibility test.

M A T E R I A L  P R O P E R T I E S

For the material in the front wing, assume isotropic elasticity with constitutive 
parameters and a density as in this table:

For the material in the load adaptor assume a Young’s modulus of 2.0·1011 N/m2 and 
a Poisson’s ratio of 0.33.

B O U N D A R Y  C O N D I T I O N S

Figure 13-14 shows the boundaries with an applied load or constrained displacements. 
Apply a load of -500 N on the surface of the load adaptor. You also constrain 
displacements in all directions at the upper surface of the support that connects the 

PROPERTY VALUE

Young’s modulus 0.8·1011 N/m2

Poisson’s ration 0.25

Density 1700 kg/m3

Load adaptor
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wing to the rest of the body. The mid plane along the F1 car is a symmetry plane. 
Constrain displacement in the x direction for all surfaces on this plane.

Figure 13-19: Boundaries with constrained displacements or applied load in the model.

T H E  F I N I T E  E L E M E N T  M E S H

Use the interactive meshing tool to individually mesh different parts of the wing 
assembly. This way you can use both a structured and an unstructured mesh with 
various sizes on the different parts.

For some of the parts—including the wings, parts of the air guide underneath the 
wings, and the support that fixes the assembly to the rest of the body—generate a 
structured mesh with prism elements. Achieve this with the swept mesher. Generate an 
unstructured mesh on the remaining parts by using the free mesher.

During the meshing procedure keep in mind that for the identity boundary pairs the 
destination boundary should have a finer mesh than the source boundary.

Applied load Fixed displacement

Symmetry plane
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The finite-element mesh consists of approximately 49,000 tetrahedral elements and 
roughly 3,000 prism elements, giving a total number of approximately 300,000 
degrees of freedom. Figure 13-20 shows a 3D view of the mesh.

Figure 13-20: Finite-element mesh of the front-wing assembly with the load adaptor.
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Results

The deformed shape of the wing assembly with a boundary plot of the vertical (y-) 
displacement appears in Figure 13-21.

Figure 13-21: Deformed shape and boundary plot of the y-displacement of the wing 
assembly.

It is evident from the figure that the maximum vertical displacement occurs at the back 
outer corner of the wing’s end plate. To find its value, evaluate the y-displacement at 
the point marked in Figure 13-22. The maximum value of −2.2 mm is well below the 
allowed deflection of -10 mm. It is important to realize, however, that this analysis 
shows a lower value for the y-displacement when compared to a flexibility test on an 
actual F1 car because in that case the rest of the body would also contribute to the 
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deflection. Another factor that influences the results is the choice of constitutive 
parameters.

Figure 13-22: Location of the maximum vertical deflection of the wing assembly.

Reference

1. http://www.fia.com/resources/documents/
1603301296__2006_F1_TECHNICAL_REGULATIONS.pdf

Model Library path:  
COMSOL_Multiphysics/Structural_Mechanics/f1_front_wing

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator go to the New page, then select 3D from the Space dimension 
list.

Evaluate y-displacement at this point
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2 In the list of application modes select  
COMSOL Multiphysics>Structural Mechanics>Solid, Stress-Strain>Static analysis.

3 Click OK.

I M P O R T  O F  C A D  G E O M E T R Y

1 On the File menu select Import>CAD Data From File.

2 In the Files of type list select COMSOL Multiphysics file.

3 Browse to the COMSOL34/models/COMSOL_Multiphysics/
Structural_Mechanics directory and select the file f1_front_wing.mphbin.

4 Click Import.

5 Make sure all the assembly parts are selected; if not press Ctrl+A to select all parts.

6 On the Draw menu select Use Assembly.

The next step identifies the identity boundary pairs and creates the necessary identity 
constraints for the quantities that are equal on these boundaries.

7 Click the Create Pairs button on the Draw toolbar.

It is important that the source and destination domains are correctly defined for the 
identity pairs in the assembly. The destination should have a finer mesh than the 
source. For some of the identified identity boundaries you must interchange the source 
and destination so they agree with the mesh you generate later on.

8 From the Physics menu select Identity Pairs>Identity Boundary Pairs.

9 In the Identity pairs list select Pair 5.

10 Click the Interchange Source and Destination button.

11 Repeat the previous two steps for each of the following pairs: Pair 16, Pair 17, and 
Pair 18.

12 Click OK.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 On the Physics menu select Subdomain Settings.

2 In the Subdomain selection list select Subdomains 1 through 14.

3 Enter 0.8e11 in the E (Young’s modulus) edit field, 0.25 in the ν (Poisson’s ratio) 
edit field, and 1700 in the ρ (density) edit field.

4 Click OK.
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Boundary Conditions
1 On the Physics menu select Boundary Settings.

2 On the Boundaries page locate the Boundary selection list and select Boundary 182.

3 On the Load page type -2.55e5 in the Fy edit field.

4 In the Boundary selection list choose Boundary 27.

5 On the Constraint page select the Rx, Ry and Rz check boxes. Make sure their values 
are set to zero.

6 In the Boundary selection list choose Boundaries 1, 5, 10, 14, and 19.

7 On the Constraint page select the Rx check box. Make sure its value is set to zero.

8 Click OK.

M E S H  G E N E R A T I O N

Generate the mesh individually for the parts using the interactive meshing tool. Start 
by meshing the parts that should have an unstructured mesh by using the free mesher.

1 On the Mesh menu select Free Mesh Parameters.

2 On the Global page find the Predefined mesh sizes list and select Coarse.

3 On the Subdomain page choose Subdomains 11 and 15.

4 Click the Mesh Selected button.

5 Repeat the previous three steps according to the following table.

SUBDOMAIN PREDEFINED MESH SIZE

2, 4, 7, 8 Normal

12 Fine
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At this point the mesh should look like the one in the following figure:

In the next steps you mesh one edge of each of the three main wings. By doing so 
before meshing the corresponding subdomains using the swept mesher you can have 
a structured mesh that is coarse in the cross section but still resolves the curvature of 
the edges along the wing.

1 On the Global page locate the Predefined mesh sizes list and select Extra fine.

2 On the Edge page select Edges 3, 20 and 42.

3 Click the Mesh Selected button.

4 Click OK to close the Free Mesh Parameters dialog box.

Now use the swept mesher on the wings and the other remaining parts.

1 On the Mesh menu select Swept Mesh Parameters.

2 In the Predefined mesh sizes list select Normal.

3 In the Subdomain selection list select Subdomain 1.

4 Click the Sweep Direction tab.

5 Select the Manual specification of sweep direction check box.

6 Enter 4 in the Source face edit field.

7 Enter 1 in the Target face edit field.

8 Click the Mesh Selected button.

9 Click on the Element Layers tab.
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10 Repeat Steps 2 to 9 above for the subdomains listed in the following table

11 In the Predefined mesh sizes list select Normal.

12 In the Subdomain selection list select Subdomains 6, 9, 10, 13, and 14.

13 Click the Mesh Selected button.

14 Click OK.

Figure 13-20 shows the finished mesh of the assembly.

C O M P U T I N G  T H E  S O L U T I O N

1 On the Solve menu select Solver Parameters.

2 On the Stationary page go to the Linearity list and select Linear.

3 Click OK to close the Solver Parameters dialog box.

4 Click the Solve button on the Main toolbar to start the analysis.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 On the Postprocessing menu select Plot Parameters.

2 On the General page go to the Plot type area. Clear the Slice check box, then select 
the Boundary and Deformed shape check boxes.

3 On the Boundary page find the Predefined quantities list and select y-displacement.

4 Click OK to close the dialog box and to display the plot in Figure 13-21 on page 
553.

5 On the Postprocessing menu select Point Evaluation.

6 In the Point selection list select Point 246.

7 In the Predefined quantities list select y-displacement.

8 Click OK to close the dialog box. The displacement value (−2.2 mm) appears in the 
message log at the bottom of the user interface. 

SUBDOMAIN PREDEFINED MESH SIZES SOURCE FACE TARGET FACE

3 Normal 13 10

5 Finer 23 19
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W a v e  P r o p a g a t i o n  M o d e l s  
Wave propagation models describe the propagation of electromagnetic waves, 
light, fluids, and more. For additional wave propagation models, see the chapters 
containing acoustics models, electromagnetics models, and fluid dynamics models.
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D i f f r a c t i o n  Pa t t e r n s

Introduction

This example resembles a two-slit interference experiment with water waves or sound. 
The model mimics the plane-wave excitation with two thin waveguides leading to slits 
in a screen and computes the diffraction pattern on the other side of the screen.

Model Definition

Theory predicts amplitude minima along rays where the difference in travel distance is 
an odd multiple of half the wavelength, and maxima at even multiples. For 
n = 0, ±1, ±2, …:

In this model, the distance D between the slits is 2λ. Maxima should then be present 
at θ = 0° and 30°, while minima should appear at θ = 14.48° and 48.59°.

Equation
For time-harmonic propagation, the wave equation turns into the Helmholtz 
equation:

Boundary Conditions
The absorbing boundary conditions have the form

min,  θsin n 1
2
---+⎝ ⎠

⎛ ⎞ λ
D
----=

max,  θsin n λ
D
----=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

∇– u∇( ) k2u–⋅ 0,       k 2π
λ

------= =

n u∇( )⋅ iku+ 2ik,    inflow=

n u∇( )⋅ iku+ 0,       outflow.=
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Results

The plot above shows the diffraction pattern clearly. The effect of quantization is that 
the numerical wavelength differs from λ, which results in a shift of the angles. You can 
correct for this effect by adjusting the value of k in the Helmholtz equation to the 
element size. These practices are important for modeling the interference effects of 
monochromatic waves.

Model Library path:  

COMSOL_Multiphysics/Wave_Propagation/diffraction_patterns

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 2D in the Space dimension list.

2 In the list of application modes, open COMSOL Multiphysics>PDE Modes and then 
PDE, Coefficient Form.
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3 Select Stationary analysis. Make sure that Lagrange - Quadratic elements are selected 
in the Element list.

4 Click OK.

O P T I O N S  A N D  S E T T I N G S

1 Open the Axes/Grid Settings dialog box.

2 Set the axes and grid settings according to the following table:

3 Open the Constants dialog box.

4 Enter the following constants (the descriptions are optional):

G E O M E T R Y  M O D E L I N G

1 Draw a circle with its center at (0.5, 0) and a radius of 1.

2 Draw a rectangle centered at (0, 0) with sides of 1 and 2 units for the x and 
y direction, respectively.

3 Select both objects and click the Difference button to create a half circle.

4 Draw a rectangle with its lower left corner at (0, -0.015) and upper right corner at 
(0.5, 0.015).

5 Click the Move button and set the y-displacement to 0.1. Leave the x-displacement 
at 0.

6 Click OK.

7 Duplicate and place the rectangle by pressing Ctrl+C and then Ctrl+V.

8 Click the Move button again and set the x- and y-axis displacements to 0 and -0.2, 
respectively.

9 Select all objects.

10 From the Draw menu, choose Create Composite Object.

AXIS GRID

x min -0.75 x spacing 0.5

x max 2.25 Extra x

y min -1 y spacing 0.5

y max 1 Extra y -0.015 0.015

NAME EXPRESSION DESCRIPTION

l 0.1 Wavelength (m)

k 2*pi/l Wave number (rad/m)
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11 In the Set formula edit field, type CO1+R1+R2.

12 Clear the Keep interior boundaries check box.

13 Click OK.

14 Click the Zoom Extents button on the Main toolbar.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu, choose Boundary Settings.

2 In the Boundary Settings dialog box, enter these boundary conditions (i denotes the 
imaginary unit):

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings.

SETTINGS BOUNDARIES 1, 4 
(INFLOW)

BOUNDARIES 2, 3, 5–9 BOUNDARIES 10, 11 
(OUTFLOW)

Type Neumann Neumann Neumann

q i*k 0 i*k

g 2*i*k 0 0
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2 In the Subdomain Settings dialog box, enter the following PDE coefficients:

M E S H  G E N E R A T I O N

1 In the Free Mesh Parameters dialog box, click the Global tab

2 Click the Custom mesh size button, then enter 0.03 in the Maximum element size edit 
field (approximately 3 second-order elements per wavelength).

3 Click the Remesh button, then click OK.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

By default, COMSOL Multiphysics plots the real part of the solution using the jet 
colormap. To make the diffraction pattern appear even more clearly, change to the 
wave colormap as follows:

1 Click the Plot Parameters button on the Main toolbar.

2 On the Surface page, select wave from the Colormap list in the Surface color area.

3 Click OK.

Modeling Using the Programming Language

1 Initialize the FEM structure:

clear fem
fem.shape = 2;
fem.sshape = 2;
fem.const = {'k',2*pi/0.1};

2 Create the problem geometry:

c1 = circ2(0.5,0,1);
r1 = rect2(-0.5,0.5,-1,1);
r2 = rect2(0,0.5,0.085,0.115);
r3 = rect2(0,0.5,-0.115,-0.085);
fem.geom = (c1-r1)+r2+r3;

3 Define the boundary conditions:

SETTINGS SUBDOMAIN 1

c 1

a -k^2

f 0
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fem.bnd.q = {'i*k',0,'i*k'};
fem.bnd.g = {'2*i*k',0,0};
fem.bnd.ind = [1 2 2 1 2 2 2 2 2 2 2 3 3];

4 Specify the PDE coefficients:

fem.equ.c = 1;
fem.equ.a = '-k^2';

5 Initialize the mesh using a maximum element size of 0.03:

fem.mesh = meshinit(fem,'hmax',0.03);

6 Solve the problem using the stationary solver:

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);

7 Plot the real part of the complex solution:

postplot(fem,'tridata','u','axisequal','on','trimap','wavemap')

8 Generate an animation:

postmovie(fem,'tridata','u','axisequal','on')
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 15
B e n c h m a r k  M o d e l s
Benchmark models are those with known results from experiments and 
measurements, from analytical solutions and formulas, or from established 
benchmark problems published by organizations such as NAFEMS. Many of the 
other examples in the Model Library and the COMSOL Multiphysics modules are 
benchmark models as well. Most introductory models in the COMSOL 
Multiphysics Modeling Guide compare results to theoretical values or established 
benchmark data.
 567



568 |  C H A P T E
I s o s p e c t r a l  D r um s

Introduction

This example examines an interesting question posed by Mark Kac in 1966 (Ref. 1): 
“Can one hear the shape of a drum?” 

Striking a drum excites a spectrum of vibration modes that together make up the 
instrument’s characteristic sound or acoustic signal. These vibration modes correspond 
to the eigenmodes, or eigenfunctions, of the drum’s membrane. Thus you can study 
this problem by solving eigenvalue problems for stretched membranes.

If you can find two differently shaped membranes that have identical eigenvalues—in 
other words, they are isospectral—then it is not possible to hear the shape of a specific 
drum.

In 1992, Gordon, Webb, and Wolpert (Ref. 2) showed that there are indeed sets of 
different planar shapes (nonisometric shapes) that are isospectral.

Work by Driscoll (Ref. 3) contains the following example of two planar shapes that 
sound the same.

Model Definition

The model shows the eigensolutions (the eigenvalues and eigenmodes) in two 
isospectral domains. For both cases, use the solution to the same eigenvalue PDE:

The membranes are fixed at the boundaries, that is, a homogeneous Dirichlet 
boundary condition for all boundaries.

∆u– λu=
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Results

The eigenvalues show that the domains are isospectral. This is one of the eigenmodes 
for the first domain:

The eigenvalues are the same for the other domain. The sign of the eigenfunction is 
arbitrary and can vary from case to case:
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Using Richardson extrapolation, the results for the first six eigenvalues of the two 
domains agree to at least five decimal places with the established values in Ref. 3.

Another postprocessing step shows that the eigensolutions are orthogonal by 
integrating the product of two different eigensolutions.

Modeling in COMSOL Multiphysics

Build two COMSOL Multiphysics models that solve the eigenvalue PDE on two 
different 2D domains and compare the sets of eigenvalues. To achieve higher accuracy 
in the results, use Richardson extrapolation, which increases the accuracy if you know 
the behavior of the numerical error.

The model also shows hot to use the with operator to access different eigenmodes 
during postprocessing.

References

1. M. Kac, “Can one hear the shape of a drum?,” American Math. Mon.,73 Part II 
(1966), pp. 1–23.

2. C. Gordon, D. Webb, and S. Wolpert, “Isospectral plane domains and surfaces via 
Riemannian orbifolds,” Invent. Math., 110 (1992), pp. 1–22.

3. T. Driscoll, “Eigenmodes of isospectral drums,” Technical Report-Center for 
Theory and Simulation in Science and Engineering, Cornell University, Ithaca, 
N.Y., CTC95TR209, May 1995.

Model Library path: COMSOL_Multiphysics/Benchmarks/isospectral_drum1

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 Select 2D in the Space dimension list.

2 In the list of application modes, open COMSOL Multiphysics>PDE Modes and then PDE, 

Coefficient Form. Select Eigenvalue analysis. Make sure Lagrange - Quadratic elements 
are selected.

3 Click OK.
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O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, select Axes/Grid Settings.

2 Click the Axis tab.

3 Clear the Axis equal check box and enter axis limits from the table below.

4 Click the Grid tab.

5 Clear the Auto check box and enter grid line from the table below

6 Click OK.

G E O M E T R Y  M O D E L I N G — T H E  F I R S T  I S O S P E C T R A L  D R U M

1 Draw a series of lines between the following points: (−3, −3), (−3, −1), (1, 3), (1, 1), 
(3, 1), (1, −1), (−1, −1), and (−1, −3).

2 Close the polygon by clicking the right mouse button.

P H Y S I C S  S E T T I N G S

Boundary Conditions
There is no need to change the boundary coefficients. The default Dirichlet condition 
u = 0 on the boundary is correct. This value corresponds to clamping the drum’s 
membrane at the edges.

Subdomain Settings
The following equation describes a general eigenvalue PDE:

so use the default values c = 1 and da = 1. All other coefficients are equal to 0 by default 
(the source term f is 1 but is not part of the eigenvalue PDE).

M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar to create a mesh.

AXIS GRID

x min -4 x spacing 1

x max 4 Extra x

y min -3 y spacing 1

y max 3 Extra y

∇ c∇u αu+( )⋅– β∇u au+ + daλu=
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C O M P U T I N G  T H E  S O L U T I O N

Solve the problem. The default settings give the six lowest eigenvalues.

P O S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Plot some of the eigenfunctions associated with the eigenvalues. Select the 
corresponding eigenvalue from the Eigenvalue list on the General page in the Plot 

Parameters dialog box. The plot shows the oddly shaped drum seen from above.

Model Library path: COMSOL_Multiphysics/Benchmarks/isospectral_drum2

G E O M E T R Y  M O D E L I N G — T H E  S E C O N D  I S O S P E C T R A L  D R U M

1 Draw a sequence of lines between the following points: (−3, −1), (−3, 1), (1, 1), 
(1, 3), (3, 1), (1, −1), (−1, −1), (−1, −3).

2 Close the polygon by right clicking the mouse.

In setting boundary and PDE coefficients, follow the same procedure as for the first 
drum.

P O S T P R O C E S S I N G

Showing that the Eigenmodes are Orthogonal
Use the with operator to access different eigenmodes in order to show that they are 
orthogonal:

1 From the Postprocessing menu, choose Subdomain Integration.

2 Select Subdomain 1.

3 Type with(1,u)*with(2,u) in the Expression edit field. This specifies an integrand 
that is the product of the first and the second eigenmode.

4 Click Apply.

The value, which should be very small (in the order of 10−15), appears in the message 
log at the bottom of the COMSOL Multiphysics user interface. Ideally, the result 
should be zero when the eigenmodes are orthogonal, but using a numerical method 
you can expect a small nonzero number.
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Note: The following section requires that you run COMSOL Multiphysics with 
COMSOL Script or MATLAB.

To improve the accuracy of the eigenvalues, continue with COMSOL Script or 
MATLAB using Richardson extrapolation. First export the model:

From the File menu, choose Export FEM Structure. Then continue with the instructions 
on Richardson extrapolation in the section below.

Modeling Using the Programming Language

The following sequence of commands finds the eigenvalues and the corresponding 
eigenfunctions for the first drum:

1 Initialize the FEM structure and create the geometry and mesh:

clear fem
fem.shape = 2;
fem.sshape = 2;
fem.geom = poly2([-3,-3, 1, 1, 3, 1, -1, -1], ...
  [-3,-1,3,1,1,-1,-1,-3]);
fem.mesh = meshinit(fem);
fem.mesh = meshrefine(fem);

2 The eigenvalue PDE coefficients c and d for this problem are c = 1 and d = 1. Setting 
h to 1 ensures zero Dirichlet conditions on the boundaries: 

fem.equ.c = 1;
fem.equ.da = 1;
fem.bnd.h = 1;

3 Create the extended mesh and call the eigenvalue solver. Find the resulting 
eigenvalues in the field fem.sol.lambda.

fem.xmesh = meshextend(fem);
fem.sol = femeig(fem);

4 To plot the fourth eigenfunction as a surface plot, type 

postplot(fem,'tridata','u','solnum',4,'axisequal','on');

5 To model the second drum, replace the line defining the geometry with the 
following:

fem.geom = poly2([-3,-3, 1, 1, 3, 1, -1, -1], ...
  [-1,1,1,3,1,-1,-1,-3]);
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R I C H A R D S O N  E X T R A P O L A T I O N

The Richardson extrapolation part assumes that you have already created an FEM 
structure, either by exporting from COMSOL Multiphysics or by following the 
command-line instructions.

1 To begin, export or create the FEM structure for the first drum.

2 For the Richardson extrapolation, you need three meshes of different levels of 
refinement. To save the previous results, copy the FEM structure into three new 
FEM structures:

fem1 = fem;
fem2 = fem;
fem3 = fem;

3 First create a coarse mesh and solve the problem:

fem1.mesh = meshinit(fem1);
fem1.mesh = meshrefine(fem);
fem1.xmesh = meshextend(fem1);
fem1.sol = femeig(fem1);

The field fem1.sol.lambda now contains the first six eigenvalues.

4 Second, create an intermediate mesh by refining the coarse mesh and then solve the 
problem:

fem2.mesh = meshrefine(fem1);
fem2.xmesh = meshextend(fem2);
fem2.sol = femeig(fem2);

5 Now create a fine mesh by refining again and solve the problem:

fem3.mesh = meshrefine(fem2);
fem3.xmesh = meshextend(fem3);
fem3.sol = femeig(fem3);

6 Now you can extrapolate these three results. To do so you must know the error 
behavior. The numerical eigenvalue λh differs from the exact eigenvalue λ according 
to

where h is the mesh parameter describing the length of the typical triangle edges. The 
exponent 4/3 appears in the error due to the occurrence of concave corners in the 
geometry and is not dependent on the element order. The second term corresponds 
to the standard error of the finite element method using second order Lagrange 
elements.

λh λ c1h4 3⁄ c2h3 …+ + +≈
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Because you have three meshes with the parameters h, h/2, and h/4, and because you 
also have the three corresponding numerical eigenvalues λh, λh/2, and λh/4, you can 
solve for the unknowns λ, c1, and c2. This procedure yields a linear system

that you can solve by entering the following commands:

v = [1;1/2;1/4]*ones(1,3);
e = ones(3,1)*[0 4/3 4];
A = v.^e;
b = [fem1.sol.lambda;fem2.sol.lambda;fem3.sol.lambda];
x = A\b
lambda1 = x(1,:)

The vector lambda1 now contains the extrapolated values for the first drum. Notice 
that the extrapolated values are all smaller than the corresponding non-extrapolated 
values. This is because solving an eigenvalue problem is related to solving a certain 
equivalent minimization problem, and a better numerical solution typically 
corresponds to a lower value. You can also observe the same effect when refining the 
mesh (see the vector b as created above). 

Now export or create the FEM structure corresponding to the second drum and 
repeat the steps above. For comparison, remember to rename the lambda1 vector, for 
example, lambda2.

Finally, compare the Richardson extrapolation results for the first six eigenvalues of the 
two domains and note that they agree to at least five decimal places.

2.537944   3.655510   5.175560   6.537563   7.248088   9.209311 
2.537944   3.655512   5.175560   6.537560   7.248088   9.209319 

Scientists have determined values for the first six eigenvalues, and they appear in the 
list below to approximately 12 decimal places (Ref. 3).

2.53794399980
3.65550971352
5.17555935622
6.53755744376
7.24807786256
9.20929499840

1 1 1

1 1 2⁄( )4 3⁄ 1 2⁄( )3

1 1 4⁄( )4 3⁄ 1 4⁄( )3

λ
c1

c2

λh

λh 2⁄

λh 4⁄

=
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I N D E X

A absorbing boundary condition 560

AC/DC Module 53

acoustic energy 11

acoustics 5

of a muffler 10

ALE 247, 414

algebraic multigrid preconditioner 63

AMG preconditioner

see algebraic multigrid preconditioner

anode 442

antinode 21

aperture, of fracture 270

application mode

Structural mechanics 507

Weak Form, Point 313

application modes

Convection and Conduction 359

Incompressible Navier-Stokes 358

arbitrary Lagrangian-Eulerian technique 

247

Archimedes’ force 378

Argyris element 192

integration order 195

aspect ratios

avoiding large in geometries 150

axis settings 362

B backstep model

using Argyris elements 192

benchmark

drag coefficient 204

lift coefficient 204

benchmark models 567

bias

in diode model 448

bilinear interpolation 271

bipolar junction transistor 457

Black-Scholes equation 166

Bohr radius 424

Boltzmann transport theory 442, 476

Boolean operation 59

boundary condition

absorbing 560

symmetry 443

boundary integration 372

Boussinesq approximation 359, 378

bulk concentration

in transport and adsorption model 31

buoyancy force 359, 378

C capacitance 93, 97

computing 94

capacitor 93

cardiac tissue

signal propagation in 100

cathode 442

coefficient of friction 522

complex Landau-Ginzburg equations 101

Component Library 289

components, merging 299

compressible inviscid flow 230

COMSOL Multiphysics Subsystem 336

COMSOL Script

using data from 271

using functions in 273

Constants dialog box 361

constants, defining 361

constitutive relations

in electromagnetics 54

contact surface

in shock-tube problems 233

Convection and Conduction application 

mode 359

convection-diffusion equation
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in transport and adsorption model 32

coupling

local 397

coupling variable 314

crankshaft 496

cross-section plot 315, 456, 492

cubic law equation 270

current density 53

cylinder

flow of fluid past 198

D damping

in muffler 12

de Vries 128

dest operator 120

differential algebraic system 304

differential-algebraic equation system 

390

diffraction patterns 560

diffusion coefficient 270

diode 442

doping of 446

forward bias region 450

direct solver 63

discontinuous basis functions 112

discontinuous elements 111

discontinuous Galerkin method 112

dispersion tensor 261

distributed spice model

of integrated bipolar transistor 457

divergence 359

divergence operator 270

divergence-free element 192

doping 442

doping function

for diode 446

drag coefficient 204

dynamic viscosity 48, 324, 359

dynamical system 329

E eigenfrequencies

excited by speakers 21

for empty room 20

of a room 19

eigenmodes

classes of 20

of a room 19

eigenvalue analysis 496

electric charge density 53

electric displacement 53

electric energy

in capacitor 93

electric field 53

electric flux density 53

electric potential 64

electromagnetics models 53

electron energy distribution function 171

element

Argyris 192

error behavior

for eigenvalue solution 574

Euler equations of gas dynamics 230

European stock option 166

excitable media 100

extended multiphysics 310

extrusion coupling variables

for handling nonlocal couplings 178

Eytelwein’s equation 522

F fanout 475

feeder clamp

deformation of 503

Fermi level 443

ferrohydrodynamics 342

fifth-order element

Argyris 192

FitzHugh-Nagumo equations 101

fluid valve 208

fluid-structure interaction 399, 408



fractal dimension 271

free surface flow 247

friction 522

G gas dynamics 230

gate variable 102

Gauss’ law 55

geophysics 258

grid settings 362

groundwater flow 258

H heat capacity 331

heat equation 277

heat source 331

Heat transfer

application mode 330

heat transfer 358

Heat Transfer Module 122

heating with a moving laser 278

Helmholtz equation 20, 560

higher-order elements 192, 350

hydraulic head 270

hydraulic jumps 143

hydrogen atom 422

I ideality factor

in diode equation 450

Incompressible Navier-Stokes

application mode 322

Incompressible Navier-Stokes applica-

tion mode 358

initial value 447

integral constraints

handling using ODE interface 178

integrating

on boundary 372

integration order

Argyris element 195

interface conditions 399

interpolation

bilinear 271

linear 271

inviscid flow 230

isospectral drums 568

isospectral membranes 568

iterative solver 63

IV characteristics 448

K Karman vortex street 198

KdV equation 128

Korteweg 128

L Lagrange elements 350

Lagrange multiplier 447

Lagrange multipliers 249

laminar flow

analytical expression for 33

Landau-Ginzburg equations 101

laser beams 278

lift coefficient 204

linear interpolation 271

loading model 373

Lorentz force 302

Lorentz’ equation 302

M magnet brake 302

magnetic field intensity 53

magnetic flux density 53

magnetic susceptibility 349

magnetite 156

Marangoni convection 377

materials library 90

MATLAB

using functions in 273

Maxwell’s equations 442, 476

merging components 299

micromixer 219

microrobot 389

microrobot model 389

mixer, laminar static 219
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modal analysis 496

model

pulley 522

Model Library 1

Model Library models 5

model simplification

3D to 2D 357

symmetry planes 358

momentum balance 358, 377

MOS transistor 474

moving mesh 247

Moving Mesh application mode 247, 414

MPa units 496

muffler

acoustics model of 10

multicomponent diffusivities 44

multidisciplinary model 329

multiphysics

extended 310

multiphysics modeling 358

multiphysics models

Marangoni convection 377

microrobot 389

vibrations in milk containers 399

N nanocarrier systems 342

NASTRAN mesh 496

Navier’s equation 399

Navier-Stokes equations 192, 238

nojac operator 183

nonlinear solver 447

nonlocal couplings

handling using extrusion coupling vari-

ables 178

O ODE interface

for handling integral constraints 178

ODEs 238

on-off controller 331

ordinary differential equation 303, 414

orthogonal eigensolutions 572

output times 374

P p2-p1 elements 201

parametric solver 447

peristaltic pump 408

permeability 74, 303

Petrov-Galerkin streamline diffusion 112, 

232

physics mode

Structural mechanics 507

PID controller 317

Planck’s constant 422, 432

Plane Stress

pulley model 522

plasma dynamics 171

Poisson’s ratio 400

polytropic gas 230

potential between cylinders 5

potential flow 270

preconditioner

algebraic multigrid 63

pressure 19, 270, 400

principal quantum number 434

probability density function 424

for electron’s position 422

process control 317

pulley 522

Q quadratic element 309

quadrupole lens 83

quantum dots 432

quantum mechanics

models 421

quantum numbers 423

R radiation view factor 119

rate constant

in transport and adsorption model 32

regular triangular mesh 118



remanent flux density 349

resonator chambers 10

Reynold’s equation 522

Reynolds equation 270

RF Module 53

Richardson extrapolation 570, 574

rock fracture 270

rock fracture flow 270

room, eigenfrequencies of 19

S Saint-Venant’s shallow water equations 

142

sand grain, falling in water 237

Schrödinger equation 432

for electron energy levels 422

seepage velocity 260

semiconductor diode

model of 442

semiconductor models

MOS transistor 474

set difference 365

shallow water equations 142

shock tube 230, 420

Shockley-Read-Hall recombination 443, 

476

simplified model

3D to 2D 357

symmetry planes 358

Simulink 304, 310

exporting to 336

skin effect 74

sloshing tank 247

smooth step function 414

solitons 128

solute transport 258

sparsity-pattern plot 178

speed of sound 19

Spherical symmetry 156

spherical symmetry 156

SPICE parameters 459

Stefan’s constant 119

stream function 192

streamline diffusion 112, 118, 231

stress analysis of pulley 522

structural mechanics

application mode 507

Structural Mechanics Module 495

subsurface fluid flow 258

surface concentration

in transport and adsorption model 31

surface reactions 30

surface tension 377

symmetry

in loads and geometry 504

symmetry boundary condition 443, 476

symmetry planes 358

T tangential derivative variable 34, 150

telegraph equation 135

test functions 249

thermal conductivity 330

thermal controller 329

thermal expansion coefficient 378

thermostat 329

thin structures

modeling of 150

time-dependent simulation 373

time-harmonic solution 19

time-stepping

output times from 374

townsend

unit 181

transistor

bipolar 457

transmission loss, in muffler 10

transport of species 30

transport problem 111

tubular reactor 30
I N D E X | 581



582 | I N D E X
two-term Boltzmann equation 171

typographical conventions 3

U ultraweak contributions 118

ultraweak term 114

unit systems

MPa 496

upwinding stabilization 113

V variable

tangential derivative 34

vibrations in milk containers 399

viscous transfer 378

W water waves

modeling of 128

wave equation 19

weak constraint

for computation of viscous forces 199

weak constraints 249, 447

weak form 112

Weak Form, Point

application mode 313

weak mode

for points 313

weak term 116

wetting-layer system 432

Winslow smoothing 248

Y Young’s modulus 400
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