
 COMSOL
Multiphysics ®

V E R S I O N 3 . 4

REFERENCE GUIDE

How to contact COMSOL:

Benelux
COMSOL BV
Röntgenlaan 19
2719 DX Zoetermeer
The Netherlands
Phone: +31 (0) 79 363 4230
Fax: +31 (0) 79 361 4212
info@femlab.nl
www.femlab.nl

Denmark
COMSOL A/S
Diplomvej 376
2800 Kgs. Lyngby
Phone: +45 88 70 82 00
Fax: +45 88 70 80 90
info@comsol.dk
www.comsol.dk

Finland
COMSOL OY
Arabianranta 6
FIN-00560 Helsinki
Phone: +358 9 2510 400
Fax: +358 9 2510 4010
info@comsol.fi
www.comsol.fi

France
COMSOL France
WTC, 5 pl. Robert Schuman
F-38000 Grenoble
Phone: +33 (0)4 76 46 49 01
Fax: +33 (0)4 76 46 07 42
info@comsol.fr
www.comsol.fr

Germany
FEMLAB GmbH
Berliner Str. 4
D-37073 Göttingen
Phone: +49-551-99721-0
Fax: +49-551-99721-29
info@femlab.de
www.femlab.de

Italy
COMSOL S.r.l.
Via Vittorio Emanuele II, 22
25122 Brescia
Phone: +39-030-3793800
Fax: +39-030-3793899
info.it@comsol.com
www.it.comsol.com

Norway
COMSOL AS
Søndre gate 7
NO-7485 Trondheim
Phone: +47 73 84 24 00
Fax: +47 73 84 24 01
info@comsol.no
www.comsol.no

Sweden
COMSOL AB
Tegnérgatan 23
SE-111 40 Stockholm
Phone: +46 8 412 95 00
Fax: +46 8 412 95 10
info@comsol.se
www.comsol.se

Switzerland
FEMLAB GmbH
Technoparkstrasse 1
CH-8005 Zürich
Phone: +41 (0)44 445 2140
Fax: +41 (0)44 445 2141
info@femlab.ch
www.femlab.ch

United Kingdom
COMSOL Ltd.
UH Innovation Centre
College Lane
Hatfield
Hertfordshire AL10 9AB
Phone:+44-(0)-1707 284747
Fax: +44-(0)-1707 284746
info.uk@comsol.com
www.uk.comsol.com

United States
COMSOL, Inc.
1 New England Executive Park
Suite 350
Burlington, MA 01803
Phone: +1-781-273-3322
Fax: +1-781-273-6603

COMSOL, Inc.
10850 Wilshire Boulevard
Suite 800
Los Angeles, CA 90024
Phone: +1-310-441-4800
Fax: +1-310-441-0868

COMSOL, Inc.
744 Cowper Street
Palo Alto, CA 94301
Phone: +1-650-324-9935
Fax: +1-650-324-9936

info@comsol.com
www.comsol.com

For a complete list of international
representatives, visit
www.comsol.com/contact

Company home page
www.comsol.com

COMSOL user forums
www.comsol.com/support/forums

COMSOL Multiphysics Reference Guide
 © COPYRIGHT 1994–2007 by COMSOL AB. All rights reserved

Patent pending

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from COMSOL AB.

COMSOL, COMSOL Multiphysics, COMSOL Reaction Engineering Lab, and FEMLAB are registered
trademarks of COMSOL AB. COMSOL Script is a trademark of COMSOL AB.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Version: October 2007 COMSOL 3.4

C O N T E N T S

C h a p t e r 1 : C o m m a n d R e f e r e n c e

Summary of Commands 2

Commands Grouped by Function 7

User Interface Functions . 7

Solver Functions . 7

Geometry Functions . 7

Geometry Objects . 9

Mesh Functions . 11

Utility Functions . 12

Postprocessing Functions 12

Low-Level Functions . 14

Shape Function Classes . 14

Element Syntax Classes . 14

Mathematical Functions . 16

Obsolete Functions in 3.3 16

Obsolete Functions in 3.2 16

Obsolete Functions in 3.1 16

Obsolete Functions in FEMLAB 3.0 18

adaption . 20

arc1, arc2 . 28

assemble . 29

asseminit . 34

block2, block3 . 37

chamfer . 39

circ1, circ2 . 41

comsol. . 43

cone2, cone3 . 44

curve2, curve3 . 46

cylinder2, cylinder3 . 48

dst, idst . 50

econe2, econe3 . 51

elcconstr . 53
C O N T E N T S | i

ii | C O N T E N T S
elconst. . 54

elcontact . 55

elcplextr . 58

elcplgenint . 61

elcplproj . 63

elcplscalar . 66

elcurlconstr . 68

elempty . 69

elepspec . 72

eleqc . 74

eleqw . 76

elevate . 78

elgeom. . 79

elgpspec . 80

elinline . 82

elinterp . 84

elinv. . 86

elirradiation . 87

ellip1, ellip2 . 89

ellipsoid2, ellipsoid3 . 91

elkernel . 93

elmapextr . 95

elmesh . 98

elode . 99

elpconstr . 101

elpiecewise . 103

elplastic . 105

elpric . 107

elsconstr . 108

elshape . 110

elshell_arg2 . 113

eluwhelm . 117

elvar . 118

embed . 119

extrude . 120

face3 . 122

femdiff . 124

femeig . 126

femlin . 129

femmesh . 134

femmesh/get . 140

femnlin. 141

femplot . 147

femsim. 149

femsol . 153

femsolver. 155

femstate . 170

femstatic . 172

femstruct . 175

femtime . 176

femwave . 181

fillet . 186

flcompact. 187

flcontour2mesh . 188

flc1hs, flc2hs, fldc1hs, fldc2hs 189

flform . 190

flim2curve . 192

flload . 194

flmesh2spline . 195

flngdof . 197

flnull . 198

flreport . 200

flsave . 201

flsmhs, flsmsign, fldsmhs, fldsmsign 202

gencyl2, gencyl3 . 203

geom0, geom1, geom2, geom3. 205

geom0/get, geom1/get, geom2/get, geom3/get 209

geomanalyze . 211

geomarrayr . 213

geomcoerce. 215

geomcomp . 216

geomcsg . 217

geomdel . 222

geomedit . 224

geomexport. 225

geomfile . 226
C O N T E N T S | iii

iv | C O N T E N T S
geomgetwrkpln . 229

geomgroup . 231

geomimport. 233

geominfo . 236

geomobject . 243

geomplot . 244

geomposition . 249

geomspline . 250

geomsurf . 252

getparts . 253

helix1, helix2, helix3 . 254

hexahedron2, hexahedron3 255

line1, line2 . 256

loft . 257

mesh2geom . 261

meshbndlayer . 263

meshcaseadd . 266

meshcasedel . 268

meshcopy . 269

meshdel . 271

meshembed . 273

meshenrich . 274

meshexport . 277

meshextend . 278

meshextrude . 280

meshhex2tet . 282

meshimport . 284

meshinit . 287

meshintegrate . 297

meshmap . 299

meshplot . 303

meshpoi . 310

meshquad2tri . 311

meshqual . 313

meshrefine . 315

meshrevolve . 317

meshsmooth . 319

meshsweep . 321

mirror . 325

move . 326

multiphysics . 327

pde2draw . 335

pde2geom . 336

pde2fem . 337

point1, point2, point3 . 338

poisson . 340

poly1, poly2 . 342

postanim . 343

postarrow . 344

postarrowbnd . 345

postcont . 346

postcoord . 347

postcrossplot . 349

postdataplot . 356

posteval . 357

postflow . 361

postglobaleval . 362

postglobalplot . 364

postgp . 366

postint . 367

postinterp . 369

postiso. 372

postlin . 373

postmax . 374

postmin . 375

postmovie . 376

postplot . 378

postprinc . 393

postprincbnd . 394

postslice . 395

postsurf . 396

posttet. 397

pyramid2, pyramid3 . 398

rect1, rect2 . 400

revolve . 402

rotate . 403
C O N T E N T S | v

vi | C O N T E N T S
scale . 405

sharg_2_5 . 406

shbub . 407

shcurl . 408

shdens . 409

shdisc . 410

shdiv . 411

shgp. 412

shherm . 413

shlag . 414

shuwhelm . 415

solid0, solid1, solid2, solid3 416

solsize . 418

sphere3, sphere2 . 419

split . 421

square1, square2 . 422

tangent . 424

tetrahedron2, tetrahedron3. 426

torus2, torus3 . 427

xmeshinfo . 429

C h a p t e r 2 : D i a g n o s t i c s

Error Messages 436

2000–2999 Geometry Modeling 436

4000–4999 Mesh Generation 437

6000–6999 Assembly and Extended Mesh 439

7000—7999 Solvers and Preconditioners. 442

9000–9999 General Errors 445

Solver Error Messages . 447

C h a p t e r 3 : T h e F i n i t e E l e m e n t M e t h o d

Understanding the Finite Element Method 452

Mesh . 452

Finite Elements . 452

Discretization of the Equations 470

What Equations Does COMSOL Multiphysics Solve? 476

The Equation System/Solution Forms 477

The Full Equation System. 478

Notes on Constraints in Multiphysics Models 479

C h a p t e r 4 : A d v a n c e d G e o m e t r y T o p i c s

Advanced Geometry Topics 482

Rational Bézier Curves 482

Conic Sections. 483

Cubic Curves . 484

Rational Bézier Surfaces 484

Parameterization of Curves and Surfaces 487

Geometric Variables . 489

C h a p t e r 5 : A d v a n c e d S o l v e r T o p i c s

Advanced Solver Settings 492

Constraint Handling, Null-Space Functions, and Assembly Block Size . . 492

Settings Related to Complex-Valued Data and Undefined Operations . . 493

Storing Solutions on File 494

Solution Form . 494

Manual Control of Reassembly. 496

Scaling of Variables and Equations 497

Constraint Handling. 499

Solver Algorithms 501

The Nonlinear Solver Algorithm 501

The Augmented Lagrangian Solver Algorithm 502

The Time-Dependent Solver Algorithm 502

The Eigenvalue Solver Algorithm 503

The Parametric Solver Algorithm. 504
C O N T E N T S | vii

viii | C O N T E N T S
The Stationary Segregated Solver Algorithm 504

The Adaptive Solver Algorithm 505

References . 507

Linear System Solvers 508

The UMFPACK Direct Solver 508

The SPOOLES Direct Solver 509

The PARDISO Direct Solver 509

The TAUCS Cholesky Direct Solver 510

The TAUCS LDLT Direct Solver 511

The GMRES Iterative Solver. 511

The FGMRES Iterative Solver 512

The Conjugate Gradients Iterative Solver 512

Convergence Criteria . 513

References . 514

Preconditioners for the Iterative Solvers 516

The Incomplete LU Preconditioner 516

The TAUCS Incomplete Cholesky Preconditioner 518

The Geometric Multigrid Solver/Preconditioner 518

The Algebraic Multigrid Solver/Preconditioner. 526

The SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms . . . 527

The SSOR Vector, SOR Vector, and SORU Vector Algorithms 528

The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms 530

The Vanka Algorithm . 530

References . 533

C h a p t e r 6 : T h e C O M S O L M u l t i p h y s i c s F i l e s

Overview 536

File Structure . 536

Records . 537

Terminology. 538

Text File Format . 538

Binary File Format . 538

Serializable Types 540

Attribute . 541

BezierCurve . 542

BezierMfd . 543

BezierSurf . 544

BezierTri . 545

BSplineCurve . 546

BSplineMfd . 547

BSplineSurf . 549

Ellipse . 550

Geom0 . 552

Geom1 . 553

Geom2 . 554

Geom3 . 556

GeomFile. 557

Manifold . 558

Mesh . 559

MeshCurve . 561

MeshSurf . 562

Plane . 563

PolChain . 564

Serializable . 565

Straight . 566

Transform . 567

VectorDouble . 568

VectorInt . 569

VectorString . 570

Examples 571

A Mesh with Mixed Element Types 571

A Planar Face . 575
C O N T E N T S | ix

x | C O N T E N T S
C h a p t e r 7 : C O M S O L E n g i n e A P I

Introduction 580

Using the COMSOL Engine API 581

Classes . 581

Example . 582

Running the Example . 583

INDEX 585

 1
C o m m a n d R e f e r e n c e
 1

2 | C H A P T E R
S umma r y o f C ommand s
adaption on page 20

arc1, arc2 on page 28

assemble on page 29

asseminit on page 34

block2, block3 on page 37

chamfer on page 39

circ1, circ2 on page 41

comsol on page 43

cone2, cone3 on page 44

curve2, curve3 on page 46

cylinder2, cylinder3 on page 48

dst, idst on page 50

econe2, econe3 on page 51

elcconstr on page 53

elconst on page 54

elcontact on page 55

elcplextr on page 58

elcplgenint on page 61

elcplproj on page 63

elcplscalar on page 66

elcurlconstr on page 68

elempty on page 69

elepspec on page 72

eleqc on page 74

eleqw on page 76

elevate on page 78

elgeom on page 79

elgpspec on page 80

elinline on page 82

elinterp on page 84

elinv on page 86

elirradiation on page 87

ellip1, ellip2 on page 89

ellipsoid2, ellipsoid3 on page 91

elmapextr on page 95
1 : C O M M A N D R E F E R E N C E

elmesh on page 98

elode on page 99

elpconstr on page 101

elpiecewise on page 103

elplastic on page 105

elpric on page 107

elshape on page 110

elshell_arg2 on page 113

eluwhelm on page 117

elvar on page 118

embed on page 119

extrude on page 120

face3 on page 122

femdiff on page 124

femeig on page 126

femlin on page 129

femmesh on page 134

femmesh/get on page 140

femnlin on page 141

femplot on page 147

femsim on page 149

femsol on page 153

femsolver on page 155

femstate on page 170

femstatic on page 172

femstruct on page 175

femtime on page 176

femwave on page 181

fillet on page 186

flcompact on page 187

flcontour2mesh on page 188

flc1hs, flc2hs, fldc1hs, fldc2hs on page 189

flform on page 190

flim2curve on page 192

flload on page 194

flmesh2spline on page 195

flngdof on page 197

flnull on page 198
S U M M A R Y O F C O M M A N D S | 3

4 | C H A P T E R
flreport on page 200

flsave on page 201

flsmhs, flsmsign, fldsmhs, fldsmsign on page 202

gencyl2, gencyl3 on page 203

geom0, geom1, geom2, geom3 on page 205

geom0/get, geom1/get, geom2/get, geom3/get on page 209

geomanalyze on page 211

geomarrayr on page 213

geomcoerce on page 215

geomcomp on page 216

geomcsg on page 217

geomdel on page 222

geomedit on page 224

geomexport on page 225

geomfile on page 226

geomgetwrkpln on page 229

geomgroup on page 231

geomimport on page 233

geominfo on page 236

geomobject on page 243

geomplot on page 244

geomposition on page 249

geomspline on page 250

geomsurf on page 252

getparts on page 253

helix1, helix2, helix3 on page 254

hexahedron2, hexahedron3 on page 255

line1, line2 on page 256

loft on page 257

mesh2geom on page 261

meshbndlayer on page 263

meshcaseadd on page 266

meshcasedel on page 268

meshcopy on page 269

meshdel on page 271

meshembed on page 273

meshenrich on page 274

meshexport on page 277
1 : C O M M A N D R E F E R E N C E

meshextend on page 278

meshextrude on page 280

meshhex2tet on page 282

meshimport on page 284

meshinit on page 287

meshintegrate on page 297

meshmap on page 299

meshplot on page 303

meshpoi on page 310

meshquad2tri on page 311

meshqual on page 313

meshrefine on page 315

meshrevolve on page 317

meshsmooth on page 319

meshsweep on page 321

mirror on page 325

move on page 326

multiphysics on page 327

pde2draw on page 335

pde2geom on page 336

pde2fem on page 337

point1, point2, point3 on page 338

poisson on page 340

poly1, poly2 on page 342

postanim on page 343

postarrow on page 344

postarrowbnd on page 345

postcont on page 346

postcoord on page 347

postcrossplot on page 349

postdataplot on page 356

posteval on page 357

postflow on page 361

postglobaleval on page 362

postglobalplot on page 364

postgp on page 366

postint on page 367

postinterp on page 369
S U M M A R Y O F C O M M A N D S | 5

6 | C H A P T E R
postiso on page 372

postlin on page 373

postmax on page 374

postmin on page 375

postmovie on page 376

postplot on page 378

postprinc on page 393

postprincbnd on page 394

postslice on page 395

postsurf on page 396

posttet on page 397

pyramid2, pyramid3 on page 398

rect1, rect2 on page 400

revolve on page 402

rotate on page 403

scale on page 405

sharg_2_5 on page 406

shbub on page 407

shcurl on page 408

shdens on page 409

shdisc on page 410

shdiv on page 411

shgp on page 412

shherm on page 413

shlag on page 414

shuwhelm on page 415

solid0, solid1, solid2, solid3 on page 416

solsize on page 418

sphere3, sphere2 on page 419

split on page 421

square1, square2 on page 422

tangent on page 424

tetrahedron2, tetrahedron3 on page 426

torus2, torus3 on page 427

xmeshinfo on page 429
1 : C O M M A N D R E F E R E N C E

Command s G r oup ed b y Fun c t i o n

User Interface Functions

Solver Functions

Geometry Functions

FUNCTION PURPOSE

comsol Start the COMSOL Multiphysics graphical user interface or a
COMSOL Multiphysics server

FUNCTION PURPOSE

adaption Solve PDE problem using adaptive mesh refinement

femeig Solve eigenvalue PDE problem

femlin Solve linear stationary PDE problem

femnlin Solve nonlinear stationary PDE problem

femstatic Solve stationary PDE problem

femtime Solve time-dependent PDE problem

poisson Fast solution of Poisson’s equation on a rectangular grid

FUNCTION PURPOSE

chamfer Create flattened corners in 2D geometry object

elevate Elevate degrees of 2D geometry object Bézier curves

embed Embed 2D geometry object as 3D geometry object

extrude Extrude 2D geometry object to 3D geometry object

fillet Create circular rounded corners in 2D geometry object

flcontour2mesh Create boundary mesh from contour data

flim2curve Create 2D curve object from image data

flmesh2spline Create spline curves from mesh

geomanalyze Decompose and analyze geometry of FEM problem

geomarrayr Create rectangular array of geometry object

geomcoerce Coerce geometry objects

geomcomp Analyze (compose) geometry objects
C O M M A N D S G R O U P E D B Y F U N C T I O N | 7

8 | C H A P T E R
geomcsg General function for analyzing geometry objects

geomdel Delete interior boundaries

geomedit Edit geometry object

geomexport Export geometry object to file

geomfile Geometry M-file

geomgetwrkpln Retrieve work plane information

geomgroup Group geometry objects into an assembly

geomimport Import geometry object from file

geominfo Retrieve geometry information.

geomobject Create geometry object

geomplot Plot a geometry object

geomposition Position 3D geometry object

geomspline Spline interpolation

geomsurf Surface interpolation

get Get geometry object properties

getparts Extract parts from an assembly object

loft Loft 2D geometry sections to 3D geometry

mirror Reflect geometry

move Move geometry object

revolve Revolve 2D geometry object to 3D geometry object

rotate Rotate geometry object

scale Scale geometry object

split Split geometry object

tangent Create a tangent line

FUNCTION PURPOSE
1 : C O M M A N D R E F E R E N C E

Geometry Objects

FUNCTION PURPOSE

arc1, arc2 Elliptical or circular arc/solid sector

block2, block3 Rectangular block face/solid object

circ1, circ2 Circle curve/solid object

cone2, cone3 Cone face/solid object.

curve2, curve3 2D/3D rational Bézier curve object

cylinder2,
cylinder3

Cylinder face/solid object

econe2, econe3 Eccentric cone face/solid object

ellip1, ellip2 Ellipse curve/solid object

ellipsoid2,
ellipsoid3

Ellipsoid face/solid object

face3 3D rational Bézier surface object

gencyl2,
gencyl3

Straight homogeneous generalized cylinder face/solid object

geom0, geom1,
geom2, geom3

0D/1D/2D/3D geometry object

helix1,
helix2, helix3

Helix curve/face/solid object

hexahedron2,
hexahedron3

Hexahedron face/solid object

line1, line2 Open curve/solid polygon

point1,
point2, point3

1D/2D/3D point object

poly1, poly2 Closed curve/solid polygon

pyramid2,
pyramid3

Pyramid face/solid object

rect1, rect2 Rectangle curve/solid object

solid0,
solid1,
solid2, solid3

0D/1D/2D/3D solid object

sphere3,
sphere2

Sphere solid/face object

square1,
square2

Square curve/solid object
C O M M A N D S G R O U P E D B Y F U N C T I O N | 9

10 | C H A P T E R
tetrahedron2,
tetrahedron3

Tetrahedron face/solid object

torus2, torus3 Torus face/solid object

FUNCTION PURPOSE
 1 : C O M M A N D R E F E R E N C E

Mesh Functions

FUNCTION PURPOSE

femmesh Create a mesh object

flcontour2mesh Create boundary mesh from contour data

get Get mesh object properties

mesh2geom Create geometry from (deformed) mesh

meshbndlayer Create boundary layer mesh

meshcaseadd Add new mesh cases

meshcasedel Delete mesh cases

meshcopy Copy mesh between boundaries

meshdel Delete elements in a mesh

meshembed Embed a 2D mesh into 3D

meshenrich Make mesh object complete

meshexport Export meshes to file

meshextend Extend a mesh to the desired finite element types

meshextrude Extrude a 2D mesh into a 3D mesh

meshhex2tet Convert hexahedral elements to tetrahedral elements

meshimport Import meshes from file

meshinit Build an initial mesh

meshmap Build a mapped mesh

meshplot Plot mesh

meshpoi Make regular mesh on a rectangular geometry

meshquad2tri Convert quadrilateral elements to triangular elements

meshqual Mesh quality measure

meshrefine Refine a mesh

meshrevolve Revolve a 2D mesh into a 3D mesh

meshsmooth Jiggle internal points of a mesh

meshsweep Build a swept mesh

xmeshinfo Get extended mesh information
C O M M A N D S G R O U P E D B Y F U N C T I O N | 11

12 | C H A P T E R
Utility Functions

Postprocessing Functions

FUNCTION PURPOSE

assemble Assemble the stiffness matrix, right-hand side, mass matrix, and
constraints of a PDE problem

asseminit Compute initial value

femdiff Symbolically differentiate general form

femsim Create Simulink structure

femstate Create state-space model for PDE problem

femstruct FEM structure information

femwave Extend FEM structure to a wave equation problem

flcompact Compact equ/bnd/edg/pnt fields

flform Convert between PDE forms

flload Load a COMSOL Multiphysics file

flngdof Get number of global degrees of freedom

flnull Compute null space of a matrix, its complement, and the range
of the matrix

flreport Globally turn off progress window or show it

flsave Save a COMSOL Multiphysics file

multiphysics Multiphysics function

pde2draw Convert a PDE Toolbox geometry description

pde2fem Convert a PDE Toolbox model description to an FEM structure

pde2geom Convert a PDE Toolbox decomposed geometry

solsize Get number of solutions in a solution object

FUNCTION PURPOSE

femplot Description of properties common to all plot functions

meshintegrate Compute integrals in arbitrary cross sections

postanim Shorthand command for animation

postarrow Shorthand command for arrow plot in 2D and 3D

postarrowbnd Shorthand command for boundary arrow plot in 2D and 3D

postcont Shorthand command for contour plot in 2D

postcoord Get coordinates in a model
 1 : C O M M A N D R E F E R E N C E

postcrossplot Cross-section plot

posteval Evaluate expressions on subdomains, boundaries, edges, and
vertices

postflow Shorthand command for streamline plot in 2D and 3D

postglobaleval Evaluate globally defined expressions, such as solutions to ODEs

postglobalplot Plotting globally defined expressions, such as solutions to ODEs

postgp Extract Gauss points and Gauss point weights

postint Integrate expression over subdomains, boundaries, edges, and
vertices

postinterp Evaluate expressions in arbitrary points

postiso Shorthand command for isosurface plot in 3D

postlin Shorthand command for line plot

postmax Compute maximum value for expression

postmin Compute minimum value for expression

postmovie Postprocessing animation function

postplot Postprocessing plot function

postprinc Shorthand command for subdomain principal stress/strain plot
in 2D and 3D

postprincbnd Shorthand command for boundary principal stress/strain plot in
2D and 3D

postslice Shorthand command for slice plot in 3D

postsurf Shorthand command for surface plot in 2D and 3D

posttet Shorthand command for subdomain plot in 3D

FUNCTION PURPOSE
C O M M A N D S G R O U P E D B Y F U N C T I O N | 13

14 | C H A P T E R
Low-Level Functions

Shape Function Classes

Element Syntax Classes

FUNCTION PURPOSE

dst Discrete sine transform

idst Inverse discrete sine transform

FUNCTION PURPOSE

sharg_2_5 Fifth-order Argyris shape function object in 2D

shbub Bubble shape function object

shcurl Vector shape function object

shdens Density element shape function object

shdisc Discontinuous shape function object

shdiv Divergence shape function object

shgp Gauss-point shape function object

shherm Hermite shape function object

shlag Lagrange shape function object

shuwhelm Scalar plane wave basis function object

FUNCTION PURPOSE

elsconstr Coefficient and general form constraint element

elconst Global expression variable element

elcontact Contact map operator element

elcplextr Extrusion coupling variable element

elcplgenint Destination-aware integration coupling variable element

elcplproj Projection coupling variable element

elcplscalar Integration coupling variable element

elcurlconstr Vector constraint element

elempty Empty element which defines basic syntax

elepspec Evaluation and constraint point pattern declaration element

eleqc Coefficient and general form equation element

eleqw Weak form equation element
 1 : C O M M A N D R E F E R E N C E

elgeom Geometric variable element

elgpspec Integration point pattern declaration element

elinline Inline function declaration element

elinterp Interpolation function declaration element

elinv Inverse matrix component variable element

elirradiation Irradiation coupling variable element

elmapextr Extrusion map operator element

elmesh Mesh variable element

elode Global scalar variable and equation element

elpconstr Point-wise constraint element

elpiecewise Piecewise function declaration element

elplastic Plastic strain variable element

elpric Principal component and vector variable element

elshape Shape function declaration element

elshell_arg2 Shell equation element

elvar Expression variable element

FUNCTION PURPOSE
C O M M A N D S G R O U P E D B Y F U N C T I O N | 15

16 | C H A P T E R
Mathematical Functions

Obsolete Functions in 3.3

Obsolete Functions in 3.2

Obsolete Functions in 3.1

FUNCTION PURPOSE

flc1hs Smoothed Heaviside function with continuous first derivative

fldc1hs Derivative of flc1hs

flc2hs Smoothed Heaviside function with continuous second derivative

fldc2hs Derivative of flc2hs

flsmhs Smoothed Heaviside function

fldsmhs Derivative of smoothed Heaviside function

flsmsign Smoothed sign function

fldsmsign Derivative of smoothed sign function

FUNCTION PURPOSE REPLACEMENT

shvec First-order simplex vector shape element shcurl

FUNCTION PURPOSE REPLACEMENT

dxfread Import geometry from DXF file geomimport

dxfwrite Export geometry to DXF file geomexport

igesread Import 3D geometry from IGES file geomimport

stlread Import 3D geometry from STL file geomimport

vrmlread Import 3D geometry from VRML file geomimport

FUNCTION PURPOSE REPLACEMENT

flgetrules Import differentiation rules from FEMLAB 1.1

flgeomsf2 Set 2D geometry object weights on standard
form

flsde Indices of edges in a set of subdomains

flsdp Indices of points in a set of subdomains
 1 : C O M M A N D R E F E R E N C E

flsdt Indices of elements in a set of subdomains

fltrg Triangle geometry data

FUNCTION PURPOSE REPLACEMENT
C O M M A N D S G R O U P E D B Y F U N C T I O N | 17

18 | C H A P T E R
Obsolete Functions in FEMLAB 3.0

FUNCTION PURPOSE REPLACEMENT

appl2fem Expand application mode data to FEM structure multiphysics

change Change 2D geometry object

elemdefault Return available default element types for an
application mode

faceprim3 Primitive 3D face object

femiter Solve stationary PDE problem by iterative
methods

fem{n}lin

fldae Implicit DAE solver femtime

fldaek Iterative implicit DAE solver femtime

fldaspk Direct or iterative implicit DAE solver femtime

fleeceng Energy norm error estimator function adaption

fleel2 L2 norm error estimator function adaption

fleelfun Linear functional error estimator adaption

fleig Solve generalized sparse eigenvalue problem femeig

flgbit Good Broyden iterative solver fem{n}lin

flgmres GMRES iterative solver fem{n}lin

flisop2p1 Matrix M-file for Navier-Stokes Iso P2-P1
element

fllrq Iterative real symmetric definite generalized
eigenvalue solver

femeig

flngbit Good Broyden iterative solver for use with
fldaek

femtime

flngmres GMRES iterative solver for use with fldaek femtime

flntfqmr TFQMR iterative solver for use with fldaek femtime

fltfqmr TFQMR iterative solver fem{n}lin

fltpft Minimize the error for a given number of
elements

adaption

fltpqty Refine a given fraction of the elements adaption

fltpworst Refine elements with error greater than a
fraction of the worst error

adaption

multigrid Linear or nonlinear (adaptive) multigrid solver fem{n}lin

solidprim3 Primitive 3D solid object
 1 : C O M M A N D R E F E R E N C E

In FEMLAB 3.0, all FEMLAB 2.3 Element Class Methods, Element Library
Low-Level Functions, and Shape Function Class Methods are obsolete.
C O M M A N D S G R O U P E D B Y F U N C T I O N | 19

adaption

20 | C H A P T E
adaptionPurpose Solve PDE problem using adaptive mesh refinement.

Syntax fem = adaption(fem,...)
[fem.sol,fem.mesh] = adaption(fem,...)

Description fem = adaption(fem) solves a linear or nonlinear stationary PDE problem or
eigenvalue PDE problem. In addition, adaption performs adaptive mesh
refinement.

[fem.sol,fem.mesh] = adaption(fem) explicitly returns the solution structure
and the adapted mesh object.

The function adaption accepts the following property/value pairs:

TABLE 1-1: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Eefun fleel2 fleel2 Error estimation function

Eigselect vector of positive
scalars

1 Weights for eigenmodes

Geomnum integer 1 Geometry number

Hauto positive integer 7 Mesh generation
parameter for refinement
method meshinit

L2scale vector of positive
scalars

1 Scale factors for the L2
error norm

L2staborder vector of positive
integers

1 Orders in the stability
estimate for the L2 error
estimate

Maxt positive scalar Inf Maximum number of
mesh elements

Ngen scalar integer 5 (1D)
2 (2D)
1 (3D)

Maximum number of
refinements

Out fem | sol | u |
lambda | mesh |
solcompdof | Kc |
Lc | Dc | Null | ud |
Nnp | uscale | stop
| cell array of these
strings

fem
[sol,mesh]

Output variables

Resmethod weak | coefficient weak Residual computation
method
R 1 : C O M M A N D R E F E R E N C E

adaption
In addition, the common solver properties listed under femsolver are available.
Also, when using the stationary solver type, the properties listed under
femstatic apply, and for the eigenvalue solver type the properties in femeig
apply. See therefore the entries femsolver, femstatic, and femeig for more
information about the property/values.

Algorithm The algorithm solves a sequence of PDE problems using a sequence of refined
meshes. The first mesh is obtained from the mesh field in the FEM structure. The
following generations of meshes are obtained by solving the PDE problem,
computing a mesh element error indicator based on the error estimate function,
selecting a set of elements based on the element pick function, and then finally
refining these elements. The solution to the PDE problem is then recomputed. The
loop continues until the maximum number of element generations has been
reached, or until the maximum number of elements is obtained.

The PDE problem is stored in the FEM structure fem. See femstruct for details.
The adaptive solver works in one geometry at a time. The geometry number is
specified in the property geomnum. The solver does only support simplex meshes.
The residual computation method weak support all solution forms. The residual
computation method coefficient does not support the solution form weak, weak
contributions or constraints on subdomains.

First, the solver chosen by the property Solver is called.

Error Estimation
Then, the residuals in the equations are computed for all mesh elements. The error
estimation function given by the property Eefun is called with parameter Eepar.

Resorder scalar | vector 0 Order of decrease of
equation residuals

Rmethod regular | longest |
meshinit

longest Refinement method

Solver stationary |
eigenvalue

stationary Solver type

Tpfun fltpft |
fltpworst |
fltpqty

fltpft Element selection
method

Tppar Nonnegative real
number

Parameter to the element
selection method

TABLE 1-1: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
21

adaption

22 | C H A P T E
There is one predefined function available: fleel2. The function fleel2 computes
the error indicator using the L2 norm, the function fleeceng computes the error
indicator using the energy norm, and the function fleelfun computes the error
indicator using a linear functional (fleeceng and fleelfun are not yet
implemented).

The error estimator gives local error indicators (f(i,j) h(j)β(i))α Vol(j), where i is the
equation number, j is the mesh element number, h is the mesh element size, and
Vol is the mesh element volume. f(i,j) is the scaled absolute value of the ith equation
residual on the jth mesh element. The mesh element error indicator is the sum of
these local error indicators over the equation index i. The global error indicator is
the α root of the sum of the mesh element error indicators over the mesh element
index j. See the Users Guide for more information on the Adaption Solver
Algorithm.

If the eigenvalue solver is used, the weighting of the error indicators for the different
eigenfunctions is specified in the property Eigselect. The nth component of the
Eigselect vector is the weight for the error indicator of the nth eigenfunction.

Mesh Refinement
Then, a refinement of the mesh is generated based on the local error indicators. The
aim is to refine the mesh most where the errors are largest. The mesh refinements
ratios are determined by the function given in the property Tpfun, with parameter
Tppar. There are three predefined functions available: fltpft, fltpworst, and
fltpqty. fltpft tries to minimize the total error for a prescribed mesh size, namely
Tppar times the current number of mesh elements (the default Tppar is 1.7). Each
element can be refined several times. fltpworst and fltpqty refine each element
at most once. fltpworst refines the elements with an error greater than a fraction
of the worst error, whereas fltpqty refines a given fraction of the elements (the
fraction is given in the property Tppar, the default is 0.5).

The property Resorder is a scalar or vector which gives the order of decrease of the
equation residuals as the mesh size h tends to 0. If it is a vector, the residual of the
nth equation is O(hResorder(n)).

Once the mesh refinement ratios have been determined, the mesh is refined using
the method given in the property Rmethod, and the algorithm starts a new iteration.
The refinement method is either longest, regular, or meshinit. Details on the
first two refinement methods can be found in the entry on meshrefine. Meshinit
means that a new mesh is generated through a call to meshinit using the Hmesh
property to control the element sizes.
R 1 : C O M M A N D R E F E R E N C E

adaption
Convergence Control
No more than Ngen successive refinements are attempted. Refinement is also
stopped when the number of elements in the mesh exceeds Maxt.

The property Stop makes it possible to return a partially converged solution when
the nonlinear, iterative, or eigenvalue solver fails at some point. If a failure occurs,
the result from the previous iteration is returned. The output value Stop is 0 if a
complete solution was returned, 1 if a partial solution was returned, and 2 if no
solution was returned.

When the Report property is on, a progress window is shown. Information about
the progress of the adaptive process is printed after each adaptive step. You get a
message on the number of mesh elements obtained by the adaptive step, and an
error indicator. This error indicator is not an absolute error estimate. In favorable
cases there is a constant C such that C times the error indicator is an upper bound
of some norm of the error.
23

adaption

24 | C H A P T E
E X A M P L E S

Adaptive Solver Versus Regular Refinement for the Laplace Equation
Solve the Laplace equation over a circle sector

with Dirichlet boundary conditions

and compare to the exact solution.

clear fem
fem.geom = circ2-poly2([-1 0 -1],[-1 0 1]);
fem.shape = 1;
fem.equ.c = 1; fem.bnd.h = 1;
fem.bnd.r = {0 'cos(2/3*atan2(y,x))'};

2

1

1

3

4

5

6

∇– ∇u⋅ 0= in Ω
u 0= on Γ1

u 2
3
---atan2 x y,()⎝ ⎠
⎛ ⎞cos= on Γ2

⎩
⎪
⎪
⎨
⎪
⎪
⎧

R 1 : C O M M A N D R E F E R E N C E

adaption
fem.bnd.ind = [1 1 2 2 2 2];
fem.solform = 'general';

We refine the elements using the L2-norm error estimator, with error minimization
to achieve a factor of 1.3 in each step, and a maximum number of elements of 500.

fem.mesh = meshinit(fem,'hmax',0.3);
fem.xmesh = meshextend(fem);
fem = adaption(fem,'maxt',500,'eefun','fleel2',...
 'tpfun','fltpft','tppar',1.3,'report','on');
errexpr = 'abs(u-(x.^2+y.^2).^(1/3).*cos(2/3*atan2(y,x)))';
errmax = postmax(fem,errexpr)

We test how many refinements we have to use with an uniform element net:

tol = errmax;
fem.mesh = meshinit(fem,'hmax',0.3);
fem.xmesh = meshextend(fem);
errmax = 1;
i = 0;
while errmax>tol
 fem.sol = femstatic(fem);
 errmax = postmax(fem,errexpr);
 i = i+1;
 fprintf(1,'Refinement:%3d, error:%3.10f, using mesh:\n',...
 i,errmax);
 fem.mesh
 if errmax>tol
 fem.mesh = meshrefine(fem);
 fem.xmesh = meshextend(fem);
 end
end

Note that with uniform refinement, you need much more mesh elements to achieve
the same absolute error as with the adaptive method. Also note that the error is
reduced only by a small factor when the number of elements is quadrupled by the
uniform refinement. For a problem with regular solution, you can expect a O(h2)
error, but this solution is singular because u ≈ r1/3 at the origin.

Eigenmodes of a Nonconvex Geometry
Solve the eigenvalue problem

,∇– ∇u⋅ λu= in Ω
u 0= on Ω∂⎩

⎨
⎧

25

adaption

26 | C H A P T E
where the domain Ω is a polygon with some concave corners. Adapt the mesh for
the first and second eigenpair and compare. Finally, adapt the mesh using a equally
weighted sum of the error estimates of both these eigenpairs.

clear fem
fem.geom = poly2([-1,-1,-0.5,-0.5,1,1,0.5,0.5],...
 [0,-0.4,-0.4,0,0,0.6,0.6,0.2]);
fem.shape = 2;
fem.equ.da = 1; fem.equ.c = 1;
fem.bnd.h = 1;
fem.solform = 'general';

First set the adaptive solver to eigenvalue and use the L2-norm error estimator.
Adapt for the first eigenvalue and solve the problem using a maximum number of
500 triangles:

fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem = adaption(fem,'solver','eigenvalue','eefun','fleel2',...
 'eigselect',1,'maxt',500);
clf
subplot(211), postsurf(fem,'u'), axis equal
subplot(212), meshplot(fem), axis equal

Now solve the same problem but adapt for the second eigenvalue:.

fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem = adaption(fem,'solver','eigenvalue','eefun','fleel2',...
 'eigselect',2,'maxt',500);
clf
subplot(211), postsurf(fem,'u','solnum',2), axis equal
subplot(212), meshplot(fem), axis equal

Finally, generate a mesh adapted for both these eigenvalues. This can be done by
specifying a vector of weights for the errors in each eigenpair:

fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem = adaption(fem,'solver','eigenvalue','eefun','fleel2',...
 'eigselect',[1 2],'maxt',500);
clf
subplot(211), postsurf(fem,'u'), axis equal;
subplot(212), meshplot(fem), axis equal;

Cautionary The change of solution form to weak in COMSOL Multiphysics 3.3 may make it
necessary to add fem.solform = 'general'; to your script models before calling
meshextend.
R 1 : C O M M A N D R E F E R E N C E

adaption
The Coefficient residual computation method does not support weak equations and
does not take other weak contributions into account.

Diagnostics Upon termination, one of the following messages is displayed:

• Maximum number of elements reached

• Maximum number of refinements reached

Compatibility COMSOL Multiphysics 3.2: the change to weak solution may make it necessary to
add fem.solform = 'general'; to your script models before calling meshextend.

FEMLAB 3.1: error estimators fleelfun, fleeceng, and property Stop are not
supported.

The property Variables has been renamed Const in FEMLAB 2.3.

The properties epoint and tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order. See assemble for details.

The properties toln and normn has been made obsolete from FEMLAB 1.2. Ntol
replaces toln.

See Also femstruct, meshinit, meshrefine, meshextend, femeig, femlin, femnlin
27

arc1, arc2

28 | C H A P T E
arc1, arc2Purpose Create elliptical or circular arc.

Syntax c = arc1(cx,cy,a,b,theta,phi1,phi2)
c = arc2(cx,cy,a,b,theta,phi1,phi2)
c = arc1(cx,cy,r,phi1,phi2)
c = arc2(cx,cy,r,phi1,phi2)

Description c = arc1(cx,cy,a,b,theta,phi1,phi2) creates a 2D curve geometry object in
the form of an elliptical arc, centered in the coordinate given by cx and cy. The
lengths of the semi-axes are a and b, and they are rotated the angle theta. The start
and end angles are phi1 and phi2, respectively, and are specified with respect to the
semi-axes of the ellipse. The valid range of these angles is 0<=phi1, phi2<2*pi.

c = arc2(cx,cy,a,b,theta,phi1,phi2) creates a 2D solid geometry object in
the form of an elliptical sector.

c = arc1(cx,cy,r,phi1,phi2) creates a 2D curve geometry object in the form
of a circular arc, where r is the radius.

c = arc2(cx,cy,r,theta,phi1,phi2) creates a 2D solid geometry object in the
form of a circular sector.

Examples The commands below create two circular arc objects, coerce them into one curve
object and plot the result.

c1 = arc1(0,-1,1,pi/2,3*pi/2);
c2 = arc1(0,1,1,3*pi/2,pi/2);
g = geomcsg({},{c1,c2});
c = curve2(g)
geomplot(c)
axis equal

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also geom0, geom1, geom2, geom3, curve2, curve3
R 1 : C O M M A N D R E F E R E N C E

assemble
assemblePurpose Assemble the stiffness matrix, right-hand side, mass matrix, damping matrix, and
constraints of a PDE problem.

Syntax [K,L,M,N] = assemble(fem,...)
[K,L,M,N,D] = assemble(fem,...)
[K,L,M,N,D,E] = assemble(fem,...)
[D,M,...] = assemble(fem,'Out',{'D' 'M' ...}, ...)

Description assemble is a fundamental function in COMSOL Multiphysics. It assembles a PDE
problem using a finite element discretization.

For time-dependent problems, the finite element discretization is the system of
ODEs

where L is the residual vector, M is the constraint residual vector, U is the solution
vector, and Λ is the Lagrange multiplier vector. The linearization of this system uses
the stiffness matrix K, the damping matrix D, the mass matrix E, and the constraint
Jacobian matrix N given by

Here NF is the constraint force Jacobian matrix. If only ideal constraints are used
then

.

All these matrices can depend on the solution vector U. The matrices K, D, and E
can also depend on the time derivatives and .

For a stationary problem, the discretization is

and the linearized problem is

0 L U U
·

U
··

t, , ,() NF U t,()Λ–=

0 M U t,()=

K
U∂

∂L D
U
·

∂

∂L E
U
··

∂

∂L N,
U∂

∂M
–=–=,–=,–=

NF NT
=

U
·

U
··

0 L U() NF U()Λ–=

0 M U()=
29

assemble

30 | C H A P T E
where K, L, M, N and NF are evaluated for some linearization “point” U = U0.

For an eigenvalue problem, the discretization reads

where K, D, E, N and NF are evaluated for an equilibrium “point” U = U0. The
eigenvalue is denoted by λ, and the linearization point for the eigenvalue by λ0.

Valid property/value pairs for the assemble function are given in the following
table:

TABLE 1-2: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Assemtol scalar 1e-12 Assembly tolerance

Blocksize Positive integer 5000 Assembly block size

Complexfun on | off off Use complex-valued
functions with real input

Const cell array Definitions of constants

Eigname string Eigenvalue name

Eigref string 0 Linearization point for
the eigenvalue

Matherr on | off on Error for undefined
operations

Mcase non-negative integer mesh case with
largest number
of DOFs

Mesh case

Out K | L | M | N |NF | D |
E |Ksp | A | AL | BE
| C | DA | EA | F | G |
GA | H | Q | R | cell
array of these strings

[K,L,M,N]

[K,L,M,N,D]

[K,L,M,N,D,E]

Output matrices

Solcomp cell array of strings Degree of freedom
names to solve for

K U U0–() L NFΛ–=

NU M=

KU λ λ0–()DU– λ λ0–()2EU+ NFΛ–=

NU M=
R 1 : C O M M A N D R E F E R E N C E

assemble
The property Assemtol affects the assembly process. If the local stiffness matrix
elements result in a negligible global matrix entry, this element is replaced by a zero.
These zeros are removed from the matrices after the assembly process, saving space
and computational overhead (in a sparse matrix format the zero matrix entries does
not have to be stored). The tolerance is used in a relative sense. Namely if the local
matrix contribution (from one element) is and the currently
assembled global matrix is then the entry is replaced by a zero if

where []ij denotes the contribution from a local matrix to the global matrix entry
ij, and where εa is the assembly tolerance controlled by the property Assemtol. For
certain types of shape functions the procedure described above is not always safe to
perform. This is the case for shape function elements with degrees of freedoms that
are of different types, for example when a field variable and its spatial derivative is
combined (as in the shherm or sharg_2_5 elements), or when the displacement and
displacement angles are combined (as in some Euler Beam elements in the
Structural Mechanics Module). For this reason, the above process is never used for
local matrix contributions from these types of shape function elements. If the
Assemtol is zero then no elements are neglected, but the removal of zeros are still
performed. If Assemtol is negative, no elements are neglected, and zeros are not
removed from the assembled matrices.

The property Blocksize determines the number of mesh elements that are
assembled together in a vectorized manner. A low value gives a lower memory
consumption, while a high value might give a better performance.

The properties Complexfun and Matherr are described in femsolver.

The property Const gives a list of definitions of constants to be used in evaluations.
This list is a row cell array with alternating constant names and numeric values. This
list is appended to the list given in fem.const. If there is a conflict, the definition
in Const is used.

T scalar 0 Time for evaluation

U solution object |
numeric vector |
scalar

0 Solution for evaluation

TABLE 1-2: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Al Al ij,{ }=

A Aij{ }= Aij

Aij Al[]ij+ εamaxkl Al kl,<
31

assemble

32 | C H A P T E
The properties Eigname and Eigref are described in femeig. Note that assemble
has an empty default value for the property Eigname. So if you want to assemble the
matrices for an eigenvalue problem formulated using and eigenvalue name, then the
Eigname property must be given. If the variable name lambda is used and if
Eigname is not set (and if lambda is not defined in another way), then this variable
is evaluated to zero.

The property Out determines which matrices to output. Ksp is the sparsity pattern
of K. The matrices A, AL, BE, C, and Q are the contributions to the K matrix that
come from the coefficients a, α, β, c, and q, respectively. The vectors F, G, and GA
are the contributions to the L vector that come from the terms f (or F), g (or G),
and γ (or Γ), respectively. The matrix H is the contribution to the N matrix that
comes from the h coefficient. The vector R is the contribution to the M vector that
comes from the r (or R) coefficient. The matrix DA is the contribution to the D
matrix that comes from the da coefficient. The matrix EA is the contribution to the
E matrix that comes from the ea coefficient.

The property Solcomp is a cell array of degree of freedom names to solve for. This
means that the columns of the matrices D, K, and N correspond to these degrees of
freedom. Similarly, the rows of the matrices D, K, and L correspond to these degrees
of freedom.

The property T determines for which time the matrices are evaluated.

The property U determines the values of the degrees of freedom for which the
matrices are computed (i.e., the linearization point), and also their first and second
time derivatives if U is a time-dependent solution object. U can be a solution
(femsol) object, a solution vector (this has to be a column vector with values for all
the degrees of freedom in the discretized problem), or a scalar (which is expanded
to a solution vector).

Examples Sparsity Structure of Finite Element Discretization of Poisson’s Equation
Assemble the stiffness matrix, right-hand side, and constraint matrices of Poisson’s
equation

where Ω is the unit disk.

clear fem
fem.geom = circ2;

∆u– 1= in Ω
u 0= on ∂Ω⎩

⎨
⎧

R 1 : C O M M A N D R E F E R E N C E

assemble
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
[K,L,M,N] = assemble(fem);
n = size(N,1);

The sparsity structure of the FEM formulation of the PDE problem is:

spy([K,N',L;N,sparse(n,n),M]);

The column to the right corresponds to the right-hand side. You can continue and
solve the PDE problem by using the function femstatic:

fem.sol = femstatic('In',{'K' K 'L' L 'M' M 'N' N});
postsurf(fem,'u')

Compatibility FEMLAB 3.0: the properties Context and Sd are not supported and output
matrices AS, ALS, BES, CS, DAS, FS, GAS not supported.

In FEMLAB 2.3, the size of the matrices D, K, L was unaffected by Solcomp. In
FEMLAB 3.0, the size of the matrices D, K, L, and N shrinks if Solcomp is a subset
of all degree of freedom names.

The property Variables has been renamed to Const in FEMLAB 2.3.

The properties bdl, epoint, sdl, tpoint are obsolete from FEMLAB 2.2. Use
fem.xxx.gporder to specify integration order.

The outputs KM, LM, MM, NM, DM, MC, NC, NCL, MU, NU are no longer available in
FEMLAB 2.2 and later versions.

The default value for u and t is 0 in FEMLAB 1.1. In FEMLAB 1.0 it was an error
to use u or t in a level 4 expression when the properties u or t were not passed to
assemble.

See Also femstruct, femsolver, femlin, femnlin, femtime, femeig
33

asseminit

34 | C H A P T E
asseminitPurpose Compute initial value.

Syntax sol = asseminit(fem,...)
sol = asseminit(fem,'u',femsrc,...)
sol = asseminit(fem,'init',femsrc,...)

Description sol = asseminit(fem,...) computes a solution object corresponding to the
initial value expressions in the FEM structure fem.

sol = asseminit(fem,'u',femsrc,...) evaluates these initial value expressions
using the solution femsrc.sol in the source FEM structure femsrc.

sol = asseminit(fem,'init',femsrc,...) transfers the solution femsrc.sol
in the source FEM structure femsrc to the mesh in fem, using interpolation.

fem is an FEM structure or extended FEM structure. If Init is a solution object or
if Solnum has length greater than 1, then the output solution object is of the same
type as the source solution object (Init or U). Otherwise, the output solution
object is of the time-dependent type (containing also first time derivatives).

The function asseminit accepts the following property/values:

TABLE 1-3: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize integer 5000 Assembly block size

Complexfun on | off off Use complex functions with
real input

Const cell array Definition of constants

Framesrc string | cell array of
strings

reference
frame

Frame for source geometry

Gmap integer vector 0 Geometry map

Init solution object | cell
array | solution
vector | string | scalar
| FEM structure

Initial value specification

Mcase integer lowest
existing
mesh case

Mesh case

Mcasesrc integer Mcase Mesh case for source
solution

Out fem | sol | u sol Output
R 1 : C O M M A N D R E F E R E N C E

asseminit
The properties Blocksize, Complexfun, Const, and Outcomp are described in
femsolver.

The property Framesrc is needed when mapping a solution after remeshing in a
moving mesh simulation. In such a case, the source geometry does not conform to
the destination geometry. Rather, the deformed source mesh agrees with the
destination geometry if the source mesh is viewed in a certain frame. The property
Framesrc contains the name of this frame, or if there are several source geometries,
a frame name for each source geometry.

The geometry map vector Gmap tells for each geometry g in the destination FEM
structure fem the corresponding geometry number in the source FEM structure,
namely Gmap(G). If Gmap(G)=0, there is no corresponding source geometry. The
default is a trivial Gmap, that is, the geometry numbers are unchanged.

The initial values are given by the property Init. This can be:

• A solution object or a solution vector, corresponding to the extended mesh
Xmesh. That solution will be mapped to the current xmesh (fem.xmesh).

• A cell array of alternating DOF names and expressions, or a single expression. The
DOFs will be given the values of the expressions, evaluated for the solution U on
the xmesh Xmesh. In this context, a DOF name can also be the name of the time
derivative of a DOF. For example, ut is the time derivative of the DOF u.

• An FEM structure. The solution in that FEM structure will be mapped to the
current xmesh.

• A scalar. The scalar will be expanded to a solution vector.

Outcomp cell array of strings Solution components to
output

Solnum integer vector Solution numbers to use in
source solution

T real vector Time for evaluation

U solution object |
solution vector |
scalar | FEM
structure

0 Solution for evaluation

Xmesh extended mesh
object

fem.xmesh Extended mesh for source
solution

TABLE 1-3: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
35

asseminit

36 | C H A P T E
If the property Init is not given, the initial value will be computed by evaluating
the initial expressions in the FEM structure for the solution U on the xmesh Xmesh.

If the source solution (Init or U) is a numeric vector, its corresponding mesh case
number can be given in the Mcasesrc property.

The property Solnum gives the solution numbers to use in the source solution. If
the source solution is time-dependent, interpolation at the times in T can be used
instead. By default, only the last solution (first solution for eigensolutions) is used.

Compatibility The properties context, initmethod, and linsolver are obsolete from FEMLAB
3.0.

The property Variables has been renamed to Const in FEMLAB 2.3.

See Also assemble, femsolver, femlin, femnlin, femtime, adaption, meshextend
R 1 : C O M M A N D R E F E R E N C E

block2, block3
block2, block3Purpose Create a right-angled block geometry object.

Syntax obj = block3
obj = block2
obj = block3(lx,ly,lz,...)
obj = block2(lx,ly,lz,...)

Description obj = block3 creates a right-angled solid block object with all side lengths equal
to 1, one corner at the origin, and the local z-axis equal to the global z-axis. block3
is a subclass of solid3.

obj = block3(lx,ly,lz,...) creates a right-angled solid block geometry object
with positive side lengths lx, ly, and lz. lx, ly, and lz are positive real scalars, or
strings that evaluate to positive real scalars, given the evaluation context provided by
the property const.

The functions block3/block2 accept the following property/values:

axis sets the local z-axis, stated either as a directional vector of length 3, or as a
1-by-2 vector of spherical coordinates. axis is a vector of real scalars, or a cell array
of strings that evaluate to real scalars, given the evaluation context provided by the
property const. See gencyl3 for more information on axis.

pos sets the position of the object, either centered about the position or with one
corner in the position. The corresponding values of base are center and corner.
pos is a vector of real scalars, or a cell array of strings that evaluate to real scalars,
given the evaluation context provided by the property const.

TABLE 1-4: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

base corner |
center

corner Positions the object either centered
about pos or with one corner in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about axis (radians)
37

block2, block3

38 | C H A P T E
rot is an intrinsic rotational angle for the object, about its local z-axis provided by
the property axis. rot is a real scalar, or a string that evaluate to a real scalar, given
the evaluation context provided by the property const. The angle is assumed to be
in radians if it is numeric, and in degrees if it is a string.

obj = block2(...) creates a right-angled surface block geometry object with
properties as given for the block3 function. block2 is a subclass of face3.

Block objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Examples The following commands create a surface and solid block object, where the position
is defined in the two alternative ways.

b1 = block2(1,2.1,0.5,'base','center','pos',[1 0 1],...
 'axis',[0 0 1],'rot',0)
get(b1,'xyz')
b2 = block3(1,1,1,'base','corner','pos',[-1 -1 -1])
get(b2,'xyz')

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also face3, hexahedron2, hexahedron3

TABLE 1-5: BLOCK OBJECT PROPERTIES

PROPERTY DESCRIPTION

lx, ly, lz Side lengths

base Base point

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
R 1 : C O M M A N D R E F E R E N C E

chamfer
chamferPurpose Create flattened corners in 2D geometry object.

Syntax g = chamfer(g1,...)

Description g = chamfer(g1,...) creates flattened corners in 2D geometry object g1
according to given property values.

The function chamfer accepts the following property/values:

The corners to chamfer is either specified with either the property point or edges.
The default value is the all corners are chamfered.

The size of the chamfer is specified with any of the following combinations of
properties: dist1 and dist2; dist1 and angles; dist1 and lengths; and length
and angles. If only dist1 is supplied the chamfering distance is equal for both
edges. All these properties can be given as a vector or as a single value.

Examples Chamfer a rectangle in different ways.

r = rect2;
s1 = chamfer(r,'dist1',0.1);
s2 = chamfer(r,'edges',[1 2;2 3],'angles',pi/4,'lengths',0.5);

TABLE 1-6: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

angles 1-by-m vector Angles (in radians) with respect to
edges in first row of edges

dist1 1-by-m vector Distances along edges in the first
row of edges. A positive entry
states the chamfered length and a
negative entry states the remaining
length of edge after chamfering

dist2 1-by-m vector Distances along edges in second
row of edges, using same format as
dist1

edges 2-by-m matrix Pairs of edge numbers

lengths 1-by-m vector Lengths of line segments that make
up the flattened corners

out Cell array of
strings

none Determines the output

point integers | all |
none

all out
39

chamfer

40 | C H A P T E
Diagnostics If a chamfer cannot be created according to the specified properties this corner is
ignored.

When the chamfers generates intersections with other edges in the geometry, an
error message is given.

Compatibility FEMLAB 3.0: The property trim is no longer supported. Only pair of edges that
have a common vertex can be chamfered. For edges that are not linear, the linear
approximation of the edge in the corner is used to compute a chamfer.

See Also curve2, curve3, fillet
R 1 : C O M M A N D R E F E R E N C E

circ1, circ2
circ1, circ2Purpose Create circle geometry object.

obj = circ2
obj = circ1
obj = circ2(r,...)
obj = circ1(r,...)

Description obj = circ2 creates a solid circle geometry object with radius 1, centered at the
origin. circ2 is a subclass of ellip2 and solid2.

obj = circ2(r,...) creates a circle object with radius r, centered at the origin. r
is a positive real scalar, or a string that evaluates to a positive real scalar, given the
evaluation context provided by the property const.

The functions circ2/circ1 accept the following property/values:

obj = circ1(...) creates a curve circle geometry object with properties as given
for the circ2 function. circ1 is a subclass of ellip1 and curve2.

Circle objects have the following properties:

In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

TABLE 1-7: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

center Positions the object either centered
about pos or with the lower left
corner of surrounding box in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about pos (radians)

TABLE 1-8: CIRCLE OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

base Base point

x, y Position of the object

rot Rotational angle
41

circ1, circ2

42 | C H A P T E
Examples The commands below create a unit solid circle geometry object and plot it.

c1 = circ2(1,'base','center','pos',[0 0]);
get(c1,'base')
geomplot(c1)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also ellip1, ellip2, curve2, curve3
R 1 : C O M M A N D R E F E R E N C E

comsol
comsolPurpose Start COMSOL software products.

Syntax comsol
comsol server
comsol reaction

Description comsol starts the COMSOL Multiphysics graphical user interface from the
COMSOL Script command prompt or from COMSOL Script or MATLAB.

comsol server starts a COMSOL Multiphysics server within the COMSOL Script
or MATLAB process. You can connect to the COMSOL Multiphysics server from
a COMSOL Multiphysics client. The COMSOL Multiphysics client must be started
outside COMSOL Script or MATLAB.

comsol reaction starts the COMSOL Reaction Engineering Lab graphical user
interface from within the COMSOL Script or a MATLAB process. You can connect

There is also a comsol command available on the command prompt in Windows,
UNIX/Linux, and Mac. Using the COMSOL command you can start COMSOL
Multiphysics running stand alone. You can also start a COMSOL Multiphysics
client for connecting to a COMSOL Multiphysics server. The options to this
command are listed in the Installation Guide.
43

cone2, cone3

44 | C H A P T E
cone2, cone3Purpose Create a circular cone geometry object.

Syntax c3 = cone3
c2 = cone2
c3 = cone3(r,h)
c2 = cone2(r,h)
c3 = cone3(r,h,ang)
c2 = cone2(r,h,ang)
c3 = cone3(r,h,ang,...)
c2 = cone2(r,h,ang,...)

Description c3 = cone3 creates a solid circular cone geometry object with bottom radius and
height equal to 1, top radius equal to 0.5, and the center of the bottom at the origin.
cone3 is a subclass of econe3.

c3 = cone3(r,h) creates a solid circular cone geometry object, with bottom radius
r, height h, and top radius r/2.

c3 = cone3(r,h,ang) creates a solid circular cone geometry object, with bottom
radius r, height h, and the angle ang between the local z-axis and a generator of the
conical surface. ang is given in radians in the interval [0,pi/2).

The functions cone3/cone2 accept the following property/values:

For more information on input arguments and properties see gencyl3.

c2 = cone2(...) creates a surface circular cone geometry object without bottom
and top faces, according to the arguments as described for cone3. cone2 is a
subclass of econe2.

TABLE 1-9: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about axis (radians)
R 1 : C O M M A N D R E F E R E N C E

cone2, cone3
Cone objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

See geomcsg and geom for more information on geometry objects.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples Create a cone with an apex

h = 2;
r = 1;
c3 = cone3(r,h,atan(r/h));
get(c3,'ang')

Created truncated and rotated cone

c2 = cone2(r,h,atan(0.7*r/h),'pos',[1 -2 4],...
 'axis',[1 -1 0.3],'rot',pi/3);
get(c2,'ax2')

See Also cylinder2, cylinder3, econe2, econe3, face3, gencyl2, gencyl3, geom0,
geom1, geom2, geom3, geomcsg

TABLE 1-10: CONE OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

h Height

ang Semi-angle

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
45

curve2, curve3

46 | C H A P T E
curve2, curve3Purpose Create a curve object.

Syntax c3 = curve3(x,y,z)
c3 = curve3(x,y,z,w)
c3 = curve3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[c3,...] = curve3(g3,...)
c3 = curve3(g2)
c2 = curve2(x,y)
c2 = curve2(x,y,w)
c2 = curve2(vtx,edg,mfd)
[c2,...] = curve2(g2,...)

Description c3 = curve3(x,y,z) creates a 3D curve object. The degree is determined from
the number of control points given in the vectors, x, y, and z. Length 2 generates a
straight line. Lengths 3 and 4 generates rational Bézier curves of degrees 2 and 3
respectively. Unit weights are used.

c3 = curve3(x,y,z,w) works similarly to the above, but also applies the positive
weights w to the control points of the curve.

c3 = curve3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates 3D curve
geometry object c3 from the arguments vtx, vtxpre, edg, edgpre, fac, mfdpre,
and mfd. The arguments must define a valid 3D curve object. See geom3 for a
description of the arguments.

[c3,...] = curve3(g3,...) coerces the 3D geometry object g3 to a 3D curve
object c3.

c3 = curve3(g2) coerces the 2D geometry object g2 to a 3D curve object c3, by
embedding it in the plane z = 0.

c2 = curve2(x,y) creates a 2D curve object in the form of a Bézier curve, with
the control points given by the vectors x and y of the same lengths. Length 2
generates a straight line. Lengths 3 and 4 generates rational Bézier curves of degrees
2 and 3, respectively. Unit weights are used.

c2 = curve2(x,y,w) works similarly to the above, but also applies the positive
weights w to the control points of the curve.

c2 = curve2(vtx,edg,mfd) creates a 2D curve object from the properties vtx,
edg, and mfd. The arguments must define a valid 2D curve object. See geom2 for a
description of the arguments.

[c2,...] = curve2(g2,...) coerces the 2D geometry object g2 to a 2D curve
object.
R 1 : C O M M A N D R E F E R E N C E

curve2, curve3
The coercion functions [c2,...] = curve2(g2,...) and [c3,...] =
curve3(g3,...) accept the following property/values:

See geomcsg and geom for more information on geometry objects.

The nD geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom for details.

Examples The commands below compute the union of a unit circle and a unit square, coerce
the solid object to a curve object, and plot the result.

s = circ2+square2;
c = curve2(s);
geomplot(c)

The following commands generate and plot an elliptic 3D arc:

c = curve3([0 1 2],[0 1 0],[0 1 2],[1 1/sqrt(2) 1]);
geomplot(c)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also face3, geom0, geom1, geom2, geom3, geomcsg, point1, point2, point3

TABLE 1-11: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

out stx | ftx |
ctx | ptx

{} Cell array of output names.
47

cylinder2, cylinder3

48 | C H A P T E
cylinder2, cylinder3Purpose Create a cylinder geometry object.

Syntax c3 = cylinder3
c2 = cylinder2
c3 = cylinder3(r,h)
c2 = cylinder2(r,h)
c3 = cylinder3(r,h,...)
c2 = cylinder2(r,h,...)

Description c3 = cylinder3 generates a solid cylinder object, with radius and height equal to
1, axis along the z-axis and bottom surface centered at the origin. cylinder3 is a
subclass of cone3.

c3 = cylinder3(r,h) generates a solid cylinder object with radius r and height h.

The functions cylinder3/cylinder2 accept the following property/values:

For more information on input arguments and properties, see gencyl3.

c2 = cylinder2(...) creates a surface cylinder object, from arguments as
described for cylinder3. cylinder2 is a subclass of cone2.

Cylinder objects have the following properties:

TABLE 1-12: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs.

pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

rot real or string 0 Rotational angle about axis (radians)

TABLE 1-13: CYLINDER OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

h Height

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis
R 1 : C O M M A N D R E F E R E N C E

cylinder2, cylinder3
In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

See geomcsg and geom for more information on geometry objects.

Examples The following commands generates a surface cylinder object and a solid cylinder
object.

c2 = cylinder2(0.5,4,'pos',[1,1,0],'axis',[pi/2,0]);
c3 = cylinder3(20,40,'pos',[0,0,-100],'axis',[1,1,1]);

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

See Also gencyl2, gencyl3, cone2, cone3, face3, geom0, geom1, geom2, geom3,
geomcsg

ax3 Axis of symmetry

rot Rotational angle

TABLE 1-13: CYLINDER OBJECT PROPERTIES

PROPERTY DESCRIPTION
49

dst, idst

50 | C H A P T E
dst, idstPurpose Discrete sine transform.

Syntax y = dst(x)
x = idst(y)

Description y = dst(x) computes the discrete sine transform (DST) of the columns of x. For
best performance, the number of rows in x should be 2m−1, for some integer m.

y = dst(x,n) pads or truncates the vector x to length n before transforming.

If x is a matrix, the dst operation is applied to each column.

x = idst(y) calculates the inverse discrete sine transform of the columns of y. For
best performance, the number of rows in y should be 2m−1, for some integer m.

x = idst(y,n) pads or truncates the vector y to length n before transforming.

If y is a matrix, the idst operation is applied to each column.

See Also poisson
R 1 : C O M M A N D R E F E R E N C E

econe2, econe3
econe2, econe3Purpose Create eccentric cone geometry object.

Syntax ec3 = econe3
ec2 = econe2
ec3 = econe3(a,b,h)
ec2 = econe2(a,b,h)
ec3 = econe3(a,b,h,rat)
ec2 = econe2(a,b,h,rat)
ec3 = econe3(a,b,h,rat,...)
ec2 = econe2(a,b,h,rat,...)

Description ec3 = econe3 creates a solid eccentric cone geometry object with height and
semi-axes of the elliptical bottom surface equal to one, axis along the coordinate
z-axis, and the center of the bottom surface at the origin. econe3 is a subclass of
gencyl3.

ec3 = econe3(a,b,h) creates a solid eccentric cone geometry object with
semi-axes a and b, and height h.

ec3 = econe3(a,b,h,rat) creates a cone with the non-negative ratio rat
between the top and bottom surface.

The functions econe3/econe2 accept the following property/values:

For more information on input arguments and properties see gencyl3.

TABLE 1-14: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs

displ 2-by-nd
matrix

[0;0] Displacement of extrusion top

pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

rot real or string 0 Rotational angle about axis (radians)
51

econe2, econe3

52 | C H A P T E
ec2 = econe2(...) creates a surface eccentric cone geometry object, without
bottom and top faces, according to the arguments described for econe3. econe2 is
a subclass of gencyl2.

Eccentric cone objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples Create a truncated eccentric cone with the basis surface in the xy-plane.

e = econe2(10,40,20,0.5)

Create an eccentric cone with an apex, that is, a singular patch, on top.

e = econe3(1,2,4,0,'displ',[1,1],'pos',[100 100 100],...
 'axis',[0 1 4],'rot',pi/4)

See Also cone2, cone3, gencyl2, gencyl3, face3

TABLE 1-15: ECCENTRIC CONE OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b Semi-axes

r Radius

h Height

rat Ratio

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
R 1 : C O M M A N D R E F E R E N C E

elcconstr
elcconstrPurpose Define coefficient or general form constraints.

Syntax el.elem = 'elcconstr'
el.g{ig} = geomnum
el.form = 'coefficient' | 'general'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.dim{idim} = dimvarname
el.geomdim{ig}{edim}.r{eldomgrp} = rvec
el.geomdim{ig}{edim}.h{eldomgrp} = hmat
el.geomdim{ig}{edim}.cpoints{eldomgrp}{ic} = cpind

Description The elcconstr element adds a set of constraints specified in coefficient or general
form, as specified by the el.form field, to the FEM problem. For the syntax of the
ind field, see elempty. The coefficient rvec has the same syntax as the fem.bnd.r
field, while hmat corresponds to an fem.bnd.h entry. See further the section
“Specifying a Model” in the COMSOL Multiphysics Scripting Guide. The
cpoints field differs from fem.bnd.cporder in that it contains pattern indices
instead of orders, see elepspec.

Dirichlet boundary conditions are implemented using elcconstr elements if the
solution form is Coefficient or General. When assembling in the Weak solution
form, an elpconstr elements replaces the elcconstr.

Examples In a 2D model, add a Dirichlet boundary condition on u at boundary 1 and 2 using
constraint point pattern 1:

el.elem = 'elcconstr';
el.g = {'1'};
el.form = 'coefficient';
gd.ind = {{'1','2'}};
gd.dim = {'u'};
gd.r = {{'0'}};
gd.h = {{'1'}};
gd.cpoints = {{'1'}};
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

See Also elempty, elpconstr, elcurlconstr, elepspec, eleqc
53

elconst

54 | C H A P T E
elconstPurpose Define global expression variables.

Syntax el.elem = 'elconst'
el.var{2*ivar-1} = varname
el.var{2*ivar} = varexpr

Description The elconst element declares expression variables varname to be accessible across
all geometries and dimensions. The defining expressions, varexpr, can contain any
variables, including variables that are only present on some domains. Expressions are
expanded in the context where evaluation is requested.

Examples Add global expressions for the transformation between Cartesian and cylindrical
polar coordinates.

clear el;
el.elem = 'elconst';
el.var = {'r','sqrt(x^2+y^2)','phi','atan2(y,x)'};
fem.elem = [fem.elem {el}];

See Also elempty
R 1 : C O M M A N D R E F E R E N C E

elcontact
elcontactPurpose Define contact map operators.

Syntax el.elem = 'elcontact'
el.g{ig} = geomnum
el.opname{iop} = opname
el.mphname{iop} = mphname
el.gapname{iop} = gapname
el.contname{iop} = contname
el.conttol{iop} = 'auto' | abstol
el.visname{iop} = visname
el.method{iop} = 'direct' | 'ball'
el.checkdist{iop} = chkdist

el.srcframe{iop} = frame
el.srcn{iop}{idim} = srcnx_i
el.dstx{iop}{idim} = dstx_i
el.dstn{iop}{idim} = dstnx_i

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.src{iop} = eldomgrplist

Description The elcontact element defines contact map operators and related gap distance,
contact flag and visibility flag variables.When evaluated, a contact map operator
searches for the closest source (or master) point found following a ray in the dstn
direction from the point given by the dstx expressions evaluated at the destination
(or slave) point.

For each operator name, a set of master domains is specified by listing one or more
domain group indices in the corresponding el.geomdim{ig}{edim}.src{iop}
field. Normal direction expressions for the master domains are specified in the
el.srcn{iop}{idim} fields. Coordinate expressions for the master are obtained
indirectly from the frame specified in the el.srcframe{iop} field.

The map operator allows evaluation of any expression at a corresponding master
point, while the gap distance variable evaluates to the distance between master and
slave point. The optional mphname field for each map operator gives the name of a
corresponding multiphysics operator. This second operator evaluates to the same
value as the main contact operator, but its Jacobian does not contain any
contribution from the map (mesh position), only from the argument expression

The contact flag variable evaluates to a nonzero value if th.e master point is well
defined and the gap distance less than the conttol treshold value. The visibility flag
variable is nonzero if a corresponding master point was found for the slave point
where the flag is evaluated.
55

elcontact

56 | C H A P T E
There are two slightly different methods available to search for master points. The
'direct' method is a clean and stable direct search algorithm while the 'ball'
method is faster by only treating master elements inside a given ball radius
accurately. This ball radius can be set using the checkdist field, and should
normally be larger than any mesh element taking part in the search.

Cautionary The elcontact element is only implemented for boundaries. That is, no edge-edge,
edge-boundary or similar contact can be detected and evaluated.

The computation of complete Jacobians rely on the availability of spatial derivatives
of the mapped expression with respect to local coordinate directions. These local
derivatives cannot be calculated for all variables, a notable example being any global
spatial derivatives. Therefore, for expressions like map(uTx) some Jacobian
contributions will be missing.

Examples Evaluate and display the distance from a hard surface to the closest point of a
cylinder lying on its side on the surface.

clear fem;
fem.geom = ...
rect2(2,0.2,'pos',[-1,-0.2])+circ2(0.8,'pos',[0,0.8]);
fem.mesh = meshinit(fem);
fem.sshape = 2;

clear el;
el.elem = 'elcontact';
el.g = {'1'};
el.opname = {'map'};
el.gapname = {'gap'};
el.visname = {'vis'};
el.method = 'ball';
el.checkdist = '1';
el.srcframe = {'xy'};
el.srcn = {{'nx','ny'}};
el.dstx = {{'x','y'}};
el.dstn = {{'nx','ny'}};

clear src11
src11.ind = {{'3','4'}};
src11.src = {{'1'}};
el.geomdim{1} = {{},src11};

fem.elem = {el};
fem.xmesh = meshextend(fem);
fem.sol = asseminit(fem);
R 1 : C O M M A N D R E F E R E N C E

elcontact
postcrossplot(fem,1,[6 8],'lindata','if(vis,gap,0)',...
'linxdata','if(vis,map(x),sign(x))');

% compare to the theoretical value
hold on;
x=-1:0.05:1;
plot(x,sqrt(x.^2+0.8^2)-0.8,'ro')

See Also elmapextr
57

elcplextr

58 | C H A P T E
elcplextrPurpose Define extrusion coupling variables.

Syntax el.elem = 'elcplextr'
el.g{ig} = geomnum
el.var{ivar} = varname
el.map{imap} = linmap | genmap | unitmap
el.usenan = 'true' | 'false'
el.extttol = tol
el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.map{ivar}{srcdomgrp} = imap
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.map{ivar}{eldomgrp} = imap

linmap.type = 'linear'
linmap.sg = srcig
linmap.sv{ivtx} = srcvtx
linmap.sframe = srcframe
linmap.dg = dstig
linmap.dv{ivtx} = dstvtx
linmap.dframe = dstframe

genmap.type = 'local’
genmap.expr{idim} = transexpr
genmap.frame = frame

unitmap.type = 'unit'
unitmap.frame = frame

Description The elcplextr element declares the extrusion coupling variable names listed in the
var field to be accessible on domains where the corresponding destination map field
geomdim{ig}{edim}.map{ivar}{eldomgrp} entry is nonempty. Both destination
and source map fields contain indices into the map field which consists of a list of
transformation specifications.

The available transformation types are 'linear', 'local', and 'unit', each with
its own syntax. The unit transformation takes one optional argument specifying
which frame is to be used for evaluating the mesh position. If not given, the
reference frame is assumed. Unit transformations without a frame field actually
never has to be specified explicitly, since using index zero in the source and
destination map fields is interpreted as an implicit unit transformation.

The local transformation, which is called “general” in the COMSOL Multiphysics
user interface, lets you specify an arbitrary expression for each source dimension.
These expressions can contain spatial coordinate variables from any frame. The
frame field decides which frame to use in the search operation when the local
R 1 : C O M M A N D R E F E R E N C E

elcplextr
transformation is used as source transformation. Therefore, choose a frame such that
the transformation is as linear as possible relative to the given frame.

Linear transformations are described in the section on coupling variables in the
“Analysis Guide” chapter of the COMSOL Multiphysics User’s Guide. Note that
the source geometry and vertex fields linmap.sg and linmap.sv refer to the
vertices that are used as source for the transformation, which are usually related to
the coupling variable destination domain. This is because linear maps are best used
as destination maps, specifying a map from the destination domain into the source
domain.The frame fields specify which coordinate set to use in evaluating the vertex
positions.

The coupling variable source transformation and expression is set up using the src
field. A separate domain grouping is specified for the source dimensions which does
not contribute to the global domain group splitting. Source expressions in the
expr{ivar}{srcdomgrp} field can be left as empty cell arrays to signify that the
particular source domain group is not part of the source for a given variable.

Cautionary Parameter or time dependency in the source transformation is not properly detected
by the solvers, which means that the source transformation will not be updated
between parameter or time steps in that case. Solution dependencies in the
transformation are properly detected, but do not give any Jacobian contributions
from the transformation.

Examples Calculate the first ten eigenvalues of a 3-by-2 rectangle with periodic boundary
conditions both left-right and top-bottom. Different map types are used.

fem.geom = rect2(3,2);
fem.mesh = meshinit(fem,'hmax',0.05);
fem.equ.c = 1;
fem.equ.da = 1;
fem.bnd.ind = [0 1 2 0];
fem.bnd.constr = {'ucx-u','ucy-u'};
fem.elem = {};

el.elem = 'elcplextr';
el.g = {'1'};
el.var = {'ucx','ucy'};

clear map1;
map1.type = 'linear';
map1.sg = '1';
map1.sv = {'2','3'};
map1.dg = '1';
59

elcplextr

60 | C H A P T E
map1.dv = {'1','4'};

clear map2;
map2.type = 'local';
map2.expr = {'x'};

el.map = {map1 map2};

clear src;
src.ind = {{'1'},{'4'}};
src.expr = {{{},'u'},{'u',{}}};
src.map = {{{},'0'},{'2',{}}};
el.src{1} = {{},src,{}};

clear dst;
dst.ind = {{'2'},{'3'}};
dst.map = {{'1',{}},{{},'2'}};
el.geomdim{1} = {{},dst,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femeig(fem,'neigs',10,'shift',1);
postplot(fem,'tridata','u','triz','u','refine',3,'solnum',8);

See Also elempty, elcplproj
R 1 : C O M M A N D R E F E R E N C E

elcplgenint
elcplgenintPurpose Define destination-aware integration coupling variables.

Syntax el.elem = 'elcplgenint'
el.g{ig} = geomnum
el.var{ivar} = varname
el.global = varlist
el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.ipoints{ivar}{srcdomgrp} = ip
el.src{ig}{edim}.iorders{ivar}{srcdomgrp} = io
el.src{ig}{edim}.frame{ivar}{srcdomgrp} = frame
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.usage{ivar} = eldomgrplist

Description The elcplgenint element accepts the same syntax as the elcplscalar element
with the only notable exception that a destination operator dest(subexpr) can be
used in the source expression. The destination operator’s argument will be evaluated
on the destination point instead of on the source domain. This can be used to
evaluate convolution integrals.

Cautionary The integral is evaluated for each destination point, whether the dest() operator is
present in the source expression or not. Use an elcplscalar element if there is no
destination dependence.

Examples Plot part of the Fourier transform of g=|x|<1.

clear fem;
fem.geom = geom1([-10 10]);
fem.mesh = meshinit(fem,'report','off','hmax',0.1);
fem.equ.gporder = 4;
fem.elem = {};

clear el
el.elem = 'elcplgenint';
el.g = {'1'};
el.var = {'G'};
clear src;
src.expr = {{'(abs(x)<1)*exp(-i*dest(x)*x)'}};
src.iorders = {'4'};
el.src = {{{},src}};
clear dst;
dst.usage = {{'1'}};
el.geomdim = {{{},dst}};
fem.elem = [fem.elem {el}];

fem.xmesh=meshextend(fem);
postplot(fem,'lindata','G','liny','G');
61

elcplgenint

62 | C H A P T E
See Also elepspec, elcplscalar, elgpspec
R 1 : C O M M A N D R E F E R E N C E

elcplproj
elcplprojPurpose Define projection coupling variables.

Syntax el.elem = 'elcplproj'
el.g{ig} = geomnum
el.var{ivar} = varname
el.map{imap} = projmap | linmap | genmap | unitmap
el.src{ig}{srcdim}.ind{srcdomgrp} = domainlist
el.src{ig}{srcdim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{srcdim}.iorder{ivar}{srcdomgrp} = intorder
el.src{ig}{srcdim}.map{ivar}{srcdomgrp} = imap
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.map{ivar}{eldomgrp} = imap

projmap.type = 'projection'
projmap.sg = srcig
projmap.sv{ivtx} = srcvtx
projmap.sframe = srcframe
projmap.dg = dstig
projmap.dv{ivtx} = dstvtx
projmap.dframe = dstframe

linmap.type = 'linear'
linmap.sg = srcig
linmap.sv{ivtx} = srcvtx
linmap.sframe = srcframe
linmap.dg = dstig
linmap.dv{ivtx} = dstvtx
linmap.dframe = dstframe

genmap.type = 'local'
genmap.expr{idim} = transexpr
genmap.frame = frame

unitmap.type = 'unit
unitmap.frame = frame'

Description The elcplproj projection variable element is closely related to the elcplextr
element. Both elements map the srcdim-dimensional source domain onto an
intermediate srcdim-dimensional fictitious domain. While the destination
transformation in the elcplextr element maps the destination domain into the
intermediate domain, the elcplproj element destination transformation maps the
destination only into the first srcdim-1 dimensions. The last dimension of the
fictitious domain is collapsed by integration onto the first srcdim-1 dimensions.
See the section on coupling variables in the “Analysis Guide” chapter of the
COMSOL Multiphysics User’s Guide for more information.
63

elcplproj

64 | C H A P T E
All map types available for elcplextr can be used also in projection coupling
variables. The common combination of a unit source map and a linear
destination map is not very useful, though. Instead, there is a map type projection
which specifies srcdim+1 vertices in the source geometry and srcdim vertices in the
destination. The basis defined by vectors from the first source vertex to each of the
remaining vertices is mapped onto a right-handed orthogonal system with unit axes.
The basis described by the destination vertices is then mapped onto the first
srcdim−1 dimensions of the same orthogonal basis. This means that the direction
of integration is effectively from the first source vertex to the last.

In addition to the fields present in the elcplextr element, the elcplproj requires
an integration order for the line integrals evaluated for each destination point. The
iorder field specifies the order of polynomials that should be exactly integrated.

Cautionary Projection coupling is only implemented for simplex meshes. When finding
integration limits, the elcplproj element works directly on the basic polyhedral
mesh. Therefore, results can be inaccurate if the mesh does not properly resolve the
geometry.

Parameter or time dependency in the source transformation is not properly detected
by the solvers, which means that the source transformation will not be updated
between parameter or time steps in that case. Solution dependencies in the
transformation are properly detected, but do not give any Jacobian contributions
from the transformation.

The automatic detection of nonlinear and time or parameter dependent problems
does not work properly in that all problems containing projection coupling variables
are considered to be nonlinear and time dependent.

Examples Project the diagonal cross section distance on the left and bottom edges of a square.

clear fem
fem.geom = square2;
fem.mesh = meshinit(fem);
fem.elem = {};

el.elem = 'elcplproj';
el.g = {'1'};
el.var = {'d','d'};

clear map1;
map1.type = 'projection';
map1.sg = '1';
map1.sv = {'1','2','3'};
R 1 : C O M M A N D R E F E R E N C E

elcplproj
map1.dg = '1';
map1.dv = {'1','2'};

clear map2;
map2.type = 'projection';
map2.sg = '1';
map2.sv = {'1','4','3'};
map2.dg = '1';
map2.dv = {'1','4'};

el.map = {map1 map2};

clear src;
src.ind = {{'1'}};
src.expr = {{'1'},{'1'}};
src.iorder = {{'1'},{'1'}};
src.map = {{'1'},{'2'}};
el.src{1} = {{},{},src};

clear dst;
dst.ind = {{'1'},{'4'}};
dst.map = {{'1',{}},{{},'2'}};
el.geomdim{1} = {{},dst,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
postint(fem,'d/sqrt(2)','edim',1,'dl',[1 4])

See Also elempty, elcplextr
65

elcplscalar

66 | C H A P T E
elcplscalarPurpose Define integration coupling variables.

Syntax el.elem = 'elcplscalar'
el.g{ig} = geomnum
el.var{ivar} = varname
el.global = varlist
el.maxvars = maxvarlist

el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.ipoints{ivar}{srcdomgrp} = ip
el.src{ig}{edim}.iorders{ivar}{srcdomgrp} = io
el.src{ig}{edim}.frame{ivar}{srcdomgrp} = frame
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.usage{ivar} = eldomgrplist

Description The elcplscalar element declares the integration coupling variable names listed
in the var field to be accessible on domain groups specified as a, possibly empty, cell
array for each variable in the usage field, or globally if the variable index is
mentioned in the global field. The same variable cannot be defined as both global
and local.

If a variable index is included in the maxvars list, the elcplscalar element
computes an approximate maximum value of the source expression over the source
domains, instead of the integral. The expression is evaluated and compared only in
the same quadrature points as would otherwise have been used for integration; see
below.

The source domain grouping specified in the src{ig}{edim}.ind field does not
contribute to the global domain splitting. For each variable and source domain
group, a possibly empty (no contribution) source expression is given in the expr
field.

The ipoint field specifies an integration point pattern using indices referring to an
elgpspec element. If the ipoints field is not present, the iorders field will be
read instead and assumed to contain Gauss-Legendre quadrature orders for the
source expressions. When specifying an elcplscalar element in a script, the latter
syntax is more convenient.

The frame field selects the set of spatial variables with reference to which the
integration is performed. For example, if the source expression is '1', using the
reference frame makes the variable evaluate to the undeformed volume of the source
domains, while choosing a moving frame gives you the deformed volume.
R 1 : C O M M A N D R E F E R E N C E

elcplscalar
Examples Make the average and maximum values of the solution available on the boundary of
a circle.

fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.elem = {};

clear el;
el.elem = 'elcplscalar';
el.g = {'1'};
el.var = {'area' 'mean' 'max'};
el.global = {'1'};
el.maxvars = {'3'};

clear src;
src.ind = {{'1'}};
src.expr = {{'1'},{'u/area'},{'u'}};
src.iorders = {{'4'},{'4'},{'4'}};
el.src{1} = {{},{},src};

clear dst;
dst.ind = {{'1','2','3','4'}};
dst.usage = {{},{'1'},{'1'}};
el.geomdim{1} = {{},dst,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);

postint(fem,'u/pi')
postint(fem,'mean/(2*pi)','edim',1)
postint(fem,'max/(2*pi)','edim',1)

See Also elepspec, elgpspec
67

elcurlconstr

68 | C H A P T E
elcurlconstrPurpose Define constraints compatible with first order vector elements.

Syntax el.elem = 'elcurlconstr'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.constr{eldomgrp}{ic} = vconstr

Description The elcurlconstr element adds constraints on vector expressions, vconstr,
which are given as cell arrays with one entry for each space dimension. The
projection of the vector expression onto element edges is constrained to zero at
element edge center points.

For the syntax of the ind field, see elempty. The constr field has one entry for each
domain group, each being a cell array of vector expressions to be constrained.

Cautionary This element is currently tailored to fit the shcurl vector shape functions by
constraining the actual degrees of freedom. Other uses may be possible, but
performance will be unpredictable.

Examples Add a PEC condition on boundaries 1 to 6 in a 3D electromagnetics model.

el.elem = 'elcurlconstr';
el.g = {'1'};
gd.ind = {{'1','2','3','4','5','6'}};
gd.constr = {{{'tEx','tEy','tEz'}}};
el.geomdim{1} = {{},{},gd,{}};
fem.elem = [fem.elem {el}];

When exporting the fem structure from a vector element electromagnetics model,
similar elcurlconstr elements are added to the fem.elemmph field.

See Also elempty, elpconstr
R 1 : C O M M A N D R E F E R E N C E

elempty
elemptyPurpose Define some basic functionality of the element syntax elements.

Syntax el.elem = 'elempty'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist

Description The elempty element does not contribute anything directly to the problem
description. It is described here because all element classes are derived from elempty
and therefore share some basic syntax. This “element syntax” uses a very limited
subset of the data structures available in COMSOL Script to describe the complete
FEM problem. All models have to be converted into element syntax before solving,
a conversion handled by the meshextend function. Additional elements can be
added in the fem.elem field. Unless there are conflicts, the additional elements are
added to the global problem description.

The only building blocks allowed in the element syntax are strings, row cell arrays
and structs. Note that pure numerical values are not allowed: both integers and
decimal number have to be wrapped up as strings. Most elements accept empty cell
arrays as placeholders to signify that the element does not wish to contribute
anything for some variable or on some domain.

At the top level, all elements are structs with at least the field elem containing the
element class name as a string. Most elements define contributions that are in some
way local to one or more geometries. Such elements have a g field, which contains
a row cell array of geometry numbers (quoted as COMSOL Script strings). These
geometries are in turn referred to internally in the element using the position in the
g field as index, called ig.

Most element classes specify their contributions per geometry, dimension and
domain group. See further the section “Specifying a Model” in the COMSOL
Multiphysics Scripting Guide for an explanation of the domain group concept. The
geomdim field, where present, is a nested cell array where the outer level position
corresponds to local geometry index, ig, and inner level position corresponds to
space dimension plus one, called edim in the element context.

The geomdim{ig}{edim} entries are used as structs with field names and syntax
depending on the particular element class. There are, however, some common
principles. Whenever there is an ind field present, it is a cell array where the position
corresponds to element domain group number, called eldomgrp, each entry being
a domain list. The domain lists are in turn cell arrays of quoted domain numbers.
69

elempty

70 | C H A P T E
If the ind field is not present in an element structure for an element that accepts a
domain grouping, it is defaulted as if all domains belong to group one. Other fields
can usually be specified either per domain group or using one entry valid for all
groups, whether explicitly specified or defaulted as one single group. Note that this
behavior is not explicitly documented for each element type.

Cautionary Adding element syntax contributions bypasses all high-level syntax checks, which
can result in unintelligible error messages or even unexpected termination of a
scripting session.

Examples Create a simple model (Poisson’s equation on unit circle) and extract the element
syntax created by meshextend.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);

elstr = fem.xmesh.getElements;
clear elem;
for i=1:length(elstr)
 elem{i} = eval(elstr(i));
end

elstr = fem.xmesh.getInitElements;
clear eleminit;
for i=1:length(elstr)
 eleminit{i} = eval(elstr(i));
end

The element syntax can be studied, modified, and then fed back into the fem.elem
and fem.eleminit fields. An additional call to meshextend with property
'standard' set to 'off' updates the fem.xmesh field before solving.

fem.elem = elem;
fem.eleminit = eleminit;
fem.xmesh = meshextend(fem,'standard','off');
fem.sol = femstatic(fem);
postsurf(fem,'u');

An elempty element can be used to force a domain group split, which can be
necessary in some cases where subdomain variables are accessed on boundaries. To
split the boundary into two domain groups, add the following commands to the
element syntax created above:
R 1 : C O M M A N D R E F E R E N C E

elempty
clear el;
el.elem = 'elempty';
gd.ind = {{'1','2'},{'3','4'}};
el.geomdim{1} = {{},{},gd};
fem.elem = [fem.elem {el}];

See Also elcconstr, elconst, elcplextr, elcplgenint, elcplproj, elcplscalar,
elcurlconstr, elepspec, eleqc, eleqw, elgeom, elgpspec, elinline,
elinterp, elinv, elirradiation, elmesh, elpconstr, elplastic, elpric,
elshape, elshell_arg2, elvar
71

elepspec

72 | C H A P T E
elepspecPurpose Declare constraint point patterns.

Syntax el.elem = 'elepspec'
el.g{ig} = geomnum
el.geom{ig}.ep = meshcases | patterns

meshcases.default = patterns
meshcases.case{elmcase} = patterns
meshcases.mind{elmcase} = caselist

patterns{iptrn} = lagorder | ptrnlist

ptrnlist{2*itype-1} = bmtypename
ptrnlist{2*itype} = lagorder | ptrn

ptrn{ipnt} = lcoords

Description The elepspec element defines local evaluation point patterns typically used for
pointwise constraints. In contrast to most elements, the elepspec does not have a
geomdim field. The geom field has one entry per geometry listed in the g field and
one subfield, ep, which lists a number of patterns that other elements refer to by
position.

If there are no alternate mesh cases specified, each entry in the ep field is either an
integral number, which is interpreted as a Lagrange point order to be used on all
basic mesh element types and dimensions, or a cell array of pairs of basic mesh
element type and a Lagrange order or an explicit pattern. For a list of basic mesh
element type names, see elshape. Explicit patterns are cell arrays of points in the
local coordinate system on each element, each point being a cell array of the same
dimension as the basic mesh element type.

If there are multiple mesh cases present in the model, the ep field is a struct with
fields default, case, and mind. The default field has the same syntax as described
above for the ep field itself. Multiple alternate cases which need the same evaluation
point patterns can be grouped together using the mind field. This field is a cell array
containing groups of mesh case numbers, each group, caselist, given as a cell
array. For each element mesh case group, elmcase, an alternate pattern specification
is given in the case field.

Cautionary Currently, there can only be one elepspec element for each geometry, which is
generated by default when converting the standard syntax. Therefore, no additional
elepspec can be added in the fem.elem field unless meshextend is called with
property standard set to off.
R 1 : C O M M A N D R E F E R E N C E

elepspec
Examples Given a single-geometry fem structure with an xmesh field, extract elements and
add an additional pattern that can be used by other elements and update the xmesh.

elstr = fem.xmesh.getElements;
clear elem;
for i=1:length(elstr)
 elem{i} = eval(elstr(i));
 if strcmp(elem{i}.elem,'elepspec')
 iepspec = i;
 end
end

elstr = fem.xmesh.getInitElements;
clear eleminit;
for i=1:length(elstr)
 eleminit{i} = eval(elstr(i));
end

newptrn = length(elem{iepspec}.geom{1}.ep)+1;
elem{iepspec}.geom{1}.ep{newptrn} = {'s(1)' {{'0.5'}}};
fem.elem = elem;
fem.eleminit = eleminit;

Here, additional elements using the constraint pattern with index newptrn can be
added to the fem.elem field.

fem.xmesh = meshextend(fem,'standard','off');

See Also elempty, elgpspec, elshape, elpconstr, elcconstr
73

eleqc

74 | C H A P T E
eleqcPurpose Define coefficient form or general form equation contributions.

Syntax el.elem = 'eleqc'
el.g{ig} = geomnum
el.form = 'coefficient' | 'general'
el.eqvars = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.dim{idim} = dimvarname
el.geomdim{ig}{edim}.ea{eldomgrp} = eacoeff
el.geomdim{ig}{edim}.da{eldomgrp} = dacoeff
el.geomdim{ig}{edim}.c{eldomgrp} = ccoeff
el.geomdim{ig}{edim}.al{eldomgrp} = alcoeff
el.geomdim{ig}{edim}.ga{eldomgrp} = gacoeff
el.geomdim{ig}{edim}.be{eldomgrp} = becoeff
el.geomdim{ig}{edim}.a{eldomgrp} = acoeff
el.geomdim{ig}{edim}.f{eldomgrp} = fcoeff
el.geomdim{ig}{edim}.ipoints{eldomgrp}{idim} = ipind

Description The eleqc element adds equation contributions in coefficient form or general form
as specified by the el.form field. It also defines variables that evaluate to various
parts of the equations. These equation variables can be turned off using the eqvars
field.

For the syntax of the ind field, see elempty. The ea, da, c, al, ga, be, a, and f
coefficients have the same syntax as the corresponding fem.equ fields. See further
the section “Specifying a Model” in the COMSOL Multiphysics Scripting Guide.
In contrast to the standard syntax, the eleqc coefficients have the same names on
all dimensions. That is, the standard fem.bnd.g and fem.bnd.q fields correspond
to a geomdim{ig}{sdim-1}.f and a geomdim{ig}{sdim-1}.a, respectively.

The ipoints field differs from the gporder fields in the standard syntax (for
example, fem.equ.gporder) in that it always contains pattern indices instead of
orders (see elgpspec).

The COMSOL Multiphysics user interface generates an eleqc element for
geometries where the solution form is the coefficient or general form. When
assembling using the weak solution form (the default), equations are converted to
weak form and an eleqw element is generated instead.

Cautionary Because of the naming convention for equation variables, at most one eleqc
element per geometry can have equvars set to on. Because the default eleqc
element has equation variables turned on, unless otherwise specified, it is proper
procedure to turn them off for any additional eleqc elements added in the
fem.elem field.
R 1 : C O M M A N D R E F E R E N C E

eleqc
Make sure that the integration point pattern index you use really does exist and
corresponds to a reasonable integration order. When adding an eleqc element to
an existing model, it may be necessary to extract and modify also the default
elgpspec element.

Examples Because equation contributions are simply added, you can introduce additions to a
single coefficient using the fem.elem field.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 0;
fem.bnd.h = 1;
fem.elem = {};

clear el;
el.elem = 'eleqc';
el.g = {'1'};
el.form = 'coefficient';
el.eqvars = 'off';
clear equ;
equ.dim = {'u'};
equ.ind = {{'1'}};
equ.f = {{'1'}};
equ.ipoints = {{'1'}};
el.geomdim{1} = {{},{},equ};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','u','triz','u','refine',3);

See Also elempty, eleqw, elgpspec
75

eleqw

76 | C H A P T E
eleqwPurpose Define weak form contributions.

Syntax el.elem = 'eleqw'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.coeff{eldomgrp}{iequ} = weak
el.geomdim{ig}{edim}.tcoeff{eldomgrp}{iequ} = dweak
el.geomdim{ig}{edim}.ipoints{eldomgrp}{iequ} = ipind
el.geomdim{ig}{edim}.dvolname{eldomgrp}{iequ} = dvolname

Description The eleqw element adds weak form contributions to the FEM problem. For the
syntax of the ind field, see elempty. The weak and dweak coefficients have the same
syntax as the corresponding fields in the standard fem struct syntax. See further the
section “Specifying a Model” in the COMSOL Multiphysics Scripting Guide. The
ipoints field differs from the gporder fields in the standard syntax (for example,
fem.equ.gporder) in that it always contains pattern indices instead of orders (see
elgpspec).

The field dvolname specifies the name of the differential volume factor to be used
in integrating the particular equation. If you are using multiple frames, this name
effectively decides in which frame the equation is defined. There is normally a
unique volume factor name tied to each frame, with dvol being the default for fixed
meshes.

The main difference between specifying equations using eleqw and using eleqc is
that the former always gives a correct Jacobian if it is possible to automatically
differentiate all functions called.

Cautionary Make sure that the integration point pattern index you use really does exist and
corresponds to a reasonable integration order. When adding an eleqw element to
an existing model, it may be necessary to extract and modify also the default
elgpspec element.

Examples As equation contributions are simply added, it is easy to introduce additional weak
form terms using the fem.elem field.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 0;
fem.bnd.h = 1;
fem.elem = {};

clear el;
R 1 : C O M M A N D R E F E R E N C E

eleqw
el.elem = 'eleqw';
el.g = {'1'};
clear equ;
equ.ind = {{'1'}};
equ.coeff = {{'u_test'}};
equ.ipoints = {{'1'}};
el.geomdim{1} = {{},{},equ};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','u','triz','u','refine',3);

See Also elempty, eleqc, elgpspec
77

elevate

78 | C H A P T E
elevatePurpose Elevate degrees of 2D geometry object Bézier curves.

Syntax ge = elevate(g,en,d)
[ge,tl] = elevate(g,en,d)
ge = elevate(g,dl)
[ge,tl] = elevate(g,dl)

Description ge = elevate(g,en,d) elevates the degrees of edges en in the 2D geometry object
g, using the degree steps d. en is a vector that specifies the edge numbers of the
curves to be degree elevated, and d is the corresponding vector that specifies the
degrees of elevation, so that curve number en(i) is elevated by d(i) degrees.

ge = elevate(g,dl) degree elevates the Bézier curve defined by g.rb{i}(:,k)
and g.wt{i}(:,k), by the number of degrees specified in dl{i}(:,k). dl is a cell
array of the same size as rb and wt. See geom2 for details on these properties. The
first and last entries in dl must be empty, since there are no curves of degree 0, and
curves of maximum degree cannot be degree elevated.

[ge,tl] = elevate(g,...) additionally returns the cell array tl, of length 3,
containing permutation vectors for vertices, edges and subdomains, respectively.
Entry i of such a vector contains the entity number j of the geometry object g from
which the entity i in ge originates.

Examples Elevate the degree of edge 1 and 3 in a circle, by one degree.

c1 = circ2;
figure, geomplot(c1,'edgelabels','on','ctrlmode','on');
axis equal
[c2,tl] = elevate(c1,[1 3],[1 1]);
figure, geomplot(c2,'edgelabels','on','ctrlmode','on');
axis equal

An alternative way of obtaining the same degree elevated circle, is to use the input
argument dl, as is done below.

c3 = elevate(c1,{[] [] [1 0 1 0] []});
figure, geomplot(c3,'edgelabels','on','ctrlmode','on');
axis equal

See Also geom0, geom1, geom2, geom3
R 1 : C O M M A N D R E F E R E N C E

elgeom
elgeomPurpose Define geometrical variables.

Syntax el.elem = 'elgeom'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.frame = frame
el.sorder = sorder
el.method = {'Lenoir'} | 'fl33'

Description The elgeom element evaluates geometrical variables for the (undeformed)
geometry, notably coordinates, curve and face parameters, and tangential vectors.
These variables are defined on the domains in domainlist. The variable names are
derived from the space coordinate names of the frame frame. See further the section
“Specifying a Model” in the COMSOL Multiphysics Scripting Guide.

The Lenoir method (the default method) provides a continuous piecewise
polynomial interpolation of order sorder. The fl33 method, which was the default
method until version 3.3a, provides a discontinuous nonpolynomial-based
interpolation. The sorder field is only applicable when using the Lenoir method
and has a default value of 1.

Examples The default generated elgeom element for a 2D model is:

el.elem = 'elgeom';
el.g = {'1'};
el.frame = 'xy';
el.sorder = '1';
el.method = 'Lenoir';

See Also elempty, elmesh
79

elgpspec

80 | C H A P T E
elgpspecPurpose Declare integration point patterns.

Syntax el.elem = 'elgpspec'
el.g{ig} = geomnum
el.geom{ig}.ep{iptrn} = order | ptrnlist

meshcases.default = patterns
meshcases.case{elmcase} = patterns
meshcases.mind{elmcase} = caselist

patterns{iptrn} = lagorder | ptrnlist

ptrnlist{2*itype-1} = bmtypename
ptrnlist{2*itype} = order | ptrn

ptrn{ipnt} = {lcoords,weight}

Description The elgpspec element defines local integration point patterns and weights for the
numerical quadrature needed when assembling equations on each mesh element. In
contrast to most elements, the elgpspec does not have a geomdim field. The geom
field has one entry per geometry listed in the g field and one subfield, ep, which lists
a number of patterns which other elements refer to by position.

If there are no alternate mesh cases specified, each entry in the ep field is either an
integral number, which is interpreted as the order of polynomials that should be
integrated exactly on all basic mesh element types and dimensions, or a cell array of
pairs of basic mesh element type and a polynomial order or an explicit pattern. For
a list of basic mesh element type names, see elshape. Explicit patterns are cell arrays
of points and weights in the local coordinate system on each element, each
point-weight pair being represented as a single cell array where the weight follows
directly after the coordinates.

If there are multiple mesh cases present in the model, the ep field is a struct with
fields default, case, and mind. The default field has the same syntax as described
above for the ep field itself. Multiple alternate cases which need the same integration
point patterns can be grouped together using the mind field. This field is a cell array
containing groups of mesh case numbers, each group, caselist, given as a cell
array. For each element mesh case group, elmcase, an alternate pattern specification
is given in the case field.

Cautionary Currently, there can only be one elgpspec element for each geometry, which is
generated by default when converting the standard syntax. Therefore, no additional
R 1 : C O M M A N D R E F E R E N C E

elgpspec
elgpspec can be added in the fem.elem field unless meshextend is called with
property 'standard' set to 'off'.

Note that the sum of weights in an explicit pattern specification are supposed to be
equal to the element’s volume in the element local coordinate system, that is, to 1/
2 for triangles and 1/6 for tetrahedra.

Examples Given an fem structure with an xmesh field, extract elements and add an additional
pattern which uses fourth order integration on curved simplices and explicit zeroth
order integration on other simplices. Finally, the xmesh is updated.

elstr = fem.xmesh.getElements;
clear elem;
for i=1:length(elstr)
 elem{i} = eval(elstr(i));
 if strcmp(elem{i}.elem,'elgpspec')
 igpspec = i;
 end
end

elstr = fem.xmesh.getInitElements;
clear eleminit;
for i=1:length(elstr)
 eleminit{i} = eval(elstr(i));
end

newptrn = length(elem{igpspec}.geom{1}.ep)+1;
elem{igpspec}.geom{1}.ep{newptrn} = {'s(2)', '4', ...
 'ls(2)', {{'0.333333333','0.333333333','0.5'}}};
fem.elem = elem;
fem.eleminit = eleminit;

Here, additional elements using the integration point pattern with index newptrn
can be added to the fem.elem field.

fem.xmesh = meshextend(fem,'standard','off');

See Also elempty, elepspec, elshape, eleqc, eleqw
81

elinline

82 | C H A P T E
elinlinePurpose Declare functions and corresponding symbolic derivatives.

Syntax el.elem = 'elinline'
el.name = fname
el.args{iarg} = argname
el.expr = evalexpr
el.dexpr{iarg} = devalexpr
el.complex = 'true' | 'false'
el.linear = 'true' | 'false'

Description The elinline element declares a new function with differentiation rules in terms
of other built-in or COMSOL Script or MATLAB functions. COMSOL
Multiphysics calls the function using the MATLAB interpreter if you run COMSOL
Multiphysics with MATLAB and it calls the COMSOL Script interpreter otherwise.

Declared inline functions can be used with the syntax fname(arg1,arg2,...)
anywhere except for in other inline function definitions. The args field contains a
list of formal parameter names which can be used in the expr field defining the
function itself and the dexpr field defining derivative expressions with respect to
each of the formal arguments.

The evalexpr and devalexpr expressions can contain any valid expression in the
formal arguments, including COMSOL Script function calls. Global constants and
variables are not available with pi being the only noticeable exception. Note that
differentiation with respect to some formal argument can be disabled by just
specifying the corresponding devalexpr as '0'.

Functions which can generate complex values from real data must have the complex
field set to 'true'. The linear property decides if the function is treated as linear
when deciding whether to reassemble the Jacobian at each time step/iteration or
not.

Cautionary Note that inline functions cannot depend on other inline functions, only on
built-ins and functions defined on your COMSOL Script or MATLAB path. Inline
functions can be used to override built-ins but can never override another inline
function.

Examples Use an inline function to redefine the derivative of the sqrt function in such a way
that the Jacobian of sqrt(u^2+v^2) will exist for u=v=0.

el.elem = 'elinline';
el.name = 'sqrt';
el.args = {'a'};
el.expr = 'sqrt(a)';
R 1 : C O M M A N D R E F E R E N C E

elinline
el.dexpr = {'1/(2*sqrt(a)+eps)'};
el.complex = 'true';
el.linear = 'false';
fem.elem = [fem.elem {el}];

See Also elempty
83

elinterp

84 | C H A P T E
elinterpPurpose Declare interpolation functions.

Syntax el.elem = 'elinterp'
el.name = fname
el.x = xgrid
el.y = ygrid
el.z = zgrid
el.data = fdata
el.method = 'nearest' | 'linear' | 'cubic' | 'spline'

Description The elinterp element declares an interpolation function based on a 1D, 2D or 3D
data set provided by the user. Interpolation functions take one, two or three
arguments, depending on the dimension of the data set.

The xgrid, ygrid, and zgrid parameters are cell arrays of points, sorted in
increasing order, where the data is given. Depending on the dimensions, not all
fields are used. For 1D interpolation, the fdata parameter is a cell array of values
corresponding to the points in el.x. In the 2D case, the size of fdata is
length(xgrid)*length(ygrid), with x increasing fastest, and similarly in 3D.

There are four interpolation methods to choose from. Nearest neighbor and linear
interpolation are available in all dimensions, while 'cubic' and 'spline' can only
be used for interpolation in 1D data sets. The difference between the latter two is,
generally speaking, that 'cubic' preserves monotonicity and does not overshoot at
the cost of discontinuous second derivatives at the tying points.

Cautionary Interpolation is provided only for real numbers. To interpolate complex numbers,
real and imaginary parts have to be treated separately.

Examples Given the matrices x (1-by-m), y (1-by-n) and F (m-by-n), create a corresponding
interpolation element declaring a function f(x,y).

cellX = cell(1,m);
for i=1:m
 cellX{i} = num2str(x(i));
end

cellY = cell(1,n);
for i=1:n
 cellY{i} = num2str(y(i));
end

cellF = cell(1,m*n);
for i=1:m*n
 cellF{i} = num2str(F(i));
end
R 1 : C O M M A N D R E F E R E N C E

elinterp
el.elem = 'elinterp';
el.name = 'f';
el.x = cellX;
el.y = cellY;
el.data = cellF;
el.method = 'linear';
fem.elem = [fem.elem {el}];

See Also elempty
85

elinv

86 | C H A P T E
elinvPurpose Define matrix inverse component variables.

Syntax el.elem = 'elinv'
el.g{ig} = geomnum
el.matrixdim = mdim
el.format = 'symmetric' | 'hermitian' | 'unsymmetric'
el.basename = bname
el.postname = pname
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.matrix{eldomgrp} = matexpr

Description The elinv element defines components of the inverse of an mdim-by-mdim matrix
field. The matexpr is a cell array of expressions which specify the source matrix in
column order. If the format is 'symmetric' or 'hermitian', only the upper
triangle has to be given.

Matrix inverse component names, that is, the variable names defined by the element,
are created by appending row and column indices to the bname parameter and, if
the postname field is present, append '_pname'. If the format is specified as
'symmetric', variables are generated only for the upper triangular part of the
inverse, otherwise for all components.

Examples Define variables to evaluate the Jacobian inverse components for an explicit variable
transformation [X(x,y,z), Y(x,y,z), Z(x,y,z)].

el.elem = 'elconst';
el.var = {'X','2*x','Y','y+z','Z','z'};
fem.elem = [fem.elem {el}];

clear el;
el.elem = 'elinv';
el.g = {'1'};
el.matrixdim = '3';
el.format = 'unsymmetric';
el.basename = 'd';
gd.ind = {{'1'}};
gd.matrix = {{'diff(X,x)','diff(X,y)','diff(X,z)',...
 'diff(Y,x)','diff(Y,y)','diff(Y,z)',...
 'diff(Z,x)','diff(Z,y)','diff(Z,z)'}};
el.geomdim{1} = {{},{},gd};
fem.elem = [fem.elem {el}];

See Also elempty, elpric
R 1 : C O M M A N D R E F E R E N C E

elirradiation
elirradiationPurpose Define irradiation variables for radiative heat transfer.

Syntax el.elem = 'elirradiation'
el.g{ig} = geomnum
el.method = 'area' | 'hemicube'
el.iorder = order
el.resolution = res
el.sectors = nsectors
el.cache = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.name{eldomgrp} = Gname
el.geomdim{ig}{edim}.ambname{eldomgrp} = Fname
el.geomdim{ig}{edim}.expr{eldomgrp} = Jexpr
el.geomdim{ig}{edim}.opexpr{eldomgrp} = opacity
el.geomdim{ig}{edim}.cavity{eldomgrp} = cavitylist

Description The elirradiation element defines one variable Gname representing the local
irradiation from other surfaces and one Fname, known as ambient view factor,
representing the fraction of the field of view not covered by other surfaces. The
variable names can differ between domain groups.

The irradiation at each point depends on the radiosity at all other visible surface
points. An expression for the radiosity is provided in the expr field. For interior
boundaries, it has to be made clear in which direction the radiation goes. The
opacity expression is evaluated on adjacent subdomains, and is expected to be
nonzero on exactly one.

To avoid unnecessary visibility checks, the surfaces can be manually assigned to one
or more cavities, each of which exchanges radiation only with other surfaces in the
same cavity. For each domain group, specify to which cavities the group belongs.

There are currently two view factor evaluation methods which can be selected using
the method field. The 'area' method implies direct area integration using a simple
quadrature rule of order order and no visibility checks. Different convex cavities
can be held apart using the cavity field. The 'hemicube' method, and its
generalizations to lower dimensions, uses techniques borrowed from computer
graphics to handle surfaces obstructing each other. Essentially, images of resolution
res-by-res are generated from each evaluation point in 3D.

Use the sectors field to specify that a 2D geometry shall be interpreted as axially
symmetric and to set the azimuthal resolution when evaluating view factors. The
value nsectors is the number of sectors to a full revolution in a virtual 3D
geometry created by revolving the 2D mesh about the axis.
87

elirradiation

88 | C H A P T E
Due to the rather complex evaluation, it is usually beneficial to store the view factors
between calls. This can, however, generate a lot of data, which can potentially be a
limiting factor preventing a solution on a given system. Therefore, the cache field
can be set to 'off', but this increases run times considerably.

Cautionary Radiation is currently only possible between boundaries, that is, between entities of
dimension one lower than the space dimension. Also, radiation only works within
one geometry.

The elirradiation element is available only if your license includes the Heat
Transfer Module.

Examples Compare the irradiation calculated by the hemicube algorithm with an analytical
solution in a known case.

clear fem;
fem.geom = geomcsg({rect2(1,1,'pos',[0 -1]),...
 rect2(1,1,'pos',[-1 0]),...
 rect2(.8,.8,'pos',[.2 .2])});
fem.mesh = meshinit(fem);
fem.expr = {'xb', 0.2,...
 'yb', 0.2,...
 'xc', 'xb+xb*yb/(1-yb)',...
 'y1', '(x>xc)*(xb*yb/(x-xb)+yb)+(x<=xc)',...
 'Gref', '0.5-x/(2*sqrt(x^2+y1^2))'};
fem.elem ={};

clear el
el.elem = 'elirradiation';
el.g = {'1'};
el.method = 'hemicube';
el.resolution = '512';
clear gd;
gd.ind = {{'6','7'},{'8','9'}};
gd.name = 'G';
gd.ambname = 'F_amb';
gd.expr = {'1','0'};
gd.opexpr = '1';
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
postint(fem,'abs(G-Gref)','edim',1,'dl',7)/...
 postint(fem,'abs(Gref)','edim',1,'dl',7)

See Also elempty
R 1 : C O M M A N D R E F E R E N C E

ellip1, ellip2
ellip1, ellip2Purpose Create ellipse geometry object.

Syntax obj = ellip2
obj = ellip1
obj = ellip2(a,b,...)
obj = ellip1(a,b,...)

Description obj = ellip2 creates a solid ellipse geometry object with center at the origin and
semi-axes equal to 1. ellip2 is a subclass of solid2.

obj = ellip2(a,b,...) creates an ellipse object with semi-axes equal to a and b,
respectively, centered at the origin. a and b are positive real scalars, or strings that
evaluate to positive real scalars, given the evaluation context provided by the
property const.

The functions ellip2/ellip1 accept the following property/values:

obj = ellip1(...) creates a curve circle geometry object with properties as given
for the ellip2 function. ellip1 is a subclass of curve2.

Ellipse objects have the following properties:

In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

TABLE 1-16: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

center Positions the object either centered
about pos or with the lower left
corner of surrounding box in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot Real or string 0 Rotational angle about pos (radians)

TABLE 1-17: ELLIPSE OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b Semi-axes

x, y Position of the object

rot Rotational angle
89

ellip1, ellip2

90 | C H A P T E
Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

Examples The commands below create an ellipse object and plot it.

e1 = ellip2(1,0.3,'base','center','pos',[0,0],'rot',pi/4)
get(e1,'rot')
geomplot(e1)

See Also circ1, circ2, curve2, curve3, geomcsg
R 1 : C O M M A N D R E F E R E N C E

ellipsoid2, ellipsoid3
ellipsoid2, ellipsoid3Purpose Create an ellipsoid geometry object.

Syntax obj = ellipsoid3
obj = ellipsoid2
obj = ellipsoid3(a,b,c)
obj = ellipsoid2(a,b,c)
obj = ellipsoid3(a,b,c,...)
obj = ellipsoid2(a,b,c,...)

Description obj = ellipsoid3 creates a solid ellipsoid geometry object with center at the
origin and semi-axes equal to 1. ellipsoid3 is a subclass of solid3.

obj = ellipsoid3(a,b,c,...) creates a solid ellipsoid object with semi-axes a,
b, and c. a, b, and c are positive real scalars, or strings that evaluate to positive real
scalars, given the evaluation context provided by the property Const.

The functions ellipsoid3/ellipsoid2 accept the following property/values:

Axis sets the local z-axis, stated either as a directional vector of length 3, or as a
1-by-2 vector of spherical coordinates. Axis is a vector of real scalars, or a cell array
of strings that evaluate to real scalars, given the evaluation context provided by the
property Const. See gencyl3 for more information on Axis.

Pos sets the center of the object. Pos is a vector of real scalars, or a cell array of
strings that evaluate to real scalars, given the evaluation context provided by the
property Const.

Rot is an intrinsic rotational angle for the object about its local z-axis provided by
the property Axis. Rot is a real scalar, or a string that evaluates to a real scalar given

TABLE 1-18: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

Const Cell array of
strings

{} Evaluation context for string inputs

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

Rot real or string 0 Rotational angle about Axis (radians)
91

ellipsoid2, ellipsoid3

92 | C H A P T E
the evaluation context provided by the property Const. The angle is assumed to be
in radians if it is numeric, and in degrees if it is a string.

obj = ellipsoid2(...) creates a surface ellipsoid object with the properties as
given for the ellipsoid3 function. ellipsoid2 is a subclass of face3.

Ellipsoid objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Examples The following commands create a surface and solid ellipsoid object, where the
position and semi-axis are defined in the two alternative ways.

e2 = ellipsoid2(1,1,1,'pos',[0 1 0],'axis',[0 0 1],'rot',0)
e3 = ellipsoid3(12,10,8)

Compatibility The representation of the ellipsoid objects has been changed. The FEMLAB 2.3
syntax is obsolete but still supported. If you use the old syntax or open 2.3 models
containing ellipsoids they are converted to general face or solid objects.

See Also face3, geom0, geom1, geom2, geom3, sphere3, sphere2

TABLE 1-19: ELLIPSOID OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b, c Semi-axes

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
R 1 : C O M M A N D R E F E R E N C E

elkernel
elkernelPurpose Fast evaluation of predefined convolution integrals

Syntax el.elem = 'elkernel'
el.g{ig} = geomnum
el.name = opname | opnamelist
el.kernel = 'unit' | 'helmholtz2D' | 'helmholtz2Dinf' |

'helmholtz3D' | 'helmholtz3Dinf' | 'helmholtz2Daxi' |
'helmholtz2Daxiinf' | 'maxwell3Dinf' | 'maxwellTEinf' |
'maxwellTMinf' | 'maxwellTEaxiinf' | 'maxwellTMaxiinf'

el.frame = srcframe
el.iorder = gporder
el.k = wavenumber
el.symflags{idim} = '-1' | '0' | '1'

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.srcn{idim}{eldomgrp} = nexpr
el.geomdim{ig}{edim}.srcu{eldomgrp} = uexpr
el.geomdim{ig}{edim}.srcnux{eldomgrp} = nuxexpr
el.geomdim{ig}{edim}.srcnxe{eldomgrp} = nxeexpr
el.geomdim{ig}{edim}.srcnxcurle{eldomgrp} = nxculreexpr

Description The elkernel element is a wrapper which defines an operator that represents a
predefined convolution integral. You can choose between plain integration of an
arbitrary expression, Helmholtz-Kirchhoff integral solutions to Helmholtz’
equation in various dimensions and a number of instances the Stratton-Chu formula
for far-field evaluation of electromagnetic fields under various conditions. For
Helmholtz equation, both the complete integral solution and the far-field limiting
case are provided.

The type of integral is specified in the kernel field where 'unit' gives you an
operator which takes an expression as only argument, while the rest define operators
which are functions of the evaluation point coordinates. The 3D Stratton-Chu
formula requires a list of three operator names, one for each field component, while
TM waves require two operator names and the remaining only one.

The integrals are evaluated on the mesh with the integration order specified in
iorder and using the source coordinate names corresponding to the given frame.
Both Helmholtz-Kirchhoff and Stratton-Chu integral evaluation require a
free-space wave number, which is expected to be a global constant. The former, in
addition, needs expressions for the normal vector, solution value and its normal
derivative on the source domains, specified in srcn, srcu, and srcnux, respectively.
The Stratton-Chu formula requires the cross products of source normal with electric
93

elkernel

94 | C H A P T E
field and source normal with curl of electric field, specified in srcnxe and
srcnxcurle, respectively.

The source domains are expected to form a closed surface containing all sources and
inhomogenities, and the specified normal vector must be facing into the domain
enclosed by this surface. When exploiting symmetry to model only 1/2, 1/4, or 1/8
of the actual geometry, a closed surface can be recovered using the symmetry flags.
In the symflags field, -1 in position idim is interpreted as antisymmetry with
respect to the coordinate plane normal to the idim-axis, while +1 means that the
plane is a symmetry plane. If the symflags field is not given, all entries are
considered to be 0, which signifies that the model is neither symmetric nor
antisymmetric.

Cautionary The operators defined by elkernel are primarily intended for postprocessing and
therefore do not define any Jacobian contributions.

Examples The acoustic field from a baffled piston oscillating with specified velocity normally
to an infinite rigid plane can be evaluated explicitly using the helmholtz2Daxi
kernel with srcu set to zero since the terms proportional to u cancel out anyway.

fem.geom = circ2*rect2;
fem.mesh = meshinit(fem);

fem.expr = {'SPL' '10*log10(0.5*abs(p(x,y))^2/2e-5^2)'};

clear el;
el.elem = 'elkernel';
el.g = {'1'};
el.kernel = 'helmholtz2Daxiinf';
el.name = 'p';
el.iorder = '20';
el.k = '100';
clear src11
src11.ind = {{'2'}};
src11.srcn = {'0','-1'};
src11.srcu = '0';
src11.srcnux = {'1'};
el.geomdim{1} = {{},src11};
fem.elem = {el};

fem.xmesh = meshextend(fem);
fem.sol = asseminit(fem);

postcrossplot(fem,1,3,'lindata','SPL','linxdata',...
'180/pi*atan2(y,x)','refine',10);
R 1 : C O M M A N D R E F E R E N C E

elmapextr
elmapextrPurpose Define extrusion map operators.

Syntax el.elem = 'elmapextr'
el.g{ig} = geomnum
el.opname{iop} = opname
el.flagname{iop} = flagname
el.extttol = tol
el.usenan = 'true' | 'false'
el.map{imap} = linmap | genmap | unitmap
el.srcmap{iop} = imap
el.dstmap{iop} = imap
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.src{iop} = eldomgrplist

linmap.type = 'linear'
linmap.sg = srcig
linmap.sv{ivtx} = srcvtx
linmap.sframe = srcframe
linmap.dg = dstig
linmap.dv{ivtx} = dstvtx
linmap.dframe = dstframe

genmap.type = 'local'
genmap.expr{idim} = transexpr
genmap.frame = frame

unitmap.type = 'unit'
unitmap.frame = frame

Description The elmapextr element defines extrusion map operators which can be used at any
location where the source and destination transformations make sense. Each map
operator takes its values from the source domain groups listed in the corresponding
el.geomdim{ig}{edim}.src{iop} field.

For each operator, transformations are specified in the srcmap and dstmap fields in
the form of indices into the map field that consists of a list of transformation
specifications. The available transformation types are 'linear', 'local', and
'unit'. They are described in detail under elcplextr on page 58.

For each operator name a global variable flagname{iop} is also defined, which
evaluates to 1 for all destination points where the map operation can find a
corresponding source point, otherwise it evaluates to 0. If the flagname field is not
given, the flag variables will be given the same name as the corresponding operator.
Therefore, statements like if(my_map,my_map(u),0) make perfect sense.
95

elmapextr

96 | C H A P T E
Cautionary Parameter or time dependency in the source transformation is not properly detected
by the solvers, which means that the source transformation will not be updated
between parameter or time steps in that case. Solution dependencies in the
transformation are properly detected but do not give any Jacobian contributions
from the transformation.

Examples Calculate the first ten eigenvalues of a 3-by-2 rectangle with periodic boundary
conditions both left-right and top-bottom. Different map types are used. Note that
this is the same example as used under elcplextr.

fem.geom = rect2(3,2);
fem.mesh = meshinit(fem,'hmax',0.05);
fem.equ.c = 1;
fem.equ.da = 1;
fem.bnd.ind = [0 1 2 0];
fem.bnd.constr = {'left2right(u)-u','lower2upper(u)-u'};
fem.elem = {};

el.elem = 'elmapextr';
el.g = {'1'};
el.opname = {'left2right','lower2upper'};

clear map1;
map1.type = 'unit';

clear map2;
map2.type = 'linear';
map2.sg = '1';
map2.sv = {'2','3'};
map2.dg = '1';
map2.dv = {'1','4'};

clear map3;
map3.type = 'local';
map3.expr = {'x'};

el.map = {map1 map2 map3};

el.srcmap = {'1','3'};
el.dstmap = {'2','3'};

clear src;
src.ind = {{'1'},{'4'}};
src.src = {{'2'},{'1'}};
el.geomdim{1} = {{},src,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
R 1 : C O M M A N D R E F E R E N C E

elmapextr
fem.sol = femeig(fem,'neigs',10,'shift',1);
postplot(fem,'tridata','u','triz','u','refine',3,'solnum',8);

See Also elcplextr
97

elmesh

98 | C H A P T E
elmeshPurpose Define mesh variables and a frame.

Syntax el.elem = 'elmesh'
el.g{ig} = geomnum
el.frame = frame
el.xvars = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.sizename{eldomgrp} = sname
el.geomdim{ig}{edim}.qualname{eldomgrp} = qname
el.geomdim{ig}{edim}.dvolname{eldomgrp} = dvolname
el.geomdim{ig}{edim}.meshtypename{eldomgrp} = meshtypename
el.geomdim{ig}{edim}.meshelemname{eldomgrp} = meshelemname
el.geomdim{ig}{edim}.sshape{eldomgrp} = sshape
sshape{2*i-1} = bmtypename
sshape{2*i} = params
params.type = 'fixed' | 'moving_abs' | 'moving_rel' | 'moving_expr'
params.sorder = sorder
params.sdimdofs{idim} = dofname
params.sdimexprs{idim} = expr
params.refframe = refframename

Description Concerning the syntax of the ind field, see elempty. For each domain group, the
elmesh element defines the variable names sname, qname, dvolname,
meshtypename, and meshelemname, which evaluate to local mesh element size,
element quality, element volume, mesh type index, and mesh element number,
respectively. Also, if xvars='on' the space coordinates, the space coordinate’s
reference time derivative, and the normal vector are defined. These variable names
are derived from the space coordinates of the frame frame. The type of frame is
determined by sshape.

Examples By default, the mesh size variable h is available only on the top dimension. If
evaluated on a boundary, h returns the size of the adjacent subdomain element. An
additional elmesh element can be used to define h on the boundary to represent the
size of the boundary element.

el.elem = 'elmesh';
el.g = {'1'};
el.frame = 'xy'
el.xvars = 'off'
gd.sizename = 'h';
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

See Also elempty
R 1 : C O M M A N D R E F E R E N C E

elode
elodePurpose Define global scalar dependent variables and equations.

Syntax el.elem = 'elode'
el.dim{idim} = depvarname
el.f{idim} = rexpr
el.weak{iweak} = wexpr

Description The elode element adds globally available scalar dependent variables (named
degrees of freedom) and corresponding equations. The dim field lists unique
variable names which are allocated on a fictitious 0D geometry and made available
throughout the model. The optional f field has the same number of entries as the
dim field, while the weak field, if present, can have any number of entries. These
fields define scalar equations on the form rexpr=0 and wexpr=0, respectively. The
f field requires the presence of a dim field. See further “fem.ode—Global Variables
and equations” on page 50 in the COMSOL Multiphysics Programming Guide.

The fictitious geometry mentioned above is for most purposes equivalent to a real
0D geometry with one domain, a point. This geometry can be explicitly referenced
using geometry index 0. Therefore, the expressions rexpr and wexpr can contain
variables which are globally available or explicitly available on domain 1 of
geometry 0.

For further examples of use of scalar dependent variables and equations, see the
COMSOL Multiphysics User’s Guide.

Cautionary Though the elode element applies to the ever-present fictitious geometry 0, a real
geometry also has to be defined for the solvers to work. Note also that elode can
be used to define global weak contributions to existing equations. That is, the weak
field may be used without the presence of a dim field.

Examples Solve a simple scalar wave equation:

clear fem
fem.geom = geom0(zeros(0,1));
fem.mesh = meshinit(fem);

clear el
el.elem = 'elode';
el.dim = {'u'};
el.f = {'utt+u'};
fem.elem = {el};

clear elinit;
elinit.elem = 'elconst';
elinit.var = {'u','0','ut','1'};
99

elode

100 | C H A P T
fem.eleminit = {elinit};

fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',linspace(0,4*pi,100),...

'maxorder',2,'rtol',1e-8,'atol',1e-8);
postcrossplot(fem,0,1,'pointdata','u')

See Also elempty, eleqc, eleqw, elshape
E R 1 : C O M M A N D R E F E R E N C E

elpconstr
elpconstrPurpose Define general pointwise constraints.

Syntax el.elem = 'elpconstr'
el.g{ig} = geomnum
el.nname = Nname
el.nfname = NFname
el.mname = Mname

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.constr{eldomgrp}{ic} = constrexpr
el.geomdim{ig}{edim}.constrf{eldomgrp}{ic} = constrfexpr
el.geomdim{ig}{edim}.cpoints{eldomgrp}{ic} = cpind

Description The elpconstr element adds a set of pointwise constraints of type constrexpr=0.
The constr field has the same syntax as the fem.bnd.constr field. See further the
section “Specifying a Model” in the COMSOL Multiphysics Scripting Guide. The
optional constrf field controls the way constraint forces are applied. You enter an
expression such that its Jacobian with respect to the test functions decides on which
degrees of freedom the reaction force is applied for each constraint. If constrf is
omitted, constraints are ideal, which corresponds to setting constrf to
test(constrexpr).

The constraint and constraint force Jacobians are by default assembled to matrices
called NT and NF, and the constraint residual is called M. This can be changed by
assigning different names to the optional nname, nfname and mname fields. Only
certain names are recognized by functions like assemble, though, see page 29.

The constraints are enforced at the same local coordinates in all elements in one
domain group. The constraint point pattern is specified as a pattern index in the
cpoints field. Indices refer to patterns defined by an elepspec element.

Compared to the elcconstr element, the elpconstr can implement a wider range
of constraints, as a correct constraint Jacobian is always calculated on the fly. This is
in contrast to the user-specified Jacobian matrix h, used in fem.bnd.h and the
elcconstr element.

Examples Solve a 1D biharmonic equation (related to Euler beams) with constraints on both
value and normal derivative at the endpoints.

clear fem;
fem.geom = solid1([0,1]);
fem.mesh = meshinit(fem);
fem.shape = 'shherm(1,3,''u'')';
fem.form = 'weak';
fem.equ.weak = 'uxx_test*uxx';
101

elpconstr

102 | C H A P T
fem.bnd.dim = {'u'};
fem.bnd.cporder = 1;
fem.elem = {};

clear el;
el.elem = 'elpconstr';
el.g = {'1'};
clear gd;
gd.ind = {{'1'},{'2'}};
gd.constr = {{'-u','1-ux'},{'-u','1+ux'}};
gd.cpoints = {{'1'},{'1'}};
el.geomdim{1} = {gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'liny','u');

See Also elempty, elcconstr, elcurlconstr, elepspec
E R 1 : C O M M A N D R E F E R E N C E

elpiecewise
elpiecewisePurpose Declare piecewise functions.

Syntax el.elem = 'elpiecewise'
el.subtype = 'poly' | 'exppoly' | 'general'
el.name = fname
el.args = argname
el.intervals{ibnd} = interval_bound
el.expr{iexpr} = poly_spec | expr
el.extmethod = 'extrap' | 'const' | double_value | 'none'
el.smoothzone = double_value
el.smoothorder = '0' | '1' | '2'
el.complex = 'true' | 'false'
el.linear = 'true' | 'false'

poly_spec{2*ipow} = exponent
poly_spec{2*ipow+1} = coefficent

Description The elpiecewise element declares a function fname which is of type subtype in
each interval, the boundaries of which are given in the intervals field. The
polynomials or general expressions are given for each subinterval in the expr field,
which contains one pair of polynomial exponent and coefficient or one expression
for each interval. Derivatives are calculated by automatic symbolic differentiation.
Outside the intervals, the value of the function is either extrapolated, taken from the
nearest interval boundary or given a fixed number, according to the extmethod
field. 'none' indicates that extrapolation is deactivated, and will result in errors or
NaN values for out-of-range values, depending on how and where the element is
used.

Since the given expressions may be discontinuous at the interval boundaries,
elpiecewise includes an optional smoothing option. If given, the smoothzone
field specifies a relative size of the smoothing zone, interpreted as the fraction of
each interval length which should be smoothed at the intersections between
intervals. The smoothorder field gives the number of continuos derivatives that
must exist at the boundary between smoothing zone and interval.

Functions which can generate complex values from real data must have the complex
field set to 'true'. The linear property decides if the function is treated as linear
when deciding whether to reassemble the Jacobian at each time step/iteration or
not.

Examples Setup a piecewise function element of the polynomials 0.2x-6 + 5.1x + 0.05x6 and
60x, defined from 1.7 to 4 and 4 to 5.2, respectively, with continuos first derivatives
at the intersection:
103

elpiecewise

104 | C H A P T
el.elem = 'elpiecewise';
el.name = 'myfun';
el.subtype = 'poly';
el.expr = {{'-6' '0.2' '1' '5.1' '6' '0.05'} {'1' '60'}}
el.intervals = {'1.7' '4' '5.2'}
el.smoothzone = '0.1';
el.smoothorder = '1';
fem.elem = [fem.elem {el}];

See Also elempty, elinterp, elinline
E R 1 : C O M M A N D R E F E R E N C E

elplastic
elplasticPurpose Define plastic strain variables.

Syntax el.elem = 'elplastic'
el.g{ig} = geomnum
el.vars{ivar} = varname
el.varsToCache = cachevarlist
el.varPairsToGpProcess{2*igpvar-1} = gpvarname
el.varPairsToGpProcess{2*igpvar} = gpvarexpr
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.Yield{eldomgrp} = yieldexpr
el.geomdim{ig}{edim}.EffStress{eldomgrp} = effstressexpr
el.geomdim{ig}{edim}.G{eldomgrp}{ivar} = gexpr
el.geomdim{ig}{edim}.gporder{eldomgrp} = iorder

Description The elplastic element defines the plastic strain variable names specified in the
vars field. For the syntax of the ind field, see elempty. The yield function is
effstressexpr−yieldexpr. For each strain variable in vars, the right-hand side
of the corresponding rate equation is gexpr times the plastic multiplier, lambda. See
“Continuum Application Modes”, section “Theory Background”, in the
Structural Mechanics Module User’s Guide. The gporder field specifies a
quadrature rule order, which should preferably be the same as the order used in the
assembly of the main equation.

The varsToCache field contains a list of variables that can be assumed not to
depend explicitly on the plastic strains. By specifying variable names representing
complicated material property expressions or interpolated data independent of the
plastic strains, it is possible to avoid repeated evaluation in the inner, plastic, loop.

In addition to the plastic strain variables, the varPairsToGpProcess field defines a
number of postprocessing variable-expression pairs, which, when evaluated, are
linearly extrapolated from the integration points. Use this feature, for example, to
avoid problems with nonconvergent plastic strains at sharp geometry corners.

For each variable and integration point, the elplastic element declares an
additional degree of freedom, which appears in the solution vector. However,
consider these degrees of freedom to be internal data of the elplastic element.
They are updated only by a special procedure in the nonlinear solver.

Cautionary Note that some of the field names are mixed case, and case matters. Also, the
domain-dependent fields do not accept empty entries for any domain group.

The elplastic element is available only if your license includes the Structural
Mechanics Module or the MEMS Module.
105

elplastic

106 | C H A P T
Examples By faking a single plastic strain variable, the elplastic element can be used also as
a pure postprocessing element to define variables extrapolated from the integration
points. The following example works for a 2D plane strain model.

el.elem = 'elplastic';
el.g = {'1'};
el.vars = {'foo'};
el.varPairsToGpProcess = {'ex','ex_smpn',...
 'ey','ey_smpn',...
 'exy','exy_smpn'};
gd.ind = {{'1'}};
gd.Yield = {'0'};
gd.EffStress = {'0'};
gd.G = {{'0'}};
gd.gporder = {'2'};
el.geomdim{1} = {{},{},gd};
fem.elem = [fem.elem {el}];

See Also elempty
E R 1 : C O M M A N D R E F E R E N C E

elpric
elpricPurpose Define variables which evaluate principal values and vector components.

Syntax el.elem = 'elpric'
el.g{ig} = geomnum
el.basename = bname
el.postname = pname
el.sdim{idim} = dimname
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.tensor{eldomgrp} = matexpr

Description The elpric element evaluates eigenvalues and eigenvectors of a 3-by-3 real
symmetric matrix. The tensor field always has six components specifying the upper
triangle of the source matrix as a cell array of expressions in column order. The
basename field is compulsory and specifies a single name from which all output
variable names are derived. The output variables are defined wherever the tensor
field is nonempty.

Eigenvalue variable names are created by appending numbers 1 to 3 to bname and,
if postname is present, append '_pname'. Eigenvector component names are then
created by inserting the space variable names given in sdim directly after the
component number. Eigenvalues are sorted in decreasing order.

Cautionary No Jacobian contribution is calculated even if the tensor expressions contain
dependent variables. The reason is the condition that the eigenvalues are sorted,
which makes the eigenvector components discontinuous functions of the input
matrix components.

Examples Define postprocessing variables for principal strains and directions, given strain
components [ex,ey,ez,exy,exz,eyz].

el.elem = 'elpric';
el.g = {'1'};
el.basename = 'e';
el.sdim = {'x','y','z'};
gd.ind = {{'1'}};
gd.tensor = {{'ex','exy','ey','exz','eyz','ez'}};
el.geomdim{1} = {{},{},{},gd};
fem.elem = [fem.elem {el}];

See Also elempty, elinv
107

elsconstr

108 | C H A P T
elsconstrPurpose Define pointwise constraints controlled by shape functions.

Syntax el.elem = 'elsconstr'
el.g{ig} = geomnum
el.nname = Nname
el.nfname = NFname
el.mname = Mname

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.shelem = meshcases | shapelist

meshcases.default = shapelist;
meshcases.case{elmcase} = shapelist;
meshcases.mind{elmcase} = caselist;

shapelist{eldomgrp}{ishape}{3*i-2} = bmtypename
shapelist{eldomgrp}{ishape}{3*i-1} = shapename
shapelist{eldomgrp}{ishape}{3*i} = shapeparams

el.geomdim{ig}{edim}.constr{eldomgrp}{ic}{j} = constrexpr
el.geomdim{ig}{edim}.constrf{eldomgrp}{ic}{j} = constrfexpr
el.geomdim{ig}{edim}.cshape{eldomgrp}{ic} = ishape

Description The elsconstr element defines pointwise constraints where the type of constraint
is determined by a shape function object. The idea is that the constraint points are
selected to be appropriate for variables having the corresponding shape function.
For the syntax of the ind field, see elempty. For the syntax of the shelem field, see
elshape. A difference to the syntax in elshape is that the cell array shapelist has
three levels instead of two.

The expressions that are used to formulate the constraint are given in the constr
field, and the index of the corresponding shape function object is given in the
cshape field. More precisely, in element geometry ig, dimension edim, and
element domain group eldomgrp, constraint number ic is defined by the shape
function object with index
ishape=el.geomdim{ig}{edim}.cshape{eldomgrp}{ic}. The expressions
needed to formulate this constraint is given by the cell array
el.geomdim{ig}{edim}.constr{eldomgrp}{ic}. The number of expressions ne
in this cell array depends on the shape function object.

The optional constrf field controls the way constraint forces are applied. You enter
an expression such that its Jacobian with respect to the test functions decides on
which degrees of freedom the reaction force is applied for each constraint. If
constrf is omitted, constraints are ideal, which corresponds to setting the
components of constrf to test(constrexpr).
E R 1 : C O M M A N D R E F E R E N C E

elsconstr
The constraint and constraint force Jacobians are by default assembled to matrices
called NT and NF, and the constraint residual is called M. This can be changed by
assigning different names to the optional nname, nfname and mname fields. Only
certain names are recognized by functions like assemble, though, see page 29.

The elsconstr constraint element is only implemented for the shape functions
shlag, shcurl, and shdiv. For shlag, the number of expressions ne=1, and this
expression is constrained to be zero in the node points of the shlag object. For
shcurl, the number of expressions ne=sdim, and these expressions are considered
as components of a vector. The tangential component of this vector is constrained
to be zero in the node points for the shcurl shape function. For shdiv, the number
of expressions ne=sdim, and these expressions are considered as components of a
vector. The normal component of this vector is constrained to be zero in the node
points for the shdiv shape function.

Example Impose a constraint on a vector field E represented using shcurl shape functions of
order 2. The constraint is that the tangential component of E-(2,3) is zero.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 'shcurl(2,''E'')';
fem.dim = {'EX' 'Ey'};
fem.equ.weak = '-(Ex*Ex_test+Ey*Ey_test+dExy_test*dExy)';

clear el gd;
el.elem = 'elsconstr';
el.g = {'1'};
gd.ind = {{'1','2','3','4'}};
gd.shelem{1}{1} = ...
 {'s(1)','shcurl',struct('fieldname','E','order','2')};
gd.constr{1}{1} = {'Ex-2','Ey-3'};
gd.cshape{1}{1} = '1';
el.geomdim{1} = {{},gd,{}};
fem.elem = {el};

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postarrow(fem,{'Ex' 'Ey'});

See Also elempty, elpconstr, elshape, shdiv, shlag, shcurl
109

elshape

110 | C H A P T
elshapePurpose Define dependent variables and select shape functions.

Syntax el.elem = 'elshape'
el.g{ig} = geomnum
el.tvars = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.shelem = meshcases | shapelist

meshcases.default = shapelist;
meshcases.case{elmcase} = shapelist;
meshcases.mind{elmcase} = caselist;

shapelist{eldomgrp}{3*ishape-2} = bmtypename
shapelist{eldomgrp}{3*ishape-1} = shapename
shapelist{eldomgrp}{3*ishape} = shapeparams

Description The elshape element is responsible for allocating degrees of freedom and defining
dependent variables. For the syntax of the ind field, see elempty. The tvars field
turns the generation of time derivative variables on or off (default on).

The shelem field has a rather complicated syntax. If no alternate mesh cases are
defined, it is a cell array which for each domain group contains a cell array of triplets
bmtypename—shapename—shapeparams. The string bmtypename is a unique
identifier for a basic mesh element shape with certain additional properties, see the
table below.

TABLE 1-20: BASIC MESH ELEMENT TYPE IDENTIFIERS FOR ELEMENT TYPES GENERATED IN MESHES

NAME DESCRIPTION

ls(0) 0D simplex (all elements are equivalent in 0D)

s(1) 1D simplex, higher-order shape generated on boundaries in
2D and 3D

ls(1) 1D simplex, linear shape generated in 1D

s(2) 2D simplex (triangle), higher-order shape generated on
boundaries in 3D and in a layer closest to boundaries in 2D

ls(2) 2D simplex (triangle), linear shape generated in the inner of
2D domains

b(2) 2D brick (quadrilateral, quad), higher-order shape generated
on boundaries in 3D and in a layer closest to boundaries in
2D

lb(2) 2D brick (quadrilateral, quad), bilinear shape generated in the
inner of 2D domains

s(3) 3D simplex (tetrahedron), higher-order shape generated in a
layer closest to boundary surfaces and free edges
E R 1 : C O M M A N D R E F E R E N C E

elshape
The shapename identifier selects a shape function for the base mesh type, and the
format of the shapeparams parameter in turn depends on the particular shape
function. Typically, the shape function expects a struct with fields specifying
dependent variable name and order.

If there are multiple mesh cases present in the model, the shelem field is a struct
with fields default, case, and mind. The default field has the same syntax as
described above for the shelem field itself. Multiple alternate cases which use the
same shape functions can be grouped together using the mind field. This field is a
cell array containing groups of mesh case numbers, each group, caselist, given as
a cell array. For each element mesh case group, elmcase, an alternate shape list is
given in the case field.

Cautionary Multiple shape functions can be specified by the same elshape element simply by
repeating a basic mesh type name with different shape function and/or parameters
in the shelem field. This means that there also has to be some conflict resolution.
When multiple shape functions specify the same dependent variable name, the one
with the highest interpolation order for the basic field prevails.

The field variables defined on a given domain are the union of the variables defined
in the default case by shape functions on all basic mesh element types on that
domain. This means that variables can at times be missing on certain mesh element
types or for certain mesh cases.

Examples Add a dependent variable lm on the boundary that can be used as a Lagrange
multiplier in a weak constraint.

clear fem;

ls(3) 3D simplex (tetrahedron), linear shape generated away from
boundaries and edges in 3D

b(3) 3D brick (hexahedron, hex), higher-order shape generated in
a layer closest to boundary surfaces and free edges

lb(3) 3D brick (hexahedron, hex), trilinear shape generated away
from boundaries and edges in 3D

prism 3D prism (pentahedron, wedge), higher-order shape
generated in a layer closest to boundary surfaces and free
edges

lprism 3D prism (pentahedron, wedge), bilinear shape generated
away from boundaries and edges in 3D

TABLE 1-20: BASIC MESH ELEMENT TYPE IDENTIFIERS FOR ELEMENT TYPES GENERATED IN MESHES

NAME DESCRIPTION
111

elshape

112 | C H A P T
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.weak = 'lm_test*u+lm*u_test';
fem.elem = {};

clear el;
el.elem = 'elshape';
el.g = {'1'};
el.tvars = 'off';
gd.ind = {{'1','2','3','4'}};
gd.shelem = ...
 {{'s(1)','shlag',struct('basename','lm','order','2')}};
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','u','triz','u');

See Also elempty, sharg_2_5, shbub, shdens, shdiv, shgp, shlag, shcurl
E R 1 : C O M M A N D R E F E R E N C E

elshell_arg2
elshell_arg2Purpose Create a linear flat faceted shell element.

Syntax el.elem = 'elshell_arg2'
el.g{ig} = geomnum
el.dim = depvarnames
el.equation = equation type
el.omega = frequency
el.postname = postfix
el.geomdim{ig}{3}.ind{eldomgrp} = domainlist
el.geomdim{ig}{3}.E{eldomgrp} = E_expr
el.geomdim{ig}{3}.nu{eldomgrp} = nu_expr
el.geomdim{ig}{3}.rho{eldomgrp} = rho_expr
el.geomdim{ig}{3}.thickness{eldomgrp} = th_expr
el.geomdim{ig}{3}.height{eldomgrp} = height_expr
el.geomdim{ig}{3}.alphadM{eldomgrp} = alpha_expr
el.geomdim{ig}{3}.betadK{eldomgrp} = beta_expr
el.geomdim{ig}{3}.xlocalx{eldomgrp} = xlx_expr
el.geomdim{ig}{3}.xlocaly{eldomgrp} = xly_expr
el.geomdim{ig}{3}.xlocalz{eldomgrp} = xlz_expr
el.geomdim{ig}{3}.nsidex{eldomgrp} = nx_expr
el.geomdim{ig}{3}.nsidey{eldomgrp} = ny_expr
el.geomdim{ig}{3}.nsidez{eldomgrp} = nz_expr

Description The elshell_arg2 element describes a linear Mindlin theory shell made up of
essentially constant-strain triangles with added drilling rotations. The element lives
on a 2D surface embedded in a 3D geometry. Its material properties, constraints
and loads are specified directly in the element syntax structure.

An elshell_arg2 element implements tasks which are handled by an eleqc or
eleqw element when using the standard syntax. That is, it directly assembles
contributions to the stiffness and mass matrices and to the residual vector. In
addition, it defines a number of postprocessing variables. The shell element
structure contains global properties, common to the entire shell, as well as local
material properties on the boundary level. Note that the shell exists only on the
boundary level and below.

Note: The elshell_arg2 element requires a triangular mesh and will not work
with a quadrilateral mesh.

Global properties: The equation field specifies whether to treat the problem as
stationary, time harmonic or time-dependent. The three displacement and three
rotation field variable names must be specified in the dim field, for example,
113

elshell_arg2

114 | C H A P T
e.dim = {'u','v','w','thx','thy','thz'}

The displacement fields are most easily defined using 6 separate shlag objects of
order 1.

Material, loads and constraints: The shell described by the elshell_arg2 element
can be considered a collection of discrete, homogeneous, flat triangles. The material
properties, including damping factors as well as the element thickness, are taken to
be constant within any triangle. The syntax of the material properties, loads and
constraints is analogous to the syntax of the coefficient form level 1 coefficients. See
further the section “Specifying a Model” in the COMSOL Multiphysics Scripting
Guide. However note that all values as well as expressions must be strings.

TABLE 1-21: GLOBAL PROPERTIES OF THE ELSHELL_ARG2 SHELL ELEMENT STRUCTURE

FIELD MEANING SYNTAX DEFAULT
VALUE

elem Shell element name 'elshell_arg2' -

g Geometry index scalar number 1

dim Field variable names for displacements and rotations 1-by-6 cell vector
of strings

-

equation Affects how matrices are assembled 'static' |
'freq' | 'time' |
'eigen'

omega Frequency for the 'freq' equation string expression '0'

postname Name that is appended to postprocessing variables string empty string

TABLE 1-22: BND LEVEL PROPERTIES IN THE ELSHELL_ARG2 SHELL ELEMENT STRUCTURE

FIELD MEANING SYNTAX

E Elasticity modulus / Young’s modulus level 1 coefficient

nu Poisson’s ratio level 1 coefficient

rho Density level 1 coefficient

thickness Shell thickness level 1 coefficient

height Postprocessing level level 1 coefficient

alphadM Mass damping coefficient (submodes
'time' and 'freq' only)

level 1 coefficient

betadK Stiffness damping coefficient
(submodes 'time' and 'freq' only)

level 1 coefficient
E R 1 : C O M M A N D R E F E R E N C E

elshell_arg2
Postprocessing variables: The postprocessing variables defined by the
elshell_arg2 element have standard names that do not depend on the names of
the space variables given in fem.sdim. The postname property of the shell element
structure, if not the empty string, is appended to all postprocessing variables. For
example, the direct x strain will be referenced as exs or exs_postname, depending
on the value of the postname field.

Theory: The elshell_arg2 shell element is a combination of an isotropic version
of the TRIC element proposed by Argyris and others (Ref. 1) and the constant strain
triangle with drilling rotations due to Allman (Ref. 2). As such, the element is
essentially a constant strain triangle whose displacement field vary linearly in the
direction tangential to each edge, and as a restricted third order polynomial in the
normal direction.

The material properties are considered to be constant within any triangle, and
therefore symbolic integration can be used to describe an element stiffness matrix
and a consistent element mass matrix in terms of element geometry and material
data.

xlocalx, xlocaly,
xlocalz

Vector, whose projection on the shell
defines the local x direction

level 1 coefficient

nsidex, nsidey, nsidez Direction vector which defines the
“up” side of the shell

level 1 coefficient

TABLE 1-22: BND LEVEL PROPERTIES IN THE ELSHELL_ARG2 SHELL ELEMENT STRUCTURE

FIELD MEANING SYNTAX

TABLE 1-23: POSTPROCESSING VARIABLES DEFINED BY THE ELSHELL_ARG2 ELEMENT

VARIABLE MEANING

exs, eys, ezs, exys,
exzs, eyzs

Strain tensor components in global coordinates

exls, eyls, ezls,
exyls, exzls, eyzls

Strain tensor components in local coordinates

Nxls, Nyls, Nxyls In-plane forces in local coordinates

Qxls, Qyls Out-of-plane forces in local coordinates

Mxls, Myls, Mxyls In-plane moments in local coordinates

exlxs, exlys, exlzs Local system x-axis expressed in global coordinates

eylxs, eylys, eylzs Local system y-axis expressed in global coordinates
115

elshell_arg2

116 | C H A P T
Cautionary The elshell_ar2 shell element is not multiphysics enabled. This means that there
will be no contributions to the exact Jacobian from solution-dependent material
data.

The elshell_arg2 element is available only if your license includes the Structural
Mechanics Module.

Compatibility COMSOL Multiphysics 3.2: The tdim field and wave extension in the
time-dependent case are no longer used.

See Also elempty

References 1. J. Argyris, L. Tenek, and L. Olofsson, “TRIC: a simple but sophisticated 3-node
triangular element based on 6 rigid-body and 12 straining modes for fast
computational simulations of arbitrary isotropic and laminated composite shells,”
Comput. Methods Appl. Mech. Engrg., vol. 145, pp. 11–85, 1997.

2. D. J. Allman, “Evaluation of the constant strain triangle with drilling rotations,”
Int. J. Numer. Meth. Engrg., vol. 26, pp. 2645–2655, 1988.
E R 1 : C O M M A N D R E F E R E N C E

eluwhelm
eluwhelmPurpose Assemble acoustic Helmholtz equation on ultraweak variational form.

Syntax el.elem = 'eluwhelm'
el.g{ig} = geomnum
el.basename = fieldname
el.ndir = ndir
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.Rho{eldomgrp} = rho
el.geomdim{ig}{edim}.K{eldomgrp} = k
el.geomdim{ig}{edim}.Q{eldomgrp} = q

Description The eleqw element uses the Ultraweak variational formulation (UWVF) to
implement a Helmholtz equation for the acoustic pressure, p,

with boundary conditions of the form

The density ρ0, wave number k, and parameter q are supplied directly to the
element, while the boundary term g and all volume, point, and edge sources must
be implemented separately, outside the element.

The acoustic field variable fieldname must be represented by an shuwhelm shape
function with fixed number of directions, ndir, throughout the domains where the
eluwhelm element is active.

Cautionary The eluwhelm element does not currently account for curved boundaries—all
element edges and faces are assumed to be planar. This may change, which can
possibly affect future element syntax.

See Also elempty, shuwhelm

p∇
ρ0
-------–⎝ ⎠

⎛ ⎞∇• k2

ρ0
------p– 0=

n p∇
ρ0
-------⋅ i k

ρ0
------p+ q n–

p∇
ρ0
-------⋅ i k

ρ0
------p+⎝ ⎠

⎛ ⎞ g+=
117

elvar

118 | C H A P T
elvarPurpose Define expression variables.

Syntax el.elem = 'elvar'
el.g{'ig'} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.var{2*ivar-1} = varname
el.geomdim{ig}{edim}.var{2*ivar}{eldomgrp} = varexpr

Description The elvar element declares expression variables varname to be accessible on
domain groups for which the defining expression varexpr is nonempty. For the
syntax of the ind field, see elempty.

Examples Redefine the space derivatives of u on an interior boundary to be evaluated on the
“up” side instead of being averaged.

clear fem;
fem.geom = geomcsg({rect2(1,1,'pos',[-1 0]),rect2});
fem.mesh = meshinit(fem);
fem.equ.ind = [1 2];
fem.equ.c = {1 2};
fem.bnd.ind = [1 0 0 0 0 0 2];
fem.bnd.h = 1;
fem.bnd.r = {0 1};
fem.elem = {};

clear el;
el.elem = 'elvar';
el.g = {'1'};
clear gd;
gd.ind = {{'4'}};
gd.var = {'ux',{'up(ux)'},'uy',{'up(uy'}};
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'lindata','ux','linz','ux');

See Also elempty
E R 1 : C O M M A N D R E F E R E N C E

embed
embedPurpose Embed a 2D geometry object as a 3D geometry object.

Syntax g3 = embed(g2)
g3 = embed(g2,p_wrkpln)

Description g3 = embed(g2) embeds the 2D geometry object as a 3D geometry object. A 2D
solid object becomes a 3D face object, a 2D curve object becomes a 3D curve
object, and a 2D point object becomes a 3D point object.

g3 = embed(g2,p_wrkpln) additionally, p_wrkpln specifies the position in the 3D
space. See geomgetwrkpln for more information on p_wrkpln.

See also extrude, curve2, curve3, face3, geom0, geom1, geom2, geom3, point1,
point2, point3
119

extrude

120 | C H A P T
extrudePurpose Extrude a 2D geometry object into a 3D geometry object.

Syntax g3 = extrude(g2,...)

Description g3 = extrude(g,...) extrudes the 2D geometry object g into a 3D geometry
object g3 according to given parameters.

The function extrude accepts the following property/values:

The 3D object g3 is an extruded object, where Distance is the extrusion distance
in the normal direction of the bottom plane, defined by the property Wrkpln.

The properties Displ, Scale, and Twist defines the translation displacements, scale
factors and rotation of the top with respect to the bottom of the extruded object.
They are defined in the local system of the work plane.

To define a piecewise linear extrusion, Distance is given as a row vector, of size
1-by-nd, of displacements with respect to the bottom work plane. Scale, Displ,
and Twist need to have the same number of columns as Distance.

To define a cubic extrusion Distance is given as a 3-by-nd matrix where rows 2 and
3 contain weights of the extrusion segments. The weights are given in the interval
[0 1] and specifies the influence of the tangential continuity at the junctions. The
weights of rows 2 and 3 specifies the influence from the first- and second-junction,
respectively, of each segment. If the weight is close to 0, the influence of the
junction is weak, and if it is close to 1, the influence is strong.

Polres defines the resolution in the polygon representations of the edges.

Face specifies if cross-sectional faces are removed: 'all' removes them, 'none' keeps
them.

TABLE 1-24: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Displ 2-by-nd matrix [0;0] Displacement of extrusion top

Distance k-by-nd matrix 1 Extrusion distances

Face string 'all' Cross-sectional faces to delete

Polres scalar 50 Polygon resolution

Scale 2-by-nd matrix [1;1] Scale of extrusion top

Twist 1-by-nd vector 0 Twist angle (in radians)

Wrkpln 3-by-3 matrix [0 1 0;
 0 0 1;
 0 0 0]

Work plane for 2D geometry
cross section
E R 1 : C O M M A N D R E F E R E N C E

extrude
Compatibility The numbering of faces, edges and vertices is different from the numbering in
objects created in 2.3.

Examples Creation of a cylinder of height 1.3.

g3 = extrude(circ2,'distance',1.3);

Extrusion of rectangle from a zx-plane.

p_wrkpln = geomgetwrkpln('quick',{'zx',10});
g3 = extrude(rect2(1,2),'distance',1.3,'displ',[0.4;0],...
 'scale',[2;2],'wrkpln',p_wrkpln);
geomplot(g3);

Cubic extrusion of a circle.

g3 = extrude(circ2,'distance',[1 3 4;0.3 0.3 0.3;0.3 0.3 0.3],...
 'scale',[1 1.5 2;1 1 2],'twist',[0 pi/6 pi/6],...
 'displ',[0 0 0;0 1 1]);

See Also geom0, geom1, geom2, geom3, geomcsg, geomgetwrkpln
121

face3

122 | C H A P T
face3Purpose Create 3D surface geometry object.

Syntax f3 = face3(x,y,z)
f3 = face3(x,y,z,w)
f3 = face3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[f3,...] = face3(g3,...)
f3 = face3(g2)

Description f3 = face3(x,y,z) creates a face3 object f3. The degree of the rational Bézier
surfaces is determined from the size of the matrices x, y, and z. The arrays x, y, and
z are always of equal size. If size(x,2)>1 then a rectangular patch is created. If
size(x,2)==1 then a triangular patch is created.

The valid combinations of matrix sizes of x, y, and z are: 3-by-1 for creating
triangular planar patches, 2-by-2, 3-by-2, 4-by-2, 3-by-3, 4-by-3, 4-by-4 for
rectangular patches of degree (1,1), (2,1), (3,1), (2,2), (3,2), and (3,3) respectively.

f3 = face3(x,y,z,w) works similarly to the above, but also applies arbitrary
positive weights to the points of the surface.

f3 = face3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates a 3D surface
geometry object f3 from the fields vtx, vtxpre, edg, edgpre, fac, mfdpre, and
mfd. The arguments must define a valid face object. See geom3 for a description of
the arguments.

[f3,...] = face3(g3,...) coerces the 3D geometry object g3 to a 3D face
object f3.

f3 = face3(g2) coerces the 2D geometry object g2 to a 3D face object f3. The
object f3 is then embedded in the plane z=0 and is a trimmed planar patch since it
is not in general representable as a rectangular or triangular Bézier patch.

The coercion function [f3,...] = face3(g3,...) a accepts the following
property/values:

See geomcsg and geom for more information on geometry objects.

The 3D geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom3 for details.

TABLE 1-25: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names.
E R 1 : C O M M A N D R E F E R E N C E

face3
Examples Create an untrimmed triangular patch in the plane, y = 1.

f1 = face3([0 1 0]',[1 1 1]',[0 0 1]');

Create a circular face as a trimmed patch in the plane, z = 0.

f2 = face3(circ2(0,20,10));

A patch that can constitute the wall of a cylinder, is created by setting the control
weights explicitly, as in the command below.

f3 = face3([-1 -1;-1 -1;0 0],[0 0;-1 -1;-1 -1],...
 [0 1; 0 1; 0 1],[1 1;1/sqrt(2) 1/sqrt(2);1 1]);

To generate a third degree rectangular patch, the following commands can be given.

[x,y] = meshgrid(-3:3:6,0:2:6);
z = rand(size(x));
f4 = face3(x,y,z);

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also curve2, curve3, geom0, geom1, geom2, geom3, geomcsg, point1, point2,
point3
123

femdiff

124 | C H A P T
femdiffPurpose Symbolically differentiate a PDE in general form.

Syntax fem1 = femdiff(fem,...)
xfem1 = femdiff(xfem,...)

Description fem1 = femdiff(fem,...) symbolically differentiates the Γ, F, G, and R
coefficients in a PDE given in general form. xfem can also be an extended FEM
structure. In this case, femdiff differentiates all FEM structures in general form.
The coefficients are obtained from the ga, f, and g, r fields from the fem.equ and
fem.bnd structures, respectively. It returns an FEM structure where the fields equ
and bnd have been updated with the fields c, al, be, a, and q, h according to “The
Linear or Linearized Model” on page 366 in the COMSOL Multiphysics User’s
Guide.

The expressions in the coefficients Γ, F, G, and R can contain expressions
containing the binary operators +, -, *, /, ̂ , ==, ~=, >, >=, <, <=, |, and &; the unary
operators +, -, and ~; and the functions abs, acos, acosh, acot, acoth, acsc,
acsch, asec, asech, asin, asinh, atan, atanh, cos, cosh, cot, coth, csc, csch,
erf, exp, lambw, log, log10, log2, sec, sech, sign, sin, sinh, sqrt, tan, and
tanh.

The function femdiff accepts the following property/value pairs:

The properties Diff, Rules, and Simplify can alternatively be given as fields in the
FEM structure: fem.diff, fem.rules, and fem.simplify.

TABLE 1-26: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Defaults off | on off Return default fields

Diff off | on | cell array
containing a selection
of ga, g, f, r, var, and
expr

on List of fields which can
be differentiated in order
to evaluate the Out
values. The default string
'on' is equivalent to the
cell array {'ga' 'g'
'f' 'r' 'expr'}.
Note: not 'var'

Shrink off | on on List of differentiation
rules

Simplify off | on on Simplify differentiated
expressions
E R 1 : C O M M A N D R E F E R E N C E

femdiff
Use the field fem.rules to specify additional differentiation rules. The derivative of
the inverse hyperbolic tangent function atanh can, for example, be specified as

{'atanh(x)','1/(1-x^2)'}.

It can also be stored as a field in the FEM structure.

Assume a user-defined function foo(a,b) has been written, implementing the
analytical expression a^2+a*sin(b^3). The derivatives of this function are specified
as:

'rules', {'foo(a,b)', '2*a+sin(b^3),3*a*b^2*cos(b^3)'}

femdiff does not support functions with string arguments.

Cautionary The relational and Boolean operators have been included for convenience only, and
must be used with extreme caution. Their symbolic derivative is considered to be
identically 0.

Coefficient M-files are not allowed in the input.

Compatibility The function flgetrules for converting FEMLAB 1.0/1.1 differentiation rules is
no longer available.

The properties bdl, out, rules, and sdl are obsolete in FEMLAB 3.0.

The fields fem.equ.varu and fem.bnd.varu, etc. are no longer generated in
FEMLAB 3.0.

The precedence rules for the operators | and & have been changed to comply with
MATLAB 6.0 precedence.

The differentiation algorithm is new in FEMLAB 1.2. The @fldiffobj class is
obsolete.

See Also femnlin
125

femeig

126 | C H A P T
femeigPurpose Solve eigenvalue PDE problem.

Syntax fem.sol = femeig(fem,...)
[u,lambda] = femeig(fem,...)
fem = femeig(fem,'Out',{'fem'},...)
fem.sol = femeig('In',{'D' D 'K' K 'N' N},...)

Description fem.sol = femeig(fem,...) assembles and solves the eigenvalue PDE problem
described by the (possibly extended) FEM structure fem.

fem.sol = femeig('In',{'D' D 'K' K 'N' N},...) solves the eigenvalue
problem given by the matrices D, K, and N.

For both linear and nonlinear PDE problems, the eigenvalue problem is that of the
linearization about a solution U0. If the eigenvalue appears nonlinearly, COMSOL
Multiphysics reduces the problem to a quadratic approximation around a value λ0
specified by the property eigref. The discretized form of the problem reads

where K, D, E, N and NF are evaluated for U = U0 and λ = λ0. Λ is the Lagrange
multiplier vector, λ is the eigenvalue. The eigenvalue name can be given by the
property eigname. The linearization point U0 can be given with the property U. The
shift, described below, is compensated according to the linearization point for the
eigenvalue. Therefore, changing the linearization point has no effect at all for linear
or quadratic eigenvalue problems.

The function femeig accepts the following property/value pairs:

TABLE 1-27: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Eigname string lambda Name of eigenvalue
variable

Eigref string 0 Linearization point for
the eigenvalue

Etol positive scalar 0 Eigenvalue tolerance

In cell array of names and
matrices K | N | D | E

N is empty
E=0, D=0

Input matrices

Krylovdim positive integer Dimension of Krylov
space

KU λ λ0–()DU– λ λ0–()2EU+ NFΛ–=

NU M=
E R 1 : C O M M A N D R E F E R E N C E

femeig
In addition, the properties described in the entry femsolver are supported.

Specify where to look for the desired eigenvalues with the property shift. Enter a
real or complex scalar; the default value is 0, meaning that the solver tries to find
eigenvalues close to 0.

When using an iterative method as linear system solver, the tolerance used in the
convergence criterion is Itol times a saftey factor of 10−4. When a direct method is
used as linear system solver, with error checking enabled, Itol is used in the
convergence criterion without any extra safety factor.

Using the property In you can specify explicit values for the matrices in the
eigenvalue problem. The value for this property is a cell array with alternating matrix
names and matrix values. The matrix names can be D, E, K, or N. If the N matrix is
not given, it is taken to be empty. If the D or E matrix is not given, it is taken to be 0.

The property Out defines the output variables and their order. The output fem
means the FEM structure with the solution object fem.sol added. sol is a femsol
object containing the fields lambda and u. lambda is a row vector containing the
eigenvalues. U is a solution matrix. Each column in the solution matrix is the solution
vector of the eigenfunction for the corresponding eigenvalue in lambda. The output
value stop returns nonzero if the solution process was not completed. Stop is 1 if
a partial solution was returned, and 2 if no solution was returned. For the other
outputs, see femlin.

For more information about the eigenvalue solver, see “The Eigenvalue Solver” on
page 376 in the COMSOL Multiphysics User’s Guide.

Example Eigenmodes and Eigenvalues of the L-shaped Membrane
Compute eigenvalues corresponding to eigenmodes for the PDE problem

Neigs positive integer 6 Number of
eigenvalues sought

Out fem | sol | u | lambda |
stop | solcompdof | Kc |
Dc | Ec | Null | Nullf |
Nnp | uscale | nullfun |
symmetric

sol Output variables

Shift scalar 0 Eigenvalue search
location

TABLE 1-27: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
127

femeig

128 | C H A P T
where Ω is the L-shaped membrane. Start by setting up the problem:

clear fem
fem.geom = poly2([-1 0 0 1 1 -1],[0 0 1 1 -1 -1]);
fem.mesh = meshinit(fem,'hmax',0.1);
fem.shape = 2;
fem.equ.c = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femeig(fem,'neigs',16);

Display the first and sixteenth eigenmodes. The membrane function is available in
MATLAB and not in COMSOL Script.

postsurf(fem,'u') % first eigenmode
membrane(1,20,9,9) % the MATLAB function
postsurf(fem,'u','solnum',16) % sixteenth eigenmode

Cautionary Consider the case of a linear eigenvalue problem, E = 0.Write the generalized
eigenvalue problem as (A−λB)u = 0. In the standard case the coefficients c and da
are positive in the entire region. All eigenvalues are positive, and 0 is a good choice
for the shift (eigenvalue search location). The cases where either c or da is zero are
discussed below.

• If da = 0 in a subregion, the mass matrix B becomes singular. This does not cause
any trouble, provided that c > 0 everywhere. The pencil (A,B) has a set of infinite
eigenvalues.

• If c = 0 in a subregion, the stiffness matrix A becomes singular, and the pencil
(A,B) has many zero eigenvalues. Choose a positive shift below the smallest
nonzero eigenvalue.

• If there is a region where both c = 0 and da = 0, we get a singular pencil. The
whole eigenvalue problem is undetermined, and any value is equally plausible as
an eigenvalue.

Compatibility The property Variables has been renamed to Const in FEMLAB 2.3.

The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

See Also femsolver, assemble, femlin

∆u– λu= in Ω
u 0= on ∂Ω⎩

⎨
⎧

E R 1 : C O M M A N D R E F E R E N C E

femlin
femlinPurpose Solve linear or linearized stationary PDE problem.

Syntax fem.sol = femlin(fem,...)
fem = femlin(fem,'Out', {'fem'},...)
[Ke,Le,Null,ud] = femlin(fem,...)
[Kl,Ll,Nnp] = femlin(fem,...)
[Ks,Ls] = femlin(fem,...)
fem.sol = femlin('In',{'K' K 'L' L 'M' M 'N' N 'NF' NF},...)

Description fem.sol = femlin(fem) solves a linear or linearized stationary PDE problem
described by the (possibly extended) FEM structure fem. See femstruct for details
on the FEM structure.

fem.sol = femlin(fem, 'pname','P', 'plist',list,...) solves a linear or
linearized stationary PDE problem for several values of the parameter P. The values
of the parameter P are given in the vector list.

fem = femlin(fem,'out',{'fem'}) modifies the FEM structure to include the
solution structure, fem.sol.

[Ke,Le,Null,ud] = femlin(fem) partially solves the PDE problem by
eliminating the constraints. The solution of PDE problem can be obtained by the
scripting command u = u0+Null*(Ke\Le)+ud, where u0 is the linearization point.

[Kl,Ll,Nnp] = femlin(fem) partially solves the PDE problem by using the
Lagrange method. The solution can then be obtained by u = Kl\Ll, and then u =
u0+u(1:Nnp).

[Ks,Ls] = femlin(fem) partially solves the PDE problem by approximating the
constraints with stiff springs. The solution to the PDE problem is u = u0+Ks\Ls.

fem.sol = femlin('in',{'K' K 'N' N 'NF' NF 'L' L 'M' M}) solves a
pre-assembled PDE problem.

u = femlin('in’,{'K' K 'L' L},'out','u') is equivalent to solving the linear
system using u = K\L, with the important difference that you have access to all
linear system solvers (except Geometric multigrid) using the Linsolver property.

Consider the finite element discretization of a stationary PDE problem:

where L, NF, and M depend on the solution vector U. femlin solves the linearized
form of this problem:

0 L NFΛ–

M
,=
129

femlin

130 | C H A P T
where K, NF, N, L, and M are evaluated for U = U0. Thus, if the original problem
is linear and K is the correct Jacobian, femlin computes the solution of the original
problem. The linearization “point” U0 can be specified with the property U.

femlin can also partially solve the eigenvalue problem:

in that it transforms the problem using one of the constraint-handling methods.
Here λ is the eigenvalue, the name can be controlled by the property eigname. λ0
is the eigenvalue linearization point, the value can be controlled by the property
eigref.

The function femlin accepts the following property/values:

TABLE 1-28: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Eigname string lambda Eigenvalue name

Eigref string 0 Linearization point for the
eigenvalue

In cell array of names
and matrices K | L | M
| N | NF | D | E

N and M are
empty, D=E=0,
NF=NT

Input matrices

Keep string containing K, N
| auto

auto Parameter-independent
quantities

Oldcomp cell array of strings Old parameter
components

Out fem | sol | u | plist
| stop | solcompdof
| Kc | Lc | Dc | Ec |
Null | Nullf | Nnp |
ud | uscale |
nullfun |
symmetric | cell
array of these strings

sol Output variables

K NF

N 0

U U0–

Λ
L
M

,=

KU λ λ0–()DU– λ λ0–()2EU+ NFΛ–=

NU M=
E R 1 : C O M M A N D R E F E R E N C E

femlin
In addition, the properties described in the entry femsolver are supported.

The parametric solver properties Oldcomp, Pinitstep, Plist, Pmaxstep,
Pminstep, Pname, Porder, and Stopcond are described under femnlin.

The property In explicitly provides assembled matrices. Its value is a cell array with
alternating matrix names and matrix values. The allowed matrix names are K, L, M,
N, NF, D, and E.

The property Out explicitly sets output variables and their order. The output
variable fem means the FEM structure with the solution object fem.sol added. The
outputs sol, u, and plist are the solution object, the solution matrix (sol.u), and
the parameter list (sol.plist), respectively. The output value stop is 0 if a
complete solution was returned, 1 if a partial solution was returned, and 2 if no
solution was returned. The output solcompdof is a vector containing the indices of
the degrees of freedom solved for. The output matrix Kc and the vector Lc are the
matrix and right-hand side of the linear system after constraint handling; see
“Constraint Handling” on page 499. The matrices Dc and Ec are the corresponding
damping matrix and mass matrix after constraint handling for an eigenvalue or
time-dependent problem. The outputs Null, Nullf and ud are related to the
eliminate constraint handling method. The outputs Nnp and uscale are the number
of degrees of freedom solved for and the scale factors used in the rescaling of the
degrees of freedom; see “Scaling of Variables and Equations” on page 497. The

Pinitstep positive real Initial stepsize for
parameter

Plist real vector List of parameter values

Pmaxstep positive real Maximum stepsize for
parameter

Pminstep positive real Minimum stepsize for
parameter

Pname string Parameter name

Porder 0 0 Predictor order for
parameter stepping

Stopcond string with
expression

Stop parameter stepping
before expression
become negative

TABLE 1-28: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION
131

femlin

132 | C H A P T
outputs nullfun and symmetric can be useful in finding out the result of the
automatic null function or the automatic symmetric mechanisms.

Example The L-Shaped Membrane with Three Subdomains
Take a look at the geometry of the L-shaped membrane for examples of what you
can do. First create the L-shaped membrane and examine the subdomain labels and
edge segment labels by plotting:

clear fem
sq1 = square2(0,0,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem);
geomplot(fem,'edgelabel','on','sublabel','on')

Say you want to use c = 1, 1/2, and 1/3 and f = x, y, and x2+1 in subdomains 1, 2,
and 3, respectively. Use Dirichlet boundary conditions on the outer boundaries:

fem.shape = 2;
fem.equ.c = {1 1/2 1/3};
fem.equ.f = {'x' 'y' 'x^2+1'};
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femlin(fem);
postsurf(fem,'u')

You can set fem.bnd.h = 1 because fem.border has not been set (and defaults to
off). When fem.border is set to on you must type fem.bnd.h = {1 1 1 0 1 1
0 1 1 1}. Otherwise you get u=0 also on interior boundaries.

Using anisotropic and f = 1 in all subdomains can be done by
typing

fem.equ.c = {{{2 'x+y' 10}}};
fem.equ.f = 1;
fem.xmesh = meshextend(fem);
fem.sol = femlin(fem);
postsurf(fem,'u')

Cautionary When using the general form it is assumed that the coefficients c, α, β, a, q, h have
been computed using fem=femdiff(fem). In the user interface, this is done
automatically.

Compatibility The property Variables has been renamed to Const in FEMLAB 2.3.

c 2 x y+

x y+ 10
=

E R 1 : C O M M A N D R E F E R E N C E

femlin
If scaling is used, the matrix outputs from femlin are derived from the rescaled
system. This means that the scale factors uscale have to be taken into account if a
solution is computed from the matrices. See “Scaling of Variables and Equations”
on page 497.

The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

The properties u and t have been made obsolete in FEMLAB 1.1.

See Also femsolver, femstruct, assemble, asseminit, femnlin, femeig, flnull
133

femmesh

134 | C H A P T
femmeshPurpose Create a mesh object.

Syntax fem.mesh = femmesh(p, el)

Description fem.mesh = femmesh(p, el) creates a mesh object from the mesh data stored in
p and el.

p is an sdim-by-np matrix containing the coordinates of the mesh vertices. The x-,
y-, and z-coordinates are stored in the first, second, and third row, respectively. np
is the number of mesh vertices.

el is a cell array of structures with mesh element information. Each structure stores
information on elements of a specific type.

The field param is only valid for elements of dimension 1, that is, edge elements, in
2D and 3D, and for elements of dimension 2, that is, triangular or quadrilateral
elements, in 3D. For each edge element, the first and second row contain the
starting and ending parameter value, respectively, in 2D, and starting and ending arc
length value, respectively, in 3D. For each triangular and quadrilateral element, the
rows contain the first and second parameter values for each element corner.

The field ud is only valid for elements of dimension sdim−1, also referred to as
boundary elements. The direction of the normal vector of a boundary element

STRUCTURE
FIELD

VALUE DESCRIPTION

type one of the strings
vtx | edg | tri |
quad | tet | prism
| hex

Element type. The valid element types are:
vertex element (vtx), edge element (edg),
triangular element (tri), quadrilateral
element (quad), tetrahedral element (tet),
prism element (prism), and hexahedral
element (hex)

elem matrix of size
nNodes-by-nElem

Mesh vertex indices for the element points.
nElem is the number of elements and
nNodes is the number of element points

dom matrix of size
1-by-nElem

Geometry domain numbers

param matrix of size
nParam-by-nElem

Geometry parameter values

ud matrix of size
2-by-nElem

Up- and down-side subdomain numbers.
The first row contains the up-side
subdomain numbers and the second row the
down-side subdomain numbers
E R 1 : C O M M A N D R E F E R E N C E

femmesh
defines the up-side and down-side of the boundary element. For a 1D boundary
element, the normal points to the left, considering the direction of the boundary
element. For a 2D boundary element, the normal is defined as the cross product of
the vector going from the first to the second element corner and the vector going
from the first to the third element corner.

The properties p and el can be accessed using the syntax get(object,property).

The (local) numbering of the corners of an element is defined according to the
following.

Edge element (edg):

Triangular element (tri):

Quadrilateral element (quad):

2

1

2

3

1

2

4

1

3

135

femmesh

136 | C H A P T
Tetrahedral element (tet):

Prism element (prism):

Hexahedral element (hex):

For second-order mesh element types, the strings edg2, tri2, quad2, tet2,
prism2, and hex2 are used. The second-ordered nodes are numbered after the
corner vertices according to the following.

Edge element (edg2):

2

3

4

1

3

5
6

1

4

2

6
7

8

4
2

1

5

3

3

E R 1 : C O M M A N D R E F E R E N C E

femmesh
Triangular element (tri2):

Quadrilateral element (quad2):

Tetrahedral element (tet2):

Prism element (prism2):

The mid node number for each quadrilateral face of the prism element can also be
seen in the following table.

FACE (EDGE NODES) FACE MID NODE

7,10,12,16 11

5 6

4

6

5

9

87

6

8 10
9

5 7

7

8

9

10

12

15
11

13
14

16 18

17
137

femmesh

138 | C H A P T
Hexahedral element (hex2):

The mid-node number for each quadrilateral face of the hexahedral element can also
be seen in the following table.

The mid-node number for the hexahedral element is 18.

When importing meshes with reduced second-order elements, also called
serendipity elements, the mid node of quadrilateral elements (or quadrilateral faces)
and the mid node of hexahedral elements must be added manually. The coordinates
for the mid node for a second order quadrilateral element (or quadrilateral face) is
calculated from the surrounding nodes according to
0.5*edgNodes-0.25*vertNodes, where edgNodes is the sum of the surrounding
(4) edge mid nodes and vertNodes is the sum of the surrounding (4) vertex nodes.
For a second order hexahedron, the coordinates of the mid node is calculated from
the surrounding nodes according to 0.25*edgNodes-0.25*vertNodes, where
edgNodes is the sum of the surrounding (12) edge mid nodes and vertNodes is the
sum of the surrounding (8) vertex nodes.

8,10,15,17 13

9,12,15,18 14

FACE (EDGE NODES) FACE MID NODE

9,10,12,13 11

9,14,16,23 15

10,14,20,24 17

12,16,22,26 19

13,20,22,27 21

23,24,26,27 25

FACE (EDGE NODES) FACE MID NODE

9

10
11

12

13

14

16

20

22
15

17
18

19
21

23

24

26
25 27
E R 1 : C O M M A N D R E F E R E N C E

femmesh
Degenerated elements (or collapsed elements), that is, elements where two or more
nodes refer to the same mesh point, are not allowed.

Compatibility The FEMLAB 2.3 (and earlier) mesh structure format is a valid input to femmesh
as well.

See also meshinit, meshrefine, meshplot
139

femmesh/get

140 | C H A P T
femmesh/getPurpose Get mesh object properties.

Syntax get(m,prop)

Description get(m,prop) returns the value of a property prop for a mesh object m.

prop is a string that contains a valid property name. The following tables list the
valid property names for mesh objects:

p is a matrix where each column contains the coordinates for the corresponding
mesh vertex. For example, p(:,34) returns the coordinates for Vertex 34.

el is a cell array of structures with mesh element information. See femmesh on page
134 for information about the field in these structures.

For information about the formats for the vtx property, see “1D Geometry Object
Properties” on page 207.

Example Create a triangular mesh and determin the vertices that form mesh element 100:

m = meshinit(rect2);
el = get(m,'el');
el{3}.elem(:,100);

See Also femmesh

TABLE 1-29: MESH OBJECT PROPERTY NAMES

PROPERTY NAME DESCRIPTION

p Mesh vertex coordinates

el Element information
E R 1 : C O M M A N D R E F E R E N C E

femnlin
femnlinPurpose Solve nonlinear stationary PDE problem.

Syntax fem.sol = femnlin(fem,...)
fem = femnlin(fem,'Out',{'fem'},...)

Description fem.sol = femnlin(fem) solves a stationary PDE problem.

fem.sol = femnlin(fem,'pname','P','plist',list,...) solves a stationary
PDE problem for several values of the parameter P. The values of the parameter P
are given in the vector list.

The PDE problem is stored in the (possibly extended) FEM Structure fem. See
femstruct for details.

The solver is an affine invariant form of the damped Newton method. The solver
can optionally be combined with Uzawa iterations, often used to solve problems
with the augmented Lagrangian technique.

The function femnlin accepts the following property/value pairs:

TABLE 1-30: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Augcomp cell array of strings Augmented Lagrange
components

Augmaxiter positive integer 25 Max number of
augmentation iterations

Augsolver umfpack | spooles |
taucs_llt_mf |
taucs_ldlt | luinc
| taucs_llt | gmres
| fgmres | cg | amg |
gmg | ssor | ssoru |
sor | soru | jac |
lumped

umfpack Linear system solver for
augmented Lagrange
components

Augtol positive real 1e-6 Tolerance for augmented
Lagrange

Damping on | off on Use the damped Newton
method

Hnlin on | off off Indicator of a highly
nonlinear problem

Initstep non-negative scalar see below Initial damping factor
141

femnlin

142 | C H A P T
In addition, the properties described in the entry femsolver are supported.

The property Augcomp control the augmentation components. If this property is set
to a subset of the solution components, then the solution procedure is split into two
substeps, that are repeated until a convergence criterion is met or until the

Keep string containing K, N
| auto

auto Parameter and
iteration-independent
quantities

Maxiter positive integer 25 Maximum number of
Newton iterations

Minstep positive scalar see below Minimum damping factor

Ntol positive scalar 1e-6, 1e-3
(segregated
solver groups)

Relative tolerance

Oldcomp cell array of strings {} Old parameter
components

Out fem | sol | u | plist
| stop | solcompdof
| Kc | Lc | Null | Nnp
| ud | uscale |
nullfun |
symmetric | cell
array of these strings

sol Output variables

Pinitstep positive real Initial stepsize for
parameter

Plist real vector List of parameter values

Pmaxstep positive real Maximum stepsize for
parameter

Pminstep positive real Minimum stepsize for
parameter

Pname string Parameter name

Porder 0 | 1 1 Predictor order for
parameter stepping

Rstep real scalar > 1 10 Restriction for step size
update

Stopcond string with
expression

Stop parameter stepping
before expression
becomes negative

TABLE 1-30: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femnlin
maximum number of iterations is reached. The main components, which are the
solution components excluding the augmentation components, are first solved for,
while the augmentation components are held fix. After this, the augmentation
components are solved for while the main components are held fix. In this second
solution step, a linear solution approach is taken. Therefore, with the main
components fixed, the augmentation components are assumed to fulfill a linear
equation. The property Augtol control the tolerance for the augmentation
components and the property Ntol the tolerance for the main components in the
convergence criterion for the combined iteration (two substeps each). The
convergence criterion is that the relative increment, from one iteration to the next,
for the augmented components and the main components must not be larger than
their tolerances. The maximum number of combined iterations is controlled by the
property Augmaxiter. The linear system solver used for the solution of the
augmentation components can be controlled by the property Augsolver. For a
more detailed description of this solution procedure, see the “Nonlinear Solver
Settings” on page 368 in the COMSOL Multiphysics User’s Guide.

Setting Hnlin to on causes the solver to treat the problem as being highly nonlinear.
This option can be tried if there is no convergence with Hnlin set to off.
Depending on this parameter, certain standard values are selected for the Initstep
and Minstep properties. Moreover, certain internal control structures are adapted.
Especially, the error control is biased from a more absolute norm towards a relative
norm. So this parameter is also useful if a solution with components of highly
varying orders of magnitudes are present. In the context of parameter stepping, you
can also try this option if the step sizes in the parameter seem to be too small.

Initstep is the initial damping factor for the step length. The default is 1 if Hnlin
is off and 1e-4 if Hnlin is on.

Maxiter and Minstep are safeguards against infinite Newton iterations. They
bound the number of iterations and the damping factor used in each iteration.
Minstep defaults to 1e-4 if Hnlin is off and 1e-8 if Hnlin is on.

The tolerance Ntol gives the criterion for convergence, see “Nonlinear Solver
Settings” on page 368 in the COMSOL Multiphysics User’s Guide.

The property Out explicitly sets output variables and their order. The output
variable fem means the FEM structure with the solution object fem.sol added. The
solution object sol has a field sol.u, which is the solution vector for the FEM
formulation of the PDE problem. The solution vector u is a column vector with one
component for each degree of freedom of the discretized problem. If the parameter
143

femnlin

144 | C H A P T
variation feature is used, then sol.u is a matrix, and there are additional fields
sol.pname and sol.plist. The field sol.pname is the name of the parameter, and
sol.plist is a row vector with parameter values for which a solution was
computed. The corresponding solution vectors are stored as columns in the matrix
sol.u. The output variable Stop is 0 if a complete solution was returned, 1 if a
partial solution was returned, and 2 if no solution was returned. For the other
outputs, see femlin.

femlin and femnlin can solve a stationary problem for a number of values of a
parameter. The name of the parameter is specified with the property Pname, and the
values of the parameter is specified with the property Plist. The vector in Plist
can be an increasing or decreasing sequence of parameter values. If more than two
parameter values are given, then solutions are delivered for these parameter values
(though the algorithm may internally compute the solution for intermediate
values). If only two parameter values are given, the algorithm also delivers the
solutions for the intermediate values determined by the algorithm. The algorithm
tries to follow a continuous path of solutions when varying the parameter, and
adjusts the step size in the parameter in order achieve this. If the algorithm detects
that some sort of singularity or turning point is approached, then the stepsize is
reduced, and the algorithm terminates. In this case, if the property Stop is set to on,
the solutions for the visited parameter values are delivered.

When going from one parameter value to another, the initial guess at the new
parameter value is by default obtained by following the tangent to the solution curve
at the old parameter value. If the property Porder is set to 0, then the initial guess
is instead taken as the solution for the old parameter value. In very simple cases,
Porder = 0 may give better performance than the default Porder = 1.

The property Pinitstep specifies the initial parameter stepsize that will be tried.
The algorithm terminates if the Newton method diverges and the parameter step is
less than Pminstep. The property Pmaxstep provides an upper bound on the
parameter step. If any of the properties Pinitstep, Pminstep, or Pmaxstep are 0
or not given, they are given default values.

For some applications the access to the solution at a previous parameter value is
needed. Such an application is for example contact problems with friction in
Structural Mechanics. The solution components controlled by the property
Oldcomp are treated in a separate linear solution step, or updating step, performed
after the solver for the parameter step has finished. These components are subtracted
E R 1 : C O M M A N D R E F E R E N C E

femnlin
from the solution components and are not included in the main parametric solver
step. The linear system solver used in the update solver step is UMFPACK.

For more information on the parameter-stepping feature, see “The Parametric
Solver” on page 379 in the COMSOL Multiphysics User’s Guide.

The property Rstep sets a restriction for the damping factor update in the Newton
iteration. Each time the damping factor is updated, it is allowed to change at most
by a factor Rstep.

If the property Stop is set to on, the solver gives an output even if the algorithm
fails at some point. If the parameter stepping feature is used with more than one
parameter value, the output contains the solutions for the parameters that were
successfully computed. Otherwise, the output is the nonconverged solution
corresponding to the iteration where the failure occurred. If Stop is set to off, the
solver terminates with an error if the algorithm fails.

Use the property Stopcond to make sure the solver stops before a certain event. You
provide a scalar expression that is evaluated after each parameter step. The parameter
stepping is stopped if the real part of the expression is evaluated to something
negative. The corresponding solution, for which the expression is negative is not
returned.

For more information about the nonlinear stationary solver, see “The Stationary
Solver” on page 365 in the COMSOL Multiphysics User’s Guide.

Diagnostics If the Newton iteration does not converge, the error messages Maximal number of
iterations reached or Damping factor too small are displayed. If during the
solution process NaN or Inf elements are encountered in the solution even after
reducing the damping factor to the minimum, the error message Inf or NaN
repeatedly found in solution is printed. The message Underflow of
parameter step length means that the Newton iterations did not converge, even
after reducing the parameter step length to the limit given in Pminstep. This
probably means that the curve of solutions has a turning point or bifurcation point
close to the current parameter value and solution.

Compatibility The property Variables has been renamed to Const in FEMLAB 2.3.

The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

The property/value Jacobian/Lumped has been made obsolete from FEMLAB
1.1.
145

femnlin

146 | C H A P T
The properties Toln and Normn have been made obsolete from FEMLAB 1.2. Ntol
replaces Toln.

See Also assemble, asseminit, femlin, femsolver, femstatic, femstruct
E R 1 : C O M M A N D R E F E R E N C E

femplot
femplotPurpose Description of properties common to all plot functions.

Description Valid property/value pairs:

PROPERTY VALUE DEFAULT DESCRIPTION

Axis numeric vector Axis limits

Axisequal on | off on Axis equal

Axislabel cell array of strings X-, Y- and Z-axis
labels

Axisvisible on | off on Axis visible

Camlight on | off off Light at camera
position

Campos 1-by-3 numeric
vector

Position of camera

Camprojection orthographic |
perspective

perspective Projection

Camtarget 1-by-3 numeric
vector

Camera aiming point

Camup 1-by-3 numeric
vector

Rotation of the
camera

Camva numeric between 0
and 180

90 Field of view in
degrees

Grid on | off off Grid visible

Lightmodel flat | gouraud |
phong | none

phong Lighting algorithm

Lightreflection dull | shiny |
metal | default |
1-by-3, 4 or 5
numeric vector

default Reflectance of
surfaces

Parent axes handle Handle to axes
object

Renderer auto | painters |
zbuffer | opengl

auto Rendering algorithm

Scenelight on | off off Create scene light

Scenelightpos 1-by-3 numeric
vector

Location of scene
light object

Title string empty Plot title

Titlecolor color k Title color
147

femplot

148 | C H A P T
Transparency number between 0
and 1

1 Transparency (has
only effect using
OpenGL)

View 2, 3, or numeric
pair

2 or 3 3D view point

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsim
femsimPurpose Create a Simulink structure.

Syntax sct = femsim(fem,...)

Description sct = femsim(fem,...) creates a Simulink structure sct for the FEM structure
fem.

To use the exported Simulink structure in Simulink, open the Blocksets &
Toolboxes library in Simulink, double-click on the COMSOL Multiphysics icon,
and drag the COMSOL Multiphysics Subsystem block to your Simulink model.
Double click on your copy of the block, and enter the name of your Simulink
Structure. This sets up the input and the output ports of the block.

The function femsim accepts the following property/value pairs:

In addition, the common solver properties described in the entry femsolver are
supported, with modifications described below.

TABLE 1-31: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Input cell array of strings fem.const Input variable names

Keep string containing K, L,
M, N, D, E | auto

auto Time-independent
quantities

Nonlin off | on | auto auto Use nonlinear stationary
solver

Outnames cell array of strings y1,y2,... Output data names

Output cell array {} Output data (see below)

Redcomp cell array of strings Degrees of freedom in
model reduction of wave
equations

Redmodes integer 10 Number of eigenmodes in
reduction

Redstatic off | on on Use static modes in
reduction

Reduction off | on off Model reduction

State off | on off Use linearized state-space
model

Static off | on off Use static solver

T scalar 0 Time for evaluation of
linearized model
149

femsim

150 | C H A P T
The names of the input variables are given in the property Input. The default is all
names in fem.const.

The output values are determined by the entries in the Output cell array. Each entry
in this cell array should be a cell array of the following form:

{'expr' xx pvlist}

where 'expr' is an expression, xx is a column vector containing global coordinates,
and pvlist is a (possibly empty) list of property/value pairs (see postinterp). The
function postinterp is used to evaluate the output value as

postinterp('expr', xx, pvlist)

The names of the output ports of the COMSOL Multiphysics Subsystem block are
given in the property Outnames. The default names are y1, y2, etc.

The COMSOL Multiphysics Subsystem block can act in four different modes,
chosen by the properties State and Static:

General Dynamic Export (State=off, Static=off)
Export a dynamic model, where the COMSOL Multiphysics degrees of freedom are
part of the Simulink state vector. The COMSOL Multiphysics solver is called several
times for each time step to compute the time derivative of the state vector, with
inputs from Simulink. Only linear, time-independent constraints and the
eliminate constraint handling method is supported. The Itol property is
supported, see femstatic. The Const property is not supported.

General Static Export (State=off, Static=on)
Export a static model, where the COMSOL Multiphysics degrees of freedom are
not part of the Simulink state vector. To compute the outputs of the COMSOL
Multiphysics Subsystem block, the COMSOL Multiphysics linear or nonlinear
stationary solver is called for each time step, with inputs from Simulink. If
Nonlin=off, the linear solver is used and the property Itol is supported, see
femstatic. If Nonlin=on, the nonlinear solver is used and the properties Hnlin,
Initstep, Maxiter, Minstep, Ntol, and Rstep are supported, see femnlin.

Linearized Dynamic Export (State=on, Static=off)
Export a dynamic linearized model. The model is linearized about an equilibrium
solution, and the matrices in the state-space form are computed. The COMSOL
Multiphysics degrees of freedom are part of the Simulink state vector. At each time
step, the matrices in the state-space form are used to compute the time derivative of
the state vector, instead of calling the COMSOL Multiphysics solver. Only linear,
E R 1 : C O M M A N D R E F E R E N C E

femsim
time-independent constraints and the eliminate constraint handling method is
supported. The Const property is not supported.

The linearization point should be an equilibrium point (stationary solution) and is
controlled by the property U, see femsolver. The inputs and the outputs are
deviations from the equilibrium values.

Model reduction can be used to approximate the linearized model with a model that
has fewer degrees of freedom, by using Reduction=on. A number of eigenmodes
(given by the property Redmodes) and static modes (if Restatic=on) will then be
computed, and the linearized model will be projected onto the corresponding
subspace. The properties Etol, Itol, Krylovdim, and Shift of the eigenvalue
solver are supported, see femeig.

When using model reduction on wave equation models that have been rewritten as
a system of first-order equations (wave extension), the algorithm needs to know the
names of the original (non time derivative) solution components. The names of the
non-time derivative solution components should be specified using the property
Redcomp. Since COMSOL Multiphysics 3.2, wave equations are usually formulated
without wave extension; then the Redcomp property should not be used.

Linearized Static Export (State=on, Static=on)
Export a static linearized model. The model is linearized about an equilibrium
solution, and a transfer matrix is computed. The COMSOL Multiphysics degrees of
freedom are not part of the Simulink state vector. To compute the outputs of the
COMSOL Multiphysics Subsystem block, the transfer matrix is used.

The linearization point should be an equilibrium point (stationary solution) and is
controlled by the property U, see femsolver. The inputs and the outputs are
deviations from the equilibrium values.

Example Heat equation with heat source Q as input.

fem.geom = solid1([0 1]); fem.mesh = meshinit(fem);
fem.shape = 2; fem.equ.da = 1; fem.equ.c = 1; fem.equ.f = 'Q';
fem.xmesh = meshextend(fem);
% Temperature u at x = 0.5 is output
sct = femsim(fem, 'input',{'Q'}, 'outnames',{'Temp'}, ...
 'output',{{'u' 0.5}});

Compatibility For backward compatibility, the Input property can also be a vector of indices into
fem.const.
151

femsim

152 | C H A P T
Most of the FEMLAB 2.3 data types in the Output cell array are still supported:

The properties Mass and Timescale are no longer supported.

A Simulink structure with State=off can no longer be saved to file using the
commands save or flsave.

See Also femsolver, femlin, femnlin, femeig, femtime, femstate

TABLE 1-32: FEMLAB 2.3 OUTPUT DATA TYPES

ENTRY IN OUTPUT CELL ARRAY INTERPRETATION

Cell array {N iName} The solution component fem.dim{iName} at mesh
vertex number N in fem.mesh or
fem.fem{g}.mesh, where g is the geometry given in
the Geomnum property (default is 1)

Integer N Shortcut for {N 1}. That is, solution component
fem.dim{1} at mesh vertex number N

Struct lfun Linear functional, is no longer supported. Use an
integration coupling variable instead

Cell array {N 'expr'} Value of expression 'expr' at mesh vertex number
N in the geometry given in the Geomnum property

String func Value of function func(fem,u,t,indata), is no
longer supported
E R 1 : C O M M A N D R E F E R E N C E

femsol
femsolPurpose Create a solution object.

Syntax fem.sol = femsol(u)
fem.sol = femsol(u,'tlist',tlist)
fem.sol = femsol({u ut},'tlist',tlist)
fem.sol = femsol(u,'plist',plist,'pname',plist)
fem.sol = femsol(u,'lambda',lambda)

Description fem.sol = femsol(u) creates a stationary solution object from a column vector u.
The length of u must equal number of degrees of freedoms in the extended mesh
object, fem.xmesh, (see flngdof).

fem.sol = femsol(u,...) stores a matrix corresponding to a time-dependent,
parametric, or eigenvalue solution in the solution object. The number of rows must
equal the number of degrees of freedoms in the extended mesh object, fem.xmesh,
(see flngdof) and the number of columns of u must equal the number of time
steps, parameter values, or eigenvalues, respectively (see solsize).

fem.sol = femsol({u ut},...) creates a time-dependent solution object
containing also the first time derivative. The matrix u is the usual solution matrix,
and ut is its time derivative.

fem.sol = femsol(u,'mcase',mcase) sets the mesh case of the created solution
object to mcase. The default mesh case is 0.

Access Functions
The following access functions lets you fetch properties from the solution object.

If the time-derivatives have not been stored in the femsol object, fem.sol.ut is
computed as the slope of the linear interpolation between the time steps. To store
the time derivatives in the solution, use the Outcomp property, see femsolver.

TABLE 1-33: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES

fem.sol.u Solution vector or matrix

fem.sol.ut Matrix containing time derivative (time-dependent
solutions)

fem.sol.tlist List of time steps (time-dependent solutions)

fem.sol.plist List of parameter values (parametric solutions)

fem.sol.pname Parameter name (parametric solutions)

fem.sol.lambda List of eigenvalues (eigenvalue solutions)

fem.sol.mcase Mesh case
153

femsol

154 | C H A P T
Example Create a solution object:

fem.geom = rect2;
fem.mesh = meshinit(fem);
fem.shape = 2; fem.equ.c = 1; fem.equ.f = 1; fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',0:0.1:1)

Fetch the solution vector and the list of time steps.

u = fem.sol.u;
tlist = fem.sol.tlist;

Multiply the solution by 2 and recreate a solution object.

fem.sol = femsol(2*u,'tlist',tlist);

Postprocess the solution.

postplot(fem,'tridata','u')

Compatibility In FEMLAB 2.3 the solution was represented with a MATLAB structure. The
solution object does not allow exactly the same type access as the structure. The
solution object has been designed to be compatible with the MATLAB structure.

See also asseminit, femeig, femlin, femnlin, femtime
E R 1 : C O M M A N D R E F E R E N C E

femsolver
femsolverPurpose Description of properties common to all solvers.

Description In addition to the properties in the table below, the solvers accept properties
controlling the linear system solvers, see the sections starting with “Linear System
Solvers” on page 160.

TABLE 1-34: COMMON SOLVER PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Assemtol scalar 1e-12 Assembly tolerance

Blocksize positive integer 5000 Assembly block size

Complexfun off | on off Use complex-valued
functions with real
input

Conjugate off | on off Use complex conjugate,
Hermitian transpose

Const cell array of alternating
strings and values, or a
structure

Definition of constants

Constr auto | ideal |
nonideal

auto Constraint force
Jacobian

Init solution object |
numeric vector | scalar

Initial value

Keep string containing K, L,
M, N, D, E | auto

auto Manual control of
reassembly

Linsolver umfpack | spooles |
pardiso |
taucs_llt_mf |
taucs_ldlt | luinc |
taucs_llt | gmres |
fgmres | cg | amg |
gmg | ssor | ssoru |
sor | soru | jac |
vanka

umfpack Linear system solver

Matherr off | on on Error for undefined
operations

Mcase non-negative integer
(or vector for GMG)

mesh case
with largest
number of
DOFs

Mesh case to solve for
155

femsolver

156 | C H A P T
In addition to the constants in fem.const, you can define constants using the
Const property, see assemble.

The parameter Constr controls how the constraint force Jacobian is computed. For
auto and nonideal, the constraint force Jacobian matrix NF is assembled
independently of the constraint Jacobian matrix N. When auto is selected, a
comparison between NF and NT is performed. If these matrices are found equal (up
to a tolerance), then NF is cleared and NF = NT. For ideal, only the constraint
Jacobian matrix N is assembled and NF = NT.

Method eliminate |
elimlagr | lagrange
| spring

eliminate Constraint handling
method

Nullfun flnullorth |
flspnull | auto

auto Null space function

Outcomp cell array of strings Solution components
to store in output

Report on | off on Show progress dialog
box

Rowscale on | off on Equilibrate rows

Solcomp cell array of strings Solution components
to solve for

Solfile on | off off Store solution on file

Solfileblock positive scalar 16 Max size of solution
block (MB)

Solfilename string Name of solution file

Stop on | off on Deliver partial solution
when failing

Symmetric on | off | auto auto Symmetric matrices

Symmtol non-negative scalar 1e-10 Symmetry detection
tolerance

U solution object |
numeric vector | scalar

Values of variables not
solved for and
linearization point

Uscale auto | init | none |
cell array | solution
vector

auto Scaling of variables

TABLE 1-34: COMMON SOLVER PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsolver
If the solver fails to find a complete solution, it returns a partial solution if the
property Stop is on (this is the default).

You can use the property Symmetric to tell the solver that the model is symmetric
or you can use the automatic feature to find out. The symmetry detection tolerance
Symmtol is used for this automatic feature (see “Which Problems are Symmetric?”
on page 397 in the COMSOL Multiphysics User’s Guide). If the model is
Hermitian, you should set both the Symmetric and Conjugate properties to on.

P R O P E R T I E S C O R R E S P O N D I N G T O T H E S O L V E R M A N A G E R

The properties Init, U, Solcomp, and Outcomp correspond to settings in the Solver
Manager (see “The Solver Manager and Solver Scripting” on page 401 in the
COMSOL Multiphysics User’s Guide).

The property Init determines the initial value for the solution components you
solve for. For possible syntaxes, see asseminit. If you omit this property, the solver
computes the initial value by evaluating the initial value expressions in
fem.equ.init, fem.equ.dinit, fem.bnd.init, fem.bnd.dinit, etc. If any of
these expressions depend on a solution component, the value 0 is used for that
solution component.

The property U determines the value of solution component you do not solve for
and the linearization point. A scalar value is equivalent to a solution vector
containing that value in all its components.

The property Solcomp is a cell array containing the names of the degrees of freedom
to solve for. The default is all degrees of freedom.

The property Outcomp is a cell array containing the names of the degrees of freedom
to store in the output solution object. If the solution is time dependent, the
property Outcomp can contain also the time derivatives of the DOF names. The
default is all degrees of freedom (excluding the time derivatives).

T H E P R O G R E S S W I N D O W

By default, a progress window appears when a solver is called. This is similar to the
progress window that appears in the COMSOL Multiphysics user interface (see
“Solution Progress” on page 411 in the COMSOL Multiphysics User’s Guide). The
progress window gives you the possibility to cancel or stop the solver. Also, when
running in MATLAB, it gives you the possibility to examine the convergence in a
plot. Using the properties specified under Probe Plot Parameters below, in addition,
the progress window gives you the possibility to plot values of certain quantities
157

femsolver

158 | C H A P T
during the solution process for the time dependent and parametric solver. If you do
not want the progress window, use the Report property or the flreport command
(see flreport).

P R O B E P L O T P A R A M E T E R S

Properties to the time-dependent solver and the parametric solver:

The properties plotglobalpar, plotinpar, and plotinterppar must be a cell
array containing property/values to the corresponding evaluating function
postglobaleval, postint, and postinterp, respectively. In addition, the
property title can be specified. Also, plotinterppar must contain the property
probecoord with the value being an sdim-by-n coordinate matrix. If, for example,
plotint is a cell array of expressions to plot, plotintpar can either be a cell array
of property/values, or, if different property/values are to be specified for the
different expressions, a cell array of cell arrays of property/values.

An example of a femstatic call for a parametric problem specifying one global
expression, one interpolation expression, and two integration expressions.

fem.sol = femstatic(fem, ...
 'solcomp',{}, ...
 'outcomp',{}, ...
 'plotglobal',{'w1','w2'}, ...
 'plotglobalpar',{'phase',pi,'title','Global'}, ...
 'plotinterp','u', ...
 'plotinterppar',{'probecoord',[0.1; 0.2]}, ...
 'plotint',{'u','ux','uy'}, ...
 'plotintpar',{{'phase',0, 'edim',0,'dl',4}, ...

PROPERTY NAME PROPERTY VALUE DESCRIPTION

plotglobal String or cell array of
strings

Global plot expressions

plotglobalpar Cell array or cell
array of cell arrays

Property/values to
postglobaleval

plotint String or cell array of
strings

Integration plot expressions

plotintpar Cell array or cell
array of cell arrays

Property/values to postint

plotinterp String or cell array of
strings

Probe plot expressions

plotinterppar Cell array or cell
array of cell arrays

Property/values to
postinterp
E R 1 : C O M M A N D R E F E R E N C E

femsolver
 {'phase',pi,'edim',1,'intorder',5},...
 {'phase',pi,'edim',2,'dl',[3,6,7]}});

A D V A N C E D S O L V E R P A R A M E T E R S

The section “Advanced Solver Settings” on page 492 describes the features
corresponding to the properties Blocksize, Complexfun, Conjugate, Keep,
Method, Nullfun, Rowscale, Solfile, and Uscale.

The property Assemtol affects the assembled matrices, see assemble for details.

By default, COMSOL Multiphysics gives an error message if the solver encounters
an undefined mathematical operation when solving the model, for instance 0/0 or
log(0). If you instead want the solver to proceed, put the property Matherr=off.
Then 0/0=NaN (not a number) and log(0)=-Inf.

The Symmetric and Conjugate properties correspond to the Solver Parameters
dialog box settings Matrix symmetry and Use Hermitian transpose in constraint matrix

and in symmetry detection according to the following table:

The property Keep corresponds to the manual control of reassembly feature. Its
value can be a string containing the letters D, E, K, L, M, N, or the string auto. These
letters have the following meaning: E=constant mass, D=constant damping,
K=constant Jacobian, L=constant load, M=constant constraint, N=constant constraint
Jacobian (see “Manual Control of Reassembly” on page 496).

For the Nullfun property, flnullorth is the orthonormal null-space function, and
flspnull is the sparse null-space function.

If Solfile=on, the solution is stored on a temporary file. The Solfilename
property can be used to give the full path name of the file. A part of the solution is
stored in memory in a few blocks (usually 1–5 blocks reside in memory). The
maximum block size (in megabytes) can be controlled with the property
Solfileblock.

MATRIX SYMMETRY USE HERMITIAN
TRANSPOSE

SYMMETRIC CONJUGATE

Automatic cleared auto off

Automatic selected auto on

Nonsymmetric cleared off off

Nonsymmetric selected off on

Symmetric n.a. on off

Hermitian n.a. on on
159

femsolver

160 | C H A P T
The property Uscale determines a scaling of the degrees of freedom that is applied
in order to get a more well-conditioned system; see “Scaling of Variables and
Equations” on page 497. The possible values are:

The default is auto, except when using one of the syntaxes

[Ke,Le,Null,ud] = femstatic(fem,...)
[Kl,Ll,Nnp] = femstatic(fem,...)
[Ks,Ls] = femstatic(fem,...)
fem.sol = femstatic('In',{'K' K 'L' L 'M' M 'N' N},...)

which assume that the property Out is not given in the first three cases. In these cases
the default is none. The resulting vector of scale factors is contained in the output
variable uscale. The scaling of the degrees of freedom is applied symmetrically to
the Jacobian matrix, that is, both the rows and columns are scaled.

L I N E A R S Y S T E M S O L V E R S

The properties Linsolver, Prefun, Presmooth, Postsmooth, and Csolver select
the linear system solver, preconditioner, presmoother, postsmoother, and coarse
solver, according to the following table.

TABLE 1-35: VALUES FOR THE PROPERTY USCALE

VALUE MEANING

auto The scaling is automatically determined

init The scaling is determined from the initial value. Use this if the sizes
of the components of the initial value give a good estimate of the
order of magnitude of the solution

none No scaling is applied

cell array A cell array with alternating degree of freedom names and positive
numbers. The numbers specify the expected magnitude of the
corresponding degree of freedom

solution
vector

A numeric vector with positive components that specify the
expected magnitude of the solution

TABLE 1-36: LINEAR SYSTEM SOLVERS/PRECONDITIONERS/SMOOTHERS

NAME ALGORITHM

umfpack UMFPACK direct solver

spooles SPOOLES direct solver

pardiso PARDISO direct solver

taucs_llt_mf TAUCS direct Cholesky solver

taucs_ldlt TAUCS direct LDLT solver (not recommended)
E R 1 : C O M M A N D R E F E R E N C E

femsolver
For a description of these solvers, see the section “The Linear System Solvers” on
page 392 in the COMSOL Multiphysics User’s Guide.

luinc Incomplete LU preconditioner/smoother

taucs_llt TAUCS Incomplete Cholesky preconditioner

gmres GMRES iterative solver

fgmres FGMRES iterative solver

cg Conjugate Gradients iterative solver

amg Algebraic Multigrid iterative solver/preconditioner

gmg Geometric Multigrid iterative solver/preconditioner

ssor SSOR preconditioner/smoother

ssoru SSORU preconditioner/smoother

sor SOR preconditioner/smoother

soru SORU preconditioner/smoother

jac Jacobi (diagonal scaling) preconditioner/smoother

ssorvec SSOR vector preconditioner/smoother

sorvec SOR vector preconditioner/smoother

soruvec SORU vector preconditioner/smoother

ssorgauge SSOR gauge preconditioner/smoother

sorgauge SOR gauge preconditioner/smoother

sorugauge SORU gauge preconditioner/smoother

vanka Vanka-type preconditioner/smoother

TABLE 1-36: LINEAR SYSTEM SOLVERS/PRECONDITIONERS/SMOOTHERS

NAME ALGORITHM
161

femsolver

162 | C H A P T
D I R E C T L I N E A R S Y S T E M S O L V E R P R O P E R T I E S

The umfpack, spooles, pardiso, taucs_llt_mf, luinc, and taucs_llt direct
linear solvers/preconditioners/smoothers have the following properties.

TABLE 1-37: DIRECT LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Droptol scalar between 0 and 1 0.01 when
used as pre-
conditioner or
smoother,
0 when used
as solver

Drop tolerance
(luinc, taucs_llt,
umfpack, spooles)

Errorchk on | off | auto on Check error estimate
(pardiso)

Errorchkd on | off off Check error estimate
(umfpack, spooles)

Fillratio non-negative scalar 2 Column fill-ratio
(luinc)

Maxdepth positive integer 10000 Maximum recursion
depth
(taucs_llt_mf)

Modified on | off off Modified incomplete
Cholesky
(taucs_llt)

Pivotperturb scalar between 0 and 1 1e-8 Pivot perturbation
threshold (pardiso)

Pivotrefines non-negative integer 0 Number of forced
iterative refinements

Preorder mmd | nd | ms | both mmd Preordering algorithm
(spooles)

Pardreorder mmd | nd nd Preordering algorithm
(pardiso)

Pardrreorder on | off on Row preordering
algorithm (pardiso)

Respectpattern on | off on Do not drop original
nonzeros (luinc)

Rhob scalar > 1 400 Factor in linear error
estimate (pardiso)
E R 1 : C O M M A N D R E F E R E N C E

femsolver
I T E R A T I V E L I N E A R S Y S T E M S O L V E R P R O P E R T I E S

The iterative linear solvers/preconditioners/smoothers luinc, gmres, fgmres,
cg, amg, gmg, ssor, ssoru, sor, soru, jac, ssorvec, sorvec, soruvec,
ssorgauge, sorgauge, sorugauge, vanka have the following properties.

Thresh scalar between 0 and 1 0.1
(umfpack,
spooles),
1.0 (luinc)

Pivot threshold
(umfpack, spooles,
luinc)

Umfalloc non-negative scalar 0.7 Memory allocation
factor (umfpack)

TABLE 1-38: ITERATIVE LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Iluiter non-negative integer 1 Fixed number of
iterations (when used
as preconditioner,
smoother, or coarse
solver) (luinc)

Iter non-negative integer 2 Fixed number of
iterations (when used
as preconditioner,
smoother, or coarse
solver) (all except
luinc)

Itol positive real 1e-6, 0.1
(coarse
solver)

Relative tolerance
(note that when used
as preconditioner or
smoother a fixed
number of iterations is
default)

Itrestart positive integer 50 Number of iterations
before restart (gmres,
fgmres)

Maxlinit positive integer 10000, 500
(coarse
solver)

Maximum number of
linear iterations (when
used with a tolerance)

TABLE 1-37: DIRECT LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
163

femsolver

164 | C H A P T
Prefun luinc | taucs_llt |
umfpack | spooles |
gmres | fgmres | cg |
amg | gmg | ssor |
ssoru | sor | soru |
jac | ssorvec |
sorvec | soruvec |
ssorgauge |
sorgauge |
sorugauge | vanka |
none

luinc Preconditioner
(gmres, fgmres, cg)

Prefuntype left | right left Left or right
preconditioning
(gmres, cg)

Prepar cell array of property/
value pairs or structure

Preconditioner
properties (gmres,
fgmres, cg)

Relax scalar between 0 and 2 1 Relaxation factor
(Jacobi, SOR-based
algorithms, incomplete
LU, and Vanka)

Rhob scalar >= 1 400, 1
(coarse
solver)

Factor in linear error
estimate (when used
with a tolerance)

Seconditer nonnegative integer 1 Number of secondary
iterations (SOR vector
and SOR gauge
algorithms), number of
SSOR updates (vanka)

Sorblocked on | off off Blocked SOR method

Sorvecdof cell array of strings Vector element
variables (SOR vector
and SOR gauge
algorithms)

Vankablocked on | off off Blocked Vanka method

Vankarelax scalar between 0 and 2 0.8 Relaxation factor for
Vanka update

Vankarestart positive integer 100 GMRES restart value
(vanka)

TABLE 1-38: ITERATIVE LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsolver
M U L T I G R I D S O L V E R P R O P E R T I E S

The multigrid solvers/preconditioners amg and gmg accept the following properties
in addition to those in table Table 1-38.

Vankasolv gmres | direct gmres Local block solver
(vanka)

Vankatol positive scalar 0.02 GMRES tolerance
(vanka)

Vankavars cell array of strings {} Lagrange multiplier
variables (vanka)

TABLE 1-39: MULTIGRID SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

amgauto integer between 1 and 10 3 Quality of
multigrid
hierarchy (amg)

csolver umfpack | spooles |
pardiso |
taucs_llt_mf |
taucs_ldlt | luinc
| taucs_llt | gmres |
fgmres | cg | amg | ssor |
ssoru | sor | soru | jac |
ssorvec | sorvec |
soruvec | ssorgauge |
sorgauge | sorugauge |
vanka

umfpack Coarse solver

csolverpar cell array with property/
value pairs

{} Coarse solver
properties

maxcoarsedof positive integer 5000 Maximum
number of DOFs
at coarsest level
(amg)

meshscale vector of positive numbers 2 Mesh scale
factor (gmg)

mgassem on | off | numeric vector on Assembly on
coarse levels
(gmg)

TABLE 1-38: ITERATIVE LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
165

femsolver

166 | C H A P T
For the Geometric multigrid solver/preconditioners, the construction of the
multigrid hierarchy is controlled by the properties Mgauto, Mcase, Mglevels,
Meshscale, Shapechg, and Mgassem:

mgauto off | explicit |
meshscale | shape |
both | meshrefine

Method for
mesh case
generation (gmg)

mgcycle v | w |f v Cycle type

mggeom vector of positive integers all Geometry
numbers for
multigrid
hierarchy (gmg)

mgkeep on | off off Keep generated
mesh cases
(gmg)

mglevels integer>1 6 (amg), 2
(gmg)

Maximum
number of
multigrid levels

postsmooth ssor | ssoru | sor | soru
| jac | ssorvec | sorvec
| soruvec | ssorgauge |
sorgauge | sorugauge |
luinc | gmres | fgmres |
cg | amg | vanka

soru Postsmoother

postsmoothpar cell array with property/
value pairs

{} Postsmoother
properties

presmooth ssor | ssoru | sor | soru
| jac | ssorvec | sorvec
| soruvec | ssorgauge |
sorgauge | sorugauge |
luinc | gmres | fgmres |
cg | amg | vanka

sor Presmoother

presmoothpar cell array with property/
value pairs

{} Presmoother
properties

rmethod regular | longest regular Mesh refinement
method (gmg)

shapechg vector of integers -1 Change in shape
function orders
(gmg)

TABLE 1-39: MULTIGRID SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsolver
• If Mgauto=both, shape, or meshscale, then the multigrid hierarchy is
automatically constructed starting from the mesh case given in the property
Mcase. This process is described in the section “Constructing a Multigrid
Hierarchy” on page 521, where the methods are called Coarse mesh and lower

order (both), Lower element order first (shape), and Coarse mesh (meshscale).
The mesh coarsening factor is given in the scalar Meshscale, the shape function
order change amount is given in the scalar Shapechg, and the number of
multigrid levels (including the finest level) is given in the property Mglevels
(default 2).

• If Mgauto=explicit, then the multigrid hierarchy is automatically constructed
starting from the mesh case given in the property Mcase. The properties
Meshscale and Shapechg should be vectors of the same length (however if one
is scalar, it is expanded to the same length as the other). A number of coarse levels
are constructed, where level i has a mesh that is coarsened with the factor
Meshscale(i), and shape functions orders incremented with Shapechg(i)
relative to mesh case Mcase. Shapechg(i) should be negative or zero.

• If Mgauto=meshrefine, then the multigrid hierarchy is automatically
constructed by refining the mesh in mesh case Mcase repeatedly. The number of
multigrid levels (including the original, coarsest level) is given in the property
Mglevels (default 2). The refinement method can be specified using the
property Rmethod, see meshrefine.

• If Mgauto=off, then only existing mesh cases are used in the hierarchy. If the
property Mcase is a scalar, then all mesh cases that have fewer degrees of freedom
than the mesh case Mcase are used as coarse levels. If Mcase is a vector with more
than one component, the mesh cases in that vector are used. However, if the
property Mglevels is given, no more than Mglevels levels are used. The solver
sorts the list of mesh cases according to decreasing number of DOFs, and the
solution is delivered for the mesh case with the largest number of DOFs. This
corresponds to the Manual option in the COMSOL Multiphysics user interface.

The default for Mgauto is as follows: If the FEM structure has several mesh cases,
then Mgauto=off, otherwise Mgauto is the same as the default in meshcaseadd.

The construction of coarse level matrices is controlled by the property Mgassem. If
Mgassem is a vector, Mgassem(i) should be a 0 or 1. Mgassem(i)=1 means that
matrices should be assembled in mesh case Mcase(i), rather than being projected
from the next finer level. The length of Mgassem should be (at least) the number of
mesh cases used, including the finest level. The value of Mgassem(i) for the finest
167

femsolver

168 | C H A P T
level i is ignored, because matrices are always assembled on the finest level. A scalar
Mgassem applies to all coarse mesh cases.

When an iterative solver is used as preconditioner, smoother, or coarse solver you
can choose whether to solve using a tolerance or to perform a fixed number of
iterations. When used as a coarse solver the default is to solve using a tolerance.
When used as a preconditioner or smoother the default is to perform a fixed number
of iterations. If both properties Itol and Iter (or Iluiter for luinc) are given,
the program will solve using a tolerance.

Four Examples How to Construct the Geometric Multigrid Hierarchy
Assume that fem only contains the mesh case 0, and no xmesh.

Alternative 1:

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'linsolver','gmg');

This alternative uses a temporary hierarchy that is constructed by the solver. Since
the solver also constructs a temporary xmesh, this alternative wastes some memory.

Alternative 2:

fem = femstatic(fem,'linsolver','gmg','out','fem');

Here, the solver uses a temporary hierarchy, but there is only one xmesh. If another
such solver call is made, fem.xmesh should first be deleted to save some memory.

Alternative 3:

fem =
femstatic(fem,'linsolver','gmg','mgkeep','on','out','fem');

Now the generated hierarchy is kept, which means that you can reuse it in a
subsequent call:

fem.sol = femstatic(fem,'linsolver','gmg');

Alternative 4:

fem = meshcaseadd(fem);
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'linsolver','gmg');

The meshcaseadd call adds mesh cases to the FEM structure. These form the
multigrid hierarchy in the solver.

Compatibility COMSOL Multiphysics 3.2: The default of the Conjugate property has been
changed to off.
E R 1 : C O M M A N D R E F E R E N C E

femsolver
The following FEMLAB 2.3 general solver properties are obsolete in FEMLAB 3.0:

The default of the property Stop has been changed to On.

TABLE 1-40: OBSOLETE PROPERTY/VALUE PAIRS

PROPERTY VALUES IMPLICATION

Initmethod weak | pointwise |
local | dof

No longer supported

Itsolv gbit | gmres | tfqmr Use Linsolver property.

Jacobian lumped | numeric No longer supported

Linsolver matlab | superlu Uses default direct solver

Maxlinit vector with 2
components

Ignores second component and warns

Nullfun name of user-defined
function

No longer supported

Sd Use streamline diffusion, see the
chapter “Stabilization Techniques” on
page 433 in the Modeling Guide.
169

femstate

170 | C H A P T
femstatePurpose Compute state-space form of a time-dependent PDE problem.

Syntax [A,B,C,D] = femstate(fem,...)
[M,MA,MB,C,D] = femstate(fem,...)
[M,MA,MB,C,D,Null,ud,x0] = femstate(fem,...)
state = femstate(fem,...)

Description [A,B,C,D] = femstate(fem,...) calculates the linearized state-space form of the
dynamic PDE model fem on the format

where x are the state variables, u are the input variables, and y are the output
variables.

[M,MA,MB,C,D] = femstate(fem,...) calculates the state-space form on the
format

The matrices M and MA are usually much sparser than the matrix A.

[M,MA,MB,C,D,Null,ud,x0] = femstate(fem,...) also returns the null-space
matrix Null, the constraint contribution ud, and the initial state x0. The full
solution vector U can be obtained from the state variables by U = Null*x+u0, where
u0 is the linearization point.

state = femstate(fem,...) returns the structure state containing the fields M,
MA, MB, C, D, Null, and x0.

state = femstate(fem,'out','statenom',...) returns the structure state
containing the fields A, B, C, D, Null, and x0.

s = femstate(fem,'out','ss',...) returns the Control System Toolbox
state-space object s = ss(A,B,C,D).

The output from femstate is intended for use from Simulink or the Control System
Toolbox. The function femstate with the output state is equivalent to femsim

td
dx Ax Bu+=

y Cx Du+=⎩
⎪
⎨
⎪
⎧

M
td

dx MAx MBu+=

y Cx Du+=⎩
⎪
⎨
⎪
⎧

E R 1 : C O M M A N D R E F E R E N C E

femstate
with the property State=on. In addition to the properties of femsim, femstate
accepts the following property/value pairs:

The property Sparse controls whether the matrices A, B, C, D, M, MA, MB, and Null
are stored in the sparse format. See femsim for a description of the other properties.

The matrices M and MA are produced by the same algorithms that do the
finite-element assembly and constraint elimination in COMSOL Multiphysics. M
and MA are the same as the matrices Dc (eliminated mass matrix) and −Kc (Kc is the
eliminated stiffness matrix), respectively, from a call to femlin (see femlin on page
129). The matrices are produced from an exact residual vector Jacobian calculation
(that is, differentiation of the residual vector with respect to the degrees of freedoms
x) plus an algebraic elimination of the constraints. The matrix C is produced in a
similar way; that is, the exact output vector Jacobian matrix plus constraint
elimination.

The matrices MB and D are produced by a numerical differentiation of the residual
and output vectors, respectively, with respect to the input parameters (the algorithm
systematically perturbs the input parameters by multiplying them by a factor
(1+10−8)).

When exporting the A and B matrices, A and B are computed by A = M \ MA and
B = M \ MB (that is, from an LU factorization of M using the UMFPACK solver.

Compatibility See the femsim entry.

See Also femsim

TABLE 1-41: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out A | B | C | D | M | MA |
MB | Null | ud | x0 |
state | statenom |
ss | cell array of
these strings

[A,B,C,D]
[M,MA,MB,C,D]
[M,MA,MB,C,D,
Null,ud,x0]
state

Output variables

Sparse off | on off Sparse matrices
171

femstatic

172 | C H A P T
femstaticPurpose Solve stationary PDE problem with a nonlinear or linear solver.

Syntax fem.sol = femstatic(fem,...)
fem = femstatic(fem,'Out',{'fem'},...)

Description fem.sol = femstatic(fem) solves a stationary PDE problem using either a linear
or nonlinear solver.

fem.sol = femstatic(fem,'pname','P', plist',list,...) solves a
stationary PDE problem for several values of the parameter P. The values of the
parameter P are given in the vector list.

The PDE problem is stored in the (possibly extended) FEM Structure fem. See
femstruct for details.

The function femstatic accepts the following property/value pairs:

TABLE 1-42: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Llimitdof cell array of strings Lower limit dofs

Llimitval vector 0 Lower limit vals

Maxsegiter positiv integer 100 Maximum number of
segregated iterations

Nonlin off | on | auto auto Use the nonlinear solver

Out fem | sol | u | plist
| stop | solcompdof
| Kc | Lc | Null | Nnp
| ud | uscale |
nullfun |
symmetric | nonlin
| cell array of these
strings

sol Output variables

Segcomp cell array of strings Segregated group
components

Segdamp real vector 0.5 Segregated substep
damping factors

Seggrps cell array of cell array Segregated group
properties

Segorder integer vector Segregated substep group
numbers

Subiter integer vector 1 Segregated substep
iterations
E R 1 : C O M M A N D R E F E R E N C E

femstatic
This solver uses the nonlinear solver described in femnlin if nonlin is on, and it
uses the linear solver described in femlin if nonlin is off. If nonlin is set to auto
an analysis is performed to automatically detect if the problem can be solved with
the linear solver.

In addition to the properties listed above, also the properties for femlin or femnlin
are supported, depending on which solver is used. For example, the linear solver
does not support the properties Augcomp, Augsolver, Augtol, Augmaxiter,
Porder, and Ntol. Similarly, the nonlinear solver does not support the properties
In. Furthermore, the properties described in the entry femsolver are supported.

The automatic nonlinear/linear detection works in the following way. The linear
solver is called if the residual Jacobian matrix (the stiffness matrix, K) and the
constraint Jacobian matrix (the constraint matrix, N) are both found not solution
dependent and if these matrices are detected as complete. In all other situations the
nonlinear solver is used. The analysis is performed by a symbolic analysis of the
expressions contributing to these matrices. Complete here means that in the residual
and constraint vectors, only expressions where found for which COMSOL
Multiphysics will compute the correct Jacobian contribution.

Therefore, if you want to solve a linearized (nonlinear) problem, you must select
nonlin to off. Furthermore, there are variables for which COMSOL Multiphysics
is conservative and will flag these, and their Jacobian contribution, as solution
dependent even though they not always are. For these situations, the nonlinear
solver will be used even though the linear solver could be used. This should only
result in some extra computational effort, and should not influence the result. The
opposite situation however, where the linear solver is used for a nonlinear problem
is more dangerous. So, select nonlin to off with great care.

If the property Augcomp is given then the augmented lagrange solver is used, if the
property Seggrps is given then the segregated solver is used and otherwise the
standard nonlinear solver is used. These solvers are described in the COMSOL
Multiphysics Users Guide; see The Stationary Solver on page 365, The Parametric
Solver on page 379, The Stationary Segregated Solver on page 384 and The
Parametric Segregated Solver on page 387.

The segregated solver group properties are given through the Seggrps property
with one list for each group. The only mandatory property is the property Segcomp
defining which solution components to be used for the group. Optional group
properties are the standard solver properties; Ntol, Linsolver, Prefun, Uscale,
etc. The segregated solution scheme is controlled by four properties not given
173

femstatic

174 | C H A P T
through the Seggrps property. These are Maxsegiter, Segorder, Segdamp and
Segiter. The segregated substeps are controlled by the property Segorder where
the segregated group numbers should be given in the preferred solution order by
an integer vector. The number of substeps is thereby determined by the length of
the the given integer vector. If this property is not given the groups are solved for,
from first to last. The damped Newton method used for the substeps, where the
number of iterations and the damping factor is held fixed. The properties Segiter
and Segdamp control the number of iterations and the damping factor respectively
for the substeps. The maximum number of segregated iterations is controlled by the
property Maxsegiter.

The linear solver and the segregated solver use the property Itol for termination of
iterative linear system solvers and for error checking for direct solvers (if enabled).
The nonliner solver uses an adaptive tolerance for termination of iterative linear
system solvers. This adaptive tolerance is based on the maximum of Ntol and Itol.
During the nonliner iterations, it can, however, be larger or smaller than this
number. The parametric solver uses the same tolerance as the corresponding
stationary solver.

See Also femlin, femnlin, femsolver, femstruct, assemble, asseminit
E R 1 : C O M M A N D R E F E R E N C E

femstruct
femstructPurpose FEM structure.

Syntax help femstruct

Description The FEM structure is a container for the full description of a PDE problem. See
“FEM Structure Overview” on page 10 in the COMSOL Multiphysics Scripting
Guide.

Compatibility The fields fem.equiv and fem.mat are no longer supported. The fem.rules field
is obsolete and replaced by fem.functions.

The field fem.variables has been renamed to fem.const in FEMLAB 2.3.
175

femtime

176 | C H A P T
femtimePurpose Solve time-dependent PDE problem.

Syntax fem.sol = femtime(fem,'Tlist',[t1 ... tn],...)
fem = femtime(fem,'Tlist',[t1 ... tn],'Out',{'fem'},...)
fem.sol = femtime('in',{'K' K 'N' N 'L' L 'M' M 'D' D 'E' E},...
 'Tlist',[t1 ... tn],...)

Description fem.sol = femtime(fem,...) solves a time-dependent PDE problem.

The PDE problem is stored in the (possibly extended) FEM structure fem. See
femstruct for details. The time interval and possible intermediate time values are
given in the property Tlist. The output times are controlled by the property Tout.

fem.sol = femtime('in',{'K' K 'N' N 'L' L 'M' M 'D' D 'E' E}) solves
the pre-assembled linear problem

The function femtime accepts the following property/values:

TABLE 1-43: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Atol See below 1E-3 Absolute tolerance

Complex on | off off Complex numbers

Consistent off | on | bweuler bweuler Consistent
initialization of DAE
systems

Estrat 0 | 1 0 Error estimation
strategy

In cell array of names and
matrices K | L | M | N |
D | E

N and M are
empty,
D=E=0

Input matrices

Initialstep positive scalar Initial time step

Keep string containing K, L,
M, N, D, E | auto

auto Time-independent
quantities

MassSingular yes | maybe maybe Singular mass matrix

Maxorder integer between 1 and
5

5 Maximum BDF order

Maxstep positive scalar Maximum time step

Minorder 1 | 2 1 Minimum BDF order

EU
··

DU
·

KU+ + L NFΛ–=

NU M=
E R 1 : C O M M A N D R E F E R E N C E

femtime
In addition, the properties described in the entry femsolver are supported.

The maximum allowed relative error in each time step (the local error) is specified
using Rtol. However, for small components of the solution vector U, the algorithm
tries only to reduce the absolute local error in U below the tolerance given in Atol.
The absolute tolerance Atol can be given for each degree of freedom separately. The
value for the property Atol can be:

• A scalar.

• A solution vector.

• A solution object.

• A row cell array with alternating degree of freedom names and definitions. The
definitions can be numeric scalars or string expressions. The string expressions
may only depend on constants defined in fem.const or Const. Unspecified
degree of freedom names are given the default value 0.

There is no guarantee that the error tolerances are met strictly, that is, for hard
problems they can be exceeded.

For the tolerance parameter in the convergence criterion for linear systems, the
maximum of the numbers Rtol and Itol is used.

Use Complex=on if complex numbers occur in the solution process.

Out fem | sol | u | tlist |
solcompdof | stop |
Kc | Lc | Dc | Ec |
Null | Nnp | ud |
uscale | nullfun |
symmetric | cell array
of these strings

sol Output variables

Rtol numeric 0.01 Relative tolerance

Stopcond string with expression Stop before
the expression
becomes negative

Tlist numeric vector Time list

Tout tout | tsteps See below Output times

Tsteps free |
intermediate |
strict

Time-stepping mode

TABLE 1-43: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
177

femtime

178 | C H A P T
The property Consistent controls the consistent initialization of a differential
algebraic equation (DAE) system. The value Consistent=off means that the
initial values are consistent (seldom the case since the initial value of the time
derivative is 0). Otherwise, the solver tries to modify the initial values so that they
become consistent. The value Consistent=on can be used for index−1 DAEs. Then
the solver fixes the values of the differential DOFs, and solve for the initial values of
the algebraic DOFs and the time derivative of the differential DOFs. The value
Consistent=bweuler can be used for both index-1 and index-2 DAEs. Then the
solver perturbs the initial values of all DOFs by taking a backward Euler step.

For a DAE system, if Estrat=1, then the algebraic DOFs are excluded from the
error norm of the time discretization error.

You can suggest a size of the initial time step using the property Initialstep.

By default, the solver determines whether the system is differential-algebraic by
looking after zero rows or columns in the mass matrix. If you have a DAE where the
mass matrix has no zero rows or columns, put Masssingular=yes.

The property Maxorder gives the maximum degree of the interpolating polynomial
in the BDF method.

The property Maxstep puts an upper limit on the time step size.

The property Out determines the output arguments and their order. The solution
object fem.sol contains the output times and the corresponding solutions, see
femsol. By default, the time derivatives are not stored in the solution. To store
them, use the Outcomp property, see femsolver. This will also give a more accurate
value in postprocessing of values interpolated in time. The output u is a matrix
whose columns are the solution vectors for the output times. The output tlist is
a row vector containing the output times. The output variable Stop is 0 if a
complete solution was returned, 1 if a partial solution was returned, and 2 if no
solution was returned. For the other outputs, see femlin.

The property Stop makes it possible to return a partial solution when the time
stepping fails at some point. If a failure occurs, the computed time steps are returned
in sol.

Use the property Stopcond to make sure the solver stops before a certain event. You
provide a scalar expression that is evaluated after each time step. The time stepping
is stopped if the real part of the expression is evaluated to something negative. The
corresponding solution, for which the expression is negative is not returned.
E R 1 : C O M M A N D R E F E R E N C E

femtime
You can use the property Keep to tell femtime that certain quantities are constant
in time, which sometimes can speed up the computation, see “Manual Control of
Reassembly” on page 496. The corresponding value is a string or a cell array of
strings.

The property Tlist must be a strictly monotone vector of real numbers.
Commonly, the vector consists of a start time and a stop time. If more than two
numbers are given, the intermediate times can be used as output times, or to control
the size of the time-steps (see below). If just a single number is given, it represents
the stop time, and the start time is 0.

The property Tout determines the times that occur in the output. If Tout=tsteps,
then the output contains the time steps actually taken by the solver. If Tout=tlist,
then the output contains interpolated solutions for the times in the Tlist property.
The default is Tout=tsteps, except when the property Tsteps=free and Tlist
has length greater that 2, in which case Tout=tlist.

The property Tsteps controls the selection of time steps. If Tsteps=free, then the
solver selects the time steps according to its own logic, disregarding the
intermediate times in the Tlist vector. If Tsteps=strict, then time steps taken by
the solver contain the times in Tlist. If Tsteps=intermediate, then there are at
least one time step in each interval of the Tlist vector.

For more information about the time-dependent solver; see “The Time-Dependent
Solver” on page 370 in COMSOL Multiphysics User’s Guide.

Example Solve the heat equation

on a square geometry . Choose u(0) = 1 on the disk x2 +y2 < 0.42, and
u(0) = 0 otherwise. Use Dirichlet boundary conditions u = 0. Compute the solution
at times linspace(0,0.1,20).

clear fem
fem.geom = square2(2,'pos',[-1 -1])+circ2(0.4);
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.equ.init = {0 1};
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'report','on','tlist',linspace(0,0.1,20));

∂u
∂t
------ u∆– 0=

1– x y, 1≤ ≤
179

femtime

180 | C H A P T
postanim(fem,'u')

Cautionary In structural mechanics models, the displacements are often quite small, and it is
critical that the Atol property is chosen to be smaller than the actual displacements.

Compatibility The property Variables has been renamed to Const in FEMLAB 2.3.

The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

See Also femsolver, assemble, asseminit, femstruct, femlin, femnlin
E R 1 : C O M M A N D R E F E R E N C E

femwave
femwavePurpose Extend FEM structure to a wave equation problem.

Syntax fem1 = femwave(fem)
xfem1 = femwave(xfem)

Description fem1 = femwave(fem) extends the coefficients of the PDE problem to a wave
equation problem. xfem can also be an extended FEM structure. In the latter case,
use geomnum to specify the geometry number for the wave extension.

Note: Since COMSOL Multiphysics 3.2, wave equations can be more easily and
efficiently formulated using the ea coefficient or the second time derivative
variable.

When fem is given in coefficient form, fem1 contains extended PDE and boundary
coefficients to solve the wave equation problem

where the da coefficient was stored in the fem.equ.da field of the FEM structure
fem. In the same way, when fem is given in general or weak form, fem1 contains
extended PDE and boundary coefficients to solve the wave equation problem
obtained by replacing the first time derivative term in the standard problem by a
second time derivative.

The function introduces a set of new variables, v, such that

da
t2

2

∂
∂ u ∇ c∇u αu γ–+()⋅– β∇u au+ + f=

v
t∂

∂u
=

181

femwave

182 | C H A P T
and then transforms the PDE problem by doubling the size of the system, and
rewriting the coefficients according to the table below:

TABLE 1-44: TRANSFORMATION DONE BY FEMWAVE

PDE COEFFICIENT COEFFICIENT FORM GENERAL FORM

c 0 0
c 0

0 0
c 0

α 0 0
α 0

0 0
α 0

γ 0
γ

0
γ

a 0 I–

a 0
0 I–

a 0

f 0
f

v
f

da
I 0
0 da

I 0
0 da

ea
ea 0

0 0

ea 0

0 0

q 0 0
q 0

0 0
q 0
E R 1 : C O M M A N D R E F E R E N C E

femwave
When the property Tdiff is off, the following modifications to the table applies:

For a PDE problem in general form, femwave produces h using femdiff, when the
Diff property is on and the field h does not exist.

If the coefficients weak, dweak, and constr are present, either in addition to the
above coefficients, or on their own because the problem is in weak form, they also
become doubled in size, but their treatment is very special because they may contain
explicit references to the n dependent variables u, their time derivatives u_time and
the test functions u_test, ux_test, etc.

TABLE 1-45: TRANSFORMATION DONE BY FEMWAVE

TABLE 1-44: TRANSFORMATION DONE BY FEMWAVE

PDE COEFFICIENT COEFFICIENT FORM GENERAL FORM

g 0
g

0
g

h t∂
∂h h

h 0
t∂

∂h h

h 0

r t∂
∂r

r
t∂

∂r hv–

r

h 0 0
h 0

0 0
h 0

r 0
r

0
r

183

femwave

184 | C H A P T
Weak coefficients are cell arrays of length n. They become cell arrays of length 2n,
by moving the existing entries down to the second half, then replacing all references
therein to u_test, ux_test, etc. with references to v_test, vx_test, etc. The first
half of the vector contains n entries of the form vi*ui_test.

Dweak coefficients are cell arrays of length n. They become cell arrays of length 2n,
by moving the existing entries down to the second half, then replacing all references
therein to u_time, ux_time, u_test, ux_test, etc. with references to v_time,
vx_time, v_test, vx_test, etc. The first half of the vector contains n entries of the
form ui_time*ui_test.

Constr coefficients are cell arrays of length n. They become cell arrays of length 2n,
by moving the existing entries down to the second half. If Tdiff is on, then the top
half of the vector is filled by the following entries. If one of the coefficients is ci, one
of the new entries in the top half of the new vector is

where represents the partial derivative of vj with respect to space coordinate
xk, and where there is implicit summation over repeated indices.

The function femwave accepts the following property/value pairs:

TABLE 1-46: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Defaults off | on off Return default fields

Diff cell array with strings
that may contain the
strings r, var, and/or
expr or the strings
off or on

on (for
general form)

Differentiate constraints.
Describes which fields
that are differentiated if
Tdiff is on. See also
femdiff.

Geomnum integer 1 Geometry number

Shrink off | on off Shrinks coefficients to
most compact form.

Simplify off | on on Simplify differentiated
expressions

Tdiff on | off on Differentiate constraints
with respect to time

t∂
∂ci vj uj∂

∂ci vj()xk uj()xk
∂
∂ci+ +

vj()xk
E R 1 : C O M M A N D R E F E R E N C E

femwave
Use fem.rules to specify additional differentiation rules. The derivative of the
Inverse hyperbolic tangent function atanh can, for example, be specified as
{'atanh','1./(1-x.^2)'}. It can also be stored as a field in the fem structure.

Cautionary The properties bdl, out, rules, and sdl are obsolete in FEMLAB 3.0.

The h and r coefficients at level 4 of the syntax must be given either as a scalar
numeric value, or a string containing an expression.

You should set the ODE Suite parameter maxorder to 2 for the solver ode15s for
wave type problems. This is automatically done by the graphical user interface.

Compatibility In FEMLAB 1.0, when using general form, you had to apply femdiff before
femwave. This was because the h coefficient in fem affects the result of the r
coefficient in the output fem1, and h had to be computed by symbolic
differentiation by femdiff. In FEMLAB 1.1, h is automatically computed by
femwave if not provided. Therefore femdiff can be applied after the femwave call
in FEMLAB 1.1.

See Also femtime
185

fillet

186 | C H A P T
filletPurpose Create circular rounded corners in geometry object.

Syntax g = fillet(g1,...)

Description g = fillet(g1,...) creates rounded corners in 2D geometry object.

The function fillet accepts the following property/values:

 The corners to fillet is either specified with either the property point or edges. The
default value is the all possible corners are filleted.

If there is only one radius but more than one corner then the single radius is used
for all corners.

Examples Fillet a rectangle object:

r = rect2;
s1 = fillet(r,'radii',0.1);
s2 = fillet(r,'edges',[1 2;2 3],'radii',0.2);

Diagnostics If fillet does not succeed in creating a rounded corner according to the specified
radius, the corner is skipped.

When a fillet intersects another edge, the function generates an error message.

Compatibility The FEMLAB 2.3 property Trim is no longer supported. Only pair of edges that
have a common vertex can be filleted. For edges that are not linear, the linear
approximation of the edge in the corner is used to compute an approximate fillet.

See Also chamfer, curve2, curve3

TABLE 1-47: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

out Cell array of
strings

none Determines the output

point integers | all |
none

all Specifies which vertices are filleted

radii 1-by-m vector Curvature radii of the fillet
E R 1 : C O M M A N D R E F E R E N C E

flcompact
flcompactPurpose Compact equ/bnd/edg/pnt fields.

Syntax fem = flcompact(fem)

Description fem = flcompact(fem) removes unused and duplicated coefficients in the
fem.equ, fem.bnd, fem.edg, and fem.pnt fields. The resulting structures always
have numeric ind fields. Coefficients are considered equal if they represent the same
expression, that is, equivalent short-hand and expanded forms are compacted.

The function flcompact accepts the following property/value pairs:

Compatibility The syntaxes

equ = flcompact(equ,'equ',nsd)
bnd = flcompact(bnd,'bnd',nbnd)
edg = flcompact(edg,'edg',nedg)
pnt = flcompact(pnt,'pnt',npnt)
field = flcompact(field,fldnames,nelem)

are no longer supported in FEMLAB 3.1.

See Also multiphysics

TABLE 1-48: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

defaults off | on off Return default fields

shrink off | on off Shrinks coefficients to
most compact form.
187

flcontour2mesh

188 | C H A P T
flcontour2meshPurpose Create boundary mesh from contour data.

Syntax m = flcontour2mesh(c)

Description m = flcontour2mesh(c) creates a boundary mesh m with fields m.p and m.e from
the contour data c. The contour matrix c is a two-row matrix of contour lines. Each
contiguous drawing segment contains the value of the contour, the number of (x,y)
drawing pairs, and the pairs themselves. The segments are appended end-to-end as

c = [level1 x1 x2 x3 ... level2 x2 x2 x3 ...;
 pairs1 y1 y2 y3 ... pairs2 y2 y2 y3 ...]

The contour matrix format is used by the COMSOL Script or MATLAB function
contourc.

By using the contour matrix format, you can convert geometry data defined by a
point set, to a COMSOL Multiphysics geometry object. Firstly, define a contour
matrix c corresponding to your point set and use flcontour2mesh to convert the
contour matrix c to a 2D boundary mesh m. Then, use flmesh2spline to convert
the mesh object m to a curve2 object.

Examples Create a mesh from contour data.

[x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
figure
c = contour(z);
m = flcontour2mesh(c);
figure
meshplot(m);

See Also contourc, flmesh2spline, flim2curve
E R 1 : C O M M A N D R E F E R E N C E

flc1hs, flc2hs, fldc1hs, fldc2hs
flc1hs, flc2hs, fldc1hs, fldc2hsPurpose Smoothed step functions.

Syntax y = flc1hs(x,scale)
y = flc2hs(x,scale)
y = fldc1hs(x,scale)
y = fldc2hs(x,scale)

Description y = flc1hs(x,scale) and y = flc2hs(x,scale) compute the values of a
smoothed version of the Heaviside function y = (x>0). The function is 0 for
x<-scale, and 1 for x>scale.

In the interval -scale<x<scale, flc1hs is a smoothed Heaviside function with a
continuous first derivative without overshoot. It is defined by a fifth-degree
polynomial.

In the interval -scale<x<scale, flc2hs is a smoothed Heaviside function with a
continuous second derivative without overshoot. It is defined by a a sixth-degree
polynomial.

The input x can be an array. The input scale must be positive scalar.

yp = fldc1hs(x,scale) and yp = fldc2hs(x,scale) compute the derivative
of the functions flc1hs and flc2hs, respectively.

See Also flsmhs, flsmsign, fldsmhs, fldsmsign
189

flform

190 | C H A P T
flformPurpose Convert between PDE forms.

Syntax fem1 = flform(fem,'outform',form,...)
[equ,bnd] = flform(fem,'outform',form,...)

Description fem1 = flform(fem,'outform',form,...) converts the FEM structure fem to
an FEM structure fem1 on form. The fields in fem1.equ and fem1.bnd contain the
corresponding fields from fem.equ and fem.bnd converted to the form form.
fem1.form is set to form. All other fields in fem are copied to fem1.

[equ,bnd] = flform(fem,'outform',form,...)

is an alternative syntax, returning only the equ and bnd fields of the FEM structure.

Conversion from coefficient to general form is performed according to

using a notation where there is an implicit summation over the k (or l) and i indices
in each product. Affected fields are therefore ga, c, al, f, be, and a from equ and
g, q, r, and h from bnd, with c, al, be, a, g, and q removed and ga, f, r, and g
remaining. Other fields within equ and bnd, such as shape, weak, init, var, etc.,
remain unchanged.

Conversion from general form to weak form is performed according to

Γlj clkji xi∂
∂uk– αlkjuk– γlj+=

Fl fl βlki xi∂
∂uk– alkuk–=

Gl gl qlkuk–=

Rm rm hmlul–=

Wl
n() Wl

n() Γlj xj∂
∂vl Flvl+ +=

Wl
nt() Wl

nt() dalk t∂
∂ukvl ealk

t2

2

d

d ukvl+ +=

Wl
n 1–() Wl

n 1–() Glvl+=

Rm
n() Rm=
E R 1 : C O M M A N D R E F E R E N C E

flform
where there is an implicit summation over the k and i indices in each product. n is
the space dimension. Affected fields are therefore ga, f, weak, da, ea, and dweak
from equ and g, weak, r, and constr from bnd, with weak, dweak, and constr the
only fields remaining. Other fields within equ and bnd, such as shape, init, var,
etc., remain unchanged.

In addition, when converting to weak form, flform tries to take fem.border into
account. That is to say that if fem.border is not 1 or on, there may be interior
boundaries on which boundary conditions should not be applied. This process is
carried out because meshextend and the solvers pay no attention to fem.border
when considering weak, dweak, and constr, unlike ga, c, f, q, r, h, etc.

The function flform accepts the following property/value pairs:

Cautionary Conversion from general form to coefficient form, or from weak form to general or
coefficient form is not supported.

Example The following code shows how the convergence can be improved for a stationary
solution of the model “Resistive Heating”. The system is converted to general form,
the symbolic derivatives are computed using femdiff, and the system is solved with
femstatic.

% !!! First run the example under the multiphysics entry
fem = flform(fem,'outform','general');
fem = femdiff(fem);
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'report','on');
postsurf(fem,'T');

Alternatively, change the outform to weak and remove the femdiff call.

See Also multiphysics, meshextend

TABLE 1-49: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

defaults off | on off Return default fields

outform coefficient |
general | weak

coefficient Output form

out fem | equ | bnd |
edg | pnt

fem Output variables

shrink off | on off Shrinks coefficients to
most compact form.

simplify off | on on Simplify expressions
191

flim2curve

192 | C H A P T
flim2curvePurpose Create 2D curve object from image data.

Syntax [c,r] = flim2curve(I,fmt,...)

Description [c,r] = flim2curve(I,fmt,...) creates a curve2 object c and small curve2
objects r from the image I (gray-scale or RGB) operated upon by parameters
contained in the cell-array fmt. c is a curve2 object that approximates the contours
of I. r is a cell-array of curve2 objects containing small curves detected by the
argument. This is very useful for images containing noise. I is either an m-by-n
intensity image matrix or an m-by-n-by-3 RGB-image matrix as typically obtained
from the function imread. fmt is a cell-array of length 2 used to create contours
from I. If fmt{2} is empty then the scalar fmt{1} is used as a threshold value. If
instead, fmt{1} is empty, then the vector fmt{2} is used to specify the contour
levels of interest. See the function contourc for an explanation of the contour level
syntax in fmt{2}. All flmesh2spline properties are supported.

c = flim2curve(i,fmt,...) is an alternative syntax and is equivalent to c =
geomcsg({},{c,r{:}}) where the arguments c and r are those obtained from the
other call. This is less stable whenever i contain small structures.

Examples Create contour-curves from function.

[x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
figure
imagesc(z)
g = flim2curve(z,{[],[-1.5:0.5:2]});
figure
geomplot(g,'Pointmode','off');

Create curves from noisy picture. This example does not work in COMSOL Script
because it uses the mri.mat file available in MATLAB.

load mri
pic = D(:,:,1,10);
figure
image(pic)
v = axis;
[c,r] = flim2curve(pic,{[],1:30:91},'KeepFrac',0.10);
figure
geomplot(c,'Pointmode','off');

Plot all small curves in a green color.

for j = 1:length(r)
 hold on
 geomplot(r{j},'Pointmode','off','edgecolor','g')
E R 1 : C O M M A N D R E F E R E N C E

flim2curve
end
axis(v)
axis ij

See Also flcontour2mesh, flmesh2spline
193

flload

194 | C H A P T
flloadPurpose Load a COMSOL Multiphysics file.

Syntax flload filename
fem = flload('filename')

Description flload(filename) retrieves FEM structures, geometry objects, or mesh objects
from a COMSOL Multiphysics file. If filename has no extension it is assumed to
be a Model MPH-file.

flload supports Model MPH-files (.mph) for retrieving complete FEM structures
and COMSOL Multiphysics text and binary files (.mphtxt, .mphbin) for retrieving
geometry and mesh objects.

See Also flsave
E R 1 : C O M M A N D R E F E R E N C E

flmesh2spline
flmesh2splinePurpose Create spline curves from mesh.

Syntax [g2,r2] = flmesh2spline(msh,...)

Description [g2,r2] = flmesh2spline(msh,...) creates spline curves g2 and filtered small
curves r2. The structure msh is a valid mesh, where only the fields msh.p and msh.e
are needed. The object g2 is a curve2 object containing spline curves
approximating the edge of msh. The variable r2 is a cell-array containing small
curves filtered away by the algorithm. This is a useful feature when trying to
generate curves from meshes that originate from noisy contour data.

g2 = flmesh2spline(msh,...) is an alternative syntax and is equivalent to g2 =
geomcsg({},{g2,r2{:}}) where the arguments g2 and r2 are those obtained
from the other call. This is less stable whenever msh contain small (ill-conditioned)
structures.

The property KeepFrac provides a useful way to reduce the complexity of the
resulting geometry object. If the algorithm fails to produce the desired result, try to
lower the value of this property. The smoothing algorithm used is a simple
anti-aliasing filter, and is controlled by the property Smooth. For an explanation of
the property SplineMethod, see geomspline.

Note: You might need to refine the boundary mesh data using meshrefine to be
able to get reasonable results using this function. Alternatively, you can create a
finer mesh using meshinit by manipulating the mesh parameters.

Examples Create spline curves from a full mesh:

msh = meshinit(circ2+rect2(1,1,'pos',[0.5 0.5]));

TABLE 1-50: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

KeepFrac real scalar >0, <=1 0.2 Fraction of points to
keep

Smooth on | off on Curve smoothing on
or off

SplineMethod uniform |
chordlength |
centripetal |
foley

chordlength Method for spline
parametrization
195

flmesh2spline

196 | C H A P T
figure
meshplot(msh)
c = flmesh2spline(msh,'keepfrac',0.3)
figure
geomplot(c)

Create spline curves from contour data:

[x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
figure
c = contour(z);
m = flcontour2mesh(c);
figure
meshplot(m)
g = flmesh2spline(m);
figure
geomplot(g)

See Also flcontour2mesh, flim2curve, geomspline
E R 1 : C O M M A N D R E F E R E N C E

flngdof
flngdofPurpose Get number of global degrees of freedom.

Syntax n = flngdof(fem)
n = flngdof(fem, mcase)

Description The returned number n is the number of degrees of freedom in the FEM structure
fem. This is the same as the length of the solution vector. If the mesh case mcase is
not given, it is taken to be the mesh case with the greatest number of degrees of
freedom in the extended mesh.

See Also meshextend
197

flnull

198 | C H A P T
flnullPurpose Compute null space of a matrix, its complement, and the range of the matrix.

Syntax Range = flnull(N,...)
[Null,Compl] = flnull(N,...)
[Null,Compl,Range] = flnull(N,...)
[...] = flnull('in',{...},'out',{...},...)

Description Range = flnull(N,...) computes the range of N.

[Null,Compl] = flnull(N,...) computes the null space of N and its
complement.

[Null,Compl,Range] = flnull(N,...) computes null space, its complement,
and the range of N.

[...] = flnull('in',{...},'out',{...},...) compute null space, its
complement, and the range of N.

The function flnull accepts the following property/value pairs:

The property Nullfun selects the null-space algorithm. The algorithm flnullorth
computes a orthonormal basis for the null space by using singular value
decomposition in a block-wise pattern. The method flspnull handles constraint
matrices with non-local couplings by employing a sparse algorithm. The auto
method automatically selects the most appropriate of flnullorth and flspnull.

See the sections “Advanced Solver Settings” on page 492 and “Constraint
Handling” on page 499 for further information on the use of these matrices.

Example The Poisson Equation on the Unit Disk
Solve this problem by elimination. The example illustrates the way femstatic
handles the constraints internally by the default constraint handling method:
eliminate.

clear fem
fem.geom = circ2;

TABLE 1-51: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

In N | NT N Input matrices

Nullfun flnullorth |
flspnull | auto

auto Null-space function

Out Null | Range |
Compl

Output variables
E R 1 : C O M M A N D R E F E R E N C E

flnull
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
[K,L,M,N] = assemble(fem);
[Null,Compl,Range] = flnull(N);
ud = Compl*((Range'*N*Compl)\(Range'*M));
Ke = Null'*K*Null;
Le = Null'*(L-K*ud);
vn = Ke\Le;
u = Null*vn+ud;
fem.sol = femsol(u);
postplot(fem,'tridata','u')

See Also femlin, assemble
199

flreport

200 | C H A P T
flreportPurpose Globally turn off the report progress window or show it.

Syntax flreport('off')
flreport('on')
flreport('show')

Description flreport('off') disables the use of the progress window that is normally shown
during meshing and solution.

flreport('on') enables the use of the progress window again. This means that
COMSOL Multiphysics uses the value of the 'report' property to determine if the
progress window should be shown.

flreport('show') shows the progress window if it has been closed.
E R 1 : C O M M A N D R E F E R E N C E

flsave
flsavePurpose Save a COMSOL Multiphysics file.

Syntax flsave filename fem

Description flsave filename arg1 arg2 ... saves FEM structures, geometry objects, and
mesh objects to a COMSOL Multiphysics file. flsave supports Model MPH-file
(.mph) and the COMSOL Multiphysics text and binary formats (.mphtxt,
.mphbin).

flsave filename saves all valid COMSOL data in the workspace.

flsave('filename',arg1,...) is an alternative syntax.

Compatibility Since FEMLAB 3.0, flsave is obsolete for saving a MAT-file. Use save to save an
FEM structure or any part of the FEM structure.

See Also flload
201

flsmhs, flsmsign, fldsmhs, fldsmsign

202 | C H A P T
flsmhs, flsmsign, fldsmhs, fldsmsignPurpose Smoothed step functions and their derivatives.

Syntax y = flsmhs(x,scale)
y = flsmsign(x,scale)
yp = fldsmhs(x,scale)
yp = fldsmsign(x,scale)

Description y = flsmhs(x,scale) computes the values of a smoothed version of the Heaviside
function y = (x>0). The function is 0 for x<-scale, and 1 for x>scale.

y = flsmsign(x,scale) computes the values of a smoothed version of the sign
function y = sign(x). The function is -1 for x<-scale, and 1 for x>scale.

In the interval -scale<x<scale, the functions flsmhs and flsmsign are defined
by a seventh-degree polynomial, which is chosen so that the second derivative is
continuous. Moreover, the moments of order 0, 1, and 2 agree with those for the
Heaviside function and the sign function, respectively. This implies that the
functions have small overshoots.

yp = fldsmhs(x,scale) and yp = fldsmsign(x,scale) compute the derivative
of the functions flsmhs and flsmsign, respectively.

The input x can be an array. The input scale must be positive scalar.

See Also flc1hs, flc2hs, fldc1hs, fldc2hs
E R 1 : C O M M A N D R E F E R E N C E

gencyl2, gencyl3
gencyl2, gencyl3Purpose Create straight homogeneous generalized cylinder geometry object.

Syntax s3 = gencyl3
s2 = gencyl2
s3 = gencyl3(base)
s2 = gencyl2(base)
s3 = gencyl3(base,h)
s2 = gencyl2(base,h)
s3 = gencyl3(base,h,rat)
s2 = gencyl2(base,h,rat)
s3 = gencyl3(base,h,rat,...)
s2 = gencyl2(base,h,rat,...)

Description s3 = gencyl3 creates a solid straight homogeneous generalized cylinder geometry
object s3, with a solid circle base surface, cylinder axis of length 1 along the z-axis,
and size of top surface equal to base surface. gencyl3 is a subclass of solid3.

s3 = gencyl3(base) creates a solid straight homogeneous generalized cylinder
geometry object with base surface base.

s3 = gencyl3(base,h) also sets the height of the generalized cylinder to h.

s3 = gencyl3(base,h,rat) additionally specifies top surface with the scale factor
rat with respect to the origin, that is, all 2D points in the top plane are obtained by
multiplying the points in the base plane with rat.

The functions gencyl3 and gencyl2 accept the following property/values:

TABLE 1-52: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object.

Const Cell array of
strings

{} Evaluation context for string inputs.

Displ 2-by-nd
matrix

[0;0] Displacement of extrusion top

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface.

Rot real or string 0 Rotational angle about Axis (radians).
203

gencyl2, gencyl3

204 | C H A P T
s2 = gencyl2(...) creates a surface straight homogeneous generalized cylinder,
from the same arguments as described for gencyl3. gencyl2 is a subclass of face3.

Generalized cylinder objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples Creation of a 3D solid with two circular edges, and with a top face that is smaller
than the bottom face.

base = solid2(geomdel(rect2(2,6,'pos',[-1 -3])+...
 circ2(1,'pos',[0 -3])+circ2(1,'pos',[0 3])));
g3 = gencyl3(base,2,0.75);
geomplot(g3)

See Also econe2, econe3, extrude, face3

TABLE 1-53: GENERALIZED CYLINDER OBJECT PROPERTIES

PROPERTY DESCRIPTION

base Base 2D geometry object.

h Height.

rat Ratio.

dx, dy Semi-axes.

x, y, z, xyz Position of the object. Components and vector forms.

ax2 Rotational angle of symmetry axis.

ax3 Axis of symmetry.

rot Rotational angle.
E R 1 : C O M M A N D R E F E R E N C E

geom0, geom1, geom2, geom3
geom0, geom1, geom2, geom3Purpose Low-level constructor functions for geometry objects.

Syntax g = geom3(vertex,pvertex,edge,pedge,face,mfd,pcurve,...)
[g,...] = geom3(g3,...)
g = geom2(vertex,edge,curve)
[g,...] = geom2(g2,...)
g = geom1(p,ud)
[g,...] = geom1(g1,...)
g = geom0(p)

Description g3 = geom3(vertex,pvertex,edge,pedge,face,mfd,pcurve,...) creates a
geom3 object.

[g,...] = geom3(g3,...) coerces any 3D geometry object g3 to a geom3 object.

c = geom2(vertex,edge,curve,...) creates a geom2 object.

[g,...] = geom2(g2,...) coerces any 2D geometry object to a geom2 object.

c = geom1(vtx) creates a 1D geometry object from the property vtx.

[g,...] = geom1(g1,...) coerces any 1D geometry object to a geom1 object.

g = geom0(p) creates a 0D geometry object, where p is a matrix of size 0-by-1.

g = geom0(g1,...) coerces any 0D geometry object to a geom0 object.

The coercion functions accept the following property/values:

3D Geometry Object Properties
vertex is a 5-by-nv matrix representing the vertices of the 3D geometry. Rows 1,
2, and 3 provide the 3D coordinates of the vertices. Row 4 provides the subdomain
number. Row 5 contains a relative local tolerance for the entity. For nontolerant
entities the tolerance is NaN.

pvertex is a 6-by-npv matrix containing embeddings of vertices in faces. Row 1
contains the vertex index (i.e. column in VERTEX), rows 2 and 3 contain (s, t)
coordinates of the vertex on the face, row 4 contains a face index, and row 5
contains the manifold index into mfd. Row 6 contains a relative local tolerance for
the entity.

TABLE 1-54: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names.
205

geom0, geom1, geom2, geom3

206 | C H A P T
edge is a 7-by-ne matrix representing the edges of the 3D geometry. Rows 1 and 2
contain the start and end vertex indices of the edge (0 if they do not exist). Rows 3
and 4 give the parameter values of the these vertices. Row 5 gives the index of a
subdomain if the edge is not adjacent to a face. Row 6 gives a sign and an index to
the underlying manifold. The sign indicates the direction of the edge relative the
curve. Finally, row 7 contains a relative local tolerance for the entity.

pedge is a 10-by-npe matrix representing the embeddings of the edges in faces. The
first row gives the index of the edge in edge. Rows 2 and 3 contain the start and
end vertex indices in pvertex. Rows 4 and 5 give the parameter values of the these
vertices. Row 6 and 7 give the indices of the faces to the left and right of the edge,
respectively. Row 8 gives a sign and index to the parameter curve (if any), and row
9 gives the index to the surface. Row 10 contains a relative local tolerance for the
entity.

face is a 4-by-nf matrix representing the faces of the 3D geometry. Rows 1 and 2
contain the up and down subdomain index of the face, and row 3 contains the
manifold index of the face. Row 4 contains a relative local tolerance for the entity.

mfd is a cell array or Java array of 3D manifolds.

pcurve is a cell array or Java array of parameter curves.

All properties can be accessed using the syntax get(object,property).

TABLE 1-55: JAVA 3D MANIFOLD CLASSES

MANIFOLD USAGE DESCRIPTION

MfdBezierCurve (xyzw) Rational Bezier curve

MfdBezierTri (xyzw) Rational Bezier triangular surface

MfdBezierSurf (xyzw) Rational Bezier tensor-product
surface

MfdBSplineCurve (deg, knots,
P, w)

B-spline curve

MfdBSplineSurf (uDeg, vDeg,
uKnots,
vKnots, P, w)

B-spline surface

MfdMeshCurve (coord, par) Mesh curve

MfdMeshSurface (coord, par,
tri)

Mesh surface

MfdPolChain (pol) Polygon chain manifold
E R 1 : C O M M A N D R E F E R E N C E

geom0, geom1, geom2, geom3
2D Geometry Object Properties
vertex is a 4-by-nv matrix representing the vertices of the 3D geometry. Rows 1
and 2 provide the 2D coordinates of the vertices. Row 3 provides the subdomain
number. Row 4 contains a relative local tolerance for the entity. For non-tolerant
entities the tolerance is NaN.

edge is a 8-by-ne matrix representing the edges of the 3D geometry. Rows 1 and 2
contain the start and end vertex indices of the edge, 0 if they do not exists. Rows 3
and 4 give the parameter values of the these vertices. 5 and 6 contain the left and
right subdomain number of the edge. Row 7 gives a sign and an index to the array
of underlying curves. The sign indicates the direction of the edge relative the curve.
Row 8 contains a relative local tolerance for the entity.

curve is a cell array or Java array of 2D curves..

All properties can be accessed using the syntax get(object,property).

1D Geometry Object Properties
vtx is a 3-by-nvtx matrix representing the vertices of the 2D geometry. Row 1
provides the 1D coordinates of the vertices. Rows 2 and 3 provides the up and down
subdomain.

All properties can be accessed using the syntax get(object,property).

0D Geometry Object Properties
A 0D geometry object g has the property p, a 0-by-ns double of empty coordinates.
ns can be either 1 or 0, for a nonempty and empty object, respectively.

All properties can be accessed using the syntax get(object,property).

Compatibility The FEMLAB 3.0 syntax is obsolete but still supported.

TABLE 1-56: JAVA 2D MANIFOLD CLASSES

MANIFOLD ARGUMENTS DESCRIPTION

MfdBezierCurve (xyzw) Rational Bézier curve manifold

MfdBSplineCurve (deg, knots,
P, w)

B-spline curve

MfdFileCurve (name,ind,
s1,s2)

Geometry M-file manifold

MfdMeshCurve (coord, par) Mesh curve

MfdPolChain (pol) Polygon chain manifold
207

geom0, geom1, geom2, geom3

208 | C H A P T
See Also geom0/get, geom1/get, geom2/get, geom3/get, geomobject, geomedit,
geominfo, point1, point2, point3, curve2, curve3, face3
E R 1 : C O M M A N D R E F E R E N C E

geom0/get, geom1/get, geom2/get, geom3/get
geom0/get, geom1/get, geom2/get, geom3/getPurpose Get geometry object properties.

Syntax get(g,prop)

Description get(g,prop) returns the value of the property prop for a geometry object g, which
can be a geometry object of type geom1 (1D geometry object), geom2 (2D
geometry object), or geom3 (3D geometry object).

prop is a string that contains a valid property name. The following tables list the
valid property names for geom1, geom2, and geom3 objects:

For information about the formats for the vtx property, see “1D Geometry Object
Properties” on page 207.

For information about the formats for the properties vertex, edge, and curve, see
“2D Geometry Object Properties” on page 207.

TABLE 1-57: GEOM1 PROPERTY NAMES

PROPERTY NAME DESCRIPTION

vtx Vertices

nv Number of vertices

ns Number of subdomains

mp Vertex coordinates

sd Vertex subdomain numbers

TABLE 1-58: GEOM2 PROPERTY NAMES

PROPERTY NAME DESCRIPTION

vertex Vertices

edge Edges

curve 2D manifolds

nv Number of vertices

ne Number of edges

ns Number of subdomains

mp Vertex coordinates

sd Vertex subdomain numbers

TABLE 1-59: GEOM3 PROPERTY NAMES

PROPERTY NAME DESCRIPTION

vertex Vertices

pvertex Parameter vertices
209

geom0/get, geom1/get, geom2/get, geom3/get

210 | C H A P T
For information about the formats for the properties vertex, pvertex, edge,
pedge, face, mfd, and pcurve, see “3D Geometry Object Properties” on page 205.

You can also use get to retrieve specific properties for primitives such as circ2,
rect2, block3, cylinder3, ellipsoid3, and sphere3. For example,
get(sph,'r') returns the radius of the sphere sph. In this case, type

help sphere3/get

to get a list of available property names.

For geom0 objects, the property ns returns either 1 or 0, for a nonempty and empty
object, respectively (see “0D Geometry Object Properties” on page 207).

Example Create a cylinder object and return the number of subvolumes (1), the number of
vertices (8), and the number of faces (6):

cyl = cylinder3;
ns = get(cyl,'ns')
nv = get(cyl,'nv')
nf = get(cyl,'nf')

See Also geom0, geom1, geom2, geom3, geominfo

edge Edges

pedge Parameter edges

face Faces

mfd 3D manifolds

pcurve Parameter curves

nv Number of vertices

ne Number of edges

nf Number of faces

ns Number of subvolumes

mp Vertex coordinates

sd Vertex subdomain numbers

TABLE 1-59: GEOM3 PROPERTY NAMES

PROPERTY NAME DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomanalyze
geomanalyzePurpose Decompose and analyze geometry of FEM problem.

Syntax fem = geomanalyze(fem, ...)
fem = geomanalyze(fem, draw, ...)
[fem, map] = geomanalyze(fem, ...)

Description fem = geomanalyze(fem,...) analyzes and updates the geometry data for the
model defined by fem.

fem = geomanalyze(fem, draw, ...) analyzes and updates the geometry data
in the model defined by fem. draw is one or several input arguments given in the
same ways as in geomcsg.

[fem, map] = geomanalyze(fem, ...) additionally returns a cell array of vectors
representing the mappings for the different domains. The vector map{k+1}
describes the mapping of k-dimensional domains. Each element in this vector is the
associated index of that domain in fem.geom before the call.

The function supports the following property/values:

If the property paircand is not specified, the geometry data in the model is the
result of the boolean operation specified in the property sf. See geomcsg for more
details.

If the property paircand is specified, an assembly geometry is created. In addition
identity pairs are created using the property imprint. See geomgroup for details.

The above properties are explained in geomcsg and geomgroup respectively.

TABLE 1-60: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Geomnum integer 1 Geometry number

Imprint on | off on Make imprints when creating
pairs

Ns cell array of strings {} Name space

Paircand all | none | cell
array of strings

not
specified

Specifies the geometries
among which pairs are created

Repairtol positive scalar 0.0 Tolerance for repairing gaps

Sf string union Boolean expression

Solidify on | off off Coerce the result to a solid
211

geomanalyze

212 | C H A P T
Example The following is an example of a circle containing the source for the model, moving
through two different subdomains.

% Circle moving through two rectangles
clear fem
draw{1} = rect2(.5,1,'pos',[0 0]);
draw{2} = rect2(.6,1,'pos',[0.5 0]);
draw{3} = circ2(.1,'pos',[0.2 0.5]);
% Create analyzed geometry
fem = [];
fem = geomanalyze(fem,draw,'ns',{'R1','R2','C1'});
% Create mesh
fem.mesh = meshinit(fem,'report','off');
% Set source in circle
fem.appl.mode = 'FlPDEC';
fem.appl.equ.f = {0 0 1};
fem.appl.equ.c = 1;
fem.appl.bnd.h = 1;
fem = multiphysics(fem);
% Assemble and solve
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'report','off');
% Plot solution
postplot(fem,'tridata','u')
% Start loop and move geometry
nSteps = 5; % number of steps in loop
dist = .75/nSteps; % distance to move every step
for i = 1:nSteps
 % Modify geometry in draw structure
 c1 = drawgetobj(fem,'C1');
 fem = drawsetobj(fem,'C1',move(c1, dist, 0));
 % Re/analyze geometry, and update boundary conditions
 fem = geomanalyze(fem);
 % Create mesh for new geometry
 fem.mesh = meshinit(fem,'report','off');
 % Update equation system
 fem = multiphysics(fem);
 % Assemble and solve new equation system
 fem.xmesh = meshextend(fem);
 fem.sol = femstatic(fem,'report','off');
 % Plot solution
 figure, postplot(fem,'tridata','u')
end

See Also geomcsg, geomgroup, geomedit
E R 1 : C O M M A N D R E F E R E N C E

geomarrayr
geomarrayrPurpose Create rectangular array of geometry objects.

Syntax cg1 = geomarrayr(g1,dx)
cg1 = geomarrayr(g1,dx,n)
cg2 = geomarrayr(g2,dx,dy)
cg2 = geomarrayr(g2,dx,dy,n)
cg2 = geomarrayr(g2,dx,dy,nx,ny)
cg3 = geomarrayr(g3,dx,dy,dz)
cg3 = geomarrayr(g3,dx,dy,dz,n)
cg3 = geomarrayr(g3,dx,dy,dz,nx,ny,nz)

Description cg1 = geomarrayr(g1,dx) distributes copies of the 1D geometry object g1 with
absolute displacements, dx with respect to geometry object g1. cg1 is a cell array
with the distributed geometry objects. The cg1 cell array has the same size as dx.

cg1 = geomarrayr(g1,dx,n) distributes copies of the 1D geometry object g1, n
times with the relative scalar displacements dx.

cg2 = geomarrayr(g2,dx,dy) distributes copies of the 2D geometry object g2
with absolute displacements, dx and dy with respect to geometry object g2. The
displacements dx and dy are matrices of equal size. cg2 is a cell array with the
distributed geometry objects. The cg2 cell array has the same size as dx and dy.

cg2 = geomarrayr(g2,dx,dy,n) distributes copies of the 2D geometry object g2,
n times with the relative scalar displacements dx and dy.

cg2 = geomarrayr(g2,dx,dy,nx,ny) distributes copies of the 2D geometry
object g2, nx, and ny times in corresponding directions, with the relative
displacements dx and dy. The geometry g2 is included as the first item in the output
cell array cg2.

cg3 = geomarrayr(g3,dx,dy,dz) distributes copies of the geometry object g3
with absolute displacements, dx, dy, and dz with respect to geometry object g3. The
displacements dx, dy, and dz are matrices of equal size. cg3 is a cell array with the
distributed geometry objects. The cg3 cell array has the same size as dx, dy, and dz.

cg3 = geomarrayr(g3,dx,dy,dz,n) distributes copies of the geometry object g3,
n times with the relative scalar displacements dx, dy, and dz.

cg3 = geomarrayr(g3,dx,dy,dz,nx,ny,nz) distributes copies of the geometry
object g3, nx, ny, and nz times in corresponding directions, with the relative
displacements dx, dy, and dz. The geometry g3 is included as the first item in the
output cell array cg3.
213

geomarrayr

214 | C H A P T
The input argument g1, g2, or g3 could also be a cell array of geometry objects. In
that case the corresponding output argument cg1, cg2, or cg3 is a cell array of cell
arrays.

Example The following commands are used to create a block object with four equally sized
holes.

g=geomcsg(geomarrayr(cylinder3,4,4,0,2,2,1));
g2=block3(10,14,5,'corner',[-3 -5 -4])-g;
geomplot(g2)

See Also geom0, geom1, geom2, geom3, move
E R 1 : C O M M A N D R E F E R E N C E

geomcoerce
geomcoercePurpose Decompose and coerce geometry objects.

Syntax [g,...]=geomcoerce(class,ol,...)

Description g=geomcoerce(class,ol) decomposes the geometry objects in the cell array ol,
coerces the composite object to the class class, and returns the coerced geometry
object in g.

The function geomcoerce accepts the following property/values:

Class is one of the strings: solid, face, curve, or point specifying the class of
geometry object that is returned in g.

Ol is a cell array of geometry objects.

For information on the geometry tables stx, ftx, ctx, and ptx, see geomcsg.

See Also geomcsg, geomanalyze

TABLE 1-61: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx | ptx Output
215

geomcomp

216 | C H A P T
geomcompPurpose Analyze geometry objects.

Syntax [g,...]=geomcomp(ol,...)

Description [g,...]=geomcomp(ol,...) analyzes the geometry objects in the cell array ol
according to the specified properties and returns the analyzed geometry in g, where
g is of the same geometry class as the objects in ol.

The function geomcomp accepts the following property/values:

For property descriptions of Ns and Sf, see geomcsg. For more information on the
properties Edge, Face, and Point, see geomdel.

See Also geomcsg, geomdel, geomanalyze

TABLE 1-62: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Edge integer vector | all |
none

all Specifies which edges that
are deleted in the
analyzed geometry

Face integer vector | all |
none

all Specifies which faces that
are deleted in the
analyzed geometry

Ns cell array of strings none Name space

Out stx | ftx | ctx | ptx Output

Point integer vector | all |
none

none in 3D
none in 2D
all in 1D

Specifies which vertices
that are deleted in the
analyzed geometry

Sf text expression union of
objects

String with Boolean
expression
E R 1 : C O M M A N D R E F E R E N C E

geomcsg
geomcsgPurpose Analyze geometry model.

Syntax g = geomcsg(fem,...)
g = geomcsg(draw,...)
g = geomcsg(sl,...)
g = geomcsg(sl,fl,...)
g = geomcsg(sl,fl,cl,...)
g = geomcsg(sl,fl,cl,pl,...)
g = geomcsg(sl,cl,...)
g = geomcsg(sl,cl,pl,...)
g = geomcsg(sl,pl,...)
[g,st] = geomcsg(sl,...)
[g,st,ft] = geomcsg(sl,fl,...)
[g,st,ft,ct] = geomcsg(sl,fl,cl,...)
[g,st,ft,ct,pt] = geomcsg(sl,fl,cl,pl,...)
[g,st,ct] = geomcsg(sl,cl,...)
[g,st,ct,pt] = geomcsg(sl,cl,pl,...)
[g,st,pt] = geomcsg(sl,pl,...)
[g,...] = geomcsg(sl,...,'Out',{'g' ...},...)

Description g = geomcsg(fem) analyzes the geometry model in fem.draw, by performing
Boolean operations on the solid objects, and superimposing the objects of lower
dimension on top of the result of the Boolean operations. The result is an analyzed
geometry object g.

g = geomcsg(draw) analyzes the geometry model draw and returns the geometry
object g.

g = geomcsg(sl) decomposes solid objects sl into the analyzed geometry object
g.

g = geomcsg(sl,fl,...) decomposes the 3D solid objects sl and the 3D face
objects fl into the analyzed 3D geometry g.

g = geomcsg(sl,fl,cl,...) decomposes the 3D solid objects sl, the 3D face
objects fl, and the 3D curve objects cl into the analyzed 3D geometry g.

g = geomcsg(sl,fl,cl,pl,...) decomposes the 3D solid objects sl, the 3D
face objects fl, the 3D curve objects cl, and the 3D point objects pl into the
analyzed 3D geometry g.

g = geomcsg(sl,cl,...) decomposes the 2D solid objects sl and the 2D curve
objects cl into the analyzed 2D geometry g.

g = geomcsg(sl,cl,pl,...) decomposes the 2D solid objects sl, the 2D curve
objects cl, and the 2D point objects pl into the analyzed 2D geometry g.
217

geomcsg

218 | C H A P T
g = geomcsg(sl,pl,...) decomposes the 1D solid objects sl and the 1D point
objects pl into the analyzed 1D geometry g.

[g,st] = geomcsg(sl) additionally returns a solid table, st, that relates the
original solid objects in sl to the subdomains in g.

[g,st,ft] = geomcsg(sl,fl,...) additionally returns a face table, ft, that
relates the original face objects in fl to the face segments in g.

[g,st,ft,ct] = geomcsg(sl,fl,cl,...) additionally returns the curve table,
ct, that relates curve objects in cl to edge segments in g.

[g,st,ft,ct,pt] = geomcsg(sl,fl,cl,pl,...) additionally returns the point
table, pt, that relates point objects in pl to vertices in g.

[g,ct] = geomcsg(sl,cl,...) additionally returns the curve table, ct, for 2D
geometry objects.

[g,ct,pt] = geomcsg(sl,cl,pl,...) additionally returns the point table, pt,
for 2D geometry objects.

[g,pt] = geomcsg(sl,pl,...) additionally returns the point table, pt, for 1D
geometry objects.

sl, fl, cl, and pl are cell arrays containing the geometry objects of different types.

st, ft, ct, and pt are matrices where each row corresponds to the number of the
corresponding geometric entity in g, and each row corresponds to the object with
the same index in sl, fl, cl, and pl, respectively.

The function geomcsg accepts the following property/values:

TABLE 1-63: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Sf text expression union of
objects

String with Boolean
expression

Ns cell array of strings none Name space

Out g | st | ft | ct | pt |
stx | ftx | ctx | ptx

g Output variables

Repairtol scalar 0.0 Tolerance used for
repairing gaps

Solidify off | on off Create all possible
subdomains
E R 1 : C O M M A N D R E F E R E N C E

geomcsg
 Out specifies the output arguments from geomcsg. The outputs stx, ftx, ctx, and
ptx correspond to st, ft, ct, and pt but contain more detailed information about
the geometric entity relations.

 stx is a cell array of matrices similar to st. Each matrix contains the relation
between subdomains in each solid object in the inputs, and the final subdomains in
the output g.

 ftx is a cell array of matrices similar to ft. Each matrix contains the relation
between face segments in each solid object and face object in the inputs, and the
final face segments in the output g.

 ctx is a cell array of matrices similar to ct. Each matrix contains the relation
between edge segments in each solid object and curve object in the inputs, and the
final edge segments in the output g.

 ptx is a cell array of matrices similar to pt. Each matrix contains the relation
between vertices in each solid object, face object, curve object, and point object in
the inputs, and the final vertices in the output g.

 Sf represents a set formula with variables names from ns. The operators +, ∗, and
− correspond to the set operations union, intersection, and set difference,
respectively. The precedence of the operators + and − are the same. ∗ has higher
precedence. You can control the precedence with parentheses.

 Ns is a cell array of variable names that relates the elements in sl to variable names
in sf. Each element in ns contains a variable name. Each such variable assigns a
name to the corresponding solid object in sl. This way you can refer to a solid
object in sl in the set formula sf.

Geometry Model
The geometry model fem.draw contains the following fields:

TABLE 1-64: GEOMETRY MODEL OR DRAW STRUCTURE

FIELD 1D 2D 3D DESCRIPTION

s.objs √ √ √ Cell array of solid objects

s.name √ √ √ Cell array of names (default for the
property ns)

s.sf √ √ √ String with Boolean expression (default
for the property sf)

f.objs √ Cell array of face objects
219

geomcsg

220 | C H A P T
Examples 3D Geometries
Perform a solid operation on two intersecting cylinders:

s1=cylinder3(2,2,[0.5 0.5 -1],[0 0 1]);
s2=cylinder3(1,1,[0.5 0.5 -0.5],[0 0 1]);
[g,st,stx]=geomcsg({s1,s2},'out',{'g','st','stx'},...
'ns',{'Cyl1','Cyl2'},'sf','Cyl1-Cyl2');

To easily create solid objects, use the overloaded operators +, *, and -, instead of
calling geomcsg:

s=s1-s2;
geomplot(s,'facemode','off')

s and g are equivalent, except that g is a geom3 object while s is a solid3 object.

2D Geometries
Create a unit circle solid object and a unit square solid object:

c1 = circ2;
sq1 = square2;
g = geomcsg({c1 sq1},{},'ns',{'a' 'b'},'sf','a-b');

Using object arithmetic for solid objects, the same result can be obtained by typing.

g = c1-sq1;

You can plot the geometry object by

geomplot(g,'sublabel','on','edgelabel','on')

or just

geomplot(g)

You can obtain the number of subdomains and edge segment by just typing g or by
explicitly getting the object properties.

f.name √ Cell array of names (ignored by
geomcsg)

c.objs √ √ Cell array of curve objects.

c.name √ √ Cell array of names (ignored by
geomcsg)

p.objs √ √ √ Cell array of point objects.

p.name √ √ √ Cell array of names (ignored by
geomcsg)

TABLE 1-64: GEOMETRY MODEL OR DRAW STRUCTURE

FIELD 1D 2D 3D DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomcsg
g
get(g,'nmr')
get(g,'nbs')

There is one subdomain, with five edge segments, three circle edge segments, and
two line edge segments.

1D Geometries
Create a simple 1D geometry by composing two 1D solids:

g1 = geomcsg({solid1([0 0.1 4]),solid1([3 4])});
geomplot(g1,'pointlabel','on','sublabel','on')

The resulting geometry consists of three subdomains and four vertices.

See Also geomanalyze, geomgroup, geomdel, geomcomp, geominfo, geomplot
221

geomdel

222 | C H A P T
geomdelPurpose Delete points, edges, or faces in a geometry.

Syntax [g,...] = geomdel(g1,...)
g = geomdel(g1)

Description [g,...] = geomdel(g1,...) deletes points, edges, or faces in the geometry
object g1 according to the specified properties. The resulting object is of the same
type (solid, face, curve, or point) as the original one.

g = geomdel(g1) deletes all interior boundaries.

The function geomdel accepts the following property/values:

In 1D, Point can either be an array of integers specifying which points that are
deleted or one of the strings all or none. all means that all interior points are
deleted and none that no points are deleted. The default value is all.

In 2D, Edge all means that all interior boundaries and edges outside any
subdomain are deleted and none that no edges are deleted. The default value is all.
Point all means that all vertices lying inside a subdomain are deleted and none
that no vertices are deleted. The default value is none. Only isolated vertices can be
deleted.

In 3D, Face all means that all faces inside or between subdomains are deleted and
none that no faces are deleted. The default value is all. Edge all means that all
edges lying inside faces are deleted and none that no edge segments are deleted. The

TABLE 1-65: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Edge integer vector |
all | none

all Specifies which edges that
are deleted

Face integer vector |
all | none

all Specifies which faces that
are deleted

Out stx | ftx | ctx |
ptx

none Output variables (only in
3D). For more
information, see the entry
geomcsg

Point integer vector |
all | none

all in 3D
none in 2D
all in 1D

Specifies which vertices
that are deleted

Subdomain integer vector |
all | none

none Specifies which
subdomains that are
deleted
E R 1 : C O M M A N D R E F E R E N C E

geomdel
default value is all. Only edge segments that are not face boundaries can be
deleted. Point all means that all vertices lying in faces are deleted and none that
no vertices are deleted. The default value is none. Only vertices that are not adjacent
to an edge can be deleted.

Examples The following command generates a block with a face inside, partitioning the
subdomain into two parts:

g = geomcsg({block3},...
{face3([0.5 0.5;0.5 0.5],[0 1;0 1],[0 0;1 1])});

Remove the inner face and all interior edge segments:

g1=geomdel(g);

See Also geomcsg
223

geomedit

224 | C H A P T
geomeditPurpose Edit geometry object.

Syntax [g,...] = geomedit(g0,...)
g1 = geomedit(g)
g2 = geomedit(g, g1)

Description g1 = geomedit(g, ...) splits the geometry object g into primitive objects g1 that
can be edited. Each object in g1 is associated with the object g so that it is possible
to recreate the composite object again.

 g2 = geomedit(g, g1) creates the geometry g2 by using the geometry objects in
the cell array g1, with associative information to g, to create a new composite
geometry object that is as similar as possible to g.

 geomedit only works for 2D geometries.

The function geomedit accepts the following property/values:

Examples The following commands create a geometry containing eight curves, then splits the
geometry into primitive objects, and finally recreates the geometry with one
primitive object omitted:

g = curve2(rect2+circ2);
gg = geomedit(g);
[g2, ctx] = geomedit(g, gg([1:4 6:end]), 'out', {'ctx'});

See Also geomcsg, geom0, geom1, geom2, geom3, geomanalyze

TABLE 1-66: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ctx | ptx none Output variables. For
more information, see the
entry geomcsg
E R 1 : C O M M A N D R E F E R E N C E

geomexport
geomexportPurpose Export geometry objects to file.

Syntax geomexport(filename, geoms,...)

Description geomexport(filename, geoms...) exports the geometry data in the cell array
geoms of geometry objects to a file.

filename can be any of the following formats:

Note 1: This format requires a license for the COMSOL CAD Import Module.
Only geometries imported using the CAD Import Module (cad3part objects) can
be exported to Parasolid format.

The following properties are supported

Report determines if a progress window appears during the call.

Examples r = rect2;
geomexport('foo.dxf',{r})
b = block3;
geomexport('bar.mphtxt',{b})

Diagnostics geomexport replaces the functionality of the 3.1 function dxfwrite.

See Also geom0, geom1, geom2, geom3, meshexport, geomimport

TABLE 1-67: VALID FILE FORMATS

FILE FORMAT NOTE FILE EXTENSIONS

COMSOL Multiphysics Binary .mphbin

COMSOL Multiphysics Text .mphtxt

Parasolid Binary 1 .x_b

Parasolid Text 1 .x_t

DXF .dxf

TABLE 1-68: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY
VALUE

DEFAULT DESCRIPTION

Report on | off on Display a progress window
225

geomfile

226 | C H A P T
geomfilePurpose Geometry M-file.

Syntax ne = geomfile
d = geomfile(bs)
[x,y] = geomfile(bs,s)

Description The Geometry M-file is a template format for a user-specified M-file that contains
the complete geometry for a model. You can specify both 1D and 2D geometries by
using the Geometry M-file format. The geomfile format is not supported in 3D.

1D Geometry
For 1D geometries, the Geometry M-file essentially contains a set of points, and
geometry information on the intervals between these point.

ne = geomfile returns the number of boundary points ne.

d = geomfile(bs) returns a matrix d with one column for each boundary point
specified in bs, with the following contents:

• Row 1 contains the x-coordinate of the boundary point

• Row 2 contains the label of the “up” subdomain (“up” is the positive direction)

• Row 3 contains the label of the “down” subdomain (“down” is the negative
direction)

The complement of the union of all subdomains is assigned the subdomain number
0.

2D Geometry
2D subdomains are represented by parameterized edge segments. Both the
subdomains and edge segments are assigned unique positive numbers as labels. The
edge segments cannot overlap. The full 2D problem description can contain several
nonintersecting subdomains, and they can have common interior boundary
segments. The boundary of a subdomain can consist of several edge segments. Each
subdomain boundary need to consist of at least two edge segments. All edge
segment junctions must coincide with edge segment endpoints.

ne = geomfile returns the number of edge segments ne.

d = geomfile(bs) returns a matrix d with one column for each edge segment
specified in bs, with the following contents:

• Row 1 contains the start parameter value

• Row 2 contains the end parameter value
E R 1 : C O M M A N D R E F E R E N C E

geomfile
• Row 3 contains the label of the left-hand subdomain (left with respect to
direction induced by start and end from row 1 and 2)

• Row 4 contains the label of the right-hand subdomain

The complement of the union of all subdomains is assigned the subdomain number
0.

[x,y] = geomfile(bs,s) produces coordinates of edge segment points. bs
specifies the edge segments and s the corresponding parameter values. bs can be a
scalar.

 Examples The function cardg defines the geometry of a cardioid:

function [x,y]=cardg(bs,s)
%CARDG Geometry File defining the geometry of a cardioid.
nbs=4;

if nargin==0
 x=nbs;
 return
end
dl=[0 pi/2 pi 3*pi/2
 pi/2 pi 3*pi/2 2*pi;
 1 1 1 1
 0 0 0 0];

if nargin==1
 x=dl(:,bs);
 return
end

x=zeros(size(s));
y=zeros(size(s));
[m,n]=size(bs);
if m==1 & n==1
 bs=bs*ones(size(s)); % expand bs
elseif m~=size(s,1) & n~=size(s,2),
 error('bs must be scalar or of same size as s');
end

r=2*(1+cos(s));
x(:)=r.*cos(s);
y(:)=r.*sin(s);

 You can test the function by typing:

r 2 1 φ()cos+()=
227

geomfile

228 | C H A P T
clear fem
fem.geom = 'cardg'
geomplot(fem), axis equal
fem.mesh = meshinit(fem);
meshplot(fem), axis equal

Then solve the PDE problem –∆u = 1 on the geometry defined by the cardioid. Use
Dirichlet boundary conditions u = 0 on . Finally plot the solution.

fem.equ.c = 1;
fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postsurf(fem,'u')

Cautionary The Geometry M-file format is not supported in 3D.

In 2D, each subdomain boundary must consist of at least two edge segments.

See Also geom0, geom1, geom2, geom3, geominfo, meshinit, meshrefine

Ω∂
E R 1 : C O M M A N D R E F E R E N C E

geomgetwrkpln
geomgetwrkplnPurpose Retrieves coordinates for a work plane.

Syntax [p_wrkpln,localsys] = geomgetwrkpln(type,args)

Description [p_wrkpln,localsys] = geomgetwrkpln(type,args) returns the coordinate
matrix p_wrkpln, spanning a plane, and the local coordinate system localsys of
that plane, according to the string type and the cell array args.

The columns of the 3-by-3 coordinate matrix p_wrkpln contain point coordinates
for 3 non co-linear points spanning a work plane with a local z direction defined by
lz = cross(p(:,2)-p(:,1),(p(:,3)-p(:,1)). The vector lx =
p(:,2)-p(:,1) is defined to be the local x-axis, and the local y-axis is defined as ly
= cross(lz,p(:,2)-p(:,1)). The corresponding normalized unit vectors are
nlx, nly, and nlz, respectively.

The local coordinate system localsys is formed as localsys =
[p(:,1),nlx,nly,nlz], where p(:,1) is the position of the local origin and nlx,
nly, and nlz specifies unit vectors in the direction of the positive local coordinate
axes.

Work Plane of Type Explicit

[p_wrkpln,localsys] = geomgetwrkpln('explicit',{p_wrkpln1})

copies the coordinates p_wrkpln1 and forms the corresponding local coordinate
system.

Work Plane of Type Quick

[p_wrkpln,localsys] = geomgetwrkpln('quick',{coordplane,offset})

forms a work plane parallel to the coordinate plane defined by coordplane, which
can have any of the values xy, yz, or zx. The real scalar offset specifies the signed
offset from the coordinate plane.

Work Plane of Type FaceParallel

[p_wrkpln,localsys] =
 geomgetwrkpln('faceparallel',{g,fn,dir,offset})

creates a work plane, parallel to face fn in 3D geometry object g. The direction dir
takes the values +1 or -1 and specifies if the local z-axis, localsys(:,4), should be
in the direction of the face’s normal, or reversed normal, respectively. The scalar
offset specifies the displacement along the local z-axis for the work plane with
229

geomgetwrkpln

230 | C H A P T
respect to the face. The face, with number fn, must be planar. If the face is not
planar, within the system tolerance, an error message occurs.

Work Plane of Type EdgeAngle

[p_wrkpln,localsys] =
 geomgetwrkpln('edgeangle',{g,en,angle,fn,dir})

creates a work plane rotated angle radians about the edge en in the 3D geometry
object g. The zero-angle is defined by the tangent plane of the face with face number
fn. The face fn must be adjacent to the edge en and the face must have a single
tangent plane common to all points of the edge en. The direction dir takes the
values +1 or -1 and specifies if the rotation should be in positive or negative
direction, with respect to the direction of the edge en, respectively. The matrix
p_wrkpln, and the system localsys, referred to above, are formed based on the
coordinate system induced by the selected edge, where the edge becomes the
positive x-axis.

Work Plane of Type Vertices

[p_wrkpln,localsys] =
 geomgetwrkpln('vertices',{gl,vn,dir,offset})

creates a work plane spanned by the three vertices vn in the 3D geometry objects
gl. vn is an index vector of length 3, corresponding to the entries in the cell array
gl. The direction dir takes the values +1 or -1 and specifies if the local z-axis,
localsys(:,4), should be in the direction of the positive normal, or reversed
normal, respectively. The positive normal is defined as the cross product of the
vectors in the direction from vn(1) to vn(2), and from vn(1) to vn(3),
respectively. The scalar offset specifies the displacement along the local z-axis for
the work plane with respect to the plane containing the vertices vn. The matrix
p_wrkpln, and the system localsys, referred to above, are formed based on the
chosen vertices such that, for offset = 0, the vector from vn(1) to vn(2) forms
the local x-axis. The local y-axis is formed based on this vector and the local z-axis,
as to produce a right-handed local coordinate system.

See Also geomposition
E R 1 : C O M M A N D R E F E R E N C E

geomgroup
geomgroupPurpose Groups geometry objects into an assembly.

Syntax [g, ...] = geomgroup(gl, ...)
[g, ...] = geomgroup(draw, ...)
[g, ...] = geomgroup(fem, ...)

Description [g, ...] = geomgroup(gl, ...) creates an assembly object g from the geometry
objects in the cell array gl.

[g, ...] = geomgroup(draw, ...) creates an assembly object g from the
geometry objects in the draw struct draw.

[g, ...] = geomgroup(fem, ...) creates an assembly object g from the
geometry objects in the draw struct fem.draw.

Note that the parts of assembly g are not identical to gl. They are canonized and
may have additional domains due to imprints.

The function supports the following properties:

Note: If the first syntax from above is used and the property paircand is a cell array
of strings, also the property ns has to be specified.

The output pairs is a cell array of sparse matrices containing the pair information
of the operation. Element i contains information for pairs of domains of dimension
i-1. The column refers to the source and the row to the destination.

The output gt is a sparse matrix that relates the parts in the assembly to the original
geometry objects. If an object has not been modified during the operation the value
in gt is 1, otherwise 2.

TABLE 1-69: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Imprint on | off on Make imprints, when creating pair
information

Ns cell array of
strings

{} Name space

Out cell array of
strings

{'g'} Cell array of strings: g, gt, st, ft,
ct, pt, stx, ftx, ctx, ptx, pairs

Paircand all | none |
cell array of
strings

all Specifies the geometries which are
used to create the pair information

Repairtol positive scalar 0.0 Tolerance used for repairing gaps
231

geomgroup

232 | C H A P T
Examples [g pairs] = geomgroup({rect2 move(rect2,[1 0.5])},'out',...
{'g' 'pairs'});
[gg,stx,ctx,ptx] = getparts(g,'out',{'stx','ctx','ptx'})

See Also geomcsg, geomanalyze, getparts
E R 1 : C O M M A N D R E F E R E N C E

geomimport
geomimportPurpose Import geometry objects from file.

Syntax gl = geomimport(filename,...)

Description gl = geomimport(filename,...) reads the geometry file filename and
translates the geometry data using the specified properties into a cell array of
geometries gl.

filename can be any of the following formats:

Note 1: Format requires a license of the CAD Import Module.

Note 2: Format requires a license of a format-specific module.

The following properties are supported

TABLE 1-70: SUPPORTED FILE FORMATS

FILE FORMAT NOTE FILE EXTENSIONS

Autodesk Inventor 2 .ipt

CATIA V4 2 .model

CATIA V5 2 .CATPart, .CATProduct

COMSOL Multiphysics Binary .mphbin

COMSOL Multiphysics Text .mphtxt

DXF .dxf

GDS .gds

IGES 1 .igs, .igse

Parasolid 1 .x_t, .x_b

Pro/ENGINEER 2 .prt, .asm

SAT 1 .sat, .sab

STEP 1 .step, .stp

STL .stl

VDA 2 .vda

VRML .wrl, .vrml

TABLE 1-71: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY
VALUE

DEFAULT DESCRIPTION

Coercion solid | face
| off

solid Coerce the imported geometry

Keepbnd on | off on Keep boundary entities
233

geomimport

234 | C H A P T
When importing COMSOL Multiphysics files and those in the GDS format, the
command ignores these properties. See gdsread for GDS specific properties.

For DXF import, the default of Coercion is curve.

For STL and VRML import all properties in meshenrich are also supported.

 Coercion can force the import process to knit boundary segments together and
possibly try to form solid entities.

 Keepbnd, Keepfree, and Keepsolid indicate which type of entities to be
considered in the imported data.

 Repair determines if the program should process the imported data to improve the
quality during the import. These operations include snapping of points, removal of
small entities, and improvement of geometric data.

 Repairtol is a relative tolerance. It indicates the size of entities to remove, which
points to snap together, and similar features.

Importtol is an absolute tolerance. It indicates the size of entities to remove, which
points to snap together, and similar features. It is used when importing a file using
the CAD Import module, replacing Repairtol.

 Report determines if a progress window should appear during the call.

Examples filepath = which('demo1.dxf');
% Importing the DXF file demo1.dxf as a curve2 object.
g = geomimport(filepath);
geomplot(g{1})

Keepfree on | off off Keep free edge/point entities

Keepsolid on | off on Keep solid entities

Repair on | off on Repair imported data

Repairtol positive scalar 1e-4 Repair tolerance

Importtol positive scalar 1e-5 Absolute tolerance used when
importing CAD Import Module
formats.

Report on | off on Display a progress window

TABLE 1-71: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY
VALUE

DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomimport
Diagnostics geomimport replaces the functionality of the COMSOL Multiphysics 3.0 functions
dxfread, igesread, stlread, and vrmlread. We no longer support those
functions and their properties and thus do not document them.

See Also geom0, geom1, geom2, geom3, meshimport, geomexport
235

geominfo

236 | C H A P T
geominfoPurpose Retrieve geometry information.

Syntax [xx,...] = geominfo(geom,'Out', {'xx' ...},...)

Description [xx,...] = geominfo(geom,'Out', {'xx',...},...) retrieves geometry
information specified in property Out from the analyzed geometry geom.

geom is an analyzed geometry, which is a geometry object, a mesh object or a
Geometry M-file. The two latter formats are not supported in 3D. The
Decomposed Geometry matrix of the PDE Toolbox is supported as well, but this
alternative may be eliminated in future releases. For details on analyzed geometries,
see the chapter “Geometry Modeling and CAD Tools” on page 23 in the COMSOL
Multiphysics User’s Guide or the entries geomcsg, geomfile, and meshinit in this
manual.

In the following description, a geometric entity refers to a vertex, an edge segment,
a face segment, or a subdomain.

• If geom is a 1D analyzed geometry, the geometric entities are vertices and 1D
subdomains that are bounded by vertices.

• If geom is a 2D analyzed geometry, the geometric entities are vertices, 1D edge
segments bounded by vertices, that are assumed to be smooth in the interior, that
is, sufficiently differentiable, and 2D subdomains bounded by edge segments.

• If geom is a 3D analyzed geometry, the geometric entities are vertices, 1D edge
segments bounded by vertices, 2D smooth face segments bounded by edges, and
3D subdomains bounded by face segments.

The function geominfo accepts the following property/values:

Out specifies the geometry information to retrieve and return as output arguments.
It is a cell array that can contain string equal to the entries given in Table 1-73.

TABLE 1-72: VALID PROPERTY/VALUE PAIRS.

PROPERTY 1D 2D 3D DESCRIPTION

Od √ √ √ Vector that contains geometric entity dimension
numbers

Odp √ √ √ Matrix with columns that contain geometric
entity dimension number pairs

Out √ √ √ Output arguments, cell array containing strings
specifying the output arguments

Par √ √ √ Cell array, where each element is a cell array
containing two matrices defining geometric
entity number and parameter values
E R 1 : C O M M A N D R E F E R E N C E

geominfo
Par is a cell array containing parameter values and corresponding numbers of
geometric entities. Par{m} is a cell containing the matrix Bm and the matrix Sm. Bm
is of size nm1-by-nm2, and gives the numbers of entities of dimension d for which
the parameters, in the nm1-by-nm2-by-d array Sm, are valid. Bm can also be a scalar or
a vector, and as such it is expanded to the size of Sm. Note that the size of the third
dimension in Sm, that is, d, defines if the entity number refers to a vertex (d = 0 or
Par{m} = {Bm}), an edge (d = 1), or a face (d = 2).

The following table lists the valid outputs to geominfo.

no is a vector of the same size as Od, containing the number of primitive objects of
the dimension as specified in Od.

TABLE 1-73: OUTPUT ARGUMENTS

OUT 1D 2D 3D DESCRIPTION INPUT
PROPERTY

gd √ √ √ Geometry dimension

no √ √ √ Number of objects of the
dimensions specified in Od

Od

adj √ √ √ Adjacency relations of entities in
Odp

Odp

xx √ √ √ Coordinate information Par

dx √ √ First-order derivative information Par

ddx √ √ Second-order derivative
information

Par

nor √ √ Normal vector information Par

ff1 √ First fundamental matrices Par

ff2 √ Second fundamental matrices Par

crv √ √ Curvature information Par

rng √ √ Parameter range of geometric
entities

Od

ud √ √ √ Up and down subdomains

se √ √ √ Start and end vertices of all 1D
primitive objects

nmr √ √ √ Number of subdomains

nbs √ √ √ Number of boundary segments

mp √ Coordinates of vertices

sd √ Vertex subdomain numbers
237

geominfo

238 | C H A P T
adj is a cell array of adjacency matrices, where adj{k} corresponds to Odp(:,k),
and is a sparse matrix where abs(sign(adj{k}(i,j))) = 1 iff object i of
dimension Odp(1,k) is adjacent to object j of dimension Odp(2,k). If the relation
Odp(1,k) and Odp(2,k) can be given an orientation, the matrix entries +1 and −1
denotes positive or negative orientation, respectively. If both oriented and non
orientable relations exist, −1, +1, and +2 are used, where +2 indicates a non oriented
relation. If Odp is a vector of length 2, then adj is a sparse matrix. For subdomain
information, the 0-domain is represented as output domain number 1. Thus, there
is always an offset of 1 for subdomains.

xx is a cell array of same size as Par containing coordinate information, where xx{m}
is an nm1-by-nm2-by-gd array, where gd is the geometry dimension, and nm1 and nm2
are given from the size of Par{m}{2}. If the outer curly brackets in Par are not
present, then xx is an n1-by-n2-by-gd array.

dx is a cell array of same size as Par containing first order derivative information for
edges or faces. For edges, the dx{m} has the same format as xx{m} above. For faces
dx{m} is a nm1-by-nm2-by-3-by-2 array, where the last dimension refers to the two
vectors, formed by the derivatives of u and v respectively, spanning the tangent
plane.

ddx is a cell array of same size as Par containing second order derivative information
for edges or faces. For edges, ddx{m} has the same format as xx{m}. For faces ddx
is a nm1-by-nm2-by-3-by-2-by-2 array, where the last two dimensions refer to the
2-by-2 matrix of second order derivatives in the parameters u and v.

nor is a cell array of same size as Par, where the contents are the normalized normal
vectors. They are given on the same format as the contents in xx.

ff1 is a cell array of same size as Par containing the first fundamental matrices of
faces, where ff1{m} is an array of size nm1-by-nm2-by-2-by-2. For a parameter point
given by the indices im1 and im2, the first fundamental matrix is given by GG =
reshape(ff1{m}(im1,im2,:,:),2,2) and the corresponding Jacobian is given
by J = reshape(dx{m}(im1,im2,:,:),3,2). It then holds that GG = J'*J.

ff2 is a cell array of same size as Par containing the second fundamental matrices
of faces, where ff2{m} is an array of size nm1-by-nm2-by-2-by-2. For a parameter
point given by the indices im1 and im2, the second fundamental matrix is given by
DD = reshape(ff2{m}(im1,im2,:,:),2,2). If the corresponding normal
derivative DNN and Jacobian J are obtained as above, then DD = -DNN'*J.
E R 1 : C O M M A N D R E F E R E N C E

geominfo
crv is a cell array of same size as Par containing curvature information of edges and
faces. crv{m} is of size nm1-by-nm2-by-2 in 3D, where for a parameter point defined
by the indices im1 and im2, crv{m}(im1,im2,1) is the curvature and
crv{m}(im1,im2,2) is the torsion, when referring to an edge. The corresponding
values obtained for a face is the Gaussian curvature and the mean curvature,
respectively. In 2D, crv{m} is of size nm1-by-nm2 where crv{m}(im1,im2) contains
the curvature of an edge for a given parameter.

rng is a cell array of same length as Od, containing parameter range information for
edges or faces. For edges, the first row in a matrix corresponds to the starting
parameter value at the starting point, and the second row corresponds to the end
parameter value at the end point. For faces, the first and third row contains the lower
bounds on parameter values for the u and v parameters respectively. The second and
fourth row contains the upper bounds on parameter values for the u and v
parameters respectively. The range for geometry edges is from zero to the arc-length
of each edge. If no Od is specified, rng is a matrix of range information for all edge
curves, in 2D, or all faces, in 3D.

ud is a matrix containing up (left) and down (right) subdomain numbering for
boundary segments, in the first and second row, respectively. One column of ud
corresponds to one boundary segment.

sd is a vector containing the subdomain numbering of the vertices of mp. If a vertex
is adjacent to more than one subdomain, the contents are NaN.

There is a family of low-level geometry functions used by geominfo, for obtaining
the geometric data described above. These can be called directly, which in some
cases can be preferred. Their names and descriptions are given in the table below.

TABLE 1-74: LOW-LEVEL GEOMETRY FUNCTIONS

FUNCTION DESCRIPTION

flgeomadj Get geometry adjacency matrices

flgeomec Get curvature information from curve derivatives

flgeomed Get coordinates and derivatives for geometry edges

flgeomes Get parameter space size of geometry edge

flgeomfc Get curvature from fundamental forms

flgeomfd Get coordinates and derivatives for geometry faces

flgeomff1 Get first fundamental form from derivatives

flgeomff2 Get second fundamental form from derivatives

flgeomfn Get normals from face derivatives
239

geominfo

240 | C H A P T
For details on the syntaxes for calling these functions, write help followed by the
function name on the command line.

Examples 3D Geometries
To demonstrate the geominfo command, create a solid block object with a circular
curve object on top, using the following commands.

g3 = geomcsg({block3},{},...
 {move(embed(circ1(0.3,'pos',[0.5 0.5])),[0 0 1])})
geomplot(g3,'facelabels','on')

The generated object g3 is a solid 3D object consisting of 1 subdomain, 7 faces, 16
edges and 12 vertices. These can be obtained using geominfo with the arguments
given below.

[gd,no,rng,ud,nbs] = geominfo(g3,...
 'out',{'gd' 'no' 'rng' 'ud' 'nbs'},'od',0:3);

From the arguments gd and no, it is clear that g3 is a 3D object with the number of
entities as above. The number of faces is also given in nbs, that is, the number of
boundary segments. The parameter range of both faces and edges are given in rng.
These are of importance when setting up parameter arrays for edge/face
information evaluation below.

The following commands set up parameter matrices in two different formats, for
faces 4, 5, and 7. The parameter range of these faces is 0<u<0.5, 0<v<0.5, as given
by rng{3}(:,[4 5 7]).

[u,v] = meshgrid(0:0.1:0.5,0:0.1:0.5);
S1 = reshape([u(:) v(:)],1,36,2);
B1 = 7;

flgeomfs Get parameter space size of geometry face

flgeomnbs Get number of geometry boundary segments

flgeomnes Get number of geometry edge segments

flgeomnmr Get number of subdomains

flgeomnv Get number of vertices

flgeomsdim Get space-dimension of geometry object

flgeomse Get end-point indices of geometry edges

flgeomud Get up-down subdomain numbering of geometry faces

flgeomvtx Get coordinates for geometry vertices

TABLE 1-74: LOW-LEVEL GEOMETRY FUNCTIONS

FUNCTION DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geominfo
S2(1,:,:) = deal([u(:) v(:)]);
S2(2,:,:) = deal([u(:) v(:)]);
B2 = [4;5];

Appropriate parameter values for the bounding edges of face 7, can be obtained by
first creating the face-edge adjacency matrix with geominfo, and then using this
information together with the argument rng to set up the parameter vectors. This
is done with the following commands.

adj = geominfo(g3,'out','adj','odp',[1;2]);
B3 = find(adj{1}(:,7));
for i=1:length(B3)
 S3(i,:,1) = linspace(rng{2}(1,B3(i)),rng{2}(2,B3(i)),10);
end

Now, coordinate values of the faces and edges given above, together with
coordinates for vertex 3, are obtained as follows.

[xx] = geominfo(g3,'out',{'xx'},...
 'par',{{B1 S1} {B2 S2} {B3 S3} {3}})

To see the obtained results, simply give the following commands.

hold on
plot3(xx{1}(:,:,1),xx{1}(:,:,2),xx{1}(:,:,3),'r.')
plot3(xx{3}(:,:,1),xx{3}(:,:,2),xx{3}(:,:,3),'b.')

Finally, derivatives and curvatures, for both faces and edges are with the command
below. Note that, both curvature measures for all points at face 7 are 0, as is the
torsion for the surrounding curves. The curvature of these curves is however
nonzero.

[dx,crv] = geominfo(g3,'out',{'dx' 'crv'},...
 'par',{{B1 S1} {B3 S3}})

2D Geometries
Create a solid ellipse, and retrieve coordinates and curvatures for all four edge
segments, by the following commands.

e = ellip2(0,0,1,2)
[xy,c] = geominfo(e,'out',{'xx','crv'},'par',...
 {ones(11,1)*[1 2 3 4],(0:0.1:1)'*ones(1,4)})

Plot the obtained coordinates of the ellipse by the command.

plot(xy(:,:,1),xy(:,:,2),'b-')

The curvature of one of the edges are obtained via

figure,plot(0:0.1:1,c(:,1))
241

geominfo

242 | C H A P T
The command below retrieves the number of primitive objects (vertices, edges and
subdomains) from geometry file (geomfile) cardg:

no = geominfo('cardg','out',{'no'},'od',[0 1 2])

1D Geometries
A 1D geometry consisting of two subdomains, is created by the following
command.

g1 = solid1([-1 0.2 1])

Since no parameter domain exist only coordinates of vertices can be retrieved. The
up and down subdomain of every vertex is given in ud, and the vertex-subdomain
adjacency information is given in adj.

[xx,ud,adj] = geominfo(g1,'out',{'xx' 'ud' 'adj'},...
 'par',{2},'odp',[0;1])

Note that the same information is given in ud and adj. The matrix adj is directly
obtained from ud via the command:

adj = sparse(repmat(1:3,2,1),ud+1,[ones(1,3);-1*ones(1,3)])

Compatibility The FEMLAB 2.3 function flgeomepol is obsolete.

See Also geomcsg, geomedit, meshinit
E R 1 : C O M M A N D R E F E R E N C E

geomobject
geomobjectPurpose Create geometry object.

Syntax obj = geomobject(input)

Description obj = geomobject(input) creates a geometry object from input.

input can be any of the following

• A geometry object. See geom0, geom1, geom2, geom3.

• A mesh object. See femmesh.

• A geometry M-file name. See geomfile.

• A PDE Toolbox geometry description matrix. See pde2geom.

Note that in 3D, input cannot be a Geometry M-file.

See Also geom0, geom1, geom2, geom3, femmesh, geomfile, pde2geom
243

geomplot

244 | C H A P T
geomplotPurpose Plot geometry.

Syntax geomplot(fem,...)
geomplot(geom,...)
h = geomplot(fem,...)
h = geomplot(geom,...)

Description geomplot(fem) plots the analyzed geometry fem.geom. For an extended FEM
structure, xfem.fem{geomnum}.geom is plotted, where geomnum is 1 by default.

geomplot(geom) plots the analyzed geometry geom.

h = geomplot(...) additionally returns handles to the plotted axes objects.

The analyzed geometry can be any of the following geometry representations: a
geometry object, a Geometry M-file, or a mesh. The geometry object and
Geometry M-file are described in the entries geomcsg and geomfile, respectively.
The mesh data structure is described in the entry meshinit.

In 3D, the default plot is a patch plot of the faces with the edge segments and
isolated vertices plotted as lines and markers respectively. The face, edge segment,
and vertex parts of the plot can be controlled by the property/values starting with
face, edge, and point respectively. Subdomains cannot be plotted directly, only
indirectly through their adjacent faces.

In 2D, the default plot is a patch plot of the subdomains with the edge segments
and vertices plotted as lines and markers, respectively. The subdomain, edge
segment, and vertex parts of the plot can be controlled by the properties starting
with sub, edge, and point, respectively. You can turn on indication of curve
parameter direction by using the property edgearrows.

In 1D, the default plot is a line plot of the subdomains with vertices plotted as
markers. The subdomain and vertex parts of the plot can be controlled by the
properties starting with sub and point, respectively.

The following table shows the property/value pairs for the geomplot command.
The interpretation of the properties in 1D, 2D and 3D varies with dimension. The
E R 1 : C O M M A N D R E F E R E N C E

geomplot
design philosophy has been to keep property interpretation constant over space
dimension, but to plot these properties as plot objects of different types.

TABLE 1-75: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION

Boxcolor √ color k Control polygon
color

Boxstyle √ line style -- Control polygon
line style

Ctrlmarker √ marker
symbol

o Control polygon
marker style

Ctrlmode √ on | off off Show control
polygon

Detail √ √ fine |
normal |
coarse

normal Geometry
resolution

Edgearrows √ on | off off Show edge
directions with
arrows

Edgecolor √ √ color k Edge color data

Edgelabels √ √ on | off |
list of
strings

off Edge label list

Edgemode √ √ on | off on Show edges

Edgestyle √ √ line style - Edge line style

Facelabels √ on | off |
list of
strings

off Face label list

Facemode √ on | off on Show faces

Labelcolor √ √ √ color k Label color data

Linewidth √ √ numeric 1 Line width

Linewidth √ numeric 2 Line width

Markersize √ √ √ numeric 6 Marker size

Mesh √ √ mesh new
special
mesh

Mesh used to
render geometry

Pointcolor √ √ √ color b Point color data
245

geomplot

246 | C H A P T
In addition, the common plotting properties listed under femplot are available.

The properties sublabels, facelabels, edgelabels, and pointlabels control
the display of subdomain labels, face labels, edge segment labels, and point labels,
respectively.

The properties that control marker type or coloring can handle any standard marker
or color type in COMSOL Script. See for example the plot command in the
COMSOL Script Reference Guide.

Examples 3D Example
Create a simple 3D geometry:

c1 = cylinder3(0.5,2,[-1,0,0],[1,0,0]);
c2 = cylinder3(0.2,2,[0,-1,0],[0,1,0]);
g = c1-c2;

Plot edges and face labels.

geomplot(g,'facemode','off','facelabels','on')
axis equal

Plot faces with lighting and without edges and axis in high quality.

geomplot(g,'edgemode','off','detail','fine')
light, lighting phong
axis equal, axis off

Both faces and edges are plotted by default.

Pointlabels √ √ √ off | on |
list of
strings

off Point label list

Pointmarker √ √ √ marker
symbol

o Point marker

Pointmode √ √ √ on | off |
isolated

on Show points

Sublabels √ √ √ on | off |
list of
strings

off Subdomain label
list

Submode √ √ on | off on Show
subdomains

TABLE 1-75: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomplot
2D Example
Start by creating a simple geometry.

clear fem
c1 = circ2;
l1 = curve2([-1,-1,1,1],[-1,1,-1,1]);
p1 = point2(0,0.5);
fem.draw.s.objs = {c1};
fem.draw.c.objs = {l1};
fem.draw.p.objs = {p1};
fem.geom = geomcsg(fem);

Plot the standard geometry plot with subdomains indicated as patches, and edge
segments and vertices indicated by lines and markers, respectively.

geomplot(fem), axis equal

Remove patch plot of subdomains, add parameter direction for curves, subdomain
numbers, and control polygons.

geomplot(fem,'submode','off','edgearrow','on','pointmode',...
 'isolated','sublabels','on','ctrlmode','on')

1D Example
Start by creating a simple geometry.

clear fem
s1 = solid1([0 0.1 1]);
p1 = point1(2);
fem.draw.s.objs = {s1};
fem.draw.p.objs = {p1};
fem.geom = geomcsg(fem);

The standard geometry plot with subdomains indicated as lines, and vertices
indicated by markers.

geomplot(fem), axis equal

Change the color of the vertices to red, add vertex labeling, and change the vertex
markers to diamonds.

geomplot(fem,'pointcolor','r','pointlabels','on',...
 'pointmarker','diamond')
axis equal

Compatibility The properties pt, ct, ft, and st have been removed in FEMLAB 3.1.

Cautionary The value numeric of the sublabels, edgelabels, and pointlabels properties
was replaced by on in FEMLAB 1.1. The value numeric is still supported however,
and is equivalent to on.
247

geomplot

248 | C H A P T
The default for the ctrlmode property was changed to off in FEMLAB 1.1.

See Also geomcsg, geomedit
E R 1 : C O M M A N D R E F E R E N C E

geomposition
geompositionPurpose Position 3D geometry object in space using work plane info.

Syntax g3 = geomposition(g32,p_wrkpln)

Description g3 = geomposition(g32,p_wrkpln) positions the 3D geometry object g32 in
space by transforming the point matrix according to the work plane information in
p_wrkpln. The geometry g32 is thus assumed to be defined in the local coordinate
system of the work plane.

See geomgetwrkpln for more information on work planes and the work plane
points representation p_wrkpln.

See Also geomgetwrkpln
249

geomspline

250 | C H A P T
geomsplinePurpose Spline interpolation.

Syntax c = geomspline(p,...)

Description c = geomspline(p,...) creates a curve2 or curve3 object from point data p by
spline interpolation. The object generated is a closed or open, C1 or C2 continuous,
spline.

 p is a 2-by-np (in 2D) or 3-by-np (in 3D) matrix that specifies interpolation points.

The function geomspline accepts the following property/value pairs:

The property SplineDir is used to specify a tangent vector for the corresponding
point in p. This means that the first control point is given and the curve thus
generated is only guaranteed to be C1 (continuous first derivatives). If this property
is not given, however, the curve generated is guaranteed to be C2 (continuous
second derivatives). The SplineMethod property does not affect the curve if the
SplineDir property is used.

The property SplineMethod controls the method for how to compute the global
parameterization of the curve. The global parameterization is a parameter that varies
from 0 to 1, from the first interpolated point to the last. For a closed curve the last
point is equivalent to the first. The value uniform means that the global
parameterization is [0, 1,..., np]/np. The default value chordlength means
that the global parameterization is [0, norm(p(:,2)-p(:,1)),
norm(p(:,3)-p(:,2)),..., norm(p(:,np)-p(:,np-1))]/

sum(sqrt(sum((diff(p')').^2)')), where the denominator is the total chord
length. The values centripetal and foley are two additional methods that handle
irregular point sets p more effectively.

The property Closed controls the closure of the spline. If Closed is on the first
point is regarded as the last point. The value auto for the property Closed generates
a closed curve whenever the first and last points in a scaled version of the point set

TABLE 1-76: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Closed auto | on | off auto Closed or open curve

SplineDir 2-by-np matrix
3-by-np matrix

Tangent vectors for the
corresponding points in p

SplineMethod uniform |
chordlength |
centripetal |
foley

chordlength Method for global
parameterization
E R 1 : C O M M A N D R E F E R E N C E

geomspline
p agree to within 1000*eps in Euclidean distance. Otherwise, an open curve is
generated.

On success, c is a curve2, or curve3 object that passes through the points defined
by p. If p does not define a spline curve properly, either an error occurs or a line1,
curve2, curve3, or circ1 object is created that meets the requirements in some
way.

Example % Interpolate irregularly distributed point on a circle.
% First create circle data
phi=0:0.2:2*pi; phi(end)=[];
% Remove some of the points.
phi([1 3 6 7 10 20 21 25 28])=[];
p=[cos(phi);sin(phi)];
% Add some noise.
randn('state',17)
p=p+0.05*randn(size(p));
plot(p(1,:),p(2,:),'r.')
% Interpolate using uniform parameterization.
c=geomspline(p,'splinemethod','uniform','closed','on')
hold on
geomplot(c,'pointmode','off')
% Interpolate using centripetal parameterization.
c=geomspline(p,'splinemethod','centripetal','closed','on')
hold on
geomplot(c,'pointmode','off','edgecolor','b')
axis equal

See Also curve2, curve3
251

geomsurf

252 | C H A P T
geomsurfPurpose Create 3D geometry surface using height data defined on a grid.

Syntax f = geomsurf(x,y,z)
f = geomsurf(z)
s = geomsurf(x,y)

Description f = geomsurf(x,y,z) creates a 3D face object f on the grid defined by x and y,
using z as height data. The surface created is identical in shape to the surface created
with the scripting command surf(x,y,z).

geomsurf uses piecewise bilinear interpolation, as does surf.

f = geomsurf(z) creates a 3D face object f, corresponding to the call surf(z).

s = geomsurf(x,y) creates a 2D solid object s corresponding to the syntax f =
geomsurf(x,y,z) with z all zeros.

Example % Create randomly generated surface
% Create rectangular grid
[x,y]=meshgrid(-0.1:0.2:1.1,-0.4:0.2:0.4);
% Initialize random generator
randn('state',1);
% Create random height data
z=0.1*randn(size(x));
% Create 3D surface
f=geomsurf(x,y,z);
% Plot the surface
geomplot(f)

% Create approximation to a catenoidal surface
% Create grid in spherical coordinates
[theta,phi]=meshgrid(pi/8:pi/32:3*pi/8,pi/4:pi/32:pi/2);
% The conical surface is expressed in spherical coordinates
r=1;
x=r.*cos(theta)./sin(phi);
y=r.*sin(theta)./sin(phi);
z=r.*log((1+sin(phi))./sin(phi));
% Now, create the piecewise bilinear
% approximative surface
catenoid=geomsurf(x,y,z);
% Plot the surface
geomplot(catenoid)
axis equal

See Also face3, meshgrid
E R 1 : C O M M A N D R E F E R E N C E

getparts
getpartsPurpose Extract parts from an assembly object.

Syntax [gl, ...] = getparts(g, ...)

Description [gl, ...] = getparts(g, ...) returns a cell array where each element contains
a part.

The function supports the following properties:

Example g = geomgroup({rect2 move(rect2,[1 0])});
[gg,stx,ctx,ptx] = getparts(g,'out',{'stx','ctx','ptx'});

See Also geomgroup, geomcsg

TABLE 1-77: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out cell array of strings {} Cell array of strings: stx, ftx,
ctx, ptx

Part all | none |
vector of integers

all Specifies which parts to extract
253

helix1, helix2, helix3

254 | C H A P T
helix1, helix2, helix3Purpose Create helix geometry object.

Syntax h1 = helix1(r,dh,h)
h2 = helix2(dr,r,dh,h,n)
h3 = helix3(dr,r,dh,h,n)

Description h1 = helix1(r,dh,h) creates a helix-shaped curve3 object with radius r, distance
between consecutive turns dh, and total height h. The helix is centered at the origin
with main axis in the z direction. All arguments are optional; when arguments are
omitted, the following default values are used: r = 1.0, dh = 1.0, and h = 1.0.

 h2 = helix2(dr,r,dh,h,n) creates a helix-shaped face3 object with
cross-section radius dr, radius r, distance between consecutive turns dh, total height
h, and resolution n. The resolution n is an integer that specifies the number of
curved sections for every turn; a higher resolution yields a smoother-looking helix.
The helix is centered at the origin with main axis in the z direction. All arguments
are optional; when arguments are omitted, the following default values are used:
dr = 0.1, r = 1.0, dh = 1.0, h = 1.0, and n = 12.

 h3 = helix3(dr,r,dh,h,n) creates a helix-shaped solid3 object with
cross-section radius dr, radius r, distance between turns dh, total height h, and
resolution n. The resolution n is an integer that specifies the number of curved
sections for every turn; a higher resolution yields a smoother-looking helix. The
helix is centered at the origin with main axis in the z direction. All arguments are
optional; when arguments are omitted, the following default values are used:
dr = 0.1, r = 1.0, dh = 1.0, h = 1.0, and n = 12.

Example The following command generates a solid helix-shaped object:

h3 = helix3(1,5,1,5,12);

See Also extrude, loft, revolve
E R 1 : C O M M A N D R E F E R E N C E

hexahedron2, hexahedron3
hexahedron2, hexahedron3Purpose Create bilinear hexahedron geometry object.

Syntax h2 = hexahedron2(p)
h3 = hexahedron3(p)

Description h3 = hexahedron3(p) creates a solid hexahedron object with corners in the 3D
coordinates given by the eight columns of p. hexahedron3 is a subclass of solid3.

 h2 = hexahedron2(p) creates a surface hexahedron object with corners in the 3D
coordinates given by the eight columns of p. hexahedron3 is a subclass of face3.

For a hexahedron approximately aligned to the coordinate planes, the points in p
are ordered as follows. The first four points and the last four points projected down
to the (x,y)-plane defines two negatively oriented quadrangles. The corresponding
plane for the second quadrangle must lie above the plane of the first quadrant in the
z direction. Generally oriented hexahedra have the points of p ordered in a similar
way, except for a rigid transformation of the defining point set.

The default value of p is

p=[0 0 1 1 0 0 1 1;
 0 1 1 0 0 1 1 0;
 0 0 0 0 1 1 1 1]

The 3D geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom3 for details.

Example The following command generates a solid hexahedron object.

h3 = hexahedron3([0 0 1 1 0 0 1 1;...
 0 0.8 1 0 0 1 1.2 0;...
 0 0.1 0 0.2 1 1 2 1]);

See Also face3, geom0, geom1, geom2, geom3
255

line1, line2

256 | C H A P T
line1, line2Purpose Create polygons.

Syntax c = line1(x,y)
s = line2(x,y)

Description s = line2(x,y) creates a 2D solid object s in the form of a solid polygon with
vertices given by the vectors x and y.

c = line1(x,y) creates a 2D curve object c in the form of an open polygon with
vertices given by the vectors x and y.

Examples The commands below create an open regular n-gon (n=11) and plot it.

n = 11
xy = exp(i*2*pi*linspace(0,1-1/n,n));
l = line1(real(xy),imag(xy));
geomplot(l)

See Also arc1, arc2, circ1, circ2, ellip1, ellip2, geomcsg, poly1, poly2
E R 1 : C O M M A N D R E F E R E N C E

loft
loftPurpose Loft 2D geometry sections to 3D geometry.

Syntax g3 = loft(gl,...)

Description g3 = loft(gl,...) lofts the 2D geometry sections in gl to a 3D geometry object
g3.

gl is a cell array of size 1-by-ng of 2D geometry objects that belongs to one of the
subclasses solid2 or curve2. That is, gl{i} contains the geometry object of
section number i.

The function loft accepts the following property/value pairs:

The properties LoftEdge, LoftSgnEdge, or LoftVtxPair are needed to make the
connection between edges and vertices in different sections unique.

The property LoftEdge with the value {e1,e2,...} means that the edge with
number e1(1) in gl{1} should be lofted to match the edge with number e2(1) in
gl{2} and so on for all elements in e1 and e2.

Likewise, the property LoftSgnEdge with the value {e1,e2,...} means the same
thing, except that edges with different directions is indicated by using negative
signs. This is often more reliable than LoftEdge above.

The property LoftVtxPair is used in the same way, but uses pairs of vertices
instead. Thus, LoftVtxPair with the value {v1,v2,...} means that the vertex
with number v1(1,1) in gl{1} is to be matched with vertex number v2(1,1) in

TABLE 1-78: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

LoftEdge 1-by-ng cell array of integer
vectors

Permutation vectors for edges

LoftSgnEdge 1-by-ng cell array of integer
vectors

Signed permutation vector for
edges

LoftVtxPair 1-by-ng cell array of integer
matrices with two rows

Permutation vector for vertex
pairs

LoftSecPos 1-by-3 cell array Positioning for 2D geometry
sections

Wrkpln 1-by-ng cell array of 3-by-3
matrices

Work planes for 2D geometry
sections

LoftWeights Matrix of size 2-by-(ng-1) Cubic lofting weights

LoftMethod linear | cubic Lofting method
257

loft

258 | C H A P T
gl{2} and so on. It is required that v1([1 2],1) are the end points on the same
curve.

Only one of these properties is allowed. If, however, none is specified then the
property/value-pair LoftSgnEdge with the value {[1:nbs],[1:nbs],...} is used
as default, where nbs is the number of edges in gl{1}. This means that the edges
are considered in order, and is useful for lofting between sections that are simple or
similar to each other.

The properties LoftSecPos or Wrkpln are used to specify the geometrical data of
each section.

The property LoftSecPos with the value {D,V,R} has the following meaning:

D is either a 1-by-(ng−1) vector or a 3-by-ng matrix that specifies the position for
each geometry section. If D is a vector, it contains real numbers that specifies the
relative displacement in the local z direction between each pair of consecutive
sections in gl, where it is assumed that gl{1} is positioned at z = 0. If D is a matrix,
then each column specifies the 3D displacements for each of the sections in gl.
Rows 1, 2, and 3 specifies the displacements in the x, y, and z direction, respectively.

V is either a 2-by-ng or a 3-by-ng matrix specifying the tilt-rotations of the geometry
objects. If V is a 2-by-ng matrix, then each column specifies rotational angles in
spherical coordinates. V(1,:) are the polar angles, that is, the angles between
directional normals of each object and the positive z-axis, and V(2,:) are the
azimuthal angles of the directional normals. If V is a 3-by-ng matrix, then each
column specifies a directional normal vector for each section.

R is a 1-by-ng vector that specifies the intrinsic rotation of the geometry sections.
Every element of R is a rotational angle, in radians, with respect to the local z-axis.

The alternative syntax is the property Wrkpln with the value {T1,T2,...}, where
Ti is a matrix of size 3-by-3. Here Ti is understood to specify the work plane for
section gl{i}. See geomgetwrkpln for more information on work planes.

Only one of these properties is allowed. If none is specified then the property
LoftSecPos with the value {ones(1,ng-1),zeros(2,ng),zeros(1,ng)} is used
as default. Moreover, if any of the cells D, V, or R is left empty, the default value is
used for that cell.

The property LoftWeights specifies the relative significance of the geometry
sections with respect to tangential continuity. This argument has no meaning for
linear lofting and is then ignored.
E R 1 : C O M M A N D R E F E R E N C E

loft
The property LoftMethod can have the values linear or cubic, specifying if the
lofting should be linear/ruled or bicubic, respectively. The default method is cubic,
with the LoftWeights property set to the value [0.3*ones(1,ng-1);
0.7*ones(1,ng-1)].

Examples Create a loft between a circle and a square.

gl1 = cell(1,2);
gl1{1} = circ2;
gl1{2} = rect2(2,2,'pos',[-1 -1]);

Let the edge between vertices number one and two in the circle correspond to the
edge between vertex number one and two in the square.

tl1 = cell(1,2); tl1{1} = [1;2]; tl1{2} = [1;2];
g1 = loft(gl1,'LoftVtxPair',tl1);
figure, geomplot(g1)

Create a loft between edge number 1 in the circle and edge number 1 in the square.

tl2 = cell(1,2); tl2{1} = 1; tl2{2} = 1;

Also, rotate the square.

g2 = loft(gl1,'LoftEdge',tl2,...
 'LoftSecPos',{1,zeros(2,2),[0 -pi/4]});
figure, geomplot(g2)

Create a more complicated example.

gl2 = cell(1,3);
gl2{1} = arc2(0,0,2,0,pi/2)-circ2;
gl2{2} = rect2(2,2,'pos',[-1 -1]);
gl2{3} = gl2{1};

Specify reversed direction of edges by using negative signs.

tl3 = cell(1,3); tl3{1} = 4; tl3{2} = -2; tl3{3} = -3;

Also, rotate the last two sections.

g3 = loft(gl2,'LoftSgnEdge',tl3,'LoftSecPos',...
 {[-1 -1 0; 0 0 1; 1 1 2]',zeros(2,3),[0 pi/4 pi]});
figure, geomplot(g3)

In the latter case, since there are no ambiguities, you could also use unsigned edge
numbers by specifying the property LoftEdge.

tl4 = cell(1,3); tl4{1} = 4; tl4{2} = 2; tl4{3} = 3;
g4 = loft(gl2,'LoftEdge',tl4,'LoftSecPos',...
 {[-1 -1 0; 0 0 1; 1 1 2]',zeros(2,3),[0 pi/4 pi]});
figure, geomplot(g4)
259

loft

260 | C H A P T
See Also extrude, geomgetwrkpln, revolve
E R 1 : C O M M A N D R E F E R E N C E

mesh2geom
mesh2geomPurpose Create an analyzed geometry and/or a draw object from a (deformed) mesh.

Syntax [xfem,g] = mesh2geom(xfem,args)

Description [xfem,g] = mesh2geom(xfem,args) returns a new extended fem structure xfem
with the fields specified in the destfield property filled, generated from the source
specified in the srcdata property. If draw is specified in destfield, the created
draw object g is also returned.

The source can be either the deformed geometry from solving an ALE or
parameterized geometry problem (deformed), or a mesh (mesh).

The destination can be any nonempty subset of {'draw','geom','mesh'},
indicating that a mesh, an analyzed geometry, and/or a draw object should be
created. If draw is specified, you can use the drawtag property to specify the tag of
the new Draw-mode object.

The destination geometry destfem can be an existing geometry or the next
undefined geometry, in which case a new geometry is created.

Examples Creating an Analyzed Geometry From a Mesh
Create a mesh.

clear fem;

TABLE 1-79: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Srcdata deformed |
mesh

mesh Source data: deformed
geometry or mesh

Destfield cell array of
strings: mesh |
geom | draw

{'geom',
'mesh'}

Destination: mesh, analyzed
geometry, or draw object

Srcfem positive integer 1 Source geometry

Destfem positive integer 1 Destination geometry

MCase integer 0 Source and/or destination mesh
case

Drawtag string Draw tag to use when creating
draw object

Frame string Frame to use when retrieving
deformed geometry

Solnum positive integer last
solution

Solution to use when retrieving
deformed geometry
261

mesh2geom

262 | C H A P T
fem.mesh=meshinit(rect2);

Create an analyzed geometry from the mesh, into the new geometry Geom2.

xfem=mesh2geom(fem,'destfem',2);

Creating an Analyzed Geometry From a Deformed Mesh
Draw two rectangles, one inside the other, and mesh

clear fem
g1=rect2(1.8,1.2,'base','corner','pos',[-0.8,-0.8]);
g2=rect2(0.2,0.4,'base','corner','pos',[-0.2,-0.4]);
fem.geom=geomcsg({g1,g2});
fem.mesh=meshinit(fem);

Set the inner rectangle to move along the x-axis.

clear appl
appl.mode.class = 'MovingMesh';
appl.sdim = {'X','Y','Z'};
appl.assignsuffix = '_ale';
appl.prop.analysis='transient';
appl.prop.weakconstr.value = 'off';
appl.bnd.defflag = {{1;1}};
appl.bnd.deform = {{0;0},{'t';0}};
appl.bnd.ind = [1,1,1,2,2,2,2,1];
appl.equ.type = {'free','pres'};
appl.equ.presexpr = {{0;0},{'t';0}};
appl.equ.ind = [1,2];
fem.appl{1} = appl;
fem.sdim = {{'X','Y'},{'x','y'}};
fem.frame = {'ref','ale'};
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);

Solve the problem:

fem.sol=femtime(fem,'tlist',[0:0.01:0.1]);

Create an analyzed geometry from the deformed mesh.

fem=mesh2geom(fem,'srcdata','deformed','frame','ale');

Remesh the created geometry and continue solving.

fem.mesh=meshinit(fem);
fem.xmesh=meshextend(fem);
fem.sol=femtime(fem,'tlist',[0:0.01:0.1]);
E R 1 : C O M M A N D R E F E R E N C E

meshbndlayer
meshbndlayerPurpose Create boundary layer mesh

Syntax fem.mesh = meshbndlayer(fem,...)
fem.mesh = meshbndlayer(fem.geom,...)
fem = meshbndlayer(fem,'out',{'fem'},...)

Description fem.mesh = meshbndlayer(fem,...) returns a boundary layer mesh derived
from the geometry in fem.geom.

fem.mesh = meshbndlayer(geom,...) returns a boundary layer mesh derived
from the geometry geom.

fem = meshbndlayer(fem,'Out','fem',...) modifies the fem structure to
include a boundary layer mesh in fem.mesh.

A boundary layer mesh is a mesh with dense element distribution in the normal
direction along specific boundaries. This type of mesh is typically used for fluid flow
problems to resolve the thin boundary layers along the no-slip boundaries. In 2D,
a layered quadrilateral mesh is used along the specified no-slip boundaries. In 3D, a
layered prism mesh or a layered hexahedral mesh is used depending on if the
corresponding boundary layer boundaries contain a triangular mesh or a
quadrilateral mesh.

The boundary layer mesher inserts boundary layer elements into an existing mesh.
If the starting mesh is empty the free mesher is automatically used to create a
starting mesh.

Boundary layers are not allowed on isolated boundaries, that is, boundaries with the
same subdomain on each side of the boundary.

The function meshbndlayer accepts the following property/value pairs.

TABLE 1-80: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Blbnd array all
exterior
boundaries

Boundary layer boundaries

Blhmin numeric | cell
array

Initial boundary layer thickness

Blhminfact numeric | cell
array

1 Factor that the default Blhmin is
multiplied by

Blnlayers numeric | cell
array

8 Number of boundary layers
263

meshbndlayer

264 | C H A P T
meshbndlayer accepts all property/values that meshinit does. The meshinit
command is used to create the starting mesh for the subdomains to be processed by
the boundary layer mesher if these are not already meshed.

The property blbnd is an array specifying the boundaries for which boundary layers
are created. By default boundary layers are created for all exterior boundaries.

Use the properties blhmin, blstretch, and blnlayers to specify the distribution
of the boundary layers. The value of each of these properties is a scalar value for all
boundaries or an even numbered cell array where the odd entries contain boundary
indices, either as scalar values, or as vectors with boundary indices, and the even
entries contain the corresponding parameters. blhmin specifies the thickness of the
initial boundary layer, blstretch a stretching factor, and blnlayers the number
of boundary layers. This means that the thickness of the mth boundary layer (m=1
to blnlayers) is blstretch(m-1)blhmin. The default value of blhmin is 1/50 of the
size of the elements for the corresponding boundary layer boundaries. Note that the
number of boundary layers might be automatically reduced in thin regions.

It is also possible to specify the thickness of the initial layer by using the blhminfact
property. If you use this property the initial layer thickness is defined as blhminfact
* blhmindef, where blhmindef is the default value of the property blhmin. The
value of this property is a scalar value for all boundaries or an even numbered cell
array where the odd entries contain boundary indices, either as scalar values, or as
vectors with boundary indices, and the even entries contain the corresponding
parameters.

hauto is an integer between 1 and 9 that controls the element size in the starting
mesh. The default value is 5. For more information on this property see meshinit.

Blstretch numeric | cell
array

1.2 Boundary layer stretching factor

Hauto numeric 5 Predefined mesh element size

Mcase numeric 0 Mesh case number

Meshstart mesh object empty Starting mesh

Out fem | mesh mesh Output variables

Report on | off on Display progress

Subdomain numeric array
| auto | all |
none

auto Specifies the subdomains that are
meshed

TABLE 1-80: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshbndlayer
The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation. If meshstart does
not contain a mesh of the subdomains to be processed a starting mesh is
automatically created using the meshinit command before inserting the boundary
layer elements.

Use the property subdomain to specify the subdomains to be meshed. If you use
this property together with the meshstart property, the value auto means that all
subdomains that are not meshed in the starting mesh are meshed, none means that
no further subdomains are meshed, and all means that all subdomains are meshed.
It is also possible to specify the subdomains to be meshed using a vector of
subdomain indices.

Examples Specify the boundary layer boundaries and the number of boundary layers

fem.geom = rect2(10,5) - circ2(1,'pos',[3 2.5]);
fem.mesh = meshbndlayer(fem,'blbnd',[2:3 5:8],...
 'blnlayers',{5:8 8});
figure, meshplot(fem)

Insert boundary layers to an existing mesh containing both quadrilateral elements
and triangular elements.

fem.geom = rect2 + rect2(1,1,'pos',[1 0]) - circ2(1.5,0.5,0.2);
fem.mesh = meshmap(fem,'subdomain',1);
fem.mesh = meshinit(fem,'meshstart',fem.mesh);
figure, meshplot(fem)
fem.mesh = meshbndlayer(fem,'blbnd',[2:3 5:6 8:11],...
 'meshstart',fem.mesh,...
 'subdomain','all');
figure, meshplot(fem)

Create a boundary layer mesh consisting of prism elements along the boundary layer
boundaries and tetrahedral elements in the interior

fem.geom = block3(10,5,5) - sphere3(1,'pos',[3 2.5 2.5]);
fem.mesh = meshbndlayer(fem,'blbnd',[2:13]);
figure, meshplot(fem)
figure, meshplot(fem,'ellogic','x<3')

See Also meshinit, meshmap, meshsweep
265

meshcaseadd

266 | C H A P T
meshcaseaddPurpose Add new mesh cases

Syntax fem = meshcaseadd(fem, ...)

Description fem = meshcaseadd(fem) adds one or several new mesh cases to the FEM
structure FEM. The mesh cases are typically used as hierarchy in the Geometric
multigrid solver. The new mesh cases are constructed by coarsening or refining the
mesh (or keeping the same mesh), and possibly changing the order of the shape
functions. If the order is changed, the integration point order and the constraint
point order is changed accordingly.

The function meshcaseadd accepts the following property/value pairs:

The function meshcaseadd operates on the FEM structures corresponding to the
geometries Mggeom. The FEM structures for other geometries are left unaffected.

Before creating new mesh cases, all existing mesh cases except Mcasekeep are
deleted.

TABLE 1-81: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Mcasekeep array of nonnegative
integers | all

Mcaseorig Mesh cases to keep

Mcaseorig array of nonnegative
integers

lowest
existing
mesh case

Original mesh case(s)

Meshscale array of positive numbers 2 Scale factors for mesh
size h

Mgauto meshscale | shape |
anyshape | both |
meshrefine | explicit

Method for generating
mesh cases

Mggeom array of positive integers all Geometry numbers

Nmcases positive integer 1 Number of new mesh
cases to generate

Report on | off on Display progress

Rmethod regular | longest regular Mesh refinement
method

Shapechg array of integers -1 Change in shape
function orders
E R 1 : C O M M A N D R E F E R E N C E

meshcaseadd
The mesh case generation method is determined by the property Mgauto. The new
mesh cases will be given the numbers mcmax+1, ..., mcmax+n, where mcmax is
the current highest mesh case number.

• If Mgauto=both, shape, anyshape, or meshscale, then the new mesh cases are
constructed starting from the mesh case given in the property Mcaseorig (this
should be a single nonnegative integer). This process is described in the section
“Constructing a Multigrid Hierarchy” on page 521, where the methods are
called Coarse mesh and lower order (both), Lower element order first (all) (shape),
Lower element order first (any) (anyshape), and Coarse mesh (meshscale). The
mesh coarsening factor is given in the scalar Meshscale, the shape function order
change amount is given in the scalar Shapechg, and the number of new mesh
cases to create is given by the property Nmcases.

• If Mgauto=explicit, then new mesh cases are constructed starting from the
mesh case(s) given in the property Mcaseorig. The properties Mcaseorig,
Meshscale, and Shapechg should be vectors of the same length n (however if
one is scalar, it is expanded to the same length as the other). Mesh case mcmax+i
will have a mesh that is coarsened with the factor Meshscale(i), and shape
function orders incremented with Shapechg(i) relative to mesh case
Mcaseorig(i).

• If Mgauto=meshrefine, then the new mesh cases are constructed by refining the
mesh in mesh case Mcaseorig (this should be a single nonnegative integer)
repeatedly. The number of new mesh cases to create is given by the property
Nmcases. The refinement method can be specified using the property Rmethod,
see meshrefine.

The default value of Mgauto is as follows. Let n be the length of the longest among
the vectors Meshscale, Mcaseorig, and Shapechg. The default for Mgauto is
shape if n = 1, and explicit if n > 1.

The following fields in the FEM structure are affected by meshcaseadd:

mesh, shape, gporder, ***.gporder, cporder, and ***.gporder, where *** is
equ, bnd, edg, or pnt. Also, the corresponding fields in the appl field are affected.

See Also femsolver, meshcasedel
267

meshcasedel

268 | C H A P T
meshcasedelPurpose Delete mesh cases

Syntax fem = meshcasedel(fem)
fem = meshcasedel(fem,mcases)

Description fem = meshcasedel(fem) deletes all mesh cases except 0 from the FEM structure
fem.

fem = meshcasedel(fem,mcases) deletes the mesh cases in the integer vector
mcases from the FEM structure fem.

The following fields in the FEM structure are affected by meshcasedel:

mesh, shape, gporder, ***.gporder, cporder, and ***.gporder, where *** is
equ, bnd, edg, or pnt. Also, the corresponding fields in the appl field are affected.

See Also meshcaseadd
E R 1 : C O M M A N D R E F E R E N C E

meshcopy
meshcopyPurpose Copy mesh between boundaries

Syntax fem.mesh = meshcopy(fem,...)
fem = meshcopy(fem,'out',{'fem'})

Description fem.mesh = meshcopy(fem,...) copies the mesh between boundaries in the
mesh object fem.mesh.

 fem = meshcopy(fem,'out',{'fem'}) modifies the FEM structure to include
the new mesh object in fem.mesh.

Copy the mesh from one or several source boundaries to one target boundary. The
source boundary (or in the case of several source boundaries, the combined source
boundaries) and the target boundary must be of the exact same shape. However, a
scaling factor between the boundaries is allowed.

In 3D, the edges around the source and target boundaries are allowed to be
partitioned differently, but only in such a way that several edges of the source
boundary map to one edge of the target boundary, not the other way around.

The function meshcopy accepts the following property/value pairs:

Use the properties source and target to specify the source and target boundaries.
Note that source can be either a scalar value or a vector. The property target is
always a scalar value. This means that copying from several boundaries is allowed,
but you can only copy the mesh to a single boundary.

In 3D, use the properties sourceedg, targetedg, and direction to specify the
edge mapping from the source to the target boundary. The property sourceedg can
be either a single edge index or a vector of edge indices. The property targetedg
is always a single edge index. The property direction specifies the direction

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Direction √ √ auto |
same |
opposite

auto Direction between
edges

Mcase √ √ integer 0 Mesh case number

Source √ √ numeric
array

Source boundaries

Sourceedg √ numeric
array

Source edges

Target √ √ integer Target boundary

Targetedg √ integer Target edge
269

meshcopy

270 | C H A P T
between sourceedg and targetedg. The possible values are same, opposite, and
auto, where the last option means that the direction between the edges is
automatically determined by the algorithm. If sourceedg is a vector, then
direction refers to the direction between targetedg and the edge with the lowest
edge index in sourceedg.

In 2D, use the property direction to specify the direction between the edges given
in the properties source and target. The properties sourceedg and targetedg
are not used in 2D.

If you do not specify how to orient the source mesh on the target boundary through
the sourceedg, targetedg, and direction properties, the algorithm attempts to
determine the orientation automatically.

Copying a mesh is only possible if the target boundary is not adjacent to any meshed
subdomain. If the target boundary is already meshed, the current mesh is first
deleted and the source mesh is then copied to the target boundary.

In 3D, copying a mesh to a target boundary that is adjacent to a meshed boundary
is allowed if the edge between these boundaries has the same number of elements
as the corresponding source edges. In this case, the mesh on the target edge is kept,
and the copied boundary elements are modified to fit with this edge mesh.

Examples Mesh Face 1 of a block and copy the mesh to the opposite Face 4.

fem.geom = block3;
fem.mesh = meshinit(fem,'point',[],'edge',[], ...
 'face',1,'subdomain',[]);
fem.mesh = meshcopy(fem,'source',1,'target',4);

Mesh Boundaries 1 and 3 of a rectangle and then copy the mesh to Boundary 5.

g1 = rect2;
g2 = point2(0,0.3);
fem.geom = geomcsg({g1 g2});
fem.mesh = meshinit(fem,'hnumedg',{1 8 3 4},'point',[], ...
 'edge',[1,3],'subdomain',[]);
fem.mesh = meshcopy(fem,'source',[1 3],'target',5);

See also femmesh, meshinit, meshplot
E R 1 : C O M M A N D R E F E R E N C E

meshdel
meshdelPurpose Delete elements in mesh.

Syntax fem.mesh = meshdel(fem,...)
mesh = meshdel(mesh,...)
fem = meshdel(fem,’Out’,{’fem’},...)

Description fem.mesh = meshdel(fem,...) deletes elements from the mesh object fem.mesh
belonging to domains according to the specified properties.

mesh = meshdel(mesh,...) deletes elements from the mesh object mesh.

fem = meshdel(fem,'out',{'fem'},...) modifies the fem structure to include
the new mesh object in fem.mesh.

The function meshdel accepts the following property/values:

Deleting elements corresponding to a specific domain, all elements on adjacent
domains of higher dimension are deleted as well.

Examples Create a mesh of a 2D geometry with 3 subdomains.

fem.geom = rect2+circ2;
geomplot(fem,'sublabels','on','edgelabels','on')
fem.mesh = meshinit(fem);

TABLE 1-82: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Deladj on | off on Specifies if elements
belonging to adjacent
domains of lower
dimensions are deleted as
well

Edge integer vector |
all | none

none Specifies the edge domains
for which the elements are
deleted

Face integer vector |
all | none

none Specifies the face domains
for which the elements are
deleted

Out fem | mesh mesh Output variables

Point integer vector |
all | none

none Specifies the vertex
domains for which the
elements are deleted

Subdomain integer vector |
all | none

none Specifies the subdomains
for which the elements are
deleted
271

meshdel

272 | C H A P T
Delete the elements belonging to subdomain 3 only.

fem.mesh = meshdel(fem.mesh,'subdomain',3,'deladj','off');
figure, meshplot(fem)

Delete the elements belonging to subdomain 1 and all adjacent domains of lower
dimensions that can be deleted.

fem.mesh = meshdel(fem.mesh,'subdomain',1,'deladj','on');
figure, meshplot(fem)

Delete the edge elements belonging to edge 1. Note that the elements belonging
to the adjacent subdomain (subdomain 2) are deleted as well.

fem.mesh = meshdel(fem.mesh,'edge',1);
figure, meshplot(fem)

See Also femmesh, meshenrich, meshinit
E R 1 : C O M M A N D R E F E R E N C E

meshembed
meshembedPurpose Embed a 2D mesh object as a 3D mesh object.

Syntax fem1 = meshembed(fem0,...)
[mesh,geom]= meshembed(fem,’Out’,{’mesh’,’geom’},...)

Description fem1 = meshembed(fem0,...) embeds the 2D geometry object in fem0.geom
and the 2D mesh object in fem0.mesh, as a 3D geometry object and a 3D mesh
object stored in fem1.geom and fem1.mesh, respectively.

[geom,mesh]= meshembed(fem,’Out’,{’geom’,’mesh’},...) returns the
embedded 3D geometry object in geom and the embedded 3D mesh object in mesh.

Valid property/value pairs for the meshembed function are given in the following
table. In addition, all embed parameters are supported and are passed to embed for
creating the embedded 3D geometry object.

Embedding a 2D mesh object as a 3D mesh object, the 2D vertex elements, the 2D
boundary elements, the 2D triangular elements, and the 2D quadrilateral elements,
are embedded as 3D vertex elements, 3D edge elements, 3D triangular boundary
elements, and 3D quadrilateral boundary elements, respectively.

See also embed, meshextrude, meshrevolve, femmesh

PROPERTY VALUES DEFAULT DESCRIPTION

Mcase integer 0 Mesh case number

Out fem | mesh | geom fem Output variables
273

meshenrich

274 | C H A P T
meshenrichPurpose Make mesh object complete.

Syntax fem.mesh = meshenrich(fem,...)
mesh = meshenrich(mesh,...)
fem = meshenrich(fem,’Out’,{’fem’},...)

Description fem.mesh = meshenrich(fem,...) completes the mesh object fem.mesh with
element information necessary for using the mesh object in a simulation or for
converting into a geometry object.

mesh = meshenrich(mesh,...) completes the mesh object mesh.

fem = meshenrich(fem,'out',{'fem'},...) modifies the fem structure to
include the new mesh object in fem.mesh.

The function meshenrich accepts the following property/value pairs.

TABLE 1-83: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Extrangle √ numeric 0.01 Maximum angle between
boundary element normal and
extrusion plane that will cause
the element to be a part the
extruded face if possible

Faceangle √ numeric 1.8 Maximum angle between any
two boundary elements in the
same face

Facecleanup √ numeric 0.01 Avoid creating small faces. Faces
with an area less than
Facecleanup * the mean face
area, are merged with adjacent
faces

Facecurv √ numeric 0.2 Maximum relative curvature
deviation between any two
boundary elements in the same
face

Faceparam √ on | off on Specifies if faces are
parameterized

Minareaecurv √ numeric 1 Minimum relative area of face to
be considered as a face with
constant curvature

Minareaextr √ numeric 0.05 Minimum relative area of face to
be considered extruded
E R 1 : C O M M A N D R E F E R E N C E

meshenrich
Algorithm These are the main steps of the 3D algorithm:

1 If the domain information (dom field) for the subdomain elements is missing, all
subdomain elements are assigned the same domain label.

2 Missing boundary elements are added. Boundary elements are required at the
boundaries of the subdomains.

3 The up-down subdomain information (ud field) for the boundary elements is
made complete.

4 If the domain information (dom field) for the boundary elements is missing, the
face domain partitioning is determined according to the following steps.

- Search for planar faces according to Planarangle and Minareaplane.

- Search for extruded faces according to Extrangle and Minareaextr.

- Search for faces with constant curvature according to Facecurv and
Minareacurv. This search is only done for second order elements.

- The remaining boundary elements are divided into face domains according to
Neighangle and Faceangle.

5 Exceedingly small faces are merged with neighboring faces according to
Facecleanup.

6 The faces are parameterized (param field).

Minareaeplane √ numeric 0.005 Minimum relative area of face to
be considered planar

Neighangle √ √ numeric 0.35 Maximum angle between a
boundary element and a
neighbor that will cause the
elements to be part of the same
boundary domain if possible

Out √ √ fem |
mesh

mesh Output variables

Planarangle √ numeric 0.01 Maximum angle between
boundary element normal and a
neighbor that will cause the
element to be a part the planar
face if possible

TABLE 1-83: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION
275

meshenrich

276 | C H A P T
7 Missing edge elements are added. Edge elements are required at the boundaries
of the faces. Domain and parameter information (dom and param fields) for the
edge elements is also added.

8 Missing vertex elements are added. Vertex elements are required on the
boundaries of the edges.

The 1D and 2D algorithms work in a similar way.

Example Create an initial mesh object from mesh point coordinates and tetrahedral element
information.

load coord.txt;
load tet.txt;
el = cell(1,0);
tet = tet+1; % Lowest mesh point index is zero in tet.txt
el{1} = struct('type','tet','elem',tet');
m = femmesh(coord',el);

Use meshenrich to create a complete mesh object, that is, a mesh object with
boundary elements, edge elements and vertex elements with necessary geometry
information.

m = meshenrich(m);
meshplot(m)

See Also geominfo, meshinit, femmesh
E R 1 : C O M M A N D R E F E R E N C E

meshexport
meshexportPurpose Export meshes to file.

Syntax meshexport(filename,ml,...)

Description meshexport(filename,ml,...) exports the meshes in the cell array ml to a file.
ml can also be one single mesh object.

The function meshexport supports the following mesh formats

Example Create a 3D mesh and export in the text file format.

m = meshinit(block3+cone3,'hauto',9)
meshexport('meshfile.mphtxt',m);

See Also femmesh, meshimport

FORMAT FILE EXTENSION

COMSOL Multiphysics text file .mphtxt

COMSOL Multiphysics binary file .mphbin
277

meshextend

278 | C H A P T
meshextendPurpose Extend a mesh to the desired finite element types.

Syntax fem.xmesh = meshextend(fem, ...)
[fem.xmesh, cv] = meshextend(fem, ...)

Description fem.xmesh = meshextend(fem) extends the (possibly extended) FEM structure
fem with the xmesh field. The xmesh object contains the full finite element mesh for
the model, and also the full description of the model using an internal syntax (the
element syntax).

[fem.xmesh, cv] = meshextend(fem) also outputs a cell array cv containing
names of variables that were multiply defined.

The function meshextend reads the field fem.solform and generates the extended
using this solution form. The default value for fem.solform is weak meaning that
the weak solution form will be used.

The function meshextend accepts the following property/values:.

TABLE 1-84: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize positive integer 5000 Block size

Eqvars on | off | cell array on Generate equation
variables

Cplbndeq on | off | cell array on Generate
boundary-coupled
equation variables

Cplbndsh on | off | cell array off Generate
boundary-coupled shape
variables

Geoms integer vector all meshed
geometries

Extend the mesh on these
geometries

Linshape integer vector all meshed
geometries

Use linear geometry
shape order for inverted
elements on these
geometries

Linshapetol scalar or vector 0.1 Use linear geometry
shape order for inverted
elements on these
geometries

Mcase integer vector all mesh cases Extend the mesh for these
mesh cases
E R 1 : C O M M A N D R E F E R E N C E

meshextend
Use the properties linshape and linshapetol to avoid problems with inverted
elements in the extended mesh. linshape is an integer array specifying the
geometries where the software avoids inverted elements by using linear geometry
shape order for the corresponding elements. linshapetol is the tolerance or a
vector of tolerances of the same length as linshape. The tolerance values specify
the minimum allowed value of the variable reldetjacmin for elements not being
considered inverted.

Compatibility If the FEM structure has a version field fem.version and the version is older than
COMSOL Multiphysics 3.2, then the default for fem.solform is equal to
fem.form.

See Also xmeshinfo

Report on | off on Show progress window

Standard on | off on Convert standard syntax
to element syntax

TABLE 1-84: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
279

meshextrude

280 | C H A P T
meshextrudePurpose Extrude a 2D mesh object into a 3D mesh object.

Syntax fem1 = meshextrude(fem0,...)
[mesh,geom]= meshextrude(fem,’Out’,{’mesh’,’geom’},...)

Description fem1 = meshextrude(fem0,...) extrudes the 2D geometry object in fem0.geom
and the 2D mesh object in fem0.mesh, into a 3D geometry object and a 3D mesh
object stored in fem1.geom and fem1.mesh, respectively, according to the given
parameters.

[geom,mesh]= meshextrude(fem,’Out’,{’geom’,’mesh’},...) returns the
3D geometry object in geom and the 3D mesh object in mesh.

Valid property/value pairs for the meshextrude function are given in the following
table. In addition, all extrude parameters are supported and are passed to extrude
for creating the extruded 3D geometry object.

The property Elextlayers defines the distribution of mesh element layers in the
extruded mesh. The value of Elextlayers is a cell array where each entry
corresponds to a section in the extruded geometry object. If a cell entry is a scalar,
it defines the number of equally distributed mesh element layers that is generated
for the corresponding extruded section. Alternatively, if a cell entry is a vector, it
defines the distribution of the mesh element layers for the corresponding extruded
section. The values in the vector, that are sorted and starts with 0, specify the
placements, in relative arc length, of the mesh element layers. Note that more
element layers might be introduced due to the division of the revolved geometry
into sections. By default, the number of element layers is determined such that the
distance of each layer is equal to the mean element size in the original 2D mesh.

Extruding a 2D mesh object into a 3D mesh object, the 2D vertex elements, the 2D
boundary elements, the 2D triangular elements, and the 2D quadrilateral elements,
are extruded into 3D edge elements, 3D quadrilateral boundary elements, 3D prism
elements, and 3D hexahedral elements, respectively.

Examples Create an extruded prism mesh on a cylinder of height 1.3.

PROPERTY VALUES DEFAULT DESCRIPTION

Elextlayers 1-by-nd cell array Distribution of mesh element
layers in extruded mesh

Mcase integer 0 Mesh case number

Out fem | mesh | geom fem Output variables
E R 1 : C O M M A N D R E F E R E N C E

meshextrude
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem1 = meshextrude(fem,'distance',1.3);

Create a hexahedral mesh by extruding a quad mesh on a rectangle.

fem.geom = rect2(1,2,'pos',[0 0]);
fem.mesh = meshmap(fem);
fem1 = meshextrude(fem,'distance',[1.3 2],...
 'displ',[0.4 0;0 -0.2],...
 'scale',[2 1;2 1.5],...
 'elextlayers',{5 [0 0.2 0.8 1]});
meshplot(fem1);

Cautionary Extruding a mesh with any scale factor equal to zero is not supported.

See also extrude, meshembed, meshrevolve, femmesh
281

meshhex2tet

282 | C H A P T
meshhex2tetPurpose Convert hexahedral elements to tetrahedral elements

Syntax fem.mesh = meshhex2tet(fem,...)
fem.mesh = meshhex2tet(mesh,...)

Description fem.mesh = meshhex2tet(fem,...) converts hexahedral elements in the mesh
object stored in fem.mesh to tetrahedral elements.

fem.mesh = meshhex2tet(mesh,...) converts hexahedral elements in the mesh
object mesh to tetrahedral elements.

Each hexahedral element can be split into 5 or 28 tetrahedral elements.

The function meshhex2tet accepts the following property/value pairs.

Use the property subdomain to specify the subdomains where the hexahedral
elements are converted to tetrahedral elements. Note that it is not possible to
convert hexahedral elements in subdomains that are adjacent to subdomains that
should not be converted.

Use the property splithex to specify the technique used for splitting the
hexahedral elements. Use the diagonal option to split each hexahedral into 5
tetrahedral elements, and use the center option to split each hexahedral into 28
tetrahedral elements. Note that the quadrilateral elements on the boundaries of the
specified subdomains will also be converted, either into two (when the option
diagonal is used) or into four triangular elements (when the option center is
used).

Examples Create a hex mesh and split each hexahedral element into 5 tetrahedral elements.

fem.geom = block3;
fem.mesh = meshmap(fem, 'face', 1);
fem.mesh = meshsweep(fem, 'meshstart', fem.mesh);
fem.mesh = meshhex2tet(fem);
meshplot(fem);

TABLE 1-85: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out fem | mesh mesh Output properties

Splithex diagonal |
center

diagonal Specifies if each hexahedral element
is split into 5 or 28 tetrahedral
elements

Subdomain numeric
array | all |
none

all Specifies the subdomains where the
hexahedral elements are converted
to tetrahedral elements
E R 1 : C O M M A N D R E F E R E N C E

meshhex2tet
Create a hex mesh and split each hexahedral element into 28 tetrahedral elements.

fem.geom = block3;
fem.mesh = meshmap(fem, 'face', 1);
fem.mesh = meshsweep(fem, 'meshstart', fem.mesh);
fem.mesh = meshhex2tet(fem, 'splithex', 'center');
meshplot(fem);

See Also femmesh, meshmap, meshquad2tri
283

meshimport

284 | C H A P T
meshimportPurpose Import meshes from file.

Syntax meshes = meshimport(filename,...)

Description meshes = meshimport(filename,...) reads the file with name filename using
the specified properties and returns a cell array of meshes.

The function meshimport supports the following mesh formats

Valid property/value pairs for the NASTRAN format include.

meshimport accepts all property/values that meshenrich does.

elemsplit specifies if mesh elements of different element forms—that is,
tetrahedral, pentahedral, or hexahedral—get different subdomain labels. The
default value is off.

enrichmesh specifies if the meshes are enriched with domain information—that is,
boundary elements, edge elements, and vertex elements. The domain partitioning
is controlled by the properties of meshenrich. If the value is off the output meshes
are not complete meshes. The default value is on.

FORMAT FILE EXTENSION

COMSOL Multiphysics text file .mphtxt

COMSOL Multiphysics binary file .mphbin

NASTRAN file .nas | .bdf

TABLE 1-86: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

elemsplit on | off off Specifies if mesh elements of different
element forms get different subdomain
labels.

enrichmesh on | off on Specifies if the imported meshes are
enriched.

linearelem on | off off Specifies if extended node points are
ignored.

materialsplit on | off on Specifies if material data in the file is used
to determine the domain partitioning of
the subdomain elements.

report on | off on Determines if a progress window is
displayed.
E R 1 : C O M M A N D R E F E R E N C E

meshimport
linearelem determines if extended node points are ignored. If the value is on all
imported elements are linear. Otherwise, the order of the imported elements is
determined from the order of the elements in the file. The default value is on.

materialsplit determines if material data in the file is used (if available) to
determine the domain partitioning of the subdomain elements. If the value is off
all subdomain elements in the imported mesh belongs to the same subdomain if
possible. The default value is on.

report specifies if a progress window is displayed. The default value is on.

The table below specifies the NASTRAN bulk data entries that are parsed in
meshimport.

The NASTRAN bulk data format uses reduced second order elements, that is, the
center node on quadrilateral mesh faces (quadNode) and the center node of
hexahedral elements (hexNode) are missing. Importing a NASTRAN mesh with
second order elements, the coordinates of these missing node points are
interpolated from the surrounding node points according to, quadNode =
0.5*quadEdgeNodes-0.25*quadCornerNodes, where quadEdgeNodes is the sum
of the coordinates of the surrounding 4 edge nodes and quadCornerNodes is the
sum of the coordinates of the surrounding 4 corner nodes, and hexNode =
0.25*hexEdgeNodes-0.25*hexCornerNodes, where hexEdgeNodes is the sum of

BULK DATA ENTRY

CBAR

CHEXA

CORD1C

CORD1R

CORD1S
CORD2C
CORD2R
CORD2S
CPENTA

CQUAD4
CQUAD8

CTETRA

CTRIA3

CTRIA6

GRID
285

meshimport

286 | C H A P T
the coordinates of the surrounding 12 edge nodes and hexCornerNodes is the sum
of the coordinates of the surrounding 8 corner nodes.

Cautionary meshimport does not handle NASTRAN files in free field format.

See Also femmesh, meshenrich, meshexport
E R 1 : C O M M A N D R E F E R E N C E

meshinit
meshinitPurpose Create free mesh

Syntax fem.mesh = meshinit(fem,...)
fem.mesh = meshinit(geom,...)
fem = meshinit(fem,'out',{'fem'},...)

 Description fem.mesh = meshinit(fem,...) returns a mesh object derived from the
geometry object fem.geom. It uses a Delaunay algorithm. The mesh size is
determined from the shape of the geometry object and various property/value
pairs.

fem.mesh = meshinit(geom,...) returns a mesh object derived from the
geometry object geom.

The mesh object fem.mesh is the data structure for the mesh. See femmesh for a full
description of the mesh object.

fem = meshinit(fem,'Out',{'fem'},...) modifies the FEM structure to
include the mesh object fem.mesh.

The function meshinit accepts the following property/value pairs:

TABLE 1-87: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION

edge √ √ numeric
array |
auto |
all |
none

auto Specifies the edges
that are meshed

edgelem √ √ √ cell array Edge element
distribution

face √ numeric
array |
auto |
all |
none

auto Specifies the faces
that are meshed

hauto √ √ numeric 5 Automatic setting of
several mesh
parameters

hcurve √ numeric 0.3 Curvature mesh size

hcurve √ numeric 0.6 Curvature mesh size

hcurveedg √ √ numeric
array

hcurve Curvature mesh size
for edges
287

meshinit

288 | C H A P T
hcurvefac √ numeric
array

hcurve Curvature mesh size
for faces

hcutoff √ numeric 0.001 Curvature
resolution cutoff

hcutoff √ numeric 0.03 Curvature
resolution cutoff

hcutoffedg √ √ numeric
array

hcutoff Curvature
resolution cutoff for
edges

hcutofffac √ numeric
array

hcutoff Curvature
resolution cutoff for
faces

hgrad √ √ numeric 1.3 Element growth rate

hgrad √ numeric 1.5 Element growth rate

hgradvtx √ √ √ numeric
array

hgrad Element growth rate
for vertices

hgradedg √ √ numeric
array

hgrad Element growth rate
for edges

hgradfac √ numeric
array

hgrad Element growth rate
for faces

hgradsub √ √ √ numeric
array

hgrad Element growth rate
for subdomains

hmax √ √ √ numeric estimate Global maximum
element size

hmaxvtx √ √ √ numeric
array

hmax Maximum element
for vertices

hmaxedg √ √ numeric
array

hmax Maximum element
for edges

hmaxfac √ numeric
array

hmax Maximum element
for faces

hmaxsub √ √ √ numeric
array

hmax Maximum element
for subdomains

hmaxfact √ √ √ numeric 1 A factor that the
default hmax is
multiplied by

TABLE 1-87: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshinit
hcurvefac √ numeric
array

hcurve Curvature mesh size
for faces

hcutoff √ numeric 0.001 Curvature
resolution cutoff

hcutoff √ numeric 0.03 Curvature
resolution cutoff

hcutoffedg √ √ numeric
array

hcutoff Curvature
resolution cutoff for
edges

hcutofffac √ numeric
array

hcutoff Curvature
resolution cutoff for
faces

hgrad √ √ numeric 1.3 Element growth rate

hgrad √ numeric 1.5 Element growth rate

hgradvtx √ √ √ numeric
array

hgrad Element growth rate
for vertices

hgradedg √ √ numeric
array

hgrad Element growth rate
for edges

hgradfac √ numeric
array

hgrad Element growth rate
for faces

hgradsub √ √ √ numeric
array

hgrad Element growth rate
for subdomains

hmax √ √ √ numeric estimate Global maximum
element size

hmaxvtx √ √ √ numeric
array

hmax Maximum element
for vertices

hmaxedg √ √ numeric
array

hmax Maximum element
for edges

hmaxfac √ numeric
array

hmax Maximum element
for faces

hmaxsub √ √ √ numeric
array

hmax Maximum element
for subdomains

hmaxfact √ √ √ numeric 1 A factor that the
default hmax is
multiplied by

TABLE 1-87: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
289

meshinit

290 | C H A P T
hmesh √ √ √ numeric Element size given
on mesh

hnarrow √ numeric 1 Resolution of
narrow regions

hnarrow √ numeric 0.5 Resolution of
narrow regions

hnumedg √ √ cell array Number of elements
for edges

hnumsub √ cell array Number of elements
for subdomains

hpnt √ numeric 10 Global number of
resolution points

hpnt √ numeric 20 Global number of
resolution points

hpntedg √ numeric
array

Hpnt Number of
resolution points for
edges

hpntfac √ numeric
array

Hpnt Number of
resolution points for
faces

jiggle √ √ on | off on Improve mesh
quality

mcase √ √ √ √ integer 0 Mesh case number

mesh √ √ √ mesh
object

Mesh for hmesh

meshstart √ √ √ √ mesh
object

Starting mesh

methodsub √ cell array |

tri| quad

tri Specify free triangle
or free quad mesh

minit √ √ on | off off Boundary
triangulation

mlevel √ vtx | sub sub Meshing level

mlevel √ vtx | edg |
sub

sub Meshing level

mlevel √ vtx | edg |
fac | sub

sub Meshing level

TABLE 1-87: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshinit
Use the properties point, edge, face, and subdomain to specify the domains to be
meshed. If you use these properties together with the meshstart property, the
value auto means that all domains that are not meshed in the starting mesh are
meshed and none that no further domains are meshed. all means that all domains
not already meshed in the starting mesh and all meshed domains that are not
adjacent to a meshed domain of higher dimension are meshed (or remeshed). It is
also possible to specify the domains to be meshed (or remeshed) using a vector of
domain indices.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation.

Use the property methodsub in 2D to specify if subdomains should be meshed with
triangles or quads. The property is set to tri or quad, to mesh all subdomains with
triangles or quads respectively. The value of the property can also be an even

point √ √ √ numeric
array |
auto |
all |
none

auto Specifies the
vertices that are
meshed

out √ √ √ √ fem |
mesh | p |
e | t | vg |
eg | vg

mesh Output variables

report √ √ √ √ on | off on Display progress

subdomain √ √ √ √ numeric
array |
auto |
all |
none

auto Specifies the
subdomains that are
meshed

xscale √ √ numeric 1 Scale geometry in
x direction before
meshing

yscale √ √ numeric 1 Scale geometry in
y direction before
meshing

zscale √ numeric 1 Scale geometry in
z direction before
meshing

TABLE 1-87: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
291

meshinit

292 | C H A P T
numbered cell array, where the odd entries contain subdomain indices, either as
scalar values, or as vectors with subdomain indices, and the even entries are either
quad or tri, specifying triangle or quad elements for each subdomain. Default is
tri for all subdomains.

Use the property methodfac in 3D to specify if faces should be meshed with
triangles or quads. The property methodfac in 3D is equivalent to the property
methodsub in 2D, and is specified in the same way, but for faces instead of
subdomains.

The property edgelem is used to explicitly control the distribution of the edge
elements in the mesh. The value of this property is an even numbered cell array
where the odd entries contain edge indices, either as scalar values, or as a vectors
with edge indices, and the even entries contain scalar values or vectors specifying the
edge element distribution on the corresponding edge(s). If the edge element
distribution is specified by a scalar, the edge elements on the corresponding edge(s)
are equally distributed in arc length and the number of edge elements equals the
value of the scalar. To get full control over the edge element distribution on an edge,
the vector form is used. The values in the vector, that are sorted and starts with 0,
specify the relative placement of the mesh vertices along the direction of the
corresponding edge(s). The edgelem property can also be used on subdomains in
1D to control the element distribution.

The minit property is related to the way the mesh algorithm works. By turning on
minit you can see the initial discretization of the boundaries. This property is only
valid for mlevel sub.

Hauto is available in 2D and 3D and is an integer between 1 and 9. This integer is
used to set several mesh parameters in order to get a mesh of desired size. Smaller
values of hauto generate finer meshes with more elements.

TABLE 1-88: MESH PARAMETERS SET BY THE PROPERTY HAUTO IN 2D

HAUTO HMAXFACT HCURVE HGRAD HCUTOFF

1 0.15 0.2 1.1 0.0001

2 0.3 0.25 1.2 0.0003

3 0.55 0.25 1.25 0.0005

4 0.8 0.3 1.3 0.001

5 1 0.3 1.3 0.001

6 1.5 0.4 1.4 0.005

7 1.9 0.6 1.5 0.01
E R 1 : C O M M A N D R E F E R E N C E

meshinit
 Hcurve is a scalar numeric value that relates the mesh size to the curvature of the
geometry boundaries. The radius of curvature is multiplied by the hcurve factor to
obtain the mesh size along the boundary.

 hcurveedg and hcurvefac are matrices with two rows where the first row contains
edge indices and face indices respectively, and the second row contains
corresponding values of hcurve. If several faces are represented in one patch, the
value of hcurvefac for the faces in the patch is set to the minimum value of the
hcurvefac values for the corresponding faces.

 hcutoff is used to prevent the generation of many elements around small curved
parts of the geometry. The interpretation is that when the radius of curvature is
smaller than hcutoff*maxdist the radius of curvature is taken as
hcutoff*maxdist, where maxdist is the longest axis parallel distance in the
geometry.

 hcutoffedg and hcutofffac are matrices with two rows where the first row
contains edge indices and face indices respectively, and the second row contains
corresponding values of hcutoff. If several faces are represented in one patch, the
value of hcutofffac for the faces in the patch is set to the minimum value of the
hcutofffac values for the corresponding faces.

8 3 0.8 1.8 0.02

9 5 1 2 0.05

TABLE 1-89: MESH PARAMETERS SET BY THE PROPERTY HAUTO IN 3D

HAUTO HMAXFACT HCURVE HGRAD HCUTOFF HNARROW

1 0.2 0.2 1.3 0.001 1

2 0.35 0.3 1.35 0.005 0.85

3 0.55 0.4 1.4 0.01 0.7

4 0.8 0.5 1.45 0.02 0.6

5 1 0.6 1.5 0.03 0.5

6 1.5 0.7 1.6 0.04 0.4

7 1.9 0.8 1.7 0.05 0.3

8 3 0.9 1.85 0.06 0.2

9 5 1 2 0.07 0.1

TABLE 1-88: MESH PARAMETERS SET BY THE PROPERTY HAUTO IN 2D

HAUTO HMAXFACT HCURVE HGRAD HCUTOFF
293

meshinit

294 | C H A P T
The property hgrad tells how fast the element size—measured as the length of the
longest edge of the element—can grow from a region with small elements to a
region with larger elements. If two elements lie one unit length apart, the difference
in element size can be at most hgrad.

 hgradvtx, hgradedg, hgradfac, and hgradsub are matrices with two rows where
the first row contains vertex indices, edge indices, face indices, and subdomain
indices respectively, and the second row contains corresponding values of hgrad. If
several faces are represented in one patch, the value of hgradfac for the faces in the
patch is set to the minimum value of the hgradfac values for the corresponding
faces.

The hmax parameter controls the size of the elements in the mesh. meshinit creates
a mesh where no element size exceeds hmax. The default hmax value is one fifteenth
of the longest axis parallel distance in the geometry in 1D and 2D and one tenth of
the longest axis parallel distance in the geometry in 3D.

hmaxvtx, hmaxedg, hmaxfac, and hmaxsub are matrices with two rows where the
first row contains vertex indices, edge indices, face indices, and subdomain indices
respectively, and the second row contains corresponding values of hmax.

The hmaxfact property is used to scale the defaulted hmax value.

hmesh is a vector with one entry for every mesh vertex or element in the mesh given
in the mesh property. This can be used to specify the size of the elements using the
mesh provided with the property mesh.

The hnarrow parameter controls the size of the elements in narrow regions.
Increasing values of this property decrease the size of the elements in narrow
regions. If the value of hnarrow is less than one, elements that are anisotropic in size
might be generated in narrow regions.

hnumedg and hnumsub are cell arrays where the odd entries contain edge indices and
subdomain indices respectively, and even entries contain number of elements.

The hpnt property controls the number of points that are placed on each edge in
2D and in each parametric direction on each geometry patch in 3D to resolve the
geometry.

hpntedg is a matrix with two rows where the first row contains edge indices and the
second row contains corresponding values of hpnt.

hpntfac is a matrix with two rows where the first row contains face indices and the
second row contains corresponding number of resolution points in each parametric
E R 1 : C O M M A N D R E F E R E N C E

meshinit
direction of the underlying geometry patch. If several faces are represented in one
patch the value of hpntfac for the faces in the patch is set to the maximum value of
the hpntfac values for the corresponding faces.

The jiggle property determines if the quality of the mesh is improved before the
mesh is returned.

Use the mesh property to specify a mesh for the property hmesh.

The property mlevel determines to which level the mesh is generated. If it is vtx,
only the vertices in the geometry are returned. If it is edg, the edges in the geometry
are resolved. If it is fac the edges and faces in the geometry are resolved. If it is sub
elements in the subdomains are generated as well.

The properties xscale, yscale, and zscale specify scalar factors in each axis
direction that the geometry is scaled by before meshing. The resulting mesh is then
scaled back to fit the original geometry. The values of other properties correspond
to the scaled geometry. By default, no scaling is done.

Examples 3D Example
Create a 3D mesh of a cylinder.

clear fem
fem.geom=cylinder3;
fem.mesh=meshinit(fem);
meshplot(fem)

2D Example
Make a simple mesh of a unit square.

clear fem
fem.geom = geomcsg({square2(0,1,1)});
fem.mesh = meshinit(fem);
meshplot(fem), axis equal

Make the mesh finer than the default.

fem.mesh = meshinit(fem,'hmax',0.02);
meshplot(fem), axis equal

Now, make the mesh denser only near the edge segment to the left.

fem.mesh = meshinit(fem,'hmaxedg',[1; 0.02]);
meshplot(fem), axis equal

Make a free quad mesh of a circle

clear fem
fem.geom = geomcsg({circ2});
295

meshinit

296 | C H A P T
fem.mesh = meshinit(fem,'methodsub','quad');
meshplot(fem), axis equal

1D Example
Create a mesh on the interval [0,1] that is finer near the point 0 and grows toward 1.

fem.geom = geomcsg({solid1([0 1])});
fem.mesh = meshinit(fem,'hmax',0.1,'hmaxvtx',[1; 0.001]);
meshplot(fem)

2D Example Dealing with Interactive Meshing
Create a boundary mesh of a geometry

clear fem;
fem.geom = rect2+circ2;
fem.mesh = meshinit(fem,'subdomain','none');
meshplot(fem)

Mesh subdomain 2 using the boundary mesh as starting mesh

fem.mesh = meshinit(fem,'subdomain',2,'meshstart',fem.mesh);
meshplot(fem)

Mesh the remaining subdomains using the previous mesh as starting mesh

fem.mesh = meshinit(fem,'meshstart',fem.mesh);
meshplot(fem)

Compatibility The second and third row in the vg field as well as the second row in the v field will
be removed in future versions.

Cautionary To achieve compatibility with FEMLAB 2.3, the geometry input is automatically
converted to a geometry object using the function geomobject. The geometry
input can be any analyzed geometry. See geomobject for details.

If you create a mesh with methodsub set to quad in 2D, or methodfac set to quad
in 3D, the generated mesh is not guaranteed to contain only quadrilateral elements.
If the algorithm for some reason fails to mesh the entire domain with quad elements,
or if the quality of a quad element is very low, some triangular elements are
generated instead.

See Also femmesh, geomcsg, meshplot, meshrefine

Reference [1] George, P. L., Automatic Mesh Generation—Application to Finite Element
Methods, Wiley, 1991.
E R 1 : C O M M A N D R E F E R E N C E

meshintegrate
meshintegratePurpose Integrate over arbitrary cross section

Syntax I = meshintegrate(p,t,d)
I = meshintegrate(p,d)
I = meshintegrate(p)

Description I = meshintegrate(p,t,d) computes the integral I over the mesh given by p and
t, with values (for each point) in d. d is of size 1-by-np, where np is the number of
points in p (=size(p,2)). The elements are considered to be linear.

I = meshintegrate(p,d) assumes t=[1,2,3,... (np-1) ; 2,3,4,... np],
(where np=size(p,2)), i.e., that the mesh is a line and that the points in p are
sorted.

I = meshintegrate(p) calls meshintegrate(p(1,:), p(2,:)).

This function is useful for computing integrals along cross sections plotted with
postcrossplot, in which case p, t, and d are extracted from the output when the
property outtype is set to postdata.

Examples Line integral in 2D:

% Just set up a problem:
clear fem
fem.geom = circ2+rect2;
fem.mesh = meshinit(fem);
fem.shape = 2; fem.equ.c = 1; fem.equ.f = 1; fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);

% Make a cross-section plot, with output being a postdata
% structure
pd = postcrossplot(fem,1,[0 1;0 1],'lindata','u',...
 'npoints',100,'outtype','postdata');

% Call meshintegrate:
I = meshintegrate(pd.p);

Line integral in 3D:

% Just set up a problem:
clear fem, fem.geom = block3;
fem.mesh = meshinit(fem,'hmax',0.15);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = {1 1 0 0 1 1};
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
297

meshintegrate

298 | C H A P T
% Make cross-section plot:
pd = postcrossplot(fem,1,[0 1;0 1;0 1],'lindata','u',...
 'npoints',100,'outtype','postdata');

% Call meshintegrate:
I = meshintegrate(pd.p)

Surface integral in 3D using the same problem as above:

pd = postcrossplot(fem,2,[0 0 0;0 1 0;1 0 1]','surfdata','u',...
 'outtype','postdata');
I = meshintegrate(pd.p, pd.t, pd.d)

This function only works for lines and surfaces actually intersecting the geometry.
For plots along geometry boundaries or edges (or 1-D subdomains), better results
are achieved using postint.

Cautionary This function is not implemented for 3-D elements, i.e., when T has four rows.

See also postcrossplot, postint
E R 1 : C O M M A N D R E F E R E N C E

meshmap
meshmapPurpose Create mapped quad mesh.

Syntax fem.mesh = meshmap(fem,...)
fem.mesh = meshmap(geom,...)
fem = meshmap(fem,'out',{'fem'},...)

Description fem.mesh = meshmap(fem,...) returns a mapped quad mesh derived from the
geometry fem.geom. For a 3D geometry, only the faces are meshed.

fem.mesh = meshmap(geom,...) returns a mapped quad mesh derived from the
geometry geom.

fem = meshmap(fem,'out',{'fem'},...) modifies the fem structure to include
a mesh in fem.mesh.

The quad mesh is generated by a mapping technique. For each subdomain in 2D
and face in 3D, a logical mesh is generated on a square geometry and is then mapped
onto the real geometry by transfinite interpolation.

The following criteria must be met by the input geometry object for the mapping
technique to work:

• Each subdomain/face to be meshed must be bounded by one connected
boundary component only.

• Each subdomain/face to be meshed must be bounded by at least four edges.

• The subdomains/faces to be meshed must not contain isolated vertices or edges.

• The shape of each subdomain/face to be meshed must not differ too much from
rectangular shape.

The function meshmap accepts the following property/values:

PROPERTY VALUE DEFAULT DESCRIPTION

edgegroups cell array of
size 1-by-ns

Determines the grouping of the edges,
per subdomain/face, into four edge
groups, corresponding to the edges of
the logical square

edgelem cell array Edge element distribution

face numeric array |
auto | all |
none

auto Specifies the faces in 3D that are
meshed

hauto numeric 5 Predefined mesh element size

mcase integer 0 Mesh case number
299

meshmap

300 | C H A P T
The property edgegroups is a cell array where each cell entry, corresponding to
each subdomain/face, determines the relation between the edges defining the
boundary of the corresponding subdomain/face, and the four edges of the logical
square. If a cell entry is left empty, the meshing algorithm splits the edges bounding
the subdomain/face into the four edge groups at the vertices corresponding to the
four sharpest corners. The relation between the edges of each subdomain/face and
the edges of the logical square is specified as a cell array, where each cell entry
contains the indices to the edges in the real geometry that correspond to one edge
of the logical square.

The property edgelem determines the distribution of the edge elements in the
mesh. The value of this property is an even numbered cell array where the odd
entries contain edge indices, either as scalar values, or as a vectors with edge indices,
and the even entries contain scalar values or vectors specifying the edge element
distribution on the corresponding edge(s). If the edge element distribution is
specified by a scalar, the edge elements on the corresponding edge(s) are equally
distributed in arc length and the number of edge elements equals the value of the
scalar. To get full control over the edge element distribution on an edge, the vector
form is used. The values in the vector, that are sorted and starts with 0, specify the
placements, in arc length, of the mesh vertices along the direction of the
corresponding edge(s).

hauto is an integer between 1 and 9 that controls the element size in the generated
mesh. The default value is 5 which means that the element size is set to 1/15 in 2D
and 1/10 in 3D of the size of the geometry for the elements not affected by the
edgelem property. By changing the value of this property, the default element size
is multiplied by the following factors.

meshstart mesh object empty Starting mesh

report on | off on Display progress

out fem | mesh mesh Output variables

subdomain numeric array |
auto | all |
none

auto Specifies the subdomains in 2D that are
meshed

HAUTO SCALE
FACTOR

1 0.2

2 0.35

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshmap
Use the property subdomain in 2D and face in 3D to specify the subdomains/faces
to be meshed. If you use this property together with the meshstart property, the
value auto means that all subdomains/faces that are not meshed in the starting
mesh are meshed, none means that no further subdomains/faces are meshed, and
all means that all subdomains/faces are meshed (or remeshed). It is also possible
to specify the subdomains/faces to be meshed (or remeshed) using a vector of
subdomain/face indices.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation.

Note that for the mapping technique to work, opposite edges require the same
number of edge elements. If this requirement is not met by the specified values in
edgelem, an error is generated.

Examples Create a mapped quad mesh on a geometry where all subdomains are topologically
equivalent with a rectangle.

clear fem
fem.geom = rect2(2,0.98)+rect2(2,0.04,'pos',[0 0.98])+...
 rect2(2,0.98,'pos',[0 1.02]);
fem.mesh = meshmap(fem,'edgelem',{[2 7] 12 [1 8] ...
 [0 0.2:0.2:0.8 ...
 0.86:0.04:0.98]});
figure, meshplot(fem);

Create a mapped quad mesh on a geometry with two subdomains.

fem.geom = ...
 rect2+rect2(1,1,'pos',[1 0])-circ2(0.4,'pos',[1.1 -0.1]);
figure, geomplot(fem,'edgelabels','on')
fem.mesh = meshmap(fem,'edgegroups',{{1 3 2 [4 8]},...
 {4 5 7 [9 10 6]}});
figure, meshplot(fem);

3 0.55

4 0.8

5 1

6 1.5

7 1.9

8 3

9 5

HAUTO SCALE
FACTOR
301

meshmap

302 | C H A P T
Create a mesh with both triangle and quad elements

fem.geom = geomcomp({circ2(0.5,'pos',[0 0.5]),rect2,...
 circ2(0.5,'pos',[1 0.5])},'edge',7:10);
figure, geomplot(fem)
fem.mesh = meshmap(fem,'subdomain',2,'hauto',3);
fem.mesh = meshinit(fem,'meshstart',fem.mesh,'hauto',3);
figure, meshplot(fem);

See also meshdel, meshinit, meshplot
E R 1 : C O M M A N D R E F E R E N C E

meshplot
meshplotPurpose Plot mesh.

Syntax meshplot(fem,...)
meshplot(mesh,...)
h = meshplot(...)

Description meshplot(fem,...) plots the mesh object fem.mesh.

meshplot(mesh,...) plots the mesh object mesh.

h = meshplot(...) additionally returns handles to the plotted axes objects.

The mesh of the PDE problem is specified by the mesh object. Details on the
representation of the mesh can be found in the entry femmesh.

There is a multitude of options that enables you to plot the mesh in virtually any
conceivable way. For 2D and 3D meshes, there are basically two types of mesh plots;
the wireframe plot and the patch plot.

In 3D, the default type is a patch plot, where both the triangular faces of the
elements and the boundary elements are rendered. Only the visible faces of the
elements are included in the plot, and the boundary elements and other mesh faces
are plotted in different colors. The characteristics of this plot type are controlled by
the properties that start with edge and bound. The edge properties control the plot
of the element faces, and the bound properties control the boundary element plot
(the name edge has historic reasons; it was first used in 2D). The color of the edges
of the element faces is determined by the property eledgecolor.

The alternative type of 3D plot is a wireframe plot, consisting of the (1D) edges of
the elements and the boundary elements. The properties that start with dedge and
dbound control the plot characteristics of this plot type. The dedge properties
control the plot of the element edges, and the dbound properties control the plot
of the edges of the boundary elements. See the 3D example below for how to obtain
a patch plot and a wireframe plot of a mesh. You can also plot the mesh edges that
lie on geometry edges (curves) with a special color. The characteristics of this plot
is controlled by the properties that begin with curve.

In 2D, there are basically two types of mesh plots. The default type is a wireframe
plot of the edges of the elements, where the boundary elements are plotted in a
different color. The properties that start with edge and bound control the plot
characteristics of this plot type. The edge properties control the plot of the element
edges, and the bound properties control the boundary element plot.
303

meshplot

304 | C H A P T
The alternative type of 2D plot is a patch plot of the triangular elements, where the
edges of the elements can have a different color. The properties that start with el
control the characteristics of this plot type. See the 2D example below for how to
obtain the two plot types. The two plot types can be combined, but doing this is not
always useful.

In 1D, the default is to combine the above two types of plots into one plot type.
Thus, by default you can see both the elements, the boundary elements, and the
intermediate mesh vertices. The plot of the elements is controlled by the properties
that begin with el, and the plot of the boundary elements is controlled by the
bound properties. The plot of the mesh vertices is controlled by the edge properties.

In all dimensions, you may plot the mesh vertices (sometimes called node points) in
a special color. This plot is controlled by the properties that start with node.

The table shows the valid property/value pairs for the meshplot command. The
design philosophy has been to keep property interpretation constant over space
dimension, but to plot these properties as plot objects of different types. The mode
properties that turn the different visualization types on and off, have been marked
with the type of the plot produced in the different space dimensions: m for marker
plot, l for line/wireframe plot, and p for patch plot.

TABLE 1-90: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION

bdl √ √ integer vector all Boundary list

boundcolor √ √ color r Boundary color

boundcolor √ color | qual r Boundary color

boundmarker √ marker o Boundary marker

boundmode m l p on | off |
isolated (1D)

on
off (3D)

Show boundary
elements

curvecolor √ color g Curve (edge)
coloring data

curvemode l on | off off Show mesh edges on
curves (edges)

dboundcolor √ color r Boundary wireframe
color

dboundmode l on | off off Show boundary
elements as
wireframe
E R 1 : C O M M A N D R E F E R E N C E

meshplot
dedgecolor √ color b Element wireframe
color

dedgemode l on | off off Show elements as
wireframe

edgecolor √ color b Color of mesh
vertices

edgecolor √ color b Color of mesh edges

edgecolor √ color | qual b Color of mesh faces

edgemarker √ marker x Mesh vertex marker

edgemode m on | off on Show mesh vertices

edgemode l on | off on Show wireframe plot
of mesh edges

edgemode p on | off on Show triangular
mesh faces as patch
plot

edl √ integer vector all Edge list

elcolor √ color k Element color

elcolor √ color gray Element color

eledgecolor √ √ color k Mesh edge color in
patch plot

elkeep √ √ number between
0 and 1

1 Fraction of elements
to keep

elkeeptype √ √ min | max |
random

random Which elements to
keep

ellabels √ √ on | off off Mesh element labels

ellogic √ logical
expression

1 Select elements
using a logical
expression

ellogictype √ all | any | xor all Interpretation of the
logical expression

elmode l on | off on Show elements

elmode p on | off off Show elements

markersize √ √ √ scalar 6 Marker size

nodecolor √ √ √ color k Mesh vertex (node)
color

TABLE 1-90: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
305

meshplot

306 | C H A P T
In 3D, the properties Sdl, Bdl, Elkeep, Elkeeptype, Ellogic, and Ellogictype
determine what part of the mesh is displayed. Only elements lying in subdomains in
the list Sdl, and boundary elements lying on boundaries in the list Bdl, are shown.
The set of elements is restricted further by the properties Elkeep, Elkeeptype,
Ellogic, and Ellogictype. These affect the patch and wireframe plots of the
elements (controlled by the Edge and Dedge properties). Only the mesh elements
whose corners satisfy the logical expression Ellogic are shown. Ellogictype
determines whether all, some, or some but not all of the corners are required to
satisfy the condition. Only a fraction Elkeep of the mesh elements are shown. The
property Elkeeptype determines whether this fraction is the elements of worst
quality, or if it is a random set of elements.

The El property group controls the display of the actual element. This is only
possible in 1D and 2D. The Edge property group controls the display of the
boundaries of the elements. This visualization type is available in all space
dimensions. In 1D it is done by displaying marker symbols, in 2D it is done by
displaying a wireframe plot of the element edges, and in 3D it is done by displaying

nodelabels √ √ √ on | off off Mesh vertex (node)
labels

nodemarker √ √ √ marker . Mesh vertex (node)
marker

nodemode m m m on | off See below Show mesh vertices
(node points)

parent √ √ √ axes handle Handle to axes
object

pointcolor √ √ √ color b Point color data

pointlabels √ √ √ off | on | list of
strings

off Point label list

pointmarker √ √ √ marker symbol o Point marker

pointmode √ √ √ on | off |
isolated

on Show points

qualbar √ √ on | off on Show color bar

qualdlim √ √ 1-by-2 numeric [0,1] Color limits

qualmap √ colormap jet Colormap

sdl √ √ integer vector all Subdomain list

TABLE 1-90: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshplot
the element edges as patches. In 3D, the property dedge makes it possible to obtain
wireframe plots of the elements.

The bound property group controls the display of the boundary elements. In 1D it
displays marker symbols, in 2D it displays the boundary elements as a wireframe, and
in 3D it displays the boundary elements as a patch plot. In 3D, the property dbound
makes it possible to get wireframe plots of the boundary elements.

In 3D, the curve property group controls the display of mesh elements on
geometry edges.

The point property group displays the mesh vertex elements as marker symbols in
all space dimensions.

The node property group displays the mesh vertices (node points) as marker
symbols in all space dimensions.

The ellabels property is available in 1D and 2D and controls the display of mesh
element labels. If there are more than one type of mesh elements, for example both
triangular and quadrilateral elements in a 2D mesh, the different types are labeled
individually. This means that the triangles will be labeled from 1 to the number of
triangles, and the quads will be labeled from 1 to the number of quads.

The properties that control marker type or coloring can handle any standard
scripting marker or color type (see the plot command). In 3D, the patch coloring
can be made according to the element quality, by specifying the color as 'qual'.

meshplot can display meshes where there are no elements on a certain element
dimension. In these cases, the default values for curvemode and nodemode change
to make the best possible mesh visualization.

Examples 3D Example
Start by creating a 3D geometry and a mesh.

c1 = cylinder3(0.2,1,[0.5,0.5,0]);
b1 = block3;
geom = b1-c1;
mesh = meshinit(geom);

Plot the mesh as a quality patch plot with parts of the elements excluded by a logical
expression. These types of options make it easy to study the mesh inside the
geometry.

meshplot(mesh,'ellogic','x+y>0.8',...
 'edgecolor','qual','boundcolor',[0.7 0.7 0.7],...
307

meshplot

308 | C H A P T
 'qualbar','on')

You can get a wireframe plot of the same mesh with only a fraction of the
tetrahedrons visible, by the command

meshplot(mesh,'ellogic','x+y>0.8','elkeep',1/100,...
 'edgemode','off','boundmode','off',...
 'dedgemode','on','dboundmode','on','curvemode','on')

The plot shows only a small fraction of the elements. It is not possible to get a mesh
quality plot by using only wireframes.

2D Example
Start by creating the geometry and a coarse mesh.

clear fem
sq1 = square2;
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem,'hmax',0.4);

Then plot the mesh as a line plot of the edges of the elements. The element edges
are blue except on the boundary elements, where they are red. This is the default
mesh plot type.

meshplot(fem)

You can change the colors of the element edges to yellow and green.

meshplot(fem,'edgecolor','y','boundcolor','g')

Now, plot the mesh as a patch plot. You need to disable both the element edge and
boundary element plots, and enable the element plot.

meshplot(fem,'edgemode','off','boundmode','off','elmode','on')

You can change the color of the elements to red, with white edges, and add mesh
vertex labels by

meshplot(fem,'edgemode','off','boundmode','off','elmode',...
 'on','elcolor','r','eledgecolor','w')

1D Example
Start by creating the geometry and mesh.

clear fem
s1 = solid1([0 0.1 4]);
s2 = solid1([3 4]);
fem.geom = s1+s2;
fem.mesh = meshinit(fem,'hmax',0.4);
E R 1 : C O M M A N D R E F E R E N C E

meshplot
The standard mesh plot in 1D is the following plot.

meshplot(fem)

You can turn on node labeling, change the element color to red, and change the
element edge boundary coloring to green by

meshplot(fem,'elcolor','r','boundcolor','g')

Compatibility meshplot no longer supports the properties boundlabels, curvelabels,
ellabels, and labelcolor from FEMLAB 2.3.

See Also femmesh, geomplot, postplot
309

meshpoi

310 | C H A P T
meshpoiPurpose Make a regular mesh on a rectangular geometry.

Syntax fem.mesh = meshpoi(fem,nx,ny)
fem.mesh = meshpoi(fem,n)

Description fem.mesh = meshpoi(fem,nx,ny) constructs a regular mesh on the rectangular
geometry specified by fem.geom, by dividing the “x edge” into nx pieces and the
“y edge” into ny pieces, and placing (nx+1)(ny+1) points at the intersections. The
“x edge” is the one that makes the smallest angle with the x-axis.

fem.mesh = meshpoi(fem,n,...) uses nx = ny = n.

The triangular mesh is described by the FEM mesh object mesh. Details on the mesh
object can be found in the entry on femmesh.

For best performance with poisson, the larger of nx and ny should be a power of 2.

The function meshpoi accepts the following property/values:

Diagnostics If fem.geom does not seem to describe a rectangle an error is signalled.

Cautionary This function only works in 2D.

See Also femmesh, poisson

TABLE 1-91: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

out fem | mesh mesh Output variables
E R 1 : C O M M A N D R E F E R E N C E

meshquad2tri
meshquad2triPurpose Convert quadrilateral elements to triangular elements

Syntax fem.mesh = meshquad2tri(fem,...)
fem.mesh = meshquad2tri(mesh,...)

Description fem.mesh = meshquad2tri(fem,...) converts quadrilateral elements in the mesh
object stored in fem.mesh to triangular elements.

fem.mesh = meshquad2tri(mesh,...) converts quadrilateral elements in the
mesh object mesh to triangular elements.

Each quadrilateral element can be split into two or four triangular elements.

The function meshquad2tri accepts the following property/value pairs.

Use the property subdomain in 2D and face in 3D to specify the subdomains and
faces, respectively, where the quadrilateral elements are converted to triangular
elements. Note that it is not possible to convert quadrilateral elements on faces in
3D that are adjacent to subdomain elements.

Use the property splitquad to specify if each quadrilateral element is split into two
or four triangular elements. Use the diagonal option to split each quadrilateral
along a diagonal into two triangles and use the center option to split each
quadrilateral into four triangles by introducing a new mesh vertex in the centroid of
each quadrilateral. Note that to be able to use the center option on faces in 3D you
have to provide a geometry object corresponding to the mesh object.

Examples Create a mapped quad mesh on a unit rectangle and split each quadrilateral element
into two triangular elements.

TABLE 1-92: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Face √ numeric
array | all
| none

all Specifies the faces where the
quadrilateral elements are
converted to triangular elements

Out √ √ fem |
mesh

mesh Output properties

Splitquad √ √ diagonal |
center

diagonal Specifies if each quadrilateral
element is split into two or four
triangular elements

Subdomain √ numeric
array | all
| none

all Specifies the subdomains where the
quadrilateral elements are
converted to triangular elements
311

meshquad2tri

312 | C H A P T
fem.geom = rect2;
fem.mesh = meshmap(fem);
fem.mesh = meshquad2tri(fem);
meshplot(fem);

Create a mapped quad mesh on a unit rectangle and split each quadrilateral element
into four triangular elements.

fem.geom = rect2;
fem.mesh = meshmap(fem);
fem.mesh = meshquad2tri(fem,'splitquad','center');
meshplot(fem);

See Also femmesh, meshhex2tet, meshmap
E R 1 : C O M M A N D R E F E R E N C E

meshqual
meshqualPurpose Mesh quality measure.

Syntax q = meshqual(mesh)

Description q = meshqual(mesh) returns the mesh element quality for all elements in the mesh
object mesh.

The mesh element quality is a number between 0 and 1. The quality is 1 for a perfect
element.

Details on the mesh object can be found in the entry on femmesh.

The triangle quality is given by the formula

where a is the area and h1, h2, and h3 the side lengths of the triangle. If q > 0.3 the
mesh quality should not affect the quality of the solution. q = 1 when h1 = h2 = h3.

For a quadrilateral,

where h1, h2, h3, and h4 are the side lengths. q=1 for a square.

The tetrahedron mesh quality measure is given by

where V is the volume, and h1, h2, h3, h4, h5, and h6 are the side lengths of the
tetrahedron. If q > 0.1 the mesh quality should not affect the quality of the solution.

For a hexahedron,

where hi are the edge lengths. q=1 for a cube. For a prism,

q 4 3a

h1
2 h2

2 h3
2

+ +
--------------------------------,=

q 4A

h1
2 h2

2 h3
2 h4

2
+ + +

---,=

q 72 3V

h1
2 h2

2 h3
2 h4

2 h5
2 h6

2
+ + + + +()

3 2⁄
--,=

q 24 3V

hi
2

i 1=

12

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 3 2⁄
------------------------------,=
313

meshqual

314 | C H A P T
where hi are the edge lengths. q=1 for a right-angled prism where all edge lengths
are equal.

The element quality is always 1 in 1D.

See Also meshrefine, femmesh, meshsmooth

Reference Bank, Randolph E., PLTMG: A Software Package for Solving Elliptic Partial
Differential Equations, User’s Guide 6.0, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1990.

q 36 3V

hi
2

i 1=

9

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 3 2⁄
------------------------------,=
E R 1 : C O M M A N D R E F E R E N C E

meshrefine
meshrefinePurpose Refine a mesh.

Syntax fem.mesh = meshrefine(fem,...);
fem = meshrefine(fem,'Out',{'fem'},...);

Description fem.mesh = meshrefine(fem,...) returns a refined version of the triangular
mesh specified by the geometry, fem.geom, and the mesh, fem.mesh.

fem = meshrefine(fem,'Out',{'fem'},...) modifies the FEM structure to
include the refined mesh in fem.mesh.

meshrefine is supported for meshes containing simplex elements only, that is, lines,
triangles, and tetrahedrons.

The function meshrefine accepts the following property/values:

The default refinement method in 2D is regular refinement, where all of the
specified triangles are divided into four triangles of the same shape. Longest edge
refinement, where the longest edge of each specified triangle is bisected, can be
demanded by giving longest as Rmethod. Using regular as Rmethod results in
regular refinement. Some triangles outside of the specified set may also be refined,
in order to preserve the triangulation and its quality.

In 3D, the default refinement method is longest. The regular refinement method
is only implemented for uniform refinements.

In 1D, regular refinement, where each element is divided into two elements of the
same shape, is always used.

Examples Refine the mesh of the L-shaped membrane several times and plot the mesh for the
geometry of the L-shaped membrane:

TABLE 1-93: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

mcase integer 0 Mesh case number

out fem | mesh mesh Output variables

rmethod longest |
regular

see below Refinement method

subdomain integer vector | all
| none

all Specifies the subdomains
that are refined

tri one row vector or
two row matrix

all elements
once

List of elements to refine
(second row is number
of refinements)
315

meshrefine

316 | C H A P T
clear fem
fem.geom = square2 + move(square2,0,-1) + move(square2,-1,-1);
fem.mesh = meshinit(fem,'hmax',0.4);
subplot(2,2,1), meshplot(fem)
fem.mesh = meshrefine(fem,'tri',[1:50;ones(1,50)]);
subplot(2,2,2), meshplot(fem)
fem.mesh = meshrefine(fem,'subdomain',...
 [1 2],'rmethod','longest');
subplot(2,2,3), meshplot(fem)
fem.mesh = meshrefine(fem,'subdomain',1);
subplot(2,2,4), meshplot(fem)

Algorithm The 2D algorithm is described by the steps below:

1 Pick the initial set of elements to be refined.

2 Either divide all edges of the selected elements in half (regular refinement), or
divide the longest edge in half (longest edge refinement).

3 Divide the longest edge of any element that has a divided edge.

4 Repeat step 3 until no further edges are divided.

5 Introduce new points on all divided edges, and replace all divided entries in e by
two new entries.

6 Form the new elements. If all three sides are divided, new elements are formed
by joining the side midpoints. If two sides are divided, the midpoint of the
longest edge is joined with the opposing corner and with the other midpoint. If
only the longest edge is divided, its midpoint is joined with the opposing corner.

Compatibility To achieve compatibility with FEMLAB 2.3, the geometry input is automatically
converted to a geometry object using the function geomobject. The geometry
input can be any analyzed geometry. See geomobjectfor details.

The output u is obsolete from FEMLAB 2.2. Use asseminit to interpolate the
solution to a new mesh.

See Also femmesh, geomcsg, meshinit
E R 1 : C O M M A N D R E F E R E N C E

meshrevolve
meshrevolvePurpose Revolve a 2D mesh object into a 3D mesh object.

Syntax fem1 = meshrevolve(fem0,...)
[mesh,geom]= meshrevolve(fem,’Out’,{’mesh’,’geom’},...)

Description fem1 = meshrevolve(fem0,...) revolves the 2D geometry object in fem0.geom
and the 2D mesh object in fem0.mesh, into a 3D geometry object and a 3D mesh
object stored in fem1.geom and fem1.mesh, respectively, according to the given
parameters.

[geom,mesh]= meshrevolve(fem,’Out’,{’geom’,’mesh’},...) returns the
3D geometry object in geom and the 3D mesh object in mesh.

Valid property/value pairs for the meshrevolve function are given in the following
table. In addition, all revolve parameters are supported and are passed to revolve
for creating the revolved 3D geometry object.

The property elrevlayers defines the distribution of the mesh element layers in
the revolved mesh. If the value of elrevlayers is a scalar, it defines the number of
equally distributed mesh element layers in the revolved mesh. Alternatively, if
elrevlayers is a vector, it defines the distribution of the mesh element layers in the
revolved mesh. The values in the vector, that are sorted and starts with 0, specifies
the placements, in relative arc length, of the mesh element layers. By default, the
number of element layers is determined such that the distance of each layer is equal
to the mean size of the elements in the original 2D mesh.

Revolving a 2D mesh object into a 3D mesh object, the 2D vertex elements, the 2D
boundary elements, the 2D triangular elements, and the 2D quadrilateral elements,
are revolved into 3D edge elements, 3D quadrilateral boundary elements, 3D prism
elements, and 3D hexahedral elements, respectively.

Examples Create a revolved prism mesh on a torus:

fem.geom = circ2(1,'pos',[2 0]);
fem.mesh = meshinit(fem);
fem1 = meshrevolve(fem);

PROPERTY VALUES DEFAULT DESCRIPTION

elrevlayers scalar | vector Distribution of mesh element
layers in revolved mesh

mcase integer 0 Mesh case number

out fem | mesh | geom fem Output variables
317

meshrevolve

318 | C H A P T
Create a revolved hex mesh from the zx plane:

p_wrkpln = geomgetwrkpln('quick',{'zx',10});
ax = [0 1;0.5 2]';
fem.geom = rect2(1.5,1,'pos',[0.5 0]);
fem.mesh = meshmap(fem);
fem1 = meshrevolve(fem,'angles',[-pi/3 pi/3],...
 'revaxis',ax,'wrkpln',p_wrkpln);
meshplot(fem1);

Cautionary Revolving a triangular mesh adjacent to the revolution axis or a mesh containing a
quadrilateral element with only one corner adjacent to the revolution axis is not
supported.

See also meshembed, meshextrude, femmesh, revolve
E R 1 : C O M M A N D R E F E R E N C E

meshsmooth
meshsmoothPurpose Smooth interior mesh vertices and improve quality of a mesh.

Syntax fem.mesh = meshsmooth(fem,...)
mesh = meshsmooth(mesh,...)
fem = meshsmooth(fem,'out',{'fem'},...)

Description mesh = meshsmooth(fem,...) improves the quality of the elements in the mesh
fem.mesh by adjusting the mesh vertex positions and by swapping mesh edges.

mesh = meshsmooth(mesh,...) improves the quality of the elements in the mesh
object mesh.

fem = meshsmooth(fem,'out',{'fem'},...) modifies the fem structure to
include the new mesh object in fem.mesh.

In 3D, meshsmooth is supported for meshes containing tetrahedral elements only.

The function meshsmooth accepts the following property/values:

Algorithm 2D
Each mesh vertex that is not located on the boundary is moved such that the quality
of the surrounding element increases. This process is controlled via the properties
Jiggleiter and Qualoptim.

Jiggleiter specifies the maximum number of jiggling iterations. The default value
is 5.

Qualoptim specifies the technique that is used to improve the quality of the mesh.

• Off means that no improvement operations are performed.

• Mean means that jiggling is repeated until the mean element quality does not
significantly increase, or until the bound Jiggleiter is reached. Furthermore,
after every third jiggling iteration, edge swapping operations are performed.

TABLE 1-94: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Jiggleiter √ numeric 5 Maximum number of jiggling
iterations

Qualoptim √ off | mean |
min | optim

min Optimization method

Out √ √ fem | mesh mesh Output parameters

Subdomain √ √ integer
vector | all
| none

all Specifies the subdomains that
are smoothed
319

meshsmooth

320 | C H A P T
• Min means that jiggling is repeated until the minimum element quality does not
significantly increase, or until the bound Jiggleiter is reached. Furthermore,
after every third jiggling iteration, edge swapping operations are performed.

• Optim means that a mesh quality optimizer is used. This tries to increase the
minimum quality to at least 0.8. The Jiggleiter parameter has no effect in this
case.

3D
Relocation of points similar to the 2D case is combined with edge swapping
operations to improve the quality of the tetrahedra.

Examples Create a triangular mesh of the L-shaped membrane without quality improvement
and improve the quality by calling meshsmooth:

clear fem
sq1 = square2(0,0,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem,'jiggle','off');
q = meshqual(fem.mesh);
minQual1 = min(q)
fem.mesh = meshsmooth(fem);
q = meshqual(fem.mesh);
minQual2 = min(q)

See Also meshqual, femmesh, meshinit
E R 1 : C O M M A N D R E F E R E N C E

meshsweep
meshsweepPurpose Create swept mesh.

Syntax fem.mesh = meshsweep(fem,...)
fem.mesh = meshsweep(fem.geom,...)

Description fem.mesh = meshsweep(fem,...) returns a swept mesh derived from the 3D
geometry in fem.geom.

fem.mesh = meshsweep(geom,...) returns a swept mesh derived from the 3D
geometry geom.

A swept mesh is created for each subdomain by meshing the corresponding source
face, if this face is not already meshed, and sweeping the resulting face mesh along
the subdomain to the opposite target face.

If the source face for a subdomain is not meshed prior to the meshsweep operation,
the source face is automatically meshed with triangles using the free triangle mesher
(meshinit). Then, the swept mesh consists of prism elements. To create a swept
mesh with hexahedral elements, you need to mesh the source face with quadrilateral
elements using either the mapped quad mesher (meshmap), or the free quad mesher
(meshinit), prior to the meshsweep operation.

The function meshsweep accepts the following property/value pairs.

TABLE 1-95: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Elsweeplayers cell array Distribution of mesh element layers in the
sweep direction

Hauto numeric 5 Predefined mesh element size

Mcase integer 0 Mesh case number

Meshstart mesh
object

empty Starting mesh

Out fem |
mesh

mesh Output variables

Report on | off on Display progress

Sourceface cell array Source faces

Subdomain numeric
array |
auto |
all |
none

auto Specifies the subdomains that are meshed

Targetface cell array Target faces
321

meshsweep

322 | C H A P T
The property elsweeplayers determines the distribution of the mesh element
layers in the sweep direction. The value of this property is an even numbered cell
array where the odd entries contain subdomain indices, either as scalar values, or as
vectors with subdomain indices, and the even entries contain scalar values or vectors
specifying the element layer distribution for the corresponding subdomain(s). If the
element layer distribution is specified by a scalar, the element layers for the
corresponding subdomain(s) are equally distributed and the number of element
layers equals the value of the scalar. To get full control over the element layer
distribution for a subdomain, the vector form is used. The values in the vector, that
are sorted and starts with 0, specifies the distances of the element layers along the
direction of the sweep for the corresponding subdomain(s).

Hauto is an integer between 1 and 9 that controls the element size in the generated
mesh. The default value is 5 which means that the element size is set to 1/10 of the
size of the geometry for the elements not affected by the elsweeplayers property.

Use the property subdomain to specify the subdomains to be meshed. If you use
this property together with the meshstart property, the value auto means that all
subdomains that are not meshed in the starting mesh are meshed, none means that
no further subdomains are meshed, and all means that all subdomains are meshed
(or remeshed). It is also possible to specify the subdomains to be meshed (or
remeshed) using a vector of subdomain indices.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation.

The property sourceface is a cell array specifying the source faces for the
subdomains. The value of this property is an even numbered cell array where the
odd entries contain subdomain indices, either as scalar values, or as vectors with
subdomain indices, and the even entries contain the source face indices for the
corresponding subdomain(s).

The property targetface defines the target faces for the subdomains. The syntax
of this property is the same as for the sourceface property.

If the source and/or target face is not specified for a subdomain, the software
automatically tries to determine these faces.

The following criteria must be met by the input geometry object for the sweeping
technique to work.

• Each subdomain must be bounded by one shell, that is, a subdomain must not
contain holes that do not penetrate the source and target face.
E R 1 : C O M M A N D R E F E R E N C E

meshsweep
• There can only be one source face and one target face per subdomain.

• The source face and target face for a subdomain must be opposite one another in
the subdomain's topology.

• The cross section along the direction of the sweep for a subdomain must be
topologically constant.

Each face about a subdomain to be swept is classified as either a source face, a target
face, or a boundary face. The boundary faces are the faces linking the source and
target face. The sweep algorithm can handle subdomains with multiple boundary
faces in the sweep direction.

If any of the faces about a subdomain is meshed prior to the meshsweep operation,
the following must be fulfilled.

• If the source and target faces are meshed, these meshes must match.

• Mapped quad meshes must be applied to the boundary faces.

Algorithm The subdomains to be meshed are processed in the following order.

1 The subdomains where the source and/or target faces are specified are swept first.
These subdomains are swept in the order of increasing subdomain number.

2 The remaining subdomains, with no specified source face or target face but with
one adjacent meshed face, are swept in the order of increasing subdomain
number.

3 Finally, the remaining subdomains, with no specified source face or target face
and with none or several adjacent meshed faces, are swept in the order of
increasing subdomain number.

When a swept has been generated for a subdomain, the source face of the next
subdomain, that is, the subdomain adjacent to the target face of the current
subdomain, is set to the target face of the current subdomain if the source and target
faces for the next subdomain are not specified.

For a subdomain with no specified source and target face, the source face is
determined according to the following.

1 If not any face about the subdomain is meshed, the software determines the
opposite face pairs for the subdomain. An opposite face pair is a pair of faces about
the subdomain that are not adjacent to each other but to all other faces about the
subdomain. The face in these face pairs with lowest geometric degree and face
index is used as source face and the opposite face is used as target face. If no
323

meshsweep

324 | C H A P T
opposite face pairs exist for the subdomain, an error is thrown and the user is
asked to specify the source face.

2 If there is at least one meshed face about the subdomain, the source face is
determined according to the following.

a The face with lowest geometric degree and face index of the meshed faces
about the subdomain that is not a boundary face of another subdomain.

b The face with lowest geometric degree and face index of the unmeshed faces.

c The face with lowest geometric degree and lowest face index of all faces about
the subdomain.

Examples Create a swept mesh on a cylinder geometry specifying the element layer
distribution in the sweep direction.

fem.geom = cylinder3;
fem.mesh = meshsweep(fem,'sourceface',{1 3},...
 'elsweeplayers',{1 logspace(0,1,11)-1});
meshplot(fem);

Create a swept mesh on a helix shaped geometry.

fem.geom = helix3;
fem.mesh = meshsweep(fem,'sourceface',{1 1});
meshplot(fem);

Create a mesh with both tetrahedrons and prisms using meshinit and meshsweep,
respectively.

fem.geom = block3 + cone3(0.3,1,pi/20,'pos',[1 0.5 0.5],...
 'axis',[1 0 0]) + cone3(0.3,1,pi/20,...
 'pos',[3 0.5 0.5],'axis',[-1 0 0]) + ...
 block3(1,1,1,'pos',[3 0 0]);
fem.mesh = meshsweep(fem,'subdomain',[2 3],'sourceface',{2 7});
fem.mesh = meshinit(fem,'meshstart',fem.mesh);
meshplot(fem);

Create a swept mesh with hexahedrons on a block geometry by meshing a source
face prior to the meshsweep operation using the mapped quad mesher.

fem.geom = block3;
fem.mesh = meshmap(fem,'face',1);
fem.mesh = meshsweep(fem,'meshstart',fem.mesh);
meshplot(fem);

See Also meshdel, meshinit, meshmap
E R 1 : C O M M A N D R E F E R E N C E

mirror
mirrorPurpose Reflect geometry.

Syntax [gm,...] = mirror(g,pt,vec,...)

Description [gm,...] = mirror(g,pt,vec,...) creates a mirrored copy of the geometry
object g, as reflected in the plane with normal vector vec, centered at pt.

Property value list for mirror.

Examples In 2D:

g = rect2;
gm = mirror(g,[1 1],[1 1]);
figure,geomplot(g),hold on,geomplot(gm),axis equal

In 3D:

g = block3;
gm = mirror(g,[1 1 1],[1 1 1]);
figure, geomplot(g), hold on, geomplot(gm), axis equal

See Also geom0, geom1, geom2, geom3, scale

TABLE 1-96: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names.
325

move

326 | C H A P T
movePurpose Move geometry object.

Syntax [g,...] = move(g3,x,y,z,...)
[g,...] = move(g2,x,y,...)
[g,...] = move(gn,x,...)

Description [g,...] = move(g3,x,y,z,...) moves a 3D geometry object by the vector
(x,y,z).

[g,...] = move(g2,x,y,...) moves a 2D geometry object by the vector (x,y).

[g,...] = move(gn,x,...) moves an nD geometry object by the vector x of
length n.

The function move accepts the following property/values:

Examples The commands below move the circle from the origin to (2,3) and plot the result.

c1 = circ2;
c2 = move(c1,2,3);
geomplot(c2)

See Also geomcsg

TABLE 1-97: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

{} Output parameters
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
multiphysicsPurpose Multiphysics function.

Syntax fem1 = multiphysics(fem,...)
xfem1 = multiphysics(xfem,...)

Description fem1 = multiphysics(fem) combines the application modes in fem.appl to the
composite system fem1.

xfem1 = multiphysics(xfem), where xfem is a structure with a field fem,
performs the above call for all of the structures xfem.fem{:}. The results are placed
in xfem1.fem. In addition the fields elemmph and eleminitmph created for each
structure in xfem.fem are concatenated and placed as fields in xfem1.

The function multiphysics accepts the following property/values:

TABLE 1-98: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Bdl cell array of integers |
integer vector | NaN

all boundaries Only affect the indicated
boundaries in fem.bnd

Defaults on | off off Return default fields

Diff cell array of ga, f, r,
or g | 'on' | 'off'

on for general
output form,
otherwise off

Differentiate these
coefficients

Edl cell array of integers |
integer vector | NaN

all edges Only affect the indicated
edges in fem.edg

Outform 'coefficient' |
'general' | 'weak'

the most general
output form of the
application modes
in fem.appl

Output form

Outsshape positive integer | NaN generated from
the application
modes in
fem.appl

Output sshape.
NaN is the same as not
providing Outsshape.
Can also be given for each
structure in xfem.fem, by
giving a cell array of values

Pdl cell array of integers |
integer vector | NaN

all points Only affect the indicated
points in fem.pnt

Sdl cell array of integers |
integer vector | NaN

all subdomains Only affect the indicated
subdomains in fem.equ

Shrink on | off on Shrink coefficients to
most compact form

Simplify on | off on Simplify expressions
327

multiphysics

328 | C H A P T
The properties Diff, Outform, Outsshape, Rules, and Simplify can also be
specified by using fields in the fem structure. The default value for Diff is 'off' if
the resulting model has coefficient or weak form and 'on' if it has general form.

For calls of the form xfem1 = multiphysics(xfem,...), The properties Sdl/
Bdl/Edl/Pdl/Outsshape/Outform/Diff/Simplify can be given as cell arrays
indicating the properties’ values for the different elements of xfem.fem. In this case
the number of elements of the cell arrays giving the values must be the same as the
number of elements of xfem.fem. For Sdl/Bdl/Edl/Pdl/Outsshape, the value
NaN may be given if no value is actually intended to be passed.

For calls of the form xfem1 = multiphysics(xfem,...) Where the property Out
is specified, the value 'fem' means xfem1 as described above, but 'equ'/'bnd'/
'edg'/'pnt'/'dim'/'form'/'shape'/'sshape'/'border'/'var' are
returned as cell arrays containing these properties for each of the elements of
xfem.fem, and 'elemmph'/'eleminitmph' are concatenations of the individual
resulting properties.

Algorithm The description below relates to the call fem1 = multiphysics(fem) unless
otherwise stated. The applications are specified as a cell array in the field appl in the
fem structure: fem.appl={a1 a2 ...}.

The notations ***, XXX and xxx used below means the fields equ, bnd, edg, and/
or pnt. *** denotes any of these fields, XXX is used to denote the field which
corresponds to the largest dimension (usually equ), while xxx denotes the fields
corresponding to lower dimensions (usually bnd, edg, and pnt). Not all of them are
always present, rather their presence is dependent on the geometry of the domain
and the type of problem being solved.

The table below describes the fields in the appl structure.

TABLE 1-99: APPL STRUCTURE FIELDS

FIELD INTERPRETATION

appl.assign Application mode variable name assignments

appl.bnd Boundary coefficients/application data

appl.border Cell array with strings on/off or a corresponding logical
vector, one for each solution component

appl.dim Cell array with names of the solution components or an
integer specifying the number of solution components

appl.edg Edge coefficients/application data
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
appl.assign contains the application mode variable name assignments. It is a cell
array of alternating fixed names and assigned names for the application mode
variables. The default is an empty cell array.

appl.bnd is a structure with fields describing the boundary data. The structure
contains one field for each of the application-specific boundary parameters, with the
field name equal to the parameter name. Each field should be a cell array containing
data for the boundaries. appl.bnd also contains a field type, which is a cell array
with strings describing the boundary type for each boundary. If only one boundary
type is available in the application mode, the type field may be omitted.

appl.dim provides the dependent variable names. The default is obtained from the
application mode for physics modes. For PDE modes with no mode field and with
a numeric appl.dim, default variable names are substituted according to the global
position in the system.

appl.elemdefault contains a string indicating what kind of element is the default
in this application. This method is used to generate the defaults for
appl.XXX.gporder, appl.XXX.cporder, appl.shape, appl.XXX.shape, and
appl.sshape. See elemdefault for a list of valid strings.

appl.elemdefault A string indicating what kind of element is the default in this
application

appl.equ Subdomain coefficients/application data

appl.form Problem form: coefficient, general, or weak

appl.mode Application mode

appl.pnt Point coefficients/application data

appl.shape Shape functions. A cell array of shape function objects.

appl.sshape Element geometry order. An integer.

appl.***.shape Pointers to appl.shape

appl.XXX.usage Activate/deactivate domain

appl.***.gporder Order of numerical quadrature

appl.***.cporder Constraints discretization order

appl.XXX.init Initial conditions

appl.var Application mode specific variables

TABLE 1-99: APPL STRUCTURE FIELDS

FIELD INTERPRETATION
329

multiphysics

330 | C H A P T
appl.edg is a structure with fields describing the edge data. The structure contains
one field for each of the application-specific edge parameters, with the field name
equal to the parameter name. Each field should be a cell array containing data for
the edges.

appl.equ is a structure with fields describing the PDE data on subdomains. The
structure contains one field for each of the application-specific PDE parameters,
with the field name equal to the parameter name. Each field should be a cell array
containing data for the subdomains.

appl.mode is a string with the name of the application mode or an application mode
object. If the appl.mode field is omitted, the application structure can be used to
describe ordinary coefficient/general/weak form PDE problem. This is useful in
the definition of multiphysics problems, where coefficient/general/weak form
models can be combined with application mode models. See the COMSOL
Modeling Guide for a description of the application-specific data for each
application mode.

appl.pnt is a structure with fields describing the point data. The structure contains
one field for each of the application-specific point parameters, with the field name
equal to the parameter name. Each field should be a cell array containing data for
the points.

 appl.shape is a cell array of shape function objects.

 appl.sshape is an integer giving the order of geometry approximation.

The fields fem.XXX.shape and fem.xxx.shape are ind-based cell arrays of vectors
pointing to elements of appl.shape. Indicates which shape functions to use in each
domain group. An empty vector indicates that no shape functions are used in this
domain group. Zero indicates that the affected domain group should use defaults
or inherit shape functions. Appl.XXX.shape takes defaults, whereas
appl.xxx.shape inherits from appl.XXX.shape. Where there is a conflict over
which domain group in appl.XXX.shape to inherit from, the first appropriate
group is used.

The fields fem.appl.xxx.usage are ind-based cell arrays of ones and zeros
indicating domain group usage. Wherever a zero entry exists, the information in
appl.xxx.shape is ignored when forming fem.xxx.shape.

The fields appl.XXX.gporder and appl.xxx.gporder indicate the order of
quadrature formula to use in the different domain groups. In fully expanded form
it is a cell array where each element is a cell array (of positive integers) of length
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
equal to the number of dependent variables (excluding submode variables) in this
mode. Defaulting and inheritance can be induced by using 0. The inherited order is
the maximum order used in the objects from the XXX level in contact with the group
at the xxx level. Where different elements within a domain group would inherit
different orders, some domain group splitting takes place. This field is not present
in the appl.pnt field.

The fields appl.XXX.cporder and appl.xxx.cporder indicate domain group
constraints discretization order. Behaves exactly as gporder.

The fields appl.XXX.init indicate domain group initial conditions. For format see
asseminit.

appl.var contains the application scalar variables. The default is obtained from the
application mode for physics modes.

The composite system is created by appending the subsystems in the order they are
specified in fem.appl. The affected fields in the fem1 structure are dim, form, equ,
bnd, edg, pnt, var, elemmph, eleminitmph, shape, sshape, and border. All the
other fields in fem are copied to fem1. In the description below the notation *** is
used to represent any or all of the fields equ, bnd, edg, and/or pnt.

The dim field of the composite system, fem1.dim, is a cell array of the dependent
variable names:

fem1.dim={fem.appl{1}.dim{:}, fem.appl{2}.dim{:}, ...}

The default names ('u1', 'u2', ...) Are used for subsystems with integer dim fields
and no mode field.

The form of each subsystem may be converted by using flform, in the direction
'coefficient' -> 'general' -> 'weak'. The default form of the composite
system, fem1.form, is the first form which all the subsystems may attain, possibly
applying flform to some subsystems. The output form can be forced by using the
property outform.

First, each application structure is converted to an FEM structure with all the
above-mentioned fields. Then the fields in fem1.*** are computed from the
corresponding fields in the subsystems according to the table below. The numbers
331

multiphysics

332 | C H A P T
after the coefficient names refer to the subsystems in the order they are specified in
fem.appl.

The fields fem.***.expr are kept unchanged as far as possible; the only difference
being the permutation of ind-groups to suit a new ind vector if one is generated.
For ind groups where a particular expr variable is undefined, the entry [] is used.

Note that the coefficients in the second row of the table are weakly coupled in the
sense that the corresponding coefficients in the composite system are block
diagonal. This puts some limitations on the coupling between the subsystems. By
using general form, however, there are no limitations on the composite system
except for the da coefficient. The resulting stronger couplings are obtained by using
a call to femdiff with the full system resulting from the composition of the
subsystems. The properties Diff, Rules, and Simplify control or supplement the
call to femdiff. Further couplings between applications can be introduced by the
method global_compute which is called for each application before femdiff.

Elements of fem1.***.(f/ga/g/r/weak/dweak/constr/c/da/ea/al/be/a/
q/h) which correspond to subsystems for which the corresponding field does not
exist are '0'. Elements of fem1.***.init in such cases are empty strings. Elements
in fem1.***.(gporder/cporder) in such cases are 1. The fields fem1.elemmph
and fem1.eleminitmph are obtained by concatenating the contents of the results
of calling elem_compute for each application. The field fem1.shape is obtained by
concatenating the contents of the fields fem.appl{:}.shape. Duplicate shape
functions are removed and the fields fem.***.shape are adjusted to take account
of this. The field fem1.sshape is obtained by taking the maximum of the fields
fem.appl{:}.sshape. The resulting value is overridden if the property Outsshape
is given. The fem1.border field is always 1 because coefficients for boundary

QUANTITY COMPOSITE SYSTEM

f γ g r init, , , ,
weak dweak constr, ,

gporder cporder,

f1

f2

…

c da ea α β a q h, , , , , , , c1 0 0

0 c2 0

0 0 …

var varu vart, , var1 var2 ...
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
conditions that are not used due to border being on or off in the application mode
are set to zero and can be “applied”.

Suppose multiphysics has been called previously, and fem is the result of such a
call. If changes are made to fem.equ and it is wished to keep them (that is not allow
changes to be written over when multiphysics is called again), it is possible to
restrict the set of subdomains for which multiphysics writes over fem.equ. Thus
giving the property Sdl the value [1 2] in a call to multiphysics results in the
coefficients for subdomains 1 and 2 being “refreshed” from the applications, but all
the coefficients in fem.equ relating to other subdomains being kept and copied into
fem1.equ. The same principle holds for bnd/edg/pnt using the properties Bdl/
Edl/Pdl.

Example The model “Resistive Heating” uses the multiphysics function. Note that the
structure fem contains the data that is common for the subsystems, that is, the
geometry and the mesh. The electrical subsystem and the heat transfer subsystem
are specified in the application structures a1 and a2, and the multiphysics
function is used to combine them.

clear fem a1 a2
fem.geom = geomcsg({square2(0,0,1)});
fem.mesh = meshinit(fem);
a1.mode = 'ConductiveMediaDC';
a1.assignsuffix = '_dc';
a1.bnd.V0 = {0.1 0 0};
a1.bnd.type = {'V' 'nJ0' 'V0'};
a1.bnd.ind = [1 2 2 3];
a1.equ.init = '0.1*(1-x)';
a1.equ.T0 = 293;
a1.equ.T = 'T';
a1.equ.alpha = 0.0039;
a1.equ.res0 = 1.754e-8
a1.equ.sigtype = 'heat';
a2.mode = 'HeatTransfer';
a2.assignsuffix = '_ht';
a2.bnd.T0 = {300 0};
a2.bnd.type = {'T' 'q0'};
a2.bnd.ind = [1 2 2 1];
a2.equ.rho = 8930;
a2.equ.C = 340;
a2.equ.k = 384;
a2.equ.Q = 'Q_dc';
a2.equ.init = 300;
fem.appl = {a1 a2};
fem = multiphysics(fem);
fem.xmesh=meshextend(fem);
333

multiphysics

334 | C H A P T
fem.sol = femtime(fem,'tlist',linspace(0,3000,41), ...
 'report','on');

Diagnostics All variables in the appl{:}.dim fields must be unique. If any appl{:}.dim has not
been provided, no other appl{:}.dim may collide with the defaults. If they do, an
error message is generated.

If any form appl{:}.form is more general than Outform, an error message is
generated.

Compatibility To simplify the output of the multiphysics functions in FEMLAB 3.0, its defaults
has been changed by the introduction of the properties Shrink and Defaults. The
compatibility problems typically occur when you perform changes to the data
generated by multiphysics. For example, modifying the α coefficient

fem=multiphysics(fem);
fem.equ.al{1}{2,1}=...;
fem.equ.al{1}{3,1}=...;

may not work as in FEMLAB 2.3 because alpha is often just empty. The code above
assumes that fem.equ.al{1} is a 3-by-3 cell array. To obtain fully backward
compatible output, use

fem=multiphysics(fem,'shrink','off','defaults','on');

which makes the above example work.

The properties out and rules are obsolete from FEMLAB 3.0.

The property Idl is obsolete in FEMLAB 2.2 and later versions.

The fields fem.init and fem.usage are no longer constructed. They are
superseded by the fields fem.***.init and fem.***.shape, respectively.
Fem.***.init is constructed for all fields fem.***, but many entries contain just
empty strings.

See also femdiff, flform, multiphysics
E R 1 : C O M M A N D R E F E R E N C E

pde2draw
pde2drawPurpose Convert a PDE Toolbox geometry description to geometry model.

Syntax draw = pde2draw(gd,ns,sf)

Description fem = pde2draw(gd,ns,sf) converts a PDE geometry description matrix gd,
name space matrix ns, and set formula sf to a geometry model draw. The two last
arguments are optional.

See Also geom0, geom1, geom2, geom3, pde2geom, pde2fem
335

pde2geom

336 | C H A P T
pde2geomPurpose Convert a PDE Toolbox geometry to a geometry object.

Syntax g = pde2geom(dl)

Description g = pde2geom(dl) converts a PDE Decomposed Geometry matrix dl to a
geometry object.

See Also geom0, geom1, geom2, geom3, pde2draw, pde2fem
E R 1 : C O M M A N D R E F E R E N C E

pde2fem
pde2femPurpose Convert a PDE Toolbox problem description to an FEM structure.

Syntax fem = pde2fem(g,b,p,e,t,c,a,f,d)

Description fem = pde2fem(g,b,p,e,t,c,a,f,d) converts a PDE problem described by the
Decomposed Geometry matrix g, Boundary Condition matrix b, Mesh data p, e, t,
and PDE Coefficients c, a, f, d to an FEM structure.

Compatibility PDE Coefficient and Boundary Coefficient M-file functions are not supported.

See Also pde2draw, pde2geom, femstruct
337

point1, point2, point3

338 | C H A P T
point1, point2, point3Purpose Constructor functions for point objects.

Syntax p3 = point3(x,y,z)
p3 = point3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[p3,...] = point3(g3,...)
p2 = point2(x,y)
p2 = point2(vtx,edg,mfd)
[p2,...] = point2(g,...)
p1 = point1(x)
p1 = point1(vtx)
[p1,...] = point1(g,...)

Description p3 = point3(x,y,z) creates a 3D single point object with coordinate (x, y, z).

p3 = point3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates a 3D point
geometry object p3 from the arguments vtx, vtxpre, edg, edgpre, fac, mfdpre,
mfd. The arguments must define a valid 3D point object. See geom3 for a description
of the arguments.

 p3 = point3(g3) coerces the 3D geometry object g3 to a 3D point object p3.

 p2 = point2(x,y) creates a 2D point object consisting of a single point with
coordinates (x,y).

 p2=geom2(vtx,edg,mfd,...) creates a 2D point object from the properties vtx,
edg, and mfd. The arguments must define a valid 2D point object. See geom2 for
information on vtx, edg, and mfd.

 p2 = point2(g2) coerces the 2D geometry object to a point object.

 p1 = point1(x) creates a 2D point object consisting of a single point with
coordinate x.

 p1 = point1(vtx,...) creates a 1D point object from vtx. The arguments must
define a valid 1D point object. See geom1 for information on vtx.

 [p1,...] = point1(g,...) coerces the 1D geometry object to a point object.

The coercion functions [p1,...] = point1(g1,...), [p2,...] =
point2(g2,...), and [p3,...] = point3(g3,...) accept the following
property/values:

TABLE 1-100: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names.
E R 1 : C O M M A N D R E F E R E N C E

point1, point2, point3
See geomcsg for more information on geometry objects.

The nD geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom for details.

Example The commands below create a 2D point object with four points and plot the result.

c1 = circ1;
p1 = point2(c1);
geomplot(p1)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also curve2, curve3, face3, geom0, geom1, geom2, geom3, geomcsg
339

poisson

340 | C H A P T
poissonPurpose Fast solution of Poisson’s equation on a rectangular grid.

Syntax fem.sol = poisson(fem,...)

Description fem.sol = poisson(fem) solves Poisson’s equation with Dirichlet boundary
conditions on a regular rectangular grid. A combination of sine transforms and
tri-diagonal solutions is used for increased performance.

The boundary conditions must specify Dirichlet conditions for all boundary points.

The mesh fem.mesh must be a regular triangular mesh on a rectangular geometry,
for example, generated by meshpoi. Details on the mesh representation can be
found in the entry on femmesh.

The algorithm handles the f and γ coefficients. The c coefficient is set to one. All
other coefficients are ignored. Only a one-dimensional system can be handled, that
is, only fem.dim = 1 is allowed.

The weak solution form must not be used when generating the extended mesh.
Therefore set fem.sol='coefficient' before calling meshextend.

Apart from round-off errors, the result should be the same as using femlin.

The function poisson accepts the following property/value pairs:

Diagnostics If fem.geom does not seem to describe a rectangle, an error is displayed.

Cautionary The function only works in 2D. The function only supports linear Lagrange
elements.

Compatibility The properties Context and Tpoint are obsolete from FEMLAB 3.0.

The property Variables has been renamed to Const in FEMLAB 2.3.

See Also meshpoi

TABLE 1-101: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Const cell array Definition of constants

Nullfun flnullorth |
flspnull

flnullorth Null space function

Out fem | sol | u sol Output variables
E R 1 : C O M M A N D R E F E R E N C E

poisson
Reference Strang, Gilbert, Introduction to Applied Mathematics, Wellesley-Cambridge
Press, Cambridge, MA, 1986, pp. 453–458.
341

poly1, poly2

342 | C H A P T
poly1, poly2Purpose Create polygons.

Syntax c = poly1(x,y)
s = poly2(x,y)

Description s = poly2(x,y) creates a 2D solid object s in the form of an solid polygon with
vertices given by the vectors x and y.

c = poly1(x,y) creates a 2D curve object c in the form of an closed polygon with
vertices given by the vectors x and y.

See geomcsg for more information on geometry objects.

Example The commands below create a regular n-gon (n=11) and plot it.

n = 11
xy = exp(i*2*pi*linspace(0,1-1/n,n));
p = poly1(real(xy),imag(xy));
geomplot(p)

Cautionary poly1 and poly2 always creates closed polygon objects. To create open polygon
curves, use line1 and line2.

See Also arc1, arc2, circ1, circ2, ellip1, ellip2, geomcsg, line1, line2
E R 1 : C O M M A N D R E F E R E N C E

postanim
postanimPurpose Shorthand command for animation in 1D, 2D and 3D.

Syntax postanim(fem,expr,...)
M = postanim(fem,expr,...) % MATLAB only

Description postanim(fem,expr,...) plots an animation of the expression expr. The
function accepts all property/value pairs that postmovie does. In 1D, this
command is just shorthand for the call

postmovie(fem,'liny',expr,...
 'linstyle','bginv',...)

and in 2D, it is shorthand for

postmovie(fem,'tridata',expr,...
 'tribar','on',...
 'geom','on',...
 'axisequal','on',...)

and in 3D, this command is just shorthand for

postmovie(fem,'slicedata',expr,...
 'slicebar','on',...
 'geom','on',...
 'axisequal','on',...)

M = postanim(fem,expr,...) additionally returns a matrix in MATLAB movie
format. Alternatively, in COMSOL Script, store the animation in a file using the
postmovie property Filename.

If you want to have more control over your animation, use postmovie instead of
postanim.

Cautionary When you are replaying a movie that has been stored in a matrix M, you should
explicitly provide a figure handle to the movie command.

M = postanim(fem,expr,...)
movie(gcf,M)

Otherwise the animation does not look good.

Compatibility The syntax of the command is not compatible with its corresponding FEMLAB 2.1
syntax.

See Also postplot, postsurf, postcont, postlin, postarrow, postarrowbnd,
postflow, postslice, postiso, posttet
343

postarrow

344 | C H A P T
postarrowPurpose Shorthand command for subdomain arrow plot in 2D and 3D.

Syntax postarrow(fem,expr,...)
h = postarrow(fem,expr,...)

Description postarrow(fem,expr,...) plots a subdomain arrow plot for the expressions in
the cell array expr. In 2D, expr has length 2 or 3, and in 3D, it has length 3. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'arrowdata',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postarrow(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your arrow plot, use postplot instead of
postarrow.

See Also postplot, postanim, postsurf, postcont, postlin, postarrowbnd, postflow,
postprinc, postprincbnd, postslice, postiso, posttet
E R 1 : C O M M A N D R E F E R E N C E

postarrowbnd
postarrowbndPurpose Shorthand command for boundary arrow plot in 2D and 3D.

Syntax postarrowbnd(fem,expr,...)
h = postarrowbnd(fem,expr,...)

Description postarrowbnd(fem,expr,...) plots a boundary arrow plot for the expressions in
the cell array expr. In 2D, expr has length 2 or 3, and in 3D, it has length 3. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'arrowbnd',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postarrowbnd(fem,expr,...) additionally returns handles to the plotted
handle graphics objects.

If you want to have more control over your arrow plot, use postplot instead of
postarrowbnd.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow, postflow,
postprinc, postprincbnd, postslice, postiso, posttet
345

postcont

346 | C H A P T
postcontPurpose Shorthand command for contour plot in 2D.

Syntax postcont(fem,expr,...)
h = postcont(fem,expr,...)

Description postcont(fem,expr,...) plots a contour plot for the expression expr. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'contdata',expr,...
 'contbar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postcont(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your contour plot, use postplot instead of
postcont.

Example Plot the contours of the solution to the equation −∆u = 1 over a unit circle. Use
Dirichlet boundary conditions u = 0 on ∂Ω .

clear fem
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.mesh = meshrefine(fem);
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postcont(fem,'u')

Compatibility The syntax of the command is not compatible with its corresponding FEMLAB 2.1
syntax.

See Also postplot, postanim, postsurf, postlin, postarrow, postarrowbnd,
postflow, postprinc, postprincbnd, postslice, postiso, posttet
E R 1 : C O M M A N D R E F E R E N C E

postcoord
postcoordPurpose Get coordinates in a model.

Syntax coord = postcoord(fem,...)

Description coord = postcoord(fem,...) returns global coordinates in a model by
specifying, for example, a boundary and the number of points on the boundary.

To specify start points for particle tracing in postplot, property/values to
postcoord can be specified in the postplot property partstart.

Valid property/value pairs for postcoord are given in the following table.

The properties Frame, Solnum, T, and U are only used when the model fem contains
moving meshes. The default behavior of Solnum and T are described in
postinterp.

Examples % Set up a 2D geometry with a mesh and an extended mesh
clear fem
fem.geom = circ2+rect2;
fem.mesh = meshinit(fem);

TABLE 1-102: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

coord cell array of double
vectors

Coordinates where
scalar expansion is used

dl integer vector all domains Domain list

edim -1 | 1 -1 Element dimension

frame string spatial frame Coordinate frame

geomnum positive integer 1 Geometry number

grid positive integer or
vector of domain
parameters

Domain parameters

mcase non-negative integer Mesh case

npoints non-negative integer Number of subdomain
points, picked from
mesh vertices
(edim=-1)

solnum integer vector | all |
end

See below Solution number

T double vector See below Time for evaluation

U solution object |
solution vector | scalar

fem.sol or 0 Solution(s) for
evaluation
347

postcoord

348 | C H A P T
fem.xmesh = meshextend(fem);

% Get the coordinates of 17 evenly spaced points on
% boundaries 1,2,4
coord = postcoord(fem,'edim',1,'grid',17,'dl',[1,2,4]);

Compatibility This function was introduced in COMSOL Multiphysics 3.3.

See Also postinterp, postplot
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
postcrossplotPurpose Cross-section plot.

Syntax postcrossplot(fem,cdim,dom,...)
h = postcrossplot(fem,cdim,dom,...)
[h,data] = postcrossplot(fem,cdim,dom,...)

Description postcrossplot(fem,cdim,dom,...) displays a plot of an expression, including
an FEM solution, in one or several cross sections of the geometry, with space
dimension cdim and defined by dom (coordinates) or on mesh elements of space
dimension cdim, specified by dom (domain list). The argument dom is therefore
either a number of points to specify a cross section or a list of domains. To specify a
cross section, dom must be one of the following, where sdim denotes the space
dimension of the geometry:

• An sdim-by-2 matrix to specify a cross-section line (the line between the two
points in the columns of dom) in 2D and 3D. Used with properties lindata and
surfdata. Here, cdim must be 1.

• A 3-by-3 matrix to specify a cross-section plane (the plane containing all three
points in the columns of dom) in 3D. Used with property surfdata. Here, cdim
must be 2.

• An sdim-by-np matrix to specify np points for point plots. Used with property
pointdata. Here, cdim must be 0.

To specify a list of domains (geometry vertices, geometry edges, geometry
boundaries, or geometry subdomains), dom must be:

• A 1-by-nd integer matrix, where nd is the number of domains with space
dimension cdim (vertices, edges, boundaries, or subdomains) to plot on. When
used with surfdata in 3D, nd must be one.

In 1D, if all entries in dom are integers greater than or equal to 1, they are interpreted
as indices to geometry vertices. Otherwise, they are interpreted as coordinates. To
specify a coordinate which is an integer greater than or equal to 1, use the property
pointtype set to coord.

The expressions that are plotted can be COMSOL Multiphysics expressions
involving variables, in particular application mode variables.

The following plot types can be made:

Point plots (1D, 2D, 3D) Plot of an expression on any geometry vertex or arbitrary
point in the subdomains of the geometry. This is most useful when there are several
349

postcrossplot

350 | C H A P T
solutions, in which case this plot shows the value of the expression in the selected
points for the different solutions. If there is only one solution, the values in the
specified points are displayed in the x-axis range [0 1].

Line plots on domains (1D, 2D, 3D) Plot of an expression on a set of connected 1D
domains (edges in 3D, boundaries in 2D and subdomains in 1D). If Linxdata is
not specified, this is done by folding out the arc length of the 1D domain to the
x-axis of the resulting plot, and letting the value of the expression be set on the
x-axis. If dom contains more than one domain, the different arc lengths are just
added to each other on the x-axis. In this case, the domains have to be connected
and so that not more than two selected domains meet in the same vertex.

If Linxdata is specified, this is the quantity on the x-axis in the resulting plot. Using
Linxdata, you can project cross sections to, e.g., the x-axis by setting Linxdata to
x.

The direction of the path is so that the start point is the point along the path with
lowest geometry vertex number. If the selected domains form a closed curve, so that
this point is also the end point, the direction is in the direction of the domain with
lowest number.

If there are several solutions (that is, Solnum or T is a vector), the curves for the
different solutions can be either plotted in the same x-y-plot or can be extruded
along the third axis to generate a surface. This is controlled by specifying either the
property Lindata or Surfdata.

Line plots on cross sections (2D, 3D) In 2D and 3D, plot of an expression along a
straight line, defined between the two points in dom, in the geometry. The points in
dom are regarded as the end points of the cross-section line and are the x-axis limits
in the resulting plot, hence if the line between the two specified points do not
intersect the geometry, the resulting plot will be empty.

Surface plots on domains (2D, 3D) Plot of an expression on a boundary in 3D or on
a set of subdomains in 2D. In 3D, if Surfxdata and Surfydata are not specified,
the boundary is plotted in an xy-plane where x and y correspond to the
(s,t)-parameters of the boundary. If Surfxdata and Surfydata are specified, these
represent the quantities on the x- and y-axis in the resulting plot. Using Surfxdata
and Surfydata, you can project a cross section to, for example, the xy-plane of the
geometry by setting Surfxdata to x and Surfydata to y. If there are several
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
solutions, all plots for the different solutions are displayed along the third axis, as a
slice plot. In 3D, dom must be a single integer.

Surface plots on cross sections (3D) Plot of an expression on one or more 2D
cross-section planes, defined by the three points in dom, of the 3D geometry. If more
than one cross section is selected, or only one cross section is selected but there are
several solutions, all plots for the different cross sections/solutions are displayed
along the third axis, as a slice plot. The cross-section plane is the plane containing
the three points in the columns of dom.

For line plots, if more than one curve is plotted (either one cross section and several
solutions or vice versa), the different curves can be either plotted in the same
x-y-plot or can be extruded along the third axis to generate a surface. This is
controlled by specifying either the property Lindata or Surfdata.

h = postcrossplot(fem,cdim,dom,...) additionally returns handles or a
postdata structure (depending on the value of the property Outtype) to the plotted
objects.

Valid property/value pairs for postcrossplot are given in the following table,
where the columns S, L, and P denotes if the property has effect on surface, line and
point plots, respectively.

TABLE 1-103: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME S L P PROPERTY VALUE DEFAULT DESCRIPTION

Axistype √ √ √ cell array of strings
lin or log

X-, Y- and Z-axis types

Const √ √ √ cell array Definition of constants

Cont √ √ √ off | on off Make output continuous

Crosslicecs √ local | global global Coordinate system to plot
cross-section slices in

Geom √ off | on Show geometry contour

Frame √ √ √ string spatial frame Coordinate frame

Geomnum √ √ √ integer (or vector of
integers when cdim=2
and dom is 3-by-3)

1 Geometry number

Lincolor √ √ colorspec | cell array
of colorspec

cycle Line color

Lindata √ string Expression to plot

Linewidth √ √ numeric 0.5 Line width
351

postcrossplot

352 | C H A P T
Linlegend √ √ off | on off Color legend

Linmarker √ √ marker specifier | cell
array of marker
specifiers

none Line marker

Linstyle √ √ symbol | cell array of
symbols

'-' Line style

Linxdata √ string Line x-axis expression

Markersize √ √ integer 6 Size of markers

Npoints √ integer 200 Number of points on each
line, when dom is a cross
section

Outtype √ √ √ handle | postdata handle Output type

Phase √ √ √ scalar 0 Phase angle

Pointdata √ string Expression to plot

Pointtype √ coord | vertex vertex Point plot type when
cdim=0 and dom is
integer(s).

Pointxdata √ string Point plot x-axis expression

Refine √ √ integer| auto See posteval Refinement of element in
evaluation

Sdl √ integer vector or cell
array of integer
vectors

all Subdomain list for
cross-section slice plots

Solnum √ √ √ integer vector | all |
end

all Solution numbers

Spacing √ √ integer 1 Number of planes/lines or
vector with distances, when
dom is a cross section

Surfbar √ off | on off Color bar

Surfdata √ √ string Expression to plot

Surfdlim √ [min max] full range Surface plot color limits

Surfedgestyle √ flat | interp | none
| bg | bginv |
colorspec

none Triangle edge style

TABLE 1-103: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME S L P PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
In addition, the common plotting properties listed under femplot are available.

If the field fem.sol.u does not exist and the property U is not specified, expressions
not depending on the solution can still be plotted.

The notation colorspec in the value column denotes a color specification. See
postplot for a description of this.

The property Phase is described in posteval.

Examples 3D Example
clear fem
fem.geom = geomcsg({cylinder3});
fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.shape = 2;
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',0:0.01:0.1);

Plot solutions on a cross section:

crosspts = [0 0 1;0 1 1;0 0 1];
postcrossplot(fem,2,crosspts,'surfdata','u','solnum',1:2:10,...
 'crosslicecs','local')

Plot fourth solution on five cross sections with geometry boundaries:

postcrossplot(fem,2,crosspts,'surfdata','u','solnum',4,...
 'geom','on','refine',3,'axisequal','on',...
 'spacing',5)

Plot on a boundary 6 for the last time value:

postcrossplot(fem,2,6,'surfdata','ux','cont','on','solnum',11)

Surffacestyle √ flat | interp | none
| bg | bginv |
colorspec

interp Triangle face style

Surfmap √ colormap Colormap

Surfxdata √ string Surface x-axis expression

Surfydata √ string Surface y-axis expression

T √ √ √ vector Times for evaluation

U √ √ √ solution object or
vector

 fem.sol or 0 Solution for evaluation

TABLE 1-103: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME S L P PROPERTY VALUE DEFAULT DESCRIPTION
353

postcrossplot

354 | C H A P T
Compare this with

postplot(fem,'tridata','ux','cont','on','bdl',6,'geom','on',...
 'solnum',11)

Plot on a boundary 6 for some time values with overlaid mesh:

postcrossplot(fem,2,6,'surfdata','ux','cont','on',...
 'surfedgestyle','k','refine',1,...
 'solnum',[1,4,7,11])

Plot along a line intersecting the geometry:

linpts = [-1 1;-1 1;0 1];
postcrossplot(fem,1,linpts,'lindata','u','npoints',100)

Same but with time extrusion:

postcrossplot(fem,1,linpts,'surfdata','u','npoints',100,...
 'camlight','on')

Plot along some connected edges:

postcrossplot(fem,1,[4 5 8 11],'lindata','t1x')
% Compare this with the postplot call
postplot(fem,'lindata','t1x','edl',[4 5 8 11],'linbar','on',...
 'geom','off')

Point plot on n points in geometry:

n = 30;
pts = [linspace(-1,1,n);linspace(0,1,n);linspace(0,1,n)];
postcrossplot(fem,0,pts,'pointdata','u')

2D Examples
Time-dependent problem (Heat equation)

clear fem
fem.geom = geomcsg({rect2});
fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.shape = 2;
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',0:0.01:0.1);

Plot solution along the diagonal for all time-steps:

postcrossplot(fem,1,[0 1;1 0],'lindata','u')

Plot solution at time step 4 in several parallel cross sections:

postcrossplot(fem,1,[0 1;1 0],'lindata','u*x','solnum',4,...
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
 'spacing',5,'lincolor','r')

Plot along three boundaries for the first five time steps:

postcrossplot(fem,1,[1 2 3],'lindata','ux','cont','on',...
 'solnum',1:5)

Same but with time-extrusion:

postcrossplot(fem,1,[1 2 3],'surfdata','ux','cont','on',...
 'solnum',1:5)

Make point plot of square of solution on three points in geometry:

pts = [0.2 0.3 0.6;0.1 0.7 0.2];
postcrossplot(fem,0,pts,'pointdata','u^2')

Compatibility In FEMLAB 3.0a, extrusion plots, i.e., when plotting for several solutions (Solnum
or T is a vector), cdim is 1, and Surfdata is used, can only be made for plots where
the extrusion axis represents the solution. Extrusions cannot be made between
parallel lines for cross-section line plots. Also, all line plots are all plotted in the x-y
plane, also for several solutions and for several parallel cross-section lines.

The property Variables has been renamed to Const in FEMLAB 2.3.

See Also postplot, postinterp
355

postdataplot

356 | C H A P T
postdataplotPurpose Plot a post data structure.

Syntax postdataplot(pd,...)
h = postdataplot(pd,...)

Description postdataplot(pd,...) displays a plot of a post data structure, typically returned
by posteval. The function supports plotting postdata structures with element
dimension 1 or 2, corresponding to the posteval property Edim.

h = postdataplot(pd,...) additionally returns handes to the plotted objects.

The function postdataplot accepts the following property/values:

In addition, the common plotting properties listed under femplot are available.

The notation colorspec in the value column denotes a color specification. See
postplot for details.

Compatibility The function postdataplot was introduced in COMSOL Multiphysics 3.4.

See Also posteval

TABLE 1-104: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Colorbar off | on on Display a color scale

Colormap colormap jet(1024) The color map

Edgestyle flat | interp |
none | bg | bginv |
colorspec

 none Surface edge style

Facestyle flat | interp |
none | bg | bginv |
colorspec

interp Surface face style
E R 1 : C O M M A N D R E F E R E N C E

posteval
postevalPurpose Evaluate expressions in subdomains, boundaries, edges or vertices.

Syntax [v1,v2,...,vn] = posteval(fem,e1,e2,...,en,...)

Description [v1,v2,...,vn] = posteval(fem,e1,e2,...,en,...) returns values
v1,v2,...,vn of the expressions e1,e2,...,en. The expressions can be evaluated
on any domain type: subdomain, boundary, edge, and vertex, using one or several
solutions.

The values vi are post data, a structure with fields p, t, q, d, and elind. The field
p contains node point coordinate information. The number of rows in p is the
number of space dimensions. The field t contains the indices to columns in p of a
simplex mesh, each column in t representing a simplex. The field q contains the
indices to columns in p of a quadrilateral mesh, each column in q representing a
quadrilateral. The field d contains data values. The columns in d correspond to node
point coordinates in columns in p. There is one row in d for each solution (see the
properties Solnum and T below). The data contains the real part of complex-valued
expressions. The field elind contains indices to mesh elements for each point.

The string expressions can be any COMSOL Multiphysics expressions involving
variables, in particular application mode variables.

The function posteval accepts the following property/values:

TABLE 1-105: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Bpoint double matrix Local coordinates for
quadrilateral and block
elements

Const cell array Definition of constants

Cont off | on |
internal

off Smoothing

Dl integer vector or
cell array of integer
vectors

all domains Domain lists

Edim integer full Element dimension

Frame integer spatial frame Coordinate frame

Geomnum positive integer 1 Geometry number

Phase scalar 0 Phase angle

Prpoint double matrix Local coordinates for
prism elements
357

posteval

358 | C H A P T
The property Refine constructs evaluation points by making a regular refinements
of each element. Each mesh edge is divided into Refine equal parts. If auto is used,
an automatic refinement value is computed internally and used, which depends on
the maximum element order and the number of elements evaluated on. This value
is most useful in postplot.

Use the properties Spoint, Bpoint, and Prpoint to specify arbitrary local element
evaluation points for simplex elements (triangular, tetrahedral, and edge elements),
quadrilateral/block elements, and prism elements, respectively. If you specify any of
these properties, the fields t and q in the output postdata structure are empty, and
the property Cont is neglected.

The property Edim decides which elements to evaluate on. Evaluation takes place
only on elements with space dimension Edim. If not specified, Edim=sdim is used,
where sdim is the space dimension of the geometry. For example, in a 3D model, if
evaluation is done on edges (1D elements), Edim is 1. Similarly, for boundary
evaluation (2D elements), Edim is 2, and for subdomain evaluation (3D elements),
Edim is 3 (default in 3D).

The property Dl controls on which domains (subdomains, boundaries, etc.)
evaluation should take place. If Geomnum is a vector, Dl must be a cell array of the
same length as Geomnum containing domain lists for each geometry.

The property Cont controls if the post data is forced to be continuous on element
edges. When Cont is set to internal, only elements not on interior boundaries are
made continuous.

Refine integer | auto 3 Refinement of element
for evaluation points

Solnum integer vector | all
| end

See below Solution number

Spoint double matrix Local coordinates for
simplex elements

T double vector Time for evaluation

Triangulate off | on off Divide quad elements
into triangles

U solution object or
vector

fem.sol or 0 Solution for evaluation

TABLE 1-105: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

posteval
The expressions ei are evaluated for one or several solutions. Each solution
generates an additional row in the d field of the post data output structure. The
properties Solnum and T control what solutions are used for the evaluations. If
Solnum is provided, the solution indicated by the indices provided with the Solnum
property are used. It T is provided, solutions are interpolated The property T can
only be used for time dependent solutions. If nether Solnum nor T is provided, a
single solution is evaluated. For parametric and time-dependent solutions, the final
solution is used. For eigenvalue solution the first solution is used.

For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided, and the time
for the solution, when Solnum is used. Similarly, lambda and the parameter are
available as eigenvalues for eigenvalue problems and as parameter value for
parametric problems, respectively.

When the property Phase is used, the solution vector is multiplied with
exp(i*phase) before evaluating the expression.

Example Solve Poisson’s equation on two rectangles and evaluate the solution on one of
them and the negative solution on the other.

clear fem
fem.geom = square2(1,'pos',[0 -1])+square2;
fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.equ.expr = {'uu' {'u','-u'}};
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
pd = posteval(fem,'uu');

Compatibility The properties Spoint and Bpoint was re-introduced and Prpoint was introduced
in COMSOL Multiphysics 3.2a.

The FEMLAB 3.0 output type has been changed to a structure containing data
suitable for further postprocessing. The new output format is incompatible with
FEMLAB 2.3 and earlier versions.

The properties Context, Contorder, Posttype, and Spoint are obsolete from
FEMLAB 3.0.

The property Variables has been renamed to Const in FEMLAB 2.3.
359

posteval

360 | C H A P T
The properties Bdl, Epoint, Sdl, and Tpoint, are obsolete from FEMLAB 2.2.
Use the Dl property to specify domain lists. The post data format has changed in
FEMLAB 2.2 and later versions.

The variable name lambda introduced in FEMLAB 1.2 can introduce a variable
name conflict for old models.

See Also postdataplot, postglobaleval, postinterp, postint
E R 1 : C O M M A N D R E F E R E N C E

postflow
postflowPurpose Shorthand command for streamline plot in 2D and 3D.

Syntax postflow(fem,expr,...)
h = postflow(fem,expr,...)

Description postflow(fem,expr,...) plots a streamline plot for the expressions in the cell
array expr. In 2D, expr has length 2, and in 3D, it has length 3. The function
accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'flowdata',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postflow(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your streamline plot, use postplot instead
of postflow.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postprinc, postprincbnd, postslice, postiso, posttet
361

postglobaleval

362 | C H A P T
postglobalevalPurpose Evaluate globally defined expressions, such as solutions to ODEs.

Syntax data = postglobaleval(fem,...)
data = postglobaleval(fem,expr,...)

Description postglobaleval(fem,expr,...) is the evaluation function for globally defined
expressions, such as solution variables for ODEs and other space-independent
equations.

The input expr contains the expressions to plot. It must be a cell array of strings. If
omitted, the expressions in fem.ode.dim are evaluated.

data = postglobaleval(fem,...) returns a structure with fields x, y, and legend.
This structure is compatible with the import/export structure used by COMSOL
Reaction Engineering Lab. The values can be plotted with

plot(data.x, data.y)
legend(data.legend)

Valid property/value pairs for postglobaleval are given in the following table.

The property Phase is described in posteval.

Examples Example: Solve the Lotka-Volterra equations for two populations r and f
clear fem
fem.ode.dim={'r','f'};
fem.ode.f={'r*(1-2*f)-rt','-f*(3-r)-ft'};
fem.ode.init={'10','1'};
fem.ode.dinit={'0','0'};
fem.geom=solid1([0,1]);
fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',[0,1]);

% Evaluate 'r' and 'f' for all time steps
data = postglobaleval(fem);

TABLE 1-106: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Const cell array Definition of constants

Phase scalar 0 Phase angle

Solnum integer vector | all |
end

all Solution number

T vector Times for evaluation

U solution object or
vector

fem.sol or 0 Solution for evaluation
E R 1 : C O M M A N D R E F E R E N C E

postglobaleval
% Evaluate 'r+f' and 'r*f' and plot the result
data = postglobaleval(fem,{'r+f','r*f'})
plot(data.x, data.y)
legend(data.legend)

Compatibility This function was introduced in COMSOL Multiphysics 3.2a.

See Also postglobalplot, postinterp
363

postglobalplot

364 | C H A P T
postglobalplotPurpose Plot globally defined expressions, such as solutions to ODEs.

Syntax postglobalplot(fem,expr,...)
h = postglobalplot(fem,expr,...)

Description postglobalplot(fem,expr,...) is the plot function for globally defined
expressions, such as solution variables for ODEs and space-independent equations.

The input expr contains the expressions to plot. It must be a string or a cell array
of strings.

h = postglobalplot(fem,expr,...) additionally returns handles or a postdata
structure (depending on the value of the property Outtype) to the plotted objects.

Valid property/value pairs for postglobalplot are given in the following table.

In addition, the common plotting properties listed under femplot are available.

TABLE 1-107: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Const cell array Definition of constants

Lincolor colorspec | cell array
of colorspec

cycle Line color

Linewidth numeric 0.5 Line width

Linlegend off | on off Color legend

Linmarker marker specifier | cell
array of marker
specifiers

none Line marker

Linstyle symbol | cell array of
symbols

'-' Line style

Linxdata string Line x-axis expression

Markersize integer 6 Size of markers

Outtype handle | postdata handle Output type

Phase scalar 0 Phase angle

Solnum integer vector | all |
end

all Solution number

T vector Times for evaluation

U solution object or
vector

fem.sol or 0 Solution for evaluation
E R 1 : C O M M A N D R E F E R E N C E

postglobalplot
If Outtype is 'handle', postglobalplot returns a vector of handles to the plots.
If Outtype is 'postdata', the function returns a post data structure. The post data
structure has the same format as the output from posteval.

The notation colorspec in the value column denotes a color specification. See
postplot for a description of this specification.

The property Phase is described in posteval.

Examples Example: Solve the Lotka-Volterra equations for two populations r and f
clear fem
fem.ode.dim={'r','f'};
fem.ode.f={'r*(1-2*f)-rt','-f*(3-r)-ft'};
fem.ode.init={'10','1'};
fem.ode.dinit={'0','0'};
fem.geom=solid1([0,1]);
fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',[0,1]);

% Plot the solutions r and f with legend
postglobalplot(fem,{'r','f'},'linlegend','on');

% Plot the r population versus the f population
postglobalplot(fem,'r','linxdata','f')

Compatibility This function was introduced in COMSOL Multiphysics 3.2a.

See Also postcrossplot, postinterp
365

postgp

366 | C H A P T
postgpPurpose Extract Gauss points and Gauss point weights.

Syntax gp = postgp(type,order)
[gp,gpw] = postgp(type,order)

Description postgp(type,order) returns the gauss points of order order for an element of
type type.

[gp,gpw] = postgp(type,order) additionally returns the Gauss point weights.

The Gauss points and their weights are the ones used in postint when computing
integrals.

The input type must be one of the following: vtx, edg, tri, quad, tet, prism, or
hex corresponding to a vertex element, an edge element, a triangular element, a
quadrilateral element, a tetrahedral element, a prism element, and a hexahedral
element, respectively.

Examples % The second order Gauss points for a triangular element
gp = postgp('tri',2);

% The third order Gauss points and their weights for a hexahedral
% element
[gp,gpw] = postgp('hex',3);

Compatibility This function was introduced in COMSOL Multiphysics 3.2a.

See Also posteval, postint
E R 1 : C O M M A N D R E F E R E N C E

postint
postintPurpose Integrate expressions in domains with arbitrary space dimension.

Syntax [v1,v2,...,vn] = postint(fem,e1,e2,...,en,...)

Description [v1,i2,...,vn] = postint(fem,e1,e2,...,en,...) returns the integrals
v1,v2,...,vn of the expressions e1,...,en. The integrals can be evaluated on any
domain type: subdomain, boundary, edge, and vertex, using one or several
solutions. When the several solutions are provided, each vi is a vector with values
corresponding to the solutions.

The expressions that are integrated can be expressions involving variables, in
particular application mode variables.

postint accepts the following property/value pairs:

The expressions ei are integrated for one or several solutions. Each solution
generates an element in the output vectors vi. The properties Solnum and T control
what solutions are used for the evaluations. If Solnum is provided, the solution
indicated by the indices provided with the Solnum property are used. It T is
provided, solutions are interpolated The property T can only be used for time
dependent solutions. If nether Solnum nor T is provided, a single solution is
evaluated. For parametric and time-dependent solutions, the final solution is used.
For eigenvalue solution the first solution is used.

TABLE 1-108: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Const cell array List of assignments
of constants

Dl integer vector all domains Domain list

Edim integer full Element dimension

Frame string spatial frame Coordinate frame

Geomnum positive integer 1 Geometry number

Intorder positive integer See below Integration order

Phase integer vector 0 Phase angle

Solnum integer vector |
all | end

See below Solution numbers

T double vector See below Time for evaluation

U solution object or
vector

fem.sol or 0 Solution(s) for
evaluation
367

postint

368 | C H A P T
For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided, and the time
for the solution, when Solnum is used. Similarly, lambda and the parameter are
available as eigenvalues for eigenvalue problems and as parameter value for
parametric problems, respectively.

Examples Compute the integral of the solution to Poisson’s equation on the unit disk using
weak constraints. Use weak constraint to obtain accurate flux.

clear fem
fem.dim = {'u' 'lm'};
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape={'shlag(2,''u'')' 'shlag(2,''lm'')'};
fem.equ.c = {{1 0}};
fem.equ.f = {{1 0}};
% make shape function for u active on subdomain
fem.equ.shape={1};
fem.bnd.weak = {{'test(u)*lm' 'test(lm)*(-u)'}};
% make shape functions for u and lm active on boundary
fem.bnd.shape={[1 2]};
fem.solform = 'general';
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postint(fem,'u')

Verify that the integral of the source term in Poisson’s equation on the unit disk
cancels the integral of the flux over the boundary. To have access to the variables f1
and ncu1, you must use the General solution form.

postint(fem,'f1')
postint(fem,'lm','edim',1)

You can also use the variable ncu to compute the flux, but it is much less accurate.

postint(fem,'-ncu1','edim',1)

Compatibility The properties Context, Cont, and Contorder are obsolete from FEMLAB 3.0.

The property Variables has been renamed to Const in FEMLAB 2.3.

See Also posteval
E R 1 : C O M M A N D R E F E R E N C E

postinterp
postinterpPurpose Evaluate expressions in arbitrary points.

Syntax [v1,v2,...,vn,pe] = postinterp(fem,e1,e2,...,en,xx,...)
[pio,pe] = postinterp(fem,xx,...)
[v1,v2,...,vn] = postinterp(fem,e1,e2,...,en,pio,...)

Description [v1,v2,...,vn,pe] = postinterp(fem,e1,e2,...,en,xx,...) returns the
values v1,v2,...,vn of the expressions e1,e2,...,en in the points xx.

[pio,pe] = postinterp(fem,xx,...) computes a PostInterp object pio, which
contains information about where the points xx are located.

[v1,v2,...,vn] = postinterp(fem,e1,e2,...,en,pio,...) returns the
values v1,v2,...,vn of the expressions e1,e2,...,en in the points given by the
PostInterp object pio.

The columns of the matrix xx are the coordinates for the evaluation points. If the
number of rows in xx equals the space dimension, then xx are global coordinates,
and the property Edim determines the dimension in which the expressions are
evaluated. For instance, Edim=2 means that the expressions are evaluated on
boundaries in a 3D model. If Edim is less than the space dimension, then the points
in xx are projected onto the closest point on a domain of dimension Edim. If, in
addition, the property Dom is given, then the closest point on domain number Dom
in dimension Edim is used.

If the number of rows in xx is less than the space dimension, then these coordinates
are parameter values on a geometry face or edge. In that case, the domain number
for that face or edge must be specified with the property Dom.

The expressions that are evaluated can be expressions involving variables, in
particular application mode variables.

The matrices v1,v2,...,vn have size k-by-size(xx,2), where k is the number of
solutions for which the evaluation is carried out, see below. The value of expression
ei for solution number j in evaluation point xx(:,m) is vi(j,m).

The vector pe contains the indices m for the evaluation points xx(:,m) that are
outside the mesh, or, if a domain is specified, are outside that domain.
369

postinterp

370 | C H A P T
postinterp accepts the following property/value pairs:

The properties Blocksize and Const are described in assemble.

The property Ext determines how far the extrapolation reaches. A positive value Ext
means that for points outside the mesh, the evaluation is carried out by extrapolation
from the nearest mesh element, provided that the distance to the mesh element is
at most ext times the element diameter, roughly. Other (more distant) points
outside the mesh give the value NaN in the value matrices vi.

The property Matherr is described in femsolver.

If the property U does not specify the mesh case number, it is given by the property
Mcase. The default is the mesh case that has the greatest number of degrees of
freedom.

TABLE 1-109: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize positive integer 5000 Block size

Const cell array List of assignments of
constants

Dom positive integer Domain number

Edim 0 | 1 | 2 | 3 size(xx,1) Element dimension for
evaluation

Ext number between
0 and 1

0.1 Extrapolation distance

Frame string spatial frame Coordinate frame

Geomnum positive integer 1 Geometry number

Matherr off | on off Error for undefined
operations

Mcase non-negative
integer

Mesh case

Phase scalar 0 Phase angle

Solnum integer vector |
all | end

See below Solution numbers

T double vector See below Time for evaluation

U solution object |
solution vector |
scalar

fem.sol or 0 Solution(s) for
evaluation
E R 1 : C O M M A N D R E F E R E N C E

postinterp
The property Phase is described in posteval.

The property U specifies the solution for which the evaluation is carried out. If U is
not specified, then it is taken from fem.sol if it exists; otherwise it is the zero
vector.

The expressions ei are interpolated for one or several solutions. The properties
Solnum and T control what solutions are used for the evaluations. If Solnum is
provided, the solution indicated by the indices provided with the Solnum property
are used. It T is provided, solutions are interpolated at the given times. The property
T can only be used for time dependent solutions. If neither Solnum nor T is
provided, a single solution is evaluated. For parametric and time-dependent
solutions, the final solution is used. For eigenvalue solution the first solution is used.

For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided, and the time
for the solution, when Solnum is used. Similarly, lambda and the parameter are
available as eigenvalues for eigenvalue problems and parameter value for parametric
problems, respectively.

A subsequent evaluation with [v1,v2,...,vn] =
postinterp(fem,e1,e2,...,en,pio,...) is faster than using xx instead of pio.
In this form of the call, only the properties Const, Phase, Solnum, T, and U are used.

Compatibility The properties Context, Cont, and Contorder are obsolete from FEMLAB 3.0.

In FEMLAB 3.0, the interpolation structure is as a Java object.

The property Variables has been renamed to Const in FEMLAB 2.3.

The syntax and capabilities of this function has changed since FEMLAB 2.1.

See Also posteval
371

postiso

372 | C H A P T
postisoPurpose Shorthand command for isosurface plot in 3D.

Syntax postiso(fem,expr,...)
h = postiso(fem,expr,...)

Description postiso(fem,expr,...) plots an isosurface plot for the expression expr. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'isodata',expr,...
 'isobar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postiso(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your isosurface plot, use postplot instead
of postiso.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postflow, postprinc, postprincbnd, postslice, posttet
E R 1 : C O M M A N D R E F E R E N C E

postlin
postlinPurpose Shorthand command for line plot in 1D, 2D and 3D.

Syntax postlin(fem,expr,...)
h = postlin(fem,expr,...)

Description postlin(fem,expr,...) generates a line plot for the expression expr. The
function accepts all property/value pairs that postplot does. In 1D, this command
is just shorthand for the call

postplot(fem,'liny',expr,...
 'linstyle','bginv',...)

and in 2D, it is shorthand for

postplot(fem,'lindata',expr,...
 'linz',expr,...
 'linbar','on',...
 'axisequal','on',...)

and in 3D, it is shorthand for

postplot(fem,'lindata',expr,...
 'linbar','on',...
 'axisequal','on',...)

h = postlin(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your line plot, use postplot instead of
postlin.

See Also postplot, postanim, postsurf, postcont, postarrow, postarrowbnd,
postflow, postprinc, postprincbnd, postslice, postiso, posttet
373

postmax

374 | C H A P T
postmaxPurpose Compute maximum value of an expression.

Syntax m = postmax(fem,expr,...)
[m,p] = postmax(fem,expr,...)

Description m = postmax(fem,expr,...) returns the maximum value of the expression expr.
The function accepts all property/value pairs that posteval does, except cont. In
addition, the following property/value pairs are accepted:

[m,p] = postmax(fem,expr,...) additionally returns the sdim-by-1 matrix p
containing the coordinate for which the maximum value occurs, where sdim is the
space dimension of the geometry.

Note that the property Refine (see posteval) specifies the refinement used for
finding the element in which the maximum value occurs. This element is then
refined further to find the maximum value within the element. Therefore, the
coordinate for which the maximum value of expr is attained, is not necessarily a
node in the mesh.

Cautionary When expr is evaluated to complex numbers, the real part is used in the maximum
value calculation.

See Also posteval, postmin

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out all | sollist all Return min over all solutions, or
min per solution, specified with
solnum or t

Useinf on | off on Allow infinity to be maximum value
E R 1 : C O M M A N D R E F E R E N C E

postmin
postminPurpose Compute minimum value of an expression.

Syntax m = postmin(fem,expr,...)
[m,p] = postmin(fem,expr,...)

Description m = postmin(fem,expr,...) returns the minimum value of the expression expr.
The function accepts all property/value pairs that posteval does, except cont. In
addition, the following property/value pairs are accepted:

[m,p] = postmin(fem,expr,...) additionally returns the sdim-by-1 matrix p
containing the coordinate for which the minimum value occurs, where sdim is the
space dimension of the geometry.

Note that the property Refine (see posteval) specifies the refinement used for
finding the element in which the minimum value occurs. This element is then
refined further to find the maximum value within the element. Therefore, the
coordinate for which the minimum value of expr is attained, is not necessarily a
node in the mesh.

Cautionary When expr is evaluated to complex numbers, the real part is used in the minimum
value calculation.

See Also posteval, postmax

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out all | sollist all Return min over all solutions, or
min per solution, specified with
solnum or t

Useinf on | off on Allow -infinity to be minimum value
375

postmovie

376 | C H A P T
postmoviePurpose Postprocessing animation function.

Syntax postmovie(fem,...)
postmovie({fem1,fem2,fem3,...},...)
M = postmovie(fem,...) % MATLAB only

Description postmovie(fem,...) is the general solution animation function. It supports all
property/value pairs that postplot supports, and in addition to that, it supports a
set of property/value pairs that is exclusive for animation.

The input fem must be an FEM structure or a cell array of FEM structures. When
it is a cell array, the properties solnum and t must, if specified, be cell arrays of the
same size as fem. In this case, the FEM structures must have the same solution type,
for example, all time-dependent solutions.

M = postmovie(fem,...) additionally returns a matrix in the MATLAB movie
format. Alternatively, in COMSOL Script, you can store the animation in a file using
the property Filename.

The command can generate a sequence of image files containing all images in the
movie. In addition, the command can generate an AVI movie file.

Valid property/value pairs for the postmovie function are given in the following
table. In addition, all postplot parameters are supported and are passed to
postplot. See the entry on postplot for a description of the post data formats.

TABLE 1-110: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Aviautoplay on | off on In Matlab on Windows, try to
launch program associated
with AVI-extension and play
generated AVI-movie

Avicompression string Compression used for
AVI-movie

Aviquality integer between
0 and 100

75 Quality of AVI-movie

Filename string Output file name

Filetype avi | jpg |
tiff | png

avi Output file type

Fps integer 12 Frames per second

Height integer 480 Height of image/movie files

Repeat integer 5 Number of repeats
E R 1 : C O M M A N D R E F E R E N C E

postmovie
Example Run examples in postplot, and replace the postplot command with postmovie.

Cautionary When you are replaying a movie that has been stored in a matrix M, you should
explicitly provide a figure handle to the movie command.

M = postmovie(fem,'tridata','u');
movie(gcf,M)

Otherwise the animation does not look good.

Compatibility The option mov for property Filetype as well as the properties Qtrate, Qtqual,
and Qtcomp on Mac are removed in FEMLAB 3.0a. The option avi works on Mac.
When using mov, it is translated internally to avi.

See Also posteval, postplot

Reverse on | off off Make movie backwards

Resol integer 150 Resolution

Solnum integer vector |
all | end

all Solution numbers

Statfunctype string full | half |
linear

Static plot function

Statnframes integer 11 Number of frames in
animation of static solution

Width integer 640 Width of image/movie files

TABLE 1-110: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION
377

postplot

378 | C H A P T
postplotPurpose Postprocessing plot function.

Syntax postplot(fem,...)
h = postplot(fem,...)

Description postplot(fem,...) is the general solution plot function. It can display an FEM
solution in several different ways. The command works for both 1D, 2D, and 3D
geometries.

h = postplot(fem,...) additionally returns handles or postdata corresponding
to the drawn axes objects. See properties Out and Outtype.

The function postplot accepts the following property/value pairs:

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION

Arrowbnd √ √ vector post spec Boundary arrow data

Arrowbndz √ post spec Boundary arrow
height data

Arrowcolor √ √ colorspec red Subdomain arrow
color

Arrowcolorbnd √ √ colorspec blue Boundary arrow color

Arrowcoloredg √ colorspec black Edge arrow color

Arrowdata √ √ vector post spec Arrow data

Arrowedg √ vector post spec Edge arrow data

Arrowscale √ √ numeric auto Subdomain arrow
scale

Arrowscalebnd √ √ scalar auto Boundary arrow scale

Arrowscaleedg √ scalar auto Edge arrow scale

Arrowstyle √ √ proportional |
normalized

proportional Subdomain arrow
style

Arrowstylebnd √ √ proportional |
normalized

proportional Boundary arrow style

Arrowstyleedg √ proportional |
normalized

proportional Edge arrow style

Arrowtype √ arrow | cone |
arrow3d

cone Subdomain arrow
type

Arrowtypebnd √ √ arrow | cone |
arrow3d

cone Boundary arrow type
E R 1 : C O M M A N D R E F E R E N C E

postplot
Arrowtypeedg √ arrow | cone |
arrow3d

cone Edge arrow type

Arrowxspacing √ √ number of arrows
or vector specifying
x-coordinates

15 (in 2D)
7 (in 3D)

Arrow x-spacing

Arrowyspacing √ √ number of arrows
or vector specifying
y-coordinates

15 (in 2D)
7 (in 3D)

Arrow y-spacing

Arrowz √ post spec Arrow height data

Arrowzspacing √ number of arrows
or vector specifying
z-coordinates

7 (in 3D) Arrow z-spacing

Bdl √ √ list of boundary
numbers

all Boundary list

Bndmarker √ √ marker specifier square Boundary max/min
marker type

Bndmarkersize √ √ integer 6 Size of boundary max/
min markers

Const √ √ √ cell array Definition of
constants

Cont √ √ √ off | on | internal off Make output
continuous

Contbar √ off | on on Show color bar for
contours

Contcolorbar √ off | on on Show color bar for
contour colors

Contcolordata √ post spec Contour color data

Contcolordlim √ [min max] full range Contour color limits

Contdata √ post spec Contour data

Contdlim √ [min max] full range Contour limits

Contlabel √ off | on off Show contour labels

Contlevels √ number of levels or
a vector specifying
levels

20 Contour levels

Contmap √ colormap Colormap for
contour plot

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
379

postplot

380 | C H A P T
Arrowtypeedg √ arrow | cone |
arrow3d

cone Edge arrow type

Arrowxspacing √ √ number of arrows
or vector specifying
x-coordinates

15 (in 2D)
7 (in 3D)

Arrow x-spacing

Arrowyspacing √ √ number of arrows
or vector specifying
y-coordinates

15 (in 2D)
7 (in 3D)

Arrow y-spacing

Arrowz √ post spec Arrow height data

Arrowzspacing √ number of arrows
or vector specifying
z-coordinates

7 (in 3D) Arrow z-spacing

Bdl √ √ list of boundary
numbers

all Boundary list

Bndmarker √ √ marker specifier square Boundary max/min
marker type

Bndmarkersize √ √ integer 6 Size of boundary max/
min markers

Const √ √ √ cell array Definition of
constants

Cont √ √ √ off | on | internal off Make output
continuous

Contbar √ off | on on Show color bar for
contours

Contcolorbar √ off | on on Show color bar for
contour colors

Contcolordata √ post spec Contour color data

Contcolordlim √ [min max] full range Contour color limits

Contdata √ post spec Contour data

Contdlim √ [min max] full range Contour limits

Contlabel √ off | on off Show contour labels

Contlevels √ number of levels or
a vector specifying
levels

20 Contour levels

Contmap √ colormap Colormap for
contour plot

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Contrefine √ integer | auto auto Refinement of
elements for contour
plots

Contstyle √ bg | bginv | interp
| cycle

interp Contour style

Contz √ post spec Contour height data

Deformauto √ √ on | off on Auto scaling

Deformbnd √ √ vector post spec Deform data for
boundaries

Deformdata √ √ vector post spec Deformation data

Deformedg √ vector post spec Deform data for
edges

Deformscale √ √ √ numeric Deformation scale
factor for subdomains

Deformscalebnd √ √ numeric Deformation scale
factor for boundaries

Deformscaleedg √ numeric Deformation scale
factor for edges

Deformscalesub √ numeric Deformation scale
factor for subdomains

Edgmarker √ marker specifier square Edge max/min marker
type

Edgmarkersize √ integer 6 Size of edge max/min
markers

Edl √ integer vector all Edge list

Ellogic √ √ √ logical expression 1 Logical expression for
elements to include

Ellogictype √ √ √ all | any | xor all Interpretation of
logical expression

Flowback √ √ off | on on Integrate streamlines
backwards

Flowbar √ √ off | on on Color bar for
streamline color data

Flowcolor √ √ interp | bg |
bginv | colorspec

interp Streamline color

Flowcolordata √ √ post spec Streamline color data

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
381

postplot

382 | C H A P T
Flowcolordlim √ √ [min max] full range Streamline color data
limits, works only
when flowtype is line

Flowdata √ √ vector post spec Streamline velocity
field

Flowdens √ √ none | uniform |
velocity

none Type of streamline
density

Flowdist √ numeric 0.05 Separating distance
factor

Flowdist √ numeric 0.15 or
[0.05,0.15]

Separating distance
factor

Flowdistdel √ √ numeric 0.2 Minimum Delaunay
distance

Flowdistend √ √ numeric 0.5 Terminating distance
factor

Flowinitref √ √ integer 1 Boundary element
refinement

Flowdignoredist √ √ numeric 0.5 Fraction of streamline
length to ignore

Flowlines √ √ integer 20 Number of
streamlines

Flowlooptol √ √ numeric 0.01 Streamline loop
tolerance

Flowmap √ √ colormap jet Colormap for
streamline color data

Flowmaxsteps √ √ integer 400 Maximum number of
integration steps

Flowmaxtime √ √ integer 100 Maximum integration
time

Flownormal √ √ off | on off Normalize velocity
field

Flowradiusdata √ √ post spec Streamline radius data

Flowrefine √ √ integer | auto auto Refinement of
elements for
streamline plots

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Flowsat √ √ numeric 1.3 Streamline saturation
factor

Flowseed √ √ 1-by-sdim numeric First start point for
streamlines when
flowdens is not none

Flowstart √ √ centers | ginput |
edges | cell array {x
y z}

centers Starting points for
streamlines

Flowstattol √ √ positive scalar 1e-2 Streamline stationary
point stop tolerance

Flowtol √ positive scalar 1e-3 Streamline integration
tolerance

Flowtol √ positive scalar 1e-2 Streamline integration
tolerance

Flowtuberes √ √ numeric 8 Tube resolution for
streamlines

Flowtubescale √ √ numeric Tube radius scale for
streamlines

Flowtype √ √ line | tube tube (line in 2D) Type of streamline

Flowz √ post spec Streamline height data

Frame √ √ √ string spatial frame Coordinate frame

Geom √ √ √ off | on on Show geometry
contours

Geomcolor √ √ √ bg | bginv |
colorspec

bginv Geometry contours
color

Geomnum √ √ √ integer 1 Geometry number

Isobar √ on | off on Isosurface color bar

Isocolorbar √ on | off on Color bar for
isosurfaces color data

Isocolordata √ post spec Isosurface color data

Isocolordlim √ [min max] full range Isosurface color limits

Isocolormap √ colormap jet Colormap for
isosurface color data

Isodata √ Post spec Isosurface data

Isodlim √ [min max] full range Isosurface limits

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
383

postplot

384 | C H A P T
Isoedgestyle √ flat | interp |
none | bg | bginv |
colorspec

none Isosurface edge style

Isofacestyle √ flat | interp |
none | bg | bginv |
colorspec

interp Isosurface face style

Isolevels √ number of levels or
a vector specifying
levels

5 Isosurface levels

Isomap √ colormap Colormap for
isosurface plot

Isostyle √ bg | bginv | color color Isosurface style

Linbar √ √ √ off | on on Line color bar

Lindata √ √ √ post spec Line data

Lindlim √ √ √ [min max] full range Line limits

Linmap √ √ √ colormap Line colormap

Linrefine √ √ √ integer| auto auto Refinement of
elements for line plots

Linstyle √ √ √ flat | interp |
none | bg | bginv |
colorspec

interp Line style

Liny √ post spec Line y data

Linz √ √ post spec Line z data

Maxminbnd √ √ post spec Max/min marker on
boundaries

Maxminedg √ post spec Max/min marker on
edges

Maxminsub √ √ √ post spec Max/min marker on
subdomains

Out √ √ √ cell array of strings |
all

all Output

Outtype √ √ √ handle | postdata handle Output type

Partatol √ √ numeric vector Absolute tolerances
for particle tracing

Partbar √ √ off | on on Show color bar for
particle tracing

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Partbnd √ √ stick | disappear stick Particle point
boundary behavior

Partcolordata √ √ post spec Particle tracing line
color

Partdropfreq √ √ numeric Time between each
particle release

Partdroptimes √ √ numeric vector Time values to release
particles

Partedgetol √ √ numeric | auto 0.001 Edge tolerance for
particle tracing

Partdata √ √ cell-array of strings Particle force

Parthmax √ √ numeric | auto Maximum time step
for particle tracing

Parthstart √ √ numeric | auto Initial time step for
particle tracing

Partlinecolor √ √ colorspec blue Particle tracing line
color

Partmap √ √ colormap Colormap for particle
tracing

Partmass √ √ string 1 Particle mass

Partmaxsteps √ √ integer | auto 1000 Maximum number of
steps for particle
tracing

Partplotas √ √ lines | points |
both | along

lines Particle tracing plot
type

Partpointcolor √ √ colorspec red Particle tracing point
color

Partpointscale √ √ numeric Point radius scale

Partradiusdata √ post spec Particle tracing tube
radius

Partres √ √ integer 5 Resolution of pathline
for particle tracing

Partrtol √ √ numeric Relative tolerance for
particle tracing

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
385

postplot

386 | C H A P T
Partstart √ √ numeric matrix, cell
array of double
vectors, or cell
array of property/
values to postcoord

Start points for
particle tracing

Partstatic √ √ off | on off Use instantaneous
flow field

Partstatictend √ √ numeric | auto auto End time for
stationary flows

Parttstart √ √ numeric | auto Initial time for particle
tracing

Parttuberes √ √ numeric 8 Tube resolution

Parttubescale √ √ numeric Tube radius scale

Parttvar √ √ string Particle integration
time variable name

Partvelstart √ √ cell-array of strings Zero velocity Initial velocity for
particle tracing

Partvelvar √ √ cell-array of strings Particle velocity
variable names

Phase √ √ √ scalar 0 Phase angle

Princbnd √ vector post spec Boundary principal
plot data

Princcolor √ √ colorspec blue Subdomain principal
plot color

Princcolorbnd √ colorspec blue Boundary principal
plot color

Princdata √ √ vector post spec Subdomain principal
plot data

Princscale √ √ numeric auto Subdomain principal
plot scale

Princscalebnd √ scalar auto Boundary principal
plot scale

Princstyle √ √ proportional |
normalized

proportional Subdomain principal
plot style

Princstylebnd √ proportional |
normalized

proportional Boundary principal
plot style

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Princtype √ arrow | cone |
arrow3d

cone Subdomain principal
plot type

Princtypebnd √ arrow | cone |
arrow3d

cone Boundary principal
plot type

Princxspacing √ √ number of arrows
or vector specifying
x-coordinates

8 (in 2D)
5 (in 3D)

Arrow x-spacing for
subdomain principal
plot

Princyspacing √ √ number of arrows
or vector specifying
y-coordinates

8 (in 2D)
5 (in 3D)

Arrow y-spacing for
subdomain principal
plot

Princz √ post spec Subdomain principal
plot height data

Princzspacing √ number of arrows
or vector specifying
z-coordinates

8 (in 3D) Arrow z-spacing for
subdomain principal
plot

Refine √ √ √ integer | auto auto Refinement of
elements for all plot
types

Sdl √ √ √ list of subdomain
numbers

all Subdomain list

Slicebar √ √ off | on on Show color bar for
slice plot

Slicedata √ √ post spec Slice plot data

Slicedlim √ √ [min max] full range Slice plot limits

Sliceedgestyle √ √ flat | interp |
none | bg | bginv |
colorspec

none Slice plot edge style

Slicefacestyle √ √ flat | interp |
none | bg | bginv |
colorspec

interp Slice plot face style

Slicemap √ √ colormap Colormap for slice
plot

Slicerefine √ √ integer | auto auto Refinement of
elements for slice
plots

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
387

postplot

388 | C H A P T
Slicexspacing √ √ number of slices or
vector specifying
x-coordinates

5 Slice plot x-positions

Sliceyspacing √ √ number of slices or
vector specifying
y-coordinates

[] Slice plot y-positions

Slicezspacing √ number of slices or
vector specifying
z-coordinates

[] Slice plot z-positions

Solnum √ √ √ integer | end 1 Solution number

Submarker √ √ √ marker specifier square Subdomain max/min
marker type

Submarkersize √ √ √ integer 6 Size of subdomain
max/min markers

T √ √ √ scalar Time for evaluation

Tetbar √ off | on on Show color bar for
subdomain plot

Tetdata √ Post spec Subdomain plot data

Tetdlim √ [min max] full range Subdomain plot limits

Tetedgestyle √ flat | interp |
none | bg | bginv |
colorspec

none Subdomain plot edge
style

Tetfacestyle √ flat | interp |
none | bg | bginv |
colorspec

interp Subdomain plot face
style

Tetkeep √ number between 0
and 1

1 Fraction of elements
to keep

Tetkeeptype √ min | max | random random Which elements to
keep

Tetmap √ colormap Subdomain plot
colormap

Tetmaxmin √ on | off off Show subdomain plot
max/min markers

Tetrefine √ integer | auto auto Refinement of
elements for
subdomain plots

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
The properties Out and Outtype control the format of the output h when the syntax
h = postplot(fem,...) is used:

If Out is 'all' (default), output corresponding to all plotted objects are returned.
The property Out can also be a cell array containing any of the strings 'geom',
'slice', 'iso', 'tet', 'tri', 'cont', 'lin', 'flow', 'partline',
'partpoint', 'arrow', 'arrowbnd', 'arrowedg', 'maxminsub', 'maxminbnd',
'maxminedg', and 'light'. These correspond to the plots made using the
properties 'geom', 'slicedata', 'isodata', 'tetdata', and so on. When Out is
a 1-by-n cell-array, the output h is a cell array of the same size, matching the strings
in Out.

If Outtype is 'handle', handle-graphics handles to the plots (as specified with Out)
are returned in a vector of handles if Out is 'all', otherwise in a cell array.

If Outtype is 'postdata', post data structures are returned in a cell array. The post
data structures have the same format as the output from posteval. In addition, for
particle tracing plots (using 'partdata'), the postdata structure contains the fields
parttime and partvel, containing the time and velocity vector, respectively,

Tribar √ √ off | on off Surface color bar

Tridata √ √ post spec Surface data

Tridlim √ √ [min max] full range Surface limits

Triedgestyle √ √ flat | interp |
none | bg | bginv |
colorspec

none Surface edge style

Trifacestyle √ √ flat | interp |
none | bg | bginv |
colorspec

interp Surface face style

Trimap √ √ colormap Surface colormap

Trimaxmin √ √ on | off off Show surface max/min
markers

Trirefine √ √ integer | auto auto Refinement of
elements for surface
plots

Triz √ post spec Triangle height

U √ √ √ solution vector fem.sol.u Solution for
evaluation

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
389

postplot

390 | C H A P T
associated to each point on the path. Also, for both particle tracing line plots and
streamline plots, the fields startpts and endpts are included, containing the
coordinates of each plotted line's start and end point, respectively.

If the property Refine is specified, its value is used for all specified plot types; that
is, it overrides all other properties ending with refine. See posteval.

The properties Princdata and Princbnd can either be specified as the names of the
three principal stress or strain values in a 1-by-3 cell array of strings, for example,
{'s1','s2','s3'}, or as the expressions for the value and then the vector
components for each principal direction, for example,
{'e1','e1x','e1y','e1z','e2','e2x','e2y','e2z','e3','e3x','e3y',

'e3z'}.

The camera properties (Campos, Camtarget, etc.) override the setting of view if
both are used.

The notation colorspec in the value column denotes a color specification, that is a
single letter string: y, m, c, r, g, b, w, and k, meaning yellow, magenta, cyan, red,
green, blue, white, and black, respectively (also 'yellow', 'magenta', etc. are
acceptable as color specification), or a 1-by-3 numeric array with RGB values.

Post spec is one of the following.

• A string with an expression to be evaluated. It can be a COMSOL Multiphysics
expression involving variables, in particular application mode variables.

• A cell array, where the first entry is a string with an expression to be evaluated or
a cell array of such strings, and the other entries are parameters passed to
posteval.

Vector post spec is a cell array of Post specs.

The properties can be grouped in terms of what plot entity it refers to. The table
below shows this grouping.

TABLE 1-112: PROPERTY GROUPING

PLOT ENTITY 1D 2D 3D PROPERTY NAMES STARTING WITH

Arrows Ω Ω arrow

Arrows ∂Ω ∂Ω arrowbnd

Arrows ∂2Ω arrowedg

Contours Ω cont

Isosurfaces Ω iso
E R 1 : C O M M A N D R E F E R E N C E

postplot
The symbol ∂Ω indicates the boundary of the domain, and the symbol Ω indicates
the domain itself. For the boundary of the domain, post data evaluated on the
boundary is plotted. For the domain itself, post data evaluated on the domain is
plotted.

Examples 3D Example
Solve the Poisson equation on a unit square:

clear fem
fem.geom = block3;
fem.mesh = meshinit(fem,'hmax',0.15);
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = {1 1 0 0 1 1};
fem.xmesh = meshextend(fem); fem.sol = femstatic(fem);

Plot the solution as a slice plot

postplot(fem,'slicedata','u')

Plot the solution using isosurfaces

postplot(fem,'isodata','u','scenelight','on')

Plot lighted cones showing the gradient together with geometry edges

postplot(fem,'arrowdata',{'ux','uy','uz'},...
 'geom','on','camlight','on','arrowtype','cone')

2D Example
Solve the Poisson equation on the unit circle

clear fem
fem.geom = circ2; fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1; fem.bnd.h = 1;
fem.xmesh = meshextend(fem); fem.sol = femstatic(fem);

Lines Ω ∂Ω ∂2Ω lin

Principal stress/strain plots Ω Ω princ

Principal stress/strain plots ∂Ω princbnd

Slices Ω slice

Particle tracing Ω Ω part

Streamlines Ω Ω flow

3D subdomains Ω tet

Surfaces Ω ∂Ω tri

TABLE 1-112: PROPERTY GROUPING

PLOT ENTITY 1D 2D 3D PROPERTY NAMES STARTING WITH
391

postplot

392 | C H A P T
Plot the solution as triangle color and z-height, and u.*x as contour lines

postplot(fem,'tridata','u','contdata','u*x',...
 'triz','u','contz','u');

Plot 30 streamlines for the field (-uy, x*ux) with color data u.

postplot(fem,'flowdata',{'-uy','x*ux'},...
 'flowlines',30,'flowcolordata','u')

Cautionary Some default values have changed from FEMLAB 2.3 resulting in slightly different
plots.

Compatibility The properties contlabel, context, contorder, and tetmarker are no longer
supported in FEMLAB 3.0.

Properties ending with maxmin are no longer supported. To plot max/min markers,
use the properties maxminsub, maxminbnd, and maxminedg to plot markers on
subdomains, boundaries, and edges, respectively.

The support for outputs from posteval as Post spec, has only a limited support and
is not recommended.

The properties starting with Princ are added in FEMLAB 3.1.

The property contlabel is added in COMSOL Multiphysics 3.2a.

See Also geomplot, meshplot, postanim, postarrow, postarrowbnd, postcont,
postcrossplot, posteval, postflow, postiso, postlin, postmovie,
postprinc, postprincbnd, postslice, postsurf, posttet
E R 1 : C O M M A N D R E F E R E N C E

postprinc
postprincPurpose Shorthand command for subdomain principal stress/strain plot in 2D and 3D.

Syntax postprinc(fem,expr,...)
h = postprinc(fem,expr,...)

Description postprinc(fem,expr,...) plots a subdomain principal stress/strain plot for the
expressions in the cell array expr, which can have length 3 or 12. See property
Princdata in postplot. The function accepts all property/value pairs that
postplot does. This command is just shorthand for the call

postplot(fem,'princdata',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postprinc(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your principal stress/strain plot, use
postplot instead of postprinc.

See Also postplot, postanim, postsurf, postcont, postlin, postarrowbnd, postflow,
postprincbnd, postslice, postiso, posttet

Compatibility This function was added in FEMLAB 3.1.
393

postprincbnd

394 | C H A P T
postprincbndPurpose Shorthand command for boundary principal stress/strain plot in 2D and 3D.

Syntax postprincbnd(fem,expr,...)
h = postprincbnd(fem,expr,...)

Description postprincbnd(fem,expr,...) plots a boundary principal stress/strain plot for
the expressions in the cell array expr, which can have length 3 or 12. See property
Princdata in postplot. The function accepts all property/value pairs that
postplot does. This command is just shorthand for the call

postplot(fem,'princbnd',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postprincbnd(fem,expr,...) additionally returns handles to the plotted
handle graphics objects.

If you want to have more control over your principal stress/strain plot, use
postplot instead of postprincbnd.

See Also postplot, postanim, postsurf, postcont, postlin, postarrowbnd, postflow,
postprinc, postslice, postiso, posttet

Compatibility This function was added in FEMLAB 3.1.
E R 1 : C O M M A N D R E F E R E N C E

postslice
postslicePurpose Shorthand command for slice plot in 3D.

Syntax postslice(fem,expr,...)
h = postslice(fem,expr,...)

Description postslice(fem,expr,...) plots a slice plot for the expression expr. The function
accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'slicedata',expr,...
 'slicebar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postslice(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your slice plot, use postplot instead of
postslice.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postflow, postiso, postprinc, postprincbnd, posttet
395

postsurf

396 | C H A P T
postsurfPurpose Shorthand command for surface plot in 2D and 3D.

Syntax postsurf(fem,expr1,...)
postsurf(fem,expr1,expr2...)
h = postsurf(fem,...)

Description postsurf(fem,expr1,expr2...) plots a surface plot on subdomains in 2D
colored according to the expression expr1 and with height according to expr2. For
a 3D model, it plots a colored surface plot on the boundaries, colored according to
expr1. The function accepts all property/value pairs that postplot does. In 2D,
this command is just shorthand for the call

postplot(fem,'tridata',expr1,...
 'triz',expr2,...
 'tribar','on',...
 'axisequal','on',...)

and in 3D, it is shorthand for

postplot(fem,'tridata',expr1,...
 'tribar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postsurf(fem,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your surface plot, use postplot instead of
postsurf.

Example Surface plot of the solution to the equation –∆u = 1 over the geometry defined by
the L-shaped membrane. Use Dirichlet boundary conditions u = 0 on ∂Ω.

sq1 = square2(0,0,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
clear fem
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem);
fem.equ.c = 1;
fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postsurf(fem,'u')

See Also postplot, postanim, postcont, postlin, postarrow, postarrowbnd,
postflow, postprinc, postprincbnd, postslice, postiso, posttet
E R 1 : C O M M A N D R E F E R E N C E

posttet
posttetPurpose Shorthand command for subdomain plot in 3D.

Syntax posttet(fem,expr,...)
h = posttet(fem,expr,...)

Description posttet(fem,expr,...) plots a subdomain plot for the expression expr. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'tetdata',expr,...
 'tetbar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postcont(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your subdomain plot, use postplot instead
of posttet.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postflow, postprinc, postprincbnd, postslice, postiso
397

pyramid2, pyramid3

398 | C H A P T
pyramid2, pyramid3Purpose Create rectangular pyramid geometry object.

Syntax rp3 = pyramid3
rp2 = pyramid2
rp3 = pyramid3(a,b,h)
rp2 = pyramid2(a,b,h)
rp3 = pyramid3(a,b,h,rat)
rp2 = pyramid2(a,b,h,rat)
rp3 = pyramid3(a,b,h,rat,...)
rp2 = pyramid2(a,b,h,rat,...)

Description ec3 = pyramid3 creates a solid rectangular pyramid geometry object with height
and side lengths of bottom surface equal to one, axis along the coordinate z-axis,
and the center of the bottom surface at the origin. pyramid3 is a subclass of
gencyl3.

ec3 = pyramid3(a,b,h) creates a solid rectangular pyramid geometry object with
side lengths a and b, and height h.

ec3 = pyramid3(a,b,h,rat) creates a pyramid with the non-negative ratio rat
between the top and bottom surface.

The functions pyramid3 and pyramid2 accept the following property/values:

For more information on input arguments and properties see gencyl3.

TABLE 1-113: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

Const Cell array of
strings

{} Evaluation context for string inputs

Displ 2-by-nd
matrix

[0;0] Displacement of extrusion top

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

Rot real or string 0 Rotational angle about Axis (radians)
E R 1 : C O M M A N D R E F E R E N C E

pyramid2, pyramid3
ec2 = pyramid2(...) creates a surface rectangular pyramid geometry object,
without bottom and top faces, according to the arguments described for pyramid3.
pyramid2 is a subclass of gencyl2.

Pyramid objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

See Also econe2, econe3, gencyl2, gencyl3

TABLE 1-114: PYRAMID OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b Side lengths

h Height

rat Ratio

dx, dy Semi-axes

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
399

rect1, rect2

400 | C H A P T
rect1, rect2Purpose Create rectangle geometry object.

Syntax obj = rect2
obj = rect1
obj = rect2(lx,ly,...)
obj = rect1(lx,ly,...)

Description obj = rect2 creates a solid rectangle geometry object with all side lengths equal
to 1, and the lower left corner at the origin. rect2 is a subclass of solid2.

obj = rect2(lx,ly,...) creates a solid rectangle object with side lengths equal
to lx and ly, respectively, and the lower left corner at the origin. lx and ly are
positive real scalars, or strings that evaluate to positive real scalars, given the
evaluation context provided by the property Const.

The function rect1 similarly creates curve rectangle objects.

The functions rect2 and rect1 accept the following property/values:

obj = rect1(...) creates a curve circle geometry object with properties as given
for the rect2 function. rect1 is a subclass of curve2.

Rectangle objects have the following properties:

TABLE 1-115: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

corner Positions the object either centered
about pos or with the lower left
corner at pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot Real or string 0 Rotational angle about pos (radians)

TABLE 1-116: RECTANGLE OBJECT PROPERTIES

PROPERTY DESCRIPTION

lx, ly Side lengths

base Base point

x, y Position of the object

rot Rotational angle
E R 1 : C O M M A N D R E F E R E N C E

rect1, rect2
In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

Example The commands below create a geometry object corresponding to the L-shaped
membrane using the union of three rectangles and plot the result.

sq1 = rect2(1,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
lshape = sq1+sq2+sq3
geomplot(lshape);

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also geomcsg, curve2, curve3, square1, square2
401

revolve

402 | C H A P T
revolvePurpose Revolve a 2D geometry object into a 3D geometry object.

Syntax g3 = revolve(g2,..)

Description g3 = revolve(g2,...) revolves the 2D geometry object g2 into a 3D geometry
object g3 according to given parameters.

The function revolve accepts the following property/values:

The 3D object g3 is a revolved object, where the 2D geometry object g2 lying in
the plane defined by the property wrkpln is revolved about the revolution axis
between the angles defined by the property angles. angles can also be given as a
scalar, in which case the first angle is assumed to be 0.

The property revaxis is a 2-by-2 matrix where the first column specifies a point on
the axis, and the second column specifies the direction of the revolution axis.

polres defines the number of parameter value pairs in the polygon representations
of the edges.

Examples Create torus about the y-axis:

re = revolve(circ2(1,'pos',[2 0]));

Create revolved object from zx-plane:

p_wrkpln = geomgetwrkpln('quick',{'zx',10});
ax = [0 1;0.5 2]';
g3 = revolve(circ1(0.4,'pos',[1 0]),'angles',[-pi/3 pi/3],...
 'revaxis',ax,'wrkpln',p_wrkpln);
geomplot(g3);

See Also extrude, geom0, geom1, geom2, geom3, geomcsg, geomgetwrkpln

TABLE 1-117: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

angles 1-by-2 vector [0 2*pi] Revolution angle

polres scalar 50 Polygon resolution

revaxis 2-by-2 matrix [0 0;
 0 1]

Revolution axis

wrkpln 3-by-3 matrix [0 1 0;
 0 0 1;
 0 0 0]

Work plane for 2D geometry
cross section
E R 1 : C O M M A N D R E F E R E N C E

rotate
rotatePurpose Rotate geometry object.

Syntax [g,...] = rotate(g,r,...)
[g3,...] = rotate(g,r,v,c,...)
[g3,...] = rotate(g,r,vx,vy,vz,cx,cy,cz,...)
[g3,Q,c] = rotate(g,...)
[g,...] = rotate(g,r,c,...)
[g,...] = rotate(g,r,cx,cy,...)

Description [g,...] = rotate(g,r,...) rotates the 2D or 3D geometry object g by r radians
about the z-axis.

[g3,...] = rotate(g,r,v,c,...) rotates the 3D geometry object g by r radians
about the axis v=(vx,vy,vz), with center of rotation c=(cx,cy,cz). v can also be
a vector of spherical coordinates, where v(1) is the polar angle, that is, the angle
between the axis of rotation and the positive z-axis, and v(2) is the azimuthal angle
of the axis of rotation.

[g3,...] = rotate(g,r,vx,vy,vz,cx,cy,cz,...) is the same as above, but
the components of the axis and center of rotation are explicitly given.

[g3,Q,c] = rotate(g,...) additionally returns a rotation matrix Q
corresponding to rotation given by r and v centered at the origin. The translation
vector c is also returned for convenience. This means that a point set p, of size
3-by-n, containing 3D point coordinates, that is to be rotated in the same way as g,
is transformed according to prot = Q*(p-cp)+cp, where cp =
repmat(c(:),1,size(p,2)) represents the center of rotation.

[c,...] = rotate(g,r,c,...) rotates a 2D geometry object about the point
c=(cx,cy).

[c,...] = rotate(g,r,cx,cy,...) is the same as above, but the center
coordinates are explicitly given.

The function rotate accepts the following property/values:

See geomcsg for more information on geometry objects.

Example The command below rotates the ellipse by 1 radian about (2,3) and plots the result.

TABLE 1-118: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

empty Output parameters
403

rotate

404 | C H A P T
e1 = ellip2(0,0,1,3);
e2 = rotate(e1,1,2,3);
geomplot(e2)

See Also geomcsg
E R 1 : C O M M A N D R E F E R E N C E

scale
scalePurpose Scale geometry object.

Syntax [g,...] = scale(g3,fx,fy,fy,...)
[g,...] = scale(g3,fx,fy,fy,x,y,z,...)
[g,...] = scale(g3,fxyz,xyz,...)
[g,...] = scale(g2,fx,fy,...)
[g,...] = scale(g2,fx,fy,x,y,...)
[g,...] = scale(g1,fx,...)
[g,...] = scale(g1,fx,x,...)

Description [g,...] = scale(g3,xscale,yscale,zscale,...) scale the 3D geometry
object g3 by (xscale, yscale, zscale) about the origin.

[g,...] = scale(g,xscale,yscale,zscale,x,y,z,...) scale the 3D
geometry object g3 by (xscale, yscale, zscale) about (x,y,z).

[g,...] = scale(g,xyzscale,xyz,...) scale the 3D geometry object g3 by

the vector fxyz about the vector xyz.

[g,...] = scale(g2,fx,fy,...) scale the 2D geometry object by (fx,fy)
about the origin.

[g,...] = scale(g2,fx,fy,x,y,...) scale the 2D geometry object by (fx,fy)
about (x,y).

[g,...] = scale(g2,fx,...) scale the 1D geometry object by fx about the
origin.

[g,...] = scale(g2,fx,x,...) scale the 1D geometry object by fx about x.

The function scale accepts the following property/values:

See geomcsg for more information on geometry objects.

Examples The commands below scale the unit circle by (1,2) about (2,3) and plot the result.

c1 = circ2;
c2 = scale(c1,1,2,2,3);
geomplot(c2)

See Also geomcsg

TABLE 1-119: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

empty Output parameters
405

sharg_2_5

406 | C H A P T
sharg_2_5Purpose Create an Argyris shape function object.

Syntax obj = sharg_2_5(basename)

Description The Argyris shape function object is used to implement the Argyris element of order
5 on triangles in 2D.

obj = sharg_2_5(basename) basename is a string.

For more information, see “The Argyris Element” on page 456.

See Also shbub, shcurl, shdens, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shbub
shbubPurpose Create a bubble element shape function object.

Syntax obj = shbub(mdim,basename)

Description The bubble element shape function object is used to implement finite elements of
bubble type of order mdim + 1 on a simplex.

mdim is the maximum dimension of the bubble and basename is a string.

For more information, see “Divergence Elements” on page 467.

See Also sharg_2_5, shcurl, shdens, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
407

shcurl

408 | C H A P T
shcurlPurpose Create a vector shape function object.

Syntax obj = shcurl(order,fieldname)

Description The vector shape function object is used to implement finite elements of curl (edge)
type of order order on all types of mesh elements (also called Nédélec elements).
fieldname is a string with the field name or a cell array containing the names of the
field components.

For more information, see “The Curl Element” on page 461.

Compatibility COMSOL Multiphysics 3.3: Replaces the shvec vector shape function object.
shvec still works for backward compatibility reasons.

See Also sharg_2_5, shbub, shdens, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shdens
shdensPurpose Create a density element shape function object.

Syntax obj = shdens(mdim,order,basename)

Description The density element shape function object is used to implement finite elements of
density type on any mesh element type.

mdim is the maximum dimension of the element, order is the default element order,
and basename is a string.

For more information, see “Density Elements” on page 465.

See Also sharg_2_5, shbub, shcurl, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
409

shdisc

410 | C H A P T
shdiscPurpose Create a discontinuous element shape function object.

Syntax obj = shdisc(mdim,order,basename)

Description The discontinuous element shape function object is used to implement finite
elements of discontinuous type on any mesh element type.

mdim is the maximum dimension of the element, order is the default element order,
and basename is a string.

For more information, see “Discontinuous Elements” on page 464.

Compatibility Since COMSOL Multiphysics 3.2 the meaning of the degrees of freedom has
changed. This means that you have to re-solve models made in earlier versions of
COMSOL Multiphysics that include discontinuous elements.

See Also sharg_2_5, shbub, shcurl, shdens, shdiv, shgp, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shdiv
shdivPurpose Create a divergence shape function object.

Syntax obj = shdiv(order,fieldname)

Description The divergence shape function object is used to implement finite elements of
divergence type of order order on any type of mesh element. fieldname is a string
with the field name or a cell array containing the names of the field components.

For more information, see “Divergence Elements” on page 467.

Compatibility Since COMSOL Multiphysics 3.2 the meaning of the degrees of freedom has
changed. This means that you have to re-solve models made in earlier versions of
COMSOL Multiphysics that include divergence elements.

The syntax obj = shdiv(fieldname) is obsolete but still works in COMSOL
Multiphysics 3.3.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shgp, shherm, shlag, shuwhelm
411

shgp

412 | C H A P T
shgpPurpose Create a Gauss-point shape function object.

Syntax obj = shgp(mdim, order, basename)

Description The Gauss-point shape function object is used to implement finite elements of
Gauss-point type of any order on any type of mesh element. The shape function
have the degrees of freedoms in the points determined by the Gauss-point pattern
for the element type. mdim is the maximum dimension of the element, order is a
positive integer and determines the number of points used through the order of the
Gauss-point pattern. basename is a string. The variable basename is evaluated as the
degree of freedom value in the nearest Gauss point.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shherm
shhermPurpose Create a Hermite shape function object.

Syntax obj = shherm(order, basename)

Description The Hermite shape function object is used to implement finite elements of Hermite
type of any order on mesh elements of any type. order is a positive integer greater
than 2, and basename is a string. The variable basename is represented as a
polynomial of degree (at most) order in the local coordinates.

For more information, see “The Hermite Element” on page 458.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shgp, shlag, shuwhelm
413

shlag

414 | C H A P T
shlagPurpose Create a Lagrange shape function object.

Syntax obj = shlag(order, basename)

Description The Lagrange shape function object is used to implement finite elements of
Lagrange type of any order on any type of mesh element. order is a positive integer
and basename is a string. The variable basename is represented as a polynomial of
degree (at most) order in the local coordinates.

For more information, see “The Lagrange Element” on page 455.

Examples The following three sequences set up shape functions for the variables u and v of
order 1 and 2, respectively, using the standard syntax:

fem.dim = {'u' 'v'};
fem.shape = [1 2];

fem.dim = {'u' 'v'};
fem.shape = {'shlag(1,''v'')' 'shlag(2,''v'')'}};

fem.dim = {'u' 'v'};
fem.shape = {'shlag(''basename'',''u'',''order'',1)' ...
 'shlag(''basename'',''v'',''order'',2)'}

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shgp, shherm, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shuwhelm
shuwhelmPurpose Create a scalar plane-wave basis function object.

Syntax obj = shuwhelm(ndir,basename,'kvar')
obj = shuwhelm(ndir,basename,'kvar',{'xvar','yvar'})
obj = shuwhelm('ndir',ndir,'basename',basename,'kexpr','kvar',...
 'xexpr',{'xvar','yvar'})

Description The scalar plane-wave basis function object, shuwhelm, implements scalar
plane-wave basis functions for solving scalar wave equations of Helmholtz type
using an ultraweak variational formulation. The plane-wave basis functions are
discontinuous between mesh elements. ndir is a positive integer for the number of
directions of the plane-wave basis functions and basename is a string. 'kvar' is a
variable representing the wave number. You can also add expressions for the
transformation of the spatial coordinates. The default values are the global x, y, and
z (in 3D) directions, typically 'x', 'y', and 'z'. For PML domains (perfectly
matched layers), where the spatial coordinates are mapped to a complex domain, the
spatial coordinates in the PML domain provide the coordinate transformation, for
example, 'PMLx_acpr' and 'PMLy_acpr' (in 2D), where acpr is the name of the
application mode.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shgp, shherm, shlag
415

solid0, solid1, solid2, solid3

416 | C H A P T
solid0, solid1, solid2, solid3Purpose Constructor functions for solid objects.

Syntax p3 = solid3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[s3,...] = solid3(g3,...)
s3 = solid3(g2)
p2 = solid2(vtx,edg,mfd)
[s2,...] = solid2(g,...)
s1 = solid1(x)
s1 = solid1(vtx)
[s1,...] = solid1(g,..)
s0 = solid0(full)
[s0,...] = solid0(p,...)

Description s3 = solid3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates 3D solid
geometry object s3 from the arguments vtx, vtxpre, edg, edgpre, fac, mfdpre,
mfd. The arguments must define a valid 3D solid object. See geom3 for a description
of these arguments.

 [s3,...] = solid3(g3,...) coerces the 3D geometry object g3 to a 3D solid
object s3.

s3 = solid3(g2) coerces the 2D geometry object g2 to a 3D solid object s3, by
embedding g2 in the plane, z = 0.

 p2 = solid2(vtx,edg,mfd) creates a 2D solid geometry object from the
properties vtx, edg, and mfd. The arguments must define a valid 2D solid object.
See geom2 for a description of these arguments.

 [s2,...] = solid2(g,...) coerces the 2D geometry object to a 2D solid object.

s1 = solid1(x) creates a 1D solid object that spans all the coordinate values in the
vector x.

 s1 = solid1(vtx) creates a 1D solid geometry object from vtx. The arguments
must define a valid 2D solid object. See geom1 for a description of this argument.

 [s1,...] = solid1(g,...) coerces the 1D geometry object to a 1D solid object.

 g = solid0(full) creates a 0D solid geometry object, where the Boolean full
determines if the object is empty or not.

 g = solid0(p) creates a 0D solid geometry object, where p is a matrix of size
0-by-1.

 [s0,...] = solid0(g,...) coerces the 0D geometry object to a 0D solid object.
E R 1 : C O M M A N D R E F E R E N C E

solid0, solid1, solid2, solid3
The coercion functions [s0,...] = solid0(g1,...), [s1,...] =
solid1(g1,...), [s2,...] = solid2(g2,...), and [s3,...] =
solid3(g3,...) accept the following property/values:

See geomcsg for more information on geometry objects.

The nD geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom for details.

Examples The following commands create a unit curve circle object, coerce it to a curve
object, and then back to a solid object.

c1 = circ2
c2 = curve2(c1)
c3 = solid2(c2)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also curve2, curve3, face3, geomcsg, geom0, geom1, geom2, geom3, point1,
point2, point3

TABLE 1-120: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names
417

solsize

418 | C H A P T
solsizePurpose Get number of solutions in a solution object.

Syntax sz = solsize(fem.sol)

Description sz = solsize(fem.sol) returns the number of solutions in the femsol
object fem.sol.
E R 1 : C O M M A N D R E F E R E N C E

sphere3, sphere2
sphere3, sphere2Purpose Create a spherical geometry object.

Syntax obj = sphere3
obj = sphere2
obj = sphere3(r)
obj = sphere2(r)
obj = sphere3(r,...)
obj = sphere2(r,...)

Description obj = sphere3 creates a solid sphere geometry object with center at the origin and
semi-axes equal to 1. sphere3 is a subclass of ellipsoid3.

obj = sphere3(r,...) creates a solid sphere object with radius r. r is a positive
real scalar, or a string that evaluates to a positive real scalar, given the evaluation
context provided by the property const.

The functions sphere3/sphere2 accept the following property/values:

axis sets the local z-axis, stated either as a directional vector of length 3, or as a
1-by-2 vector of spherical coordinates. axis is a vector of real scalars, or a cell array
of strings that evaluate to real scalars, given the evaluation context provided by the
property const. See gencyl3 for more information on axis.

pos sets the position of the center of the object. pos is a vector of real scalars, or a
cell array of strings that evaluate to real scalars, given the evaluation context
provided by the property const.

rot is an intrinsic rotational angle for the object, about its local z-axis provided by
the property axis. pos is a real scalar, or a string that evaluate to a real scalar, given

TABLE 1-121: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about axis (radians)
419

sphere3, sphere2

420 | C H A P T
the evaluation context provided by the property const. The angle is assumed to be
in radians if it is numeric, and in degrees if it is a string.

obj = sphere2(...) creates a surface sphere object with the properties as given
for the sphere3 function. sphere2 is a subclass of ellipsoid2.

Sphere objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Examples The following commands create a surface and solid sphere object, where the
position and radius are defined in the two alternative ways.

s2 = sphere2(1,'pos',[0 0 0],'axis',[0 0 1],'rot',0)
s3 = sphere3(4)

Compatibility The representation of the sphere objects has been changed. The FEMLAB 2.3
syntax is obsolete but still supported. If you use the old syntax or open 2.3 models
containing spheres they are converted to general face or solid objects.

See Also geom0, geom1, geom2, geom3, ellipsoid2, ellipsoid3

TABLE 1-122: SPHERE OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
E R 1 : C O M M A N D R E F E R E N C E

split
splitPurpose Split a geometry object.

Syntax [gg,...] = split(g,...)

Description [gg,...] = split(g,...) returns a cell array where each cell entry contains a
geometry object. When g is solid, face, curve, and point objects, the output gg
contains object of the respective type. When g is a geometry object, the output
contains a combination of solid, face, curve, and point objects.

The function scale accepts the following property/values:

Examples Split union of a solid circle and a solid rectangle.

g = solid2(geomcsg({rect2,circ2}));
gg = split(g);

See Also geom0, geom1, geom2, geom3

TABLE 1-123: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

empty Output parameters
421

square1, square2

422 | C H A P T
square1, square2Purpose Create square geometry objects.

Syntax obj = square2
obj = square1
obj = square2(l,...)
obj = square1(l,...)

Description obj = square2 creates a solid square geometry object with all side lengths equal
to 1, and the lower left corner at the origin. square2 is a subclass of rect2 and
solid2.

obj = square2(l,...) creates a solid square object with side lengths equal to l.
l is a positive real scalar, or a string that evaluates to a positive real scalar, given the
evaluation context provided by the property const.

The function square1 similarly creates curve square objects.

The functions square2/square1 accept the following property/values:

obj = square1(...) creates a curve circle geometry object with properties as
given for the rect2 function. square1 is a subclass of rect1 and curve2.

Square objects have the following properties:

TABLE 1-124: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

corner Positions the object either centered
about pos or with the lower left
corner in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot Real or string 0 Rotational angle about pos (radians)

TABLE 1-125: SQUARE OBJECT PROPERTIES

PROPERTY DESCRIPTION

l Side length

base Base point

x, y Position of the object

rot Rotational angle
E R 1 : C O M M A N D R E F E R E N C E

square1, square2
In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

Example The commands below create a unit solid square geometry object and plot it.

sq1 = square2(1);
geomplot(sq1)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also geomcsg, rect1, rect2
423

tangent

424 | C H A P T
tangentPurpose Create a tangent to a 2D geometry object.

Syntax g = tangent(g1,g2,...)
g = tangent(g1,p1,...)

Description g = tangent(g1,g2,...) creates a common tangent line between geometry
object g1 and geometry object g2.

g = tangent(g1,p1,...) creates a tangent line from geometry object g1 to a
point p1.

The function tangent accepts the following property/values pairs:

The following properties are valid in the Out cell array:

TABLE 1-126: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY
VALUE

DEFAULT DESCRIPTION

Edim1 0 or 1 geometry
dependent

Starting point element
dimension: 0 for vertex, 1 for
edge

Edim2 0 or 1 geometry
dependent

Ending point element
dimension: 0 for vertex, 1 for
edge

Dom1 positive
integer

1 Starting point domain number

Dom2 positive
integer

1 Ending point domain number

Start1 number
between 0
and 1

0.5 Starting point parameter value
on specified edge

Start2 number
between 0
and 1

0.5 Ending point parameter value on
specified edge

Out cell array
of strings

{} Additional output data (see
Table 1-127)

TABLE 1-127: OUTPUT DATA TYPES

ENTRY IN OUT CELL ARRAY DESCRIPTION

Dom1 Domain number of starting point

Dom2 Domain number of ending point

Param1 Parameter value of starting point

Param2 Parameter value of ending point
E R 1 : C O M M A N D R E F E R E N C E

Examples The following commands generate a tangent from the unit
circle to the point (2, 0) and plot the result:

c=circ2;
t=tangent(c,[2 0]);
geomplot(c); hold on; geomplot(t);

The following commands generate a common tangent between
two circles and plot the result:

c1=circ2;
c2=circ2(1,'pos',[2 2]);
t=tangent(c1,c2,'dom1',4,'dom2',4);
geomplot(c1); hold on; geomplot(c2);
geomplot(t);

Coord1 Coordinate of starting point

Coord2 Coordinate of ending point

TABLE 1-127: OUTPUT DATA TYPES

ENTRY IN OUT CELL ARRAY DESCRIPTION
C O M M A N D S G R O U P E D B Y F U N C T I O N | 425

426 | C H A P T E
tetrahedron2, tetrahedron3Purpose Create a tetrahedron geometry object.

Syntax t2 = tetrahedron2(p)
t3 = tetrahedron3(p)

Description t3 = tetrahedron3 creates a solid tetrahedron object with the
corners at the origin and at the distance 1 from the origin along
each positive coordinate axis. tetrahedron3 is a subclass of
solid3.

t3 = tetrahedron3(p) creates a solid tetrahedron object with
the corners given by the four columns of p.

t2 = tetrahedron2(...) creates a surface tetrahedron object.
tetrahedron2 is a subclass of face3.

The 3D geometry object properties are available. The
properties can be accessed using the syntax
get(object,property). See geom3 for details

Examples The following command generates a solid tetrahedron object.

t3 = tetrahedron3([0 0 1 1;...
 0 0.8 1 0;...
 0 0.1 0 0.2]);

See Also face3, geom0, geom1, geom2, geom3
R 1 : C O M M A N D R E F E R E N C E

torus2, torus3Purpose Create torus geometry object.

Syntax t3 = torus3
t2 = torus2
t3 = torus3(rmaj,rmin)
t2 = torus2(rmaj,rmin)
t3 = torus3(rmaj,rmin,phi)
t2 = torus2(rmaj,rmin,phi)
t3 = torus3(rmaj,rmin,phi,...)
t2 = torus2(rmaj,rmin,phi,...)

Description t3 = torus3 creates a solid torus object with directrix radius 1
and generatrix radius 0.5 about the z-axis. torus3 is a subclass
of solid3.

t3 = torus3(rmaj,rmin) creates a solid torus with directrix
radius rmaj and generatrix radius rmin, where rmaj>rmin.

t3 = torus3(rmaj,rmin,phi) additionally sets the revolution
angle phi of the torus.

The functions torus3/torus2 accept the following property/
values:

t3 = torus2(...) works similarly to above, but creates a
surface torus object. torus2 is a subclass of face3.

TABLE 1-128: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

Const Cell array of
strings

{} Evaluation context for string inputs

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

Rot real or string 0 Rotational angle about Axis (radians)
C O M M A N D S G R O U P E D B Y F U N C T I O N | 427

428 | C H A P T E
Torus objects have the following properties:

In addition, all 3D geometry object properties are available. All
properties can be accessed using the syntax
get(object,property). See geom3 for details.

For more information on geometry objects, see geom and
geomcsg.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The
numbering of faces, edges and vertices is different from the
numbering in objects created in 2.3.

Examples The following commands generate a surface and solid torus,
respectively.

t2 = torus2(2,1,pi,'pos',[0 0 0],'axis',[0 0 1]);
t3 = torus3(10,2,pi/2,'pos',[1 1 1],'axis',[0 0
-100],...
 'rot',pi/3);

See Also face3, geom0, geom1, geom2, geom3

TABLE 1-129: TORUS OBJECT PROPERTIES

PROPERTY DESCRIPTION

rmaj Directrix

rmin Generatrix

revang Revolution angle

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
R 1 : C O M M A N D R E F E R E N C E

xmeshinfoPurpose Get extended mesh information.

Syntax out = xmeshinfo(fem,...);
out = xmeshinfo(xmesh,...);

Description The xmeshinfo function provides information about the
numbering of elements, nodes, and degrees of freedom (DOFs)
in the extended mesh and in the matrices returned by assemble
and the solvers.

The properties Mcase, Geomnum, Edim, and Meshtype
determine the part of the extended mesh that information is
requested for. The properties Lnode, Dofname, and Ldof
determine the local nodes, DOF names, and local DOFs that

TABLE 1-130: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Dofname string | cell array of strings all DOF names

Edim integer vector all Element
dimensions

Geomnum integer vector all Geometry
numbers

Ldof cell array all Local DOFs

Lnode real matrix all Local coordinates
of nodes

Mcase integer mesh case
with
largest
number of
DOFs

Mesh case

Meshtype vtx | edg | tri | quad | tet | hex |
prism | edg2 | tri2 | quad2 | tet2
| hex2 | prism2 | cell array of these
strings

all Mesh element
types

Null sparse matrix identity Null-space matrix
for constraint
elimination

Out mcases | femindex | dofs | nodes
| edims | types | dofnames |
ndofs | elements | cell array of
these strings

dofs Output names

Solcomp string | cell array of strings all DOFs solved for
C O M M A N D S G R O U P E D B Y F U N C T I O N | 429

430 | C H A P T E
information is requested for. The property Ldof is a cell array
where the first row contains DOF names, and the remaining
rows contain local coordinates.

N U M B E R I N G C O N V E N T I O N S

The numbering provided by xmeshinfo corresponds to the
numbering in the mesh data structure (see femmesh). The
extended mesh uses a different numbering internally. All
numberings are 1-based.

• Elements. For each mesh element type, the element
numbering of femmesh is used.

• Node points. The node points in femmesh have the same
numbers in the extended mesh. Additional node points have
higher numbers (these are arbitrarily ordered).

• Local node points. The numbering of the local node points
within a mesh element is different from the numbering in
femmesh. However, the same definition of the local
coordinate system is used. In the extended mesh, the local
node points are ordered in lexicographical order of their local
coordinates. In femmesh, the mesh vertices come first, in
lexicographical order, and then come the other node points
in lexicographical order (the latter are only present for a
second-order mesh).

• DOFs. By default, the DOF number is the index in the
complete set of degrees of freedom of the model. If the
property Solcomp is given, the DOF number is the index in
the set of DOFs solved for. If the property Null is given, it is
assumed that the Eliminate constraint handling method is
used, and the DOF number is the index in the set of
unconstrained DOFs. This assumes a simple form of the
constraints, where each constraint only constrains one DOF.
In other words, each column of the Null matrix has a single
nonzero element. If Null does not have this form, an error
message is given. The Null matrix is an output from the
solvers (see femlin).
R 1 : C O M M A N D R E F E R E N C E

O U T P U T S W I T H G L O B A L S C O P E

mcases = xmeshinfo(xmesh,'out','mcases') returns an
integer vector containing all mesh cases in the extended mesh
xmesh.

femindex = xmeshinfo(xmesh,'out','femindex') returns
an integer vector containing indices into xfem.fem for all
geometries in xmesh. That is, geometry geomnum in xmesh is
xfem.fem{femindex(geomnum)}.geom.

dofs = xmeshinfo(xmesh,'out','dofs') returns
information about DOFs in xmesh for the mesh case given by
the property Mcase. The return value dofs is a struct with the
following fields:

O U T P U T S R E L A T E D T O G E O M E T R I E S

nodes = xmeshinfo(xmesh,'out','nodes') returns
information about nodes in the part of xmesh determined by the

TABLE 1-131: DOFS STRUCT

FIELD CONTENTS

mcase Mesh case number

geomnums Geometry numbers for all DOFs (vector)

nodes Node numbers for all DOFs (vector)

coords Global coordinates for all DOFs. The kth
column of this matrix contains the coordinates
of DOF number k

names DOF names. Note that this is a subset of the
property Dofname (if given)

nameinds Indices into names for all DOFs (vector). The
value 0 means that the DOF is not present in
names

solcompinds Indices into set of DOFs solved for
(determined by property Solcomp) for all
DOFs (vector). This field is only present if the
Null property is given

alldofinds Indices into total set of DOFs in the model for
all DOFs (vector). This field is only present if
the Solcomp property is given
C O M M A N D S G R O U P E D B Y F U N C T I O N | 431

432 | C H A P T E
properties Mcase and Geomnum. The return value nodes is a
struct or a cell array of structs with the following fields:

O U T P U T S R E L A T E D T O M E S H E L E M E N T T Y P E S

edims = xmeshinfo(xmesh,'out','edims') returns a vector
containing the element dimensions in the part of xmesh
determined by the properties Mcase, Geomnum, Edim, and
Meshtype.

types = xmeshinfo(xmesh,'out','types') returns a cell
array of strings containing the mesh element types in the part of
xmesh determined by the properties Mcase, Geomnum, Edim,
and Meshtype.

dofnames = xmeshinfo(xmesh,'out','dofnames') returns
a cell array of strings containing the DOF names in the part of
xmesh determined by the properties Mcase, Geomnum, Edim,
Meshtype, Lnode, Dofname, and Ldof.

ndofs = xmeshinfo(xmesh,'out','ndofs') returns the
number of DOFs in the part of xmesh determined by the
properties Mcase, Geomnum, Edim, Meshtype, Lnode, Dofname,
and Ldof.

elements = xmeshinfo(xmesh,'out','elements') returns
information about mesh elements in the part of xmesh
determined by the properties Mcase, Geomnum, Edim, and

TABLE 1-132: NODES STRUCT CORRESPONDING TO A GEOMETRY

FIELD CONTENTS

mcase Mesh case number

geomnum Geometry number

names DOF names in this geometry. Note that this is a
subset of the property Dofname (if given)

dofs DOF numbers for all nodes in this geometry.
dofs(k,n) is the DOF number for DOF name
names{k} at node point n. A value 0 means that
there is no DOF with this name at the node

coords Global coordinates for all nodes. The nth column
of the matrix coords contains the coordinates of
node point number n
R 1 : C O M M A N D R E F E R E N C E

Meshtype. The return value elements is a struct or a cell array
of structs with the following fields:

Examples Assume that fem.mesh is an imported NASTRAN mesh with
second-order tetrahedral elements, where node point
numbering starts at 1. Use second-order Lagrange elements:

m= meshimport('nastrandemo1.nas');
fem.mesh = m{1};
fem.dim = 'u';
fem.shape = 2;
fem.equ.c = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);

TABLE 1-133: ELEMENTS STRUCT CORRESPONDING TO A MESH ELEMENT TYPE

FIELD CONTENTS

mcase Mesh case number

geomnum Geometry number

edim Element dimension

type Mesh element type

lnodes Local coordinates of nodes. The kth column of
the matrix lnodes contains the coordinates of
local node point number k. Note that lnodes is
a subset of the property Lnode (if given)

nodes Node point indices for all mesh elements of type
type. nodes(k,el) is the node point number
within geometry geomnum (see the output
nodes) for local node point k within mesh
element el. A value 0 means that there is no
node point at this location

ldofs A cell array containing the local DOFs. The first
row contains DOF names, and the remaining
rows contain local coordinates. If the property
Ldof is given, ldofs is restricted to a subset.
Otherwise, ldofs is restricted by the properties
Lnode and Dofname (if given)

dofs DOF numbers for all mesh elements of type
type. dofs(k,el) is the DOF number for local
DOF ldofs(:,k) within mesh element el. A
value 0 means that there is no DOF at this
location
C O M M A N D S G R O U P E D B Y F U N C T I O N | 433

434 | C H A P T E
To get the DOF number corresponding to node point number
22 in the NASTRAN mesh, type

nodes = xmeshinfo(fem,'out','nodes');
nodes.dofs(1,22)

Compute an eliminated stiffness matrix and a null-space matrix
by

[Kc,Null]=femstatic(fem,'out',{'Kc' 'Null'});

To find the node point number corresponding to column 30 of
Kc, and its coordinates, type

dofs = xmeshinfo(fem,'out','dofs','null',Null);
n = dofs.nodes(30)
dofs.coords(:,30) % alternatively:
nodes.coords(:,n)

To find the six DOF numbers in tetrahedron element 10 of the
mesh, type

elements = xmeshinfo(fem,'out','elements',...
 'meshtype','tet2');
elements.dofs(:,10)

To find the total number of DOFs on the boundary, type

xmeshinfo(fem,'out','ndofs','edim',2)

See Also femmesh, meshextend
R 1 : C O M M A N D R E F E R E N C E

 2
D i a g n o s t i c s
This chapter contains lists of the most common error messages that may occur in
COMSOL Multiphysics. The lists also include an explanation of the error and
possible causes and workarounds.
 435

436 | C H A P T E

ML

ons are not

ity at the z
er using a
geometry
E r r o r Me s s a g e s

This section summarizes the most common error messages and solver messages
generated by COMSOL Multiphysics. All error messages are numbered and sorted in
different categories according to the following table.

For error messages that do not appear in the following lists, contact COMSOL’s
support team for help.

2000–2999 Geometry Modeling

TABLE 2-1: ERROR MESSAGE CATEGORIES

NUMBERS CATEGORY

1000–1999 Importing Models

2000–2999 Geometry Modeling

3000–3999 CAD Import

4000–4999 Mesh Generation

5000–5999 Point, Edge, Boundary, and Subdomain Specification

6000–6999 Assembly and Extended Mesh

7000–7999 Solvers

8000–8999 Postprocessing

9000–9999 General

TABLE 2-2: GEOMETRY MODELING ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

2118 Negative output from empty input Incorrect Geometry M-file.

2119 Non scalar output from empty input Incorrect Geometry M-file.

2120 Normal directions are inconsistent Incorrect input data from STL/VR
import.

2138 Self intersections not supported Curves resulting in self-intersecti
supported.

2140 Singular extrusions not supported Error in input parameters.

2141 Singular revolutions not supported The revolved mesh has a singular
axis. If possible, create the cylind
3D primitive or by revolving the
before meshing.
R 2 : D I A G N O S T I C S

esh.

esh.

et/chamfer.

an empty
wed. Make
s not

ometry
f the
e axis for

erical
rons with

arameters.
rrow
f the
oundary
mall and
rt
cent to

erical
s with a
ameters.
rrow
f the
oundary
mall and
rt
cent to
4000–4999 Mesh Generation

2146 Subdomain must bounded at least four
boundary segments

Incorrect geometry for mapped m

2147 Subdomain must bound one connected edge
component only

Incorrect geometry for mapped m

2190 Invalid radius or distance Incorrect input parameters to fill

2197 Operation resulted in empty geometry
object

Geometry operation resulted in
geometry object which is not allo
sure an empty geometry object i
created.

2209 Geometry to revolve may not cross axis of
revolution

The axis of revolution and the ge
intersect. Check the dimension o
geometry and the definition of th
the revolution.

TABLE 2-2: GEOMETRY MODELING ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

TABLE 2-3: MESH GENERATION ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

4002 A degenerated tetrahedron was created The mesh generator ran into num
difficulties while creating tetrahed
a size based on user-controlled p
Causes could be too small and na
subdomains relative to the rest o
geometry or exceedingly short b
segments. Try to avoid creating s
narrow subdomains and very sho
boundary segments that are adja
longer boundary segments.

4003 A degenerated triangle was created The mesh generator ran into num
difficulties while creating triangle
size based on user-controlled par
Causes could be too small and na
subdomains relative to the rest o
geometry or exceedingly short b
segments. Try to avoid creating s
narrow subdomains and very sho
boundary segments that are adja
longer boundary segments.
E R R O R M E S S A G E S | 437

438 | C H A P T E

apped
rs or
ssibly help

 the given

point there

king the
ometry
is could be
or contains
rences in
t some
oo narrow
ometry.

used for
 be

o the
s is found.
s not

 edge of
4012 Cannot create mapped mesh for this
geometry

The geometry does not fulfill the
topological requirements for a m
mesh. Changes in input paramete
further subdomain division can po
this.

4026 Failed create matching edge discretizations Cannot make mapped mesh with
input parameters.

4029 Failed to insert point Problems inserting point at given
coordinate. Manually inserting a
may help.

4031 Failed to respect boundary element on
geometry edge

The mesh generator failed in ma
elements compatible with the ge
object’s edges. The reason for th
that the face mesh is too coarse
adjacent elements with large diffe
scale. Another reason can be tha
subdomains in the geometry are t
with respect to the rest of the ge

4032 Failed to respect boundary element on
geometry face

See Error message 4031.

4044 Internal error boundary respecting See Error message 4031.

4054 Invalid topology of geometry The geometry object cannot be
creating a mapped mesh. It must
subdivided.

4055 Isolated entities found Entities that are not connected t
boundaries of a geometry object
The mapped mesh generator doe
support such isolated entities.

4119 Singular edge detected The geometry object contains an
zero length.

TABLE 2-3: MESH GENERATION ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
R 2 : D I A G N O S T I C S

rms of
of
at variable

s with

 the name
e names of
e entered
2.

d solution
umber of
ue to a
elements
ware. To
 Initial

 and select
 initial
thout using

d solution
umber of
ue to a
elements
ware. To
 Value of
rization
 and click
 frame

s a divisor
e sure that
n any

t
e variable
s for a
n
 variable.
riables.
6000–6999 Assembly and Extended Mesh

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

6008 Circular variable dependency detected A variable has been defined in te
itself, possibly in a circular chain
expression variables. Make sure th
definitions are sound. Be cautiou
equation variables in equations.

6063 Invalid degree of freedom name The software does not recognize
of a degree of freedom. Check th
dependent variables that you hav
for the model. See also Error 719

6139 Wrong number of DOFs in initial value The current solution or the store
has for some reason the wrong n
degrees of freedom, sometimes d
change of the implementation of
between two versions of the soft
overcome the problem, go to the
value area in the Solver Manager,
Initial value expression. Then the
value expressions is evaluated wi
the current or stored solution.

6140 Wrong number of dofs in linearization point The current solution or the store
has for some reason the wrong n
degrees of freedom, sometimes d
change of the implementation of
between two versions of the soft
overcome the problem, go to the
variables not solved for and linea
point area in the Solver Manager,
the Use setting from Initial value
button or the Zero button.

6163 Divide by zero A property in the model contain
that becomes zero. Check to mak
division by zero does not occur i
expression or coefficient.

6164 Duplicate variable name A variable name has two differen
definitions. For instance, the sam
name appears two or more time
dependent variable, a constant, a
expression variable, or a coupling
Remove or rename one of the va
E R R O R M E S S A G E S | 439

440 | C H A P T E

ing the
OMSOL
 variable
ssage
SOL
te. Make
riables
s.

 where a
ke the
e that a>0.
gative (due
 process).
e
nstant.
bs(a)). If
ogarithm,
Parameters
ions with

ture such
 matrix)
t possible
 solvers/

ersions of
). Try the
instead.

re a
 integer. To
ke sure
 slightly
in the
le solution
small
se
e a
Advanced
ct Use
t.
6170 Failed to evaluate variable An error occurred when evaluat
variable. The domains in which C
Multiphysics tried to evaluate the
are indicated. Also, the error me
shows the expression that COM
Multiphysics was unable to evalua
sure that you have defined the va
correctly in the indicated domain

6176 Attempt to evaluate real logarithm of
negative number

An expression contains log(a),
becomes negative or zero. To ma
logarithm well-defined, make sur
Often, a becomes only slightly ne
to approximations in the solution
Then, a possible solution is to us
log(a+e), where e is a small co
Another remedy is to use log(a
you do want to have a complex l
go to the Advanced tab of Solver
and select the Use complex funct
real input check box.

6177 Matrix has zero on diagonal When the equations have a struc
that the stiffness matrix (Jacobian
has zeros on the diagonal, it is no
to use the following linear system
preconditioners/smoothers: all v
SOR and Diagonal scaling (Jacobi
Vanka preconditioner/smoother

6194 Attempt to evaluate non-integral power of
negative number

An expression contains a^b, whe
becomes negative and b is non an
make the power well-defined, ma
that a>0. Often, a becomes only
negative (due to approximations
solution process). Then, a possib
is to use (a+e)^b, where e is a
constant. Another remedy is to u
abs(a)^b. If you do want to hav
complex number a^b, go to the
tab of Solver Parameters and sele
complex functions with real inpu

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
R 2 : D I A G N O S T I C S

re root)
ot of a
e that the
tive or
 with real
 tab in the

ined
nction
tion is in
AB’s path.

bles. As a
ns of the
f any

undary

 triangular
10, and for
an be up
e section
 472.
6199 Attempt to evaluate real square root of
negative number

The model contains a sqrt (squa
function that takes the square ro
negative number. Either make sur
square-root argument is nonnega
select the Use complex functions
input check box on the Advanced
Solver Parameters dialog box.

6204 Undefined function call An expression contains an undef
function name. Check that the fu
name is correct and that the func
COMSOL Multiphysics’ or MATL

6206 Internal evaluation error: unexpected NaN
encountered

Not-A-Number (NaN) appears
unexpectedly. A possible cause is
improperly defined coupling varia
first step, check that the definitio
source and destination domains o
coupling variables or periodic bo
conditions are correct.

6245 Unsupported integration order Integration order is too high. For
elements, the order can be up to
tetrahedral elements, the order c
to 8. Find more information in th
“Numerical Quadrature” on page

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 441

442 | C H A P T E

 mesh
g
r turn off
tch from
hedral

 mesh
g triangular
aptive

lar

lver do not
ne reason
 boundary
nar inflow
ent
he model.

trix) is
 leads to
K’s back
ear for 3D
 elements
al. Try to
d elements

rs when
at returns
ed, for the
 instance,
tains a
garithm of
blem,
ial value so
d when
e variables.
he Log
7000—7999 Solvers and Preconditioners

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

7001 Adaption only implemented for tetrahedral
meshes

It is only possible to use adaptive
refinement in 3D for models usin
tetrahedral mesh elements. Eithe
adaptive mesh refinement or swi
brick or prism elements to tetra
elements.

7002 Adaption only implemented for triangular
meshes

It is only possible to use adaptive
refinement in 2D for models usin
mesh elements. Either turn off ad
mesh refinement or switch from
quadrilateral elements to triangu
elements.

7022 Segregated solver steps do not involve all of
solcomp

The groups for the segregated so
include all dependent variables. O
for this error could be that some
conditions (for example, for lami
in fluid-flow models) add depend
variables that are not initially in t

7033 Error in UMFPACK back substitution The stiffness matrix (Jacobian ma
singular or almost singular, which
undefined operations in UMFPAC
substitution. This error could app
models with a mesh where some
are close to being two-dimension
modify or refine the mesh to avoi
with low quality.

7043 Initial guess leads to undefined function
value

This error message usually appea
you have set up an expression th
“not a value,” that is, it is undefin
initial condition you have set. For
this happens if an expression con
divisor that becomes zero or a lo
a negative value. To solve the pro
change the expression or the init
that the expression is well-define
substituting the initial value of th
Also, watch out for warnings in t
window.
R 2 : D I A G N O S T I C S

re are no
the case
esh, try

e mesh to

 did not
s or a bad
 on the
e a better
direct

ind a name
me of
al page of

ry. See

uring back
rding

uring LU
arding
7067 System matrix is zero This error message appears if the
volume elements in the mesh. In
that you have a mapped surface m
sweeping or extruding the surfac
get a volume mesh.

7069 Maximum number of linear iterations
reached

The iterative linear system solver
converge due to a bad initial gues
preconditioner. Increase the limit
number of linear iterations or us
preconditioner. If possible, use a
linear system solver.

7081 No parameter name given The parametric solver does not f
for the parameter. Check the Na
parameter edit field on the Gener
the Solver Manager.

7092 Out of memory in Algebraic multigrid The Algebraic multigrid solver/
preconditioner ran out of memo
error 7144 regarding general
memory-saving tips.

7093 Out of memory during back substitution The solver ran out of memory d
substitution. See error 7144 rega
general memory-saving tips.

7094 Out of memory during LU factorization The solver ran out of memory d
factorization. See error 7144 reg
general memory-saving tips.

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 443

444 | C H A P T E

rix or
e solver
ns that the
ck that all
that the
iate. For
u usually
n on some
d also
o low
uality is

rouble.
essage is
rders for
, for

 the same
at are

of the
e solution.
tioner,

mory. The
nerated a
ou run out
fficient
zing
ntially, and
s. See the
age 359 in
 for more

L Installation
n about

memory.
l

memory.
l
7111 Singular matrix The system matrix (Jacobian mat
stiffness matrix) is singular, so th
cannot invert it. Usually this mea
system is underdetermined. Che
equations are fully specified and
boundary conditions are appropr
instance, in a stationary model yo
need to have a Dirichlet conditio
boundary. A singular matrix coul
occur if mesh elements are of to
quality. If the minimum element q
less than 0.005 you might be in t
Another reason for this error m
that you have different element o
two variables that are coupled by
example, a weak constraint. Use
element order for all variables th
coupled.

7136 Very ill-conditioned preconditioner. The
relative residual is more than 1000 times
larger than the relative tolerance

You need to improve the quality
preconditioner to get an accurat
For the Incomplete LU precondi
lower the drop tolerance.

7144 Out of memory in adaptive solver The adaptive solver ran out of me
adaptive mesh refinement has ge
too fine mesh. In general, when y
of memory, try to use memory-e
modeling techniques such as utili
symmetries, solving models seque
selecting memory efficient solver
chapter “Solving the Model” on p
the COMSOL Multiphysics User’s Guide
information. See also the COMSO
and Operations Guide for informatio
system memory management.

7145 Out of memory in eigenvalue solver The eigenvalue solver ran out of
See error 7144 regarding genera
memory-saving tips.

7146 Out of memory in stationary solver The stationary solver ran out of
See error 7144 regarding genera
memory-saving tips.

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
R 2 : D I A G N O S T I C S

ut of
g general

trix) is
 leads to
mplete LU
n.

e in the
dvanced
log box
dent

 algorithms
algorithm
g.

omputer.
card does
ave a Unix/
 has not

rver name
nnect a

nection to
er crashed
g
n the TCP/
9000–9999 General Errors

7147 Out of memory in time-dependent solver The time-dependent solver ran o
memory. See error 7144 regardin
memory-saving tips.

7165 Incomplete LU back substitution failed The stiffness matrix (Jacobian ma
singular or almost singular, which
undefined operations in the Inco
preconditioner’s back substitutio

7192 Invalid degree of freedom name in manual
scaling

The name of a dependent variabl
Manual scaling edit field on the A
page in the Solver Parameters dia
does not match any of the depen
variables in the model.

7199 Reordering failed One of the PARDISO reordering
failed. Try a different reordering
or try turning off row preorderin

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

TABLE 2-6: GENERAL ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

9037 Failed to initialize 3D graphics. OpenGL not
fully supported

OpenGL is not available on the c
This can happen if your graphics
not support OpenGL or if you h
Linux computer where OpenGL
been configured.

9052 Invalid address/port You did not enter the correct se
or server port when trying to co
client to a server.

9084 Server connection error The client somehow lost the con
the server. For example, the serv
unexpectedly, or the power savin
mechanism on a laptop shut dow
IP connection.
E R R O R M E S S A G E S | 445

446 | C H A P T E

his

en
y in the
The
 the

where
.4

ted
 log file
ed the
 to see the

 in doubt

ect
r and the

 COMSOL
 COMSOL

 M-file that
d exists in
puts are
t the
 same size.
9143 License error The most common reasons for t
message:

The license file license.dat has be
removed from the right director
COMSOL software installation.
license.dat file must be located in
$COMSOL34/license directory,
$COMSOL34 is the COMSOL 3
installation directory.

The license manager has not star
properly. Please find the FLEXlm
(named by the person who start
license manager). Inspect this file
server status. Send it to
support@comsol.com if you are
about how to interpret this file.

It is crucial that you use the corr
license.dat file on both the serve
clients

9178 Error in callback An error occurred when calling a
Script or MATLAB function from
Multiphysics. Make sure that the
defines the function is correct an
the current path. Note that all in
vectors of the same size, and tha
output should be a vector of the

TABLE 2-6: GENERAL ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
R 2 : D I A G N O S T I C S

Solver Error Messages

These error messages can appear during solution and appear on the Log tab in the
Progress window.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION

Cannot meet error
tolerances. Increase
absolute or relative
tolerance.

The time-dependent solver cannot solve the model to the
specified accuracy.

Error in residual
computation

Error in Jacobian
computation

The evaluation of the residual or the Jacobian generated an
error during a time-dependent solution. An additional
message states the direct error. Some possible reasons are
division by zero, range and overflow errors in mathematical
functions, and interpolation failure in coupling variables
with time-dependent mesh transformation.

Failed to find a solution The nonlinear solver failed to converge. An additional
error message gives some more details. See the description
for that message.

Failed to find a solution
for all parameters, even
when using the minimum
parameter step

During a parametric solution, the nonlinear iteration did
not converge despite reducing the parameter step length
to the minimum allowed value. The solution may have
reached a turning point or bifurcation point.

Failed to find a solution
for initial parameter

The nonlinear solver failed to converge for the initial value
of the parameter during a parametric solution. An
additional error message gives some more details. See the
description for that message.

Failed to find consistent
initial values

The time-dependent solver could not modify the initial
conditions given to a DAE system to satisfy the stationary
equations at the initial time. Make sure the initial values
satisfy the equations and boundary conditions. In many
cases, this can be achieved by solving for only the algebraic
variables using a stationary solver before starting the
time-dependent solver.

Ill-conditioned
preconditioner. Increase
factor in error estimate
to X

The preconditioner is ill-conditioned. The error in the
solution might not be within tolerances. To be sure to have
a correct solution, open the Linear System Solver Settings
dialog box from the General tab of Solver Parameters.
Select Linear system solver in the tree, and increase Factor
in error estimate to the suggested number X. Alternatively,
use a better preconditioner or tune the settings for the
preconditioner.
E R R O R M E S S A G E S | 447

448 | C H A P T E
Inf or NaN found, even
when using the minimum
damping factor

Despite reducing the step size to the minimum value
allowed, the solver cannot evaluate the residual or
modified Newton direction at the new solution iterate.
This essentially means that the current approximation to
the solution is close to the boundary of the domain where
the equations are well-defined. Check the equations for
divisions by zero, powers, and other functions that can
become undefined for certain inputs.

Inverted mesh element
near coordinates (x, y, z)

In some mesh element near the given coordinates, the
(curved) mesh element is (partially) warped inside-out.
More precisely, the Jacobian matrix for the mapping from
local to global coordinates has a negative determinant at
some point. A possible reason is that the linear mesh
contains a tetrahedron whose vertices all lie on a
boundary. When improving the approximation of the
boundary using curved mesh elements, the curved mesh
element becomes inverted. To see whether this is the case,
you can change Geometry shape order to 1 in the Model
Settings dialog box, which means that curved mesh
elements will not be used. You can usually avoid such bad
tetrahedra by using a finer mesh around the relevant
boundary. Another reason for this error message can be
that the mesh becomes inverted when using a deformed
mesh.

Last time step is not
converged.

The last time step returned from the time-dependent
solver is not to be trusted. Earlier time steps are within the
specified tolerances.

Matrix is singular When encountered during time-dependent solution: the
linear system matrix (which is a linear combination of the
mass-, stiffness-, and possibly, damping-matrices) is singular.
Usually the problem originates from the algebraic part of a
DAE. In particular, the cause can often be found in weak
constraints or constraint-like equations like the continuity
equation in incompressible flow.

Maximum number of
linear iterations reached

The iterative linear system solver failed to compute a
Newton direction in the specified maximum number of
iterations.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION
R 2 : D I A G N O S T I C S

Maximum number of
Newton iterations
reached

The nonlinear solver could not reduce the error below the
desired tolerance in the specified maximum number of
iterations. This is sometimes a sign that the Jacobian is not
complete or badly scaled. It may even be almost singular, if
the system is underdetermined. If the returned solution
seems reasonable, it might be enough to restart the solver
with this solution as the initial guess.

No convergence, even
when using the minimum
damping factor

The nonlinear solver reduced the damping factor below
the minimum value allowed. The solver reduces the
damping factor each time a computed step did not lead to
a decrease in the error estimate. Make sure the model is
well-posed, in particular that there are enough equations
and boundary conditions to determine all degrees of
freedom. If the model is well-posed, it should have one or
more isolated solutions. In that case, the error is probably
due to the initial guess being too far from any solution.

Nonlinear solver did not
converge

During a time-dependent solution, the nonlinear iteration
failed to converge despite reducing the time step to the
minimum value allowed. Usually, the error is related to the
algebraic part of a DAE. For example, the algebraic
equations can have reached a turning point or bifurcation
point. The error can also appear when the algebraic
equations do not have a unique solution consistent with
the given initial conditions. Make sure algebraic equations
have consistent initial values and that they have a unique
solution for all times and values reached by the other
variables.

Not all eigenvalues
returned

When the eigenvalue solver terminated (stopped by the
user or due to an error), it had not found the requested
number of eigenvalues. The eigenvalues returned can be
trusted.

Not all parameter steps
returned

After premature termination of the parametric solver, only
some of the requested solutions have been computed.

Predicted solution guess
leads to undefined
function value

The solver computes the initial guess for the new
parameter value based on the solution for the previous
parameter value. This initial guess led to an undefined
mathematical operation. Try using another Predictor on
the Parametric tab of Solver Parameters.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 449

450 | C H A P T E
Repeated error test
failures. May have
reached a singularity.

During a time-dependent solution, the error tolerances
could not be met despite reducing the time step to the
minimum value allowed.

Returned solution has
not converged.

The solution returned by the stationary solver is not to be
trusted. It might, however, be useful as initial guess after
modifying equations or solver settings.

The elasto-plastic solver
failed to find a solution

The Newton iteration loop for the computation of the
plastic state at some point in the geometry did not
converge.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION
R 2 : D I A G N O S T I C S

 3
T h e F i n i t e E l e m e n t M e t h o d
This chapter contains a theoretical background to the finite element method and
an overview of the finite element types in COMSOL Multiphysics. Sections in this
chapter also explain how COMSOL Multiphysics forms the system of equations
and constraints that it solves and the implications of Dirichlet conditions involving
several solution components in a multiphysics model.
 451

452 | C H A P T E
Unde r s t a nd i n g t h e F i n i t e E l emen t
Me t h od

This section describes how the Finite Element Method (FEM) approximates a PDE
problem with a problem that has a finite number of unknown parameters, that is, a
discretization of the original problem. This concept introduces finite elements, or
shape functions, that describe the possible forms of the approximate solution.

Mesh

The starting point for the finite element method is a mesh, a partition of the geometry
into small units of a simple shape, mesh elements. For more information about the
types of elements that are available in 1D, 2D, and 3D, see “Mesh Elements” on page
286.

Sometimes the term “mesh element” means any of the mesh elements—mesh faces,
mesh edges, or mesh vertices. When considering a particular d-dimensional domain in
the geometry (that is, a subdomain, boundary, edge, or vertex), then by its mesh
elements you mean the d-dimensional mesh elements contained in the domain.

Finite Elements

Once you have a mesh, you can introduce approximations to the dependent variables.
For this discussion, concentrate on the case of a single variable, u. The idea is to
approximate u with a function that you can describe with a finite number of
parameters, the so-called degrees of freedom (DOF). Inserting this approximation into
the weak form of the equation generates a system of equations for the degrees of
freedom.

Start with a simple example: linear elements in 1D. Assume that a mesh consists of just
two mesh intervals: 0 < x < 1 and 1 < x < 2. Linear elements means that on each mesh
interval the continuous function u is linear (affine). Thus, the only thing you need to
know in order to characterize u uniquely is its values at the node points x1 = 0, x2 = 1,
and x3 = 2. Denote these as U1 = u(0), U2 = u(1), U3 = u(2). These are the degrees of
freedom.

Now you can write
R 3 : T H E F I N I T E E L E M E N T M E T H O D

where are certain piecewise linear functions. Namely, is the function that
is linear on each mesh interval, equals 1 at the ith node point, and equals 0 at the other
node points. For example,

The are called the basis functions. The set of functions u(x) is a linear function
space called the finite element space.

For better accuracy, consider another finite element space corresponding to quadratic
elements. Functions u in this space are second-order polynomials on each mesh
interval. To characterize such a function, introduce new node points at the midpoint
of each mesh interval: x4 = 0.5 and x5 = 1.5. You must also introduce the
corresponding degrees of freedom Ui = u(xi). Then, on each mesh interval, the
second-degree polynomial u(x) is determined by the degrees of freedom at the
endpoints and the midpoint. In fact, you get

where the basis functions now have a different meaning. Specifically, is
the function that is quadratic on each mesh interval, equals 1 at the ith node point, and
equals 0 at the other node points. For example,

In general, you specify a finite element space by giving a set of basis functions. The
description of the basis functions is simplified by the introduction of local coordinates
(or element coordinates). Consider a mesh element of dimension d in an
n-dimensional geometry (whose space coordinates are denoted x1,..., xn). Consider
also the standard d-dimensional simplex

which resides in the local coordinate space parametrized by the local coordinates ξ1,
…, ξd. If d = 1, then this simplex is the unit interval. If d = 2, it is a triangle with two
45 degree angles, and if d = 3 it is a tetrahedron. Now you can consider the mesh
element as a linear transformation of the standard simplex. Namely, by letting the

u x() U1ϕ1 x() U2ϕ2 x() U3ϕ3 x()+ +=

ϕi x() ϕi x()

ϕ1 x() 1 x if 0 x 1≤ ≤–

0 if 1 x 2≤ ≤⎩
⎨
⎧

=

ϕi x()

u x() U1ϕ1 x() U2ϕ2 x() U3ϕ3 x() U4ϕ4 x() U5ϕ5 x()+ + + +=

ϕi x() ϕi x()

ϕ1 x() 1 x–() 1 2x–() if 0 x 1≤ ≤
0 if 1 x 2≤ ≤⎩

⎨
⎧

=

ξ1 0 ξ2 0 … ξd 0 ξ1 … ξd 1≤+ +,≥, ,≥,≥
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 453

454 | C H A P T E
global space coordinates xi be suitable linear (affine) functions of the local coordinates,
you get the mesh element as the image of the standard simplex.

When described in terms of local coordinates, the basis functions assume one of a few
basic shapes. These are the shape functions. In the example with linear elements in 1D,
any basis function on any mesh element is one of the following:

Thus the first two are the shape functions in this example (0 is not counted as a shape
function). In the example with quadratic elements in 1D, the shape functions are

C U R V E D M E S H E L E M E N T S

When using higher-order elements (that is, elements of an order > 1), the solution has
a smaller error. The error also depends on how well the mesh approximates the true
boundary. To keep errors in the finite element approximation and the boundary
approximation at the same level, it is wise to use curved mesh elements. They are
distorted mesh elements that can approximate a boundary better than ordinary
straight elements (if the problem’s boundary is curved). You can get curved mesh
elements by writing the global coordinates xi as polynomials of order k (the geometry
shape order) in the local coordinates ξj. (The earlier example took k = 1). Then the
mesh element is the image of the standard simplex. For mesh elements that do not
touch the boundary, there is no reason to make them curved, so they are straight. It is
customary to use the same order k here as for the order of the (Lagrange) element.
This is referred to as using isoparametric elements.

The order k is determined by the geometry shape order for the frame (coordinate
system) associated with the finite element. You can control the geometry shape order
using the Model Settings dialog box. The frame is determined by the property frame
to the finite element (the default is the reference frame); see “Shape Function
Variables” on page 171. For certain finite elements, the geometry shape order given
by the frame can be overridden by the property sorder.

If a curved mesh element becomes too distorted, it can become inverted and cause
problems in the solution (see “Avoiding Inverted Mesh Elements” on page 356 in the
COMSOL Multiphysics User’s Guide).

φ ξ1 φ 1 ξ– 1 φ,=, 0= =

φ 1 ξ1–() 1 2ξ1–() φ 4ξ1 1 ξ1–() φ ξ1 2ξ1 1–()=,=,=
R 3 : T H E F I N I T E E L E M E N T M E T H O D

T H E L A G R A N G E E L E M E N T

The preceding examples are special cases of the Lagrange element. Consider a positive
integer k, the order of the Lagrange element. The functions u in this finite element
space are piecewise polynomials of degree k, that is, on each mesh element u is a
polynomial of degree k. To describe such a function it suffices to give its values in the
Lagrange points of order k. These are the points whose local (element) coordinates
are integer multiples of 1/k. For example, for a triangular mesh in 2D with k = 2, this
means that you have node points at the corners and side midpoints of all mesh
triangles. For each of these node points pi, there exists a degree of freedom Ui = u(pi)
and a basis function . The restriction of the basis function to a mesh element is a
polynomial of degree (at most) k in the local coordinates such that at node i,
and at all other nodes. Thus the basis functions are continuous and you have

The Lagrange element of order 1 is called the linear element. The Lagrange element
of order 2 is called the quadratic element.

The Lagrange elements are available with all types of mesh elements. The order k can
be arbitrary, but the available numerical integration formulas usually limits its
usefulness to (for tetrahedral meshes).

Syntax for the Lagrange Element (shlag)
To specify a Lagrange shape function in the shape edit field on the Element page of
Subdomain settings, enter a string of the form shlag(k,basename), where k is the
order (a positive integer) and basename is the name of the variable (a string enclosed
in single quotes), for example, shlag(2,'u'). There is also an alternative syntax
shlag(...) based on property names and values. The following properties are
allowed:

TABLE 3-1: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHLAG SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order positive integer Basis function order

frame string reference
frame

Frame

border positive integer Alias for order

sorder positive integer determined by
frame

Geometry shape order

ϕi ϕi
ϕi 1=

ϕi 0=

u Uiϕi

i
∑=

k 5≤ k 4≤
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 455

456 | C H A P T E
It is not possible to abbreviate the property names, and you must write them in
lowercase letters enclosed in single quotation marks. For example:

shlag('order',2,'basename','u')

Note: When using the property name/value syntax for shlag in COMSOL Script or
MATLAB, you must enter the command as a string with each string argument
enclosed in two single quotes because they become strings within a string:
'shlag(''order'',2,''basename'',''u'')'.

The Lagrange element defines the following variables. Denote basename with u, and
let x and y denote (not necessarily distinct) names of space coordinates. The variables
are (where sdim = space dimension and edim = mesh element dimension):

• u

• ux, meaning the derivative of u with respect to x, defined on edim = sdim

• uxy, meaning a second derivative, defined on edim = sdim

• uTx, the tangential derivative variable, meaning the x-component of the tangential
projection of the gradient, defined on edim < sdim

• uTxy, meaning xy-component of the tangential projection of the second derivative,
defined when edim < sdim

When computing the derivatives, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

Note: The use of isoparametric elements means that u is not a polynomial in the
global coordinates (if k > 1), only in the local coordinates.

T H E A R G Y R I S E L E M E N T

For a function represented with Lagrange elements, the first derivatives between mesh
elements can be discontinuous. In certain equations (for example, the biharmonic
equation) this can be a problem. The Argyris element has basis functions with
continuous derivatives between mesh triangles (it is defined in 2D). The second order
derivative is continuous in the triangle corners. On each triangle, a function u in the
Argyris finite element space is a polynomial of degree 5 in the local coordinates.
R 3 : T H E F I N I T E E L E M E N T M E T H O D

The Argyris element is available with triangular meshes only.

When setting Dirichlet boundary conditions on a variable that has Argyris shape
functions, a locking effect can occur if the boundary is curved and constraint order
(cporder) 5 is used. Use cporder=4 if the boundary is curved and cporder=5 for
straight boundaries.

Syntax for the Argyris Element (sharg_2_5)
To specify Argyris shape functions in the shape edit field on the Element tab in the
Subdomain Settings dialog box, enter a string of the form sharg_2_5(basename),
where basename is the name of the variable (a string enclosed in single quotes), for
example, sharg_2_5('u'). There is also an alternative syntax sharg_2_5(...) based
on property names and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: sharg_2_5('basename','u').

Note: When using the property name/value syntax for sharg in COMSOL Script or
MATLAB, you must enter the command as a string with each string argument
enclosed in two single quotes because they become strings within a string:
'sharg_2_5(''basename'',''u'')'.

The Argyris element defines the following degrees of freedom (where u is the base
name and x and y are the space coordinate names):

• u at corners

• ux and uy at corners, meaning derivatives of u

• uxx, uxy, and uyy at corners, meaning second derivatives

• un at side midpoints, meaning a normal derivative. The direction of the normal is
to the right if moving along an edge from a corner with lower mesh vertex number
to a corner with higher number

TABLE 3-2: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHARG SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

frame string reference
frame

Frame
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 457

458 | C H A P T E
The Argyris element defines the following field variables (where sdim = space
dimension = 2 and edim = mesh element dimension):

• u

• ux, meaning the derivative of u with respect to x

• uxy, meaning a second derivative, defined for edim = sdim and edim = 0

• uxTy, the tangential derivative variable, meaning the y-component of the tangential
projection of the gradient of ux, defined for 0 < edim < sdim

When computing the derivatives, the global space coordinates are always expressed
with shape order 1 in the Argyris element.

T H E H E R M I T E E L E M E N T

On each mesh element, the functions in the Hermite finite element space are the same
as for the Lagrange element, namely, all polynomials of degree (at most) k in the local
coordinates. The difference lies in which DOFs are used. For the Hermite element, a
DOF u exists at each Lagrange point of order k, except at those points adjacent to a
corner of the mesh element. These DOFs are the values of the function. In addition,
other DOFs exist for the first derivatives of the function (with respect to the global
coordinates) at the corners (ux and uy in 2D). Together, these DOFs determine the
polynomials completely. Note that the functions in the Hermite finite element space
have continuous derivatives between mesh elements at the mesh vertices. However, at
other common points for two mesh elements, these derivatives are not continuous.
Thus, you can think of the Hermite element as lying between the Lagrange and Argyris
elements.

The Hermite element is available with all types of mesh elements. The order k ≥ 3 can
be arbitrary, but the available numerical integration formulas usually limits its
usefulness to (for tetrahedral meshes).

When setting Dirichlet boundary conditions on a variable that has Hermite shape
functions, a locking effect can occur if the boundary is curved and the constraint order
cporder is the same as the order of the Hermite element. This means that the
derivative becomes over constrained at mesh vertices at the boundary, due to the
implementation of the boundary conditions. To prevent this locking, you can specify
cporder to be the element order minus 1.

Syntax for the Hermite Element (shherm)
To specify Hermite shape functions in the shape edit field on the Element tab in the
Subdomain Settings dialog box, enter a string of the form shherm(k, basename),

k 5≤ k 4≤
R 3 : T H E F I N I T E E L E M E N T M E T H O D

where k is the order (an integer > 2), and basename is the name of the variable (a string
enclosed in single quotes), for example shherm(3,'u'). There is also an alternative
syntax shherm(...) based on property names and values. The following properties
are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shherm('order',3,'basename','u').

Note: When using the property name/value syntax for shherm in COMSOL Script
or MATLAB, you must enter the command as a string with each string argument
enclosed in two single quotes because they become strings within a string:
'shherm(''order'',3,''basename'',''u'')'.

The Hermite element defines the following degrees of freedom:

• The value of the variable basename at each Lagrange node point that is not adjacent
to a corner of the mesh element.

• The values of the first derivatives of basename with respect to the global space
coordinates at each corner of the mesh element. The names of these derivatives are
formed by appending the space coordinate names to basename.

The Hermite element defines the following field variables. Denote basename with u,
and let x and y denote (not necessarily distinct) names of space coordinates. The
variables are (where sdim = space dimension and edim = mesh element dimension):

• u

TABLE 3-3: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHHERM SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order integer >= 3 Basis function order

frame string reference
frame

Frame

border integer Alias for order

sorder positive integer determined by
frame

Geometry shape order
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 459

460 | C H A P T E
• ux, meaning the derivative of u with respect to x, defined when edim = sdim or
edim=0

• uxy, meaning a second derivative, defined when edim = sdim

• uTx, the tangential derivative variable, meaning the x-component of the tangential
projection of the gradient, defined when 0 < edim < sdim

• uTxy, meaning xy-component of the tangential projection of the second derivative,
defined when edim < sdim

When computing the derivatives, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

B U B B L E E L E M E N T S

Bubble elements have shape functions that are zero on the boundaries of the mesh
element and have a maximum in the middle of the mesh element. The shape function
(there is only one for each mesh element) is defined by a lowest-order polynomial that
is zero on the boundary of the element.

The bubble element are available with all types of mesh elements.

Syntax for Bubble Elements (shbub)
To specify discontinuous shape functions in the shape edit field on the Element tab in
the Subdomain Settings dialog box, enter a string of the form shbub(mdim, basename),
where mdim is the dimension of the mesh elements for which the shape functions exist,
and basename is the name of the variable (a string enclosed in single quotes), for
example shbub(3,'u'). There is also an alternate syntax shbub(...) based on
property names and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

TABLE 3-4: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHBUB SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

mdim nonnegative
integer

sdim Dimension of the mesh
elements on which the bubble
exist

frame string reference
frame

Frame

sorder positive integer determined by
frame

Geometry shape order
R 3 : T H E F I N I T E E L E M E N T M E T H O D

Example: shbub('mdim',3,'basename','u').

Note: When using the property name/value syntax for shbub in COMSOL Script or
MATLAB, you must enter the command as a string with each string argument
enclosed in two single quotes because they become strings within a string:
'shbub(''mdim'',3,''basename'',''u'')'.

The bubble element has a single degree of freedom, basename, at the midpoint of the
mesh element.

The bubble element defines the following field variables. Denote basename with u,
and let x and y denote (not necessarily distinct) names of space coordinates. The
variables are (where sdim = space dimension and edim = mesh element dimension):

• u, defined when , u = 0 if edim < mdim.

• ux, meaning the derivative of u with respect to x, defined when edim = mdim =
sdim.

• uTx, the tangential derivative variable, meaning the x-component of the tangential
projection of the gradient, defined when mdim < sdim and . uTx
= 0 if edim < mdim.

• uTxy, meaning the xy-component of the tangential projection of the second
derivative, defined when mdim < sdim and . uTxy = 0 if
edim < mdim.

T H E C U R L E L E M E N T

In electromagnetics, curl elements (also called vector elements or Nédélec’s edge
elements) are popular. Each mesh element has DOFs corresponding only to tangential
components of the field. For example, in a tetrahedral mesh in 3D each of the three
edges in a triangle face element has degrees of freedom that are tangential components
of the vector field in the direction of the corresponding edges, and in the interior there
are degrees of freedom that correspond to vectors tangential to the triangle itself (if
the element order is high enough). Finally, in the interior of the mesh tetrahedron
there a degrees of freedom in all coordinate directions (if the element order is high
enough). This implies that tangential components of the vector field are continuous
across element boundaries, but the normal component is not necessarily continuous.
This also implies that the curl of the vector field is an integrable function, so these
elements are suitable for equations using the curl of the vector field.

edim mdim≤

edim mdim≤

edim mdim≤
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 461

462 | C H A P T E
The curl elements are available for all types of mesh elements. The polynomial order
of the curl element can be at most 3 in 3D, and at most 4 in 2D and 1D.

Syntax for the Curl Element (shcurl)
To specify curl shape functions in the shape edit field on the Element page in the
Subdomain Settings dialog box, enter a string of the form shcurl(k,fieldname)
where fieldname is the name of the vector field (a string enclosed in single quotes),
and k is the order (a positive integer), for example shcurl(3,'E'). Alternatively, use
the syntax shcurl(k,compnames), where compnames is a cell array of strings with the
vector components, for example shcurl(3,{'Ex' 'Ey'}). There is also a syntax
shcurl(...) based on property names and values. The following properties are
allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shcurl('compnames’,{'Ex' 'Ey'},'dofbasename','tE').

TABLE 3-5: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHCURL SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

fieldname string Field name

compnames cell array of
strings

derived from
fieldname

Names of vector field
components

dofbasename string See below Base name of degrees of
freedom

dcompnames string See below Names of the anti-symmetrized
components of the gradient of
the vector field

order integer Basis function order

frame string reference
frame

Frame

border positive integer order Alias for order

sorder positive integer given by
frame

Geometry shape order
R 3 : T H E F I N I T E E L E M E N T M E T H O D

Note: When using the property name/value syntax for shcurl in COMSOL Script
or MATLAB, you must enter the command as a string with each string argument
(including arguments within arguments) enclosed in two single quotes because they
become strings within a string:
'shcurl(''compnames'',''{''Ex'',''Ey''}'',''dofbasename'',''tE'')'.

The default for compnames is fieldname concatenated with the space coordinate
names. The default for dofbasename is tallcomponents, where allcomponents is the
concatenation of the names in compnames.

The property dcompnames lists the names of the component of the antisymmetric
matrix

,

where Ai are the vector field components and xi are the space coordinates. The
components are listed in row order. If a name is the empty string, the field variable
corresponding to that component is not defined. If you have provided compnames, the
default for the entries in dcompnames is compnames(j) sdimnames(i) compnames(i)
sdimnames(j) for off-diagonal elements. If only fieldname has been given, the
default for the entries are dfieldname sdimnames(i)sdimnames(j). Diagonal
elements are not defined per defaults. For example,
shcurl('order',3,'fieldname','A','dcompnames',

{'','','curlAy','curlAz','','','','curlAx',''}).

The curl element defines the following degrees of freedom: dofbasename d c, where
d = 1 for DOFs in the interior of an edge, d = 2 for DOFs in the interior of a surface,
etc., and c is a number between 0 and d − 1.

The curl element defines the following field variables (where comp is a component
name from compnames, and dcomp is a component from dcompnames, sdim = space
dimension and edim = mesh element dimension):

• comp, meaning a component of the vector, defined when edim = sdim.

• tcomp, meaning one component of the tangential projection of the vector onto the
mesh element, defined when edim < sdim.

dAij xi∂
∂Aj

xj∂
∂Ai–=
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 463

464 | C H A P T E
• compx, meaning the derivative of a component of the vector with respect to global
space coordinate x, defined when edim = sdim.

• tcompTx, the tangential derivative variable, meaning the x component of the
projection of the gradient of tcomp onto the mesh element, defined when edim <
sdim. Here, x is the name of a space coordinate.

• dcomp, meaning a component of the anti-symmetrized gradient, defined when
edim = sdim.

• tdcomp, meaning one component of the tangential projection of the
anti-symmetrized gradient onto the mesh element, defined when edim < sdim.

For performance reasons, prefer using dcomp in expressions involving the curl rather
than writing it as the difference of two gradient components.

For the computation of components, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

D I S C O N T I N U O U S E L E M E N T S

The functions in the discontinuous elements space are the same as for the Lagrange
element, with the difference that the basis functions are discontinuous between the
mesh elements. All degrees of freedom are located in the element interior.

The discontinuous elements are available with all types of mesh elements. The
polynomial order k can be arbitrary, but the available numerical integration formulas
usually limits its usefulness to (for tetrahedral meshes).

Syntax for the Discontinuous Element (shdisc)
To specify discontinuous shape functions in the shape edit field on the Element tab in
the Subdomain Settings dialog box, enter a string of the form shdisc(mdim, order,
basename), where mdim is the dimension of the mesh elements for which the shape
functions exist, order is the order (a positive integer) and basename is the name of the
variable (a string enclosed in single quotes), for example shdisc(3,2,'u'). There is
also an alternative syntax shdisc(...) based on property names and values. The
following properties are allowed:

TABLE 3-6: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDISC SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order integer Basis function order

k 5≤ k 4≤
R 3 : T H E F I N I T E E L E M E N T M E T H O D

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shdisc('mdim',3,'order',2,'basename','u').

Note: When using the property name/value syntax for shdisc in COMSOL Script
or MATLAB, you must enter the command as a string with each string argument
enclosed in two single quotes because they become strings within a string:
'shdisc(''mdim'',3,''order'',2,''basename'',''u'')'.

The discontinuous element defines the following field variables. Denote basename
with u, and let x denote names of space coordinates. The variables are (where edim is
the mesh element dimension):

• u, defined when edim = mdim.

• ux, meaning the derivative of u with respect to x, defined when edim = mdim =
sdim.

• uTx, the tangential derivative variable, meaning the derivative of u with respect to
x, defined when edim = mdim < sdim.

D E N S I T Y E L E M E N T S

The functions in the density elements space are the same as for the discontinuous
element, if the mesh element is not curved. If the element is curved, the functions
define a density of the given order in local coordinates and the value in global
coordinates is dependent on the transformation between local coordinates and global
coordinates.

mdim nonnegative
integer

sdim Dimension of the mesh
elements where the
discontinuous element exists

frame string reference
frame

Frame

border nonnegative
integer

order Alias for order

sorder positive integer given by
frame

Geometry shape order

TABLE 3-6: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDISC SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 465

466 | C H A P T E
The discontinuous elements are available with all types of mesh elements. The order k
can be arbitrary, but the available numerical integration formulas usually limits its
usefulness to (for tetrahedral meshes).

Syntax for the Density Element (shdens)
To specify discontinuous shape functions in the shape edit field on the Element tab in
the Subdomain Settings dialog box, enter a string of the form
shdens(order,basename), where order is the order (a positive integer) and
basename is the name of the variable (a string enclosed in single quotes), for example
shdens(2,'u'). There is also an alternative syntax shdens(...) based on property
names and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shdens('order',2,'basename','u').

Note: When using the property name/value syntax for shdens in COMSOL Script
or MATLAB, you must enter the command as a string with each string argument
enclosed in two single quotes because they become strings within a string:
'shdens(''order'',2,''basename'',''u'')'.

The density element defines the following field variable. Denote basename with u. The
variable is (where edim is the mesh element dimension):

• u, defined when edim = sdim.

TABLE 3-7: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDENS SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order integer Basis function order

frame string reference
frame

Frame

border nonnegative
integer

order Alias for order

sorder positive integer given by
frame

Geometry shape order

k 5≤ k 4≤
R 3 : T H E F I N I T E E L E M E N T M E T H O D

D I V E R G E N C E E L E M E N T S

For modeling the B (magnetic flux density) and D (electric displacement) fields in
electromagnetics, the divergence elements are useful. The DOFs on the boundary of
a mesh element correspond to normal components of the field. In addition, there are
DOFs corresponding to all vector field components in the interior of the mesh element
of dimension sdim (if the order is high enough). This implies that the normal
component of the vector field is continuous across element boundaries, but the
tangential components are not necessarily continuous. This also implies that the
divergence of the vector field is an integrable function, so these elements are suitable
for equations using the divergence of the vector field.

The divergence element are available with all types of mesh elements. The polynomial
order of the curl element can be at most 3 in 3D, and at most 4 in 2D and 1D.

Syntax for Divergence Elements (shdiv)
To specify divergence shape functions in the shape edit field on the Element tab in the
Subdomain Settings dialog box, enter a string of the form shdiv(fieldname) where
fieldname is the name of the vector field (a string enclosed in single quotes), for
example shdiv('B'). Alternatively, use the syntax shdiv(compnames), where
compnames is a cell array of strings with the vector components, for example,
shdiv({'Bx' 'By'}). There is also a syntax shdiv(...) based on property names
and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

TABLE 3-8: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDIV SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

fieldname variable name Name of vector field

compnames cell array of
strings

derived from
fieldname

Names of vector field
components

dofbasename string see below Base name of degrees of
freedom

divname string see below Name of divergence field

order integer 1 Basis function order

frame string reference
frame

Frame

border positive integer order Alias for order

sorder positive integer given by
frame

Geometry shape order
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 467

468 | C H A P T E
Example: shdiv('compnames’,{'Bx' 'By'},'dofbasename','nB').

Note: When using the property name/value syntax for shdiv in COMSOL Script or
MATLAB, you must enter the command as a string with each string argument
(including arguments within arguments) enclosed in two single quotes because they
become strings within a string:
'shdiv(''compnames'',''{''Bx'',''By''}'',''dofbasename'',''nB'')'.

The default for compnames is fieldname concatenated with the space coordinate
names. The default for dofbasename is nallcomponents, where allcomponents is
the concatenation of the names in compnames.

The vector element defines the following degrees of freedom: dofbasename on
element boundaries, and dofbasename sdim c, c = 0, …, sdim − 1 for DOFs in the
interior.

The divergence element defines the following field variables (where comp is a
component name from compnames, divname is the divname, sdim = space dimension
and edim = mesh element dimension):

• comp, meaning a component of the vector, defined when edim = sdim.

• ncomp, meaning one component of the projection of the vector onto the normal of
mesh element, defined when edim = sdim–1.

• compx, meaning the derivative of a component of the vector with respect to global
space coordinate x, defined when edim = sdim.

• ncompTx, the tangential derivative variable, meaning the x component of the
projection of the gradient of ncomp onto the mesh element, defined when edim <
sdim. Here, x is the name of a space coordinate. ncompTx = 0.

• divname, means the divergence of the vector field.

For performance reasons, prefer using divname in expressions involving the
divergence rather than writing it as the sum of sdim gradient components.

For the computation of components, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

S C A L A R P L A N E WAV E B A S I S F U N C T I O N

The scalar plane wave basis function, shuwhelm, is used to implement scalar plane wave
basis functions for solving scalar wave equations of Helmholtz type using an ultraweak
R 3 : T H E F I N I T E E L E M E N T M E T H O D

variational formulation (UWVF). These basis functions are discontinuous in
between mesh elements.

Syntax for the Scalar Plane Wave Basis Function (shuwhelm)
To specify scalar plane wave basis functions in the shape edit field on the Element page
in the Subdomain Settings dialog box, enter a string of the form
shuwhelm(ndir,basename,kvar), where ndir is the number of directions for the
waves (a positive integer), basename is the name of the variable (a string enclosed in
single quotes), and kvar is the name of a variable for the wave number (a string
enclosed in single quotes), for example shuwhelm(1,'p','k'). In addition, you can
use the syntax shuwhelm(ndir,basename,kvar,{xvar,yvar}) to specify the
expressions for the spatial coordinate transformation as strings in a cell array, such as
{'x','y'} (in 2D). In domains that represent perfectly matched layers, the spatial
coordinates are mapped to a complex domain, and special spatial coordinate variables
provide the transformation of the spatial coordinates. There is also an alternative syntax
shuwhelm(...) based on property names and values. The following properties are
allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shuwhelm('ndir',2,'basename','u').

Note: When using the property name/value syntax for shuwhelm in COMSOL
Script or MATLAB, you must enter the command as a string with each string
argument enclosed in two single quotes because they become strings within a string:
'shuwhelm(''ndir'',2,''basename'',''u'')'.

TABLE 3-9: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHUWHELM WAVE BASIS FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

ndir integer Number of wave directions

kexpr string Variable for the wave number

xexpr cell array of
strings

{'x','y','z'} Expressions for the x, y, and z
coordinate transformations
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 469

470 | C H A P T E
The scalar plane wave basis function defines the following field variables. Denote
basename with u, and let x denote names of a space coordinates. The variables are
(where sdim = space dimension):

• u

• ux, meaning the derivative of u with respect to x, defined on edim = sdim

Discretization of the Equations

This section describes how COMSOL Multiphysics forms the discretization of the
PDE. Consider a 2D problem for simplicity. The starting point is the weak formulation
of the problem. First comes the discretization of the constraints

starting with the constraints on the boundaries, B. For each mesh element in B (that
is, each mesh edge in B), consider the Lagrange points of some order k (see “The
Lagrange Element” on page 455). Denote them by , where m is the index of the
mesh element. Then the discretization of the constraint is

,

that is, the constraints must hold pointwise at the Lagrange points. The Lagrange
point order k can be chosen differently for various components of the constraint vector
R(1), and it can also vary in space. COMSOL Multiphysics’ data structures denote the
k as cporder The constraints on subdomains Ω and points P are discretized in the
same way. (Nothing needs to be done with the points P.) You can collect all these
pointwise constraints in one equation 0 = M, where M is the vector consisting of all
the right-hand sides.

COMSOL Multiphysics approximates the dependent variables with functions in the
chosen finite element space(s). This means that the dependent variables are expressed
in terms of the degrees of freedom as

0 R 2()
= on Ω

0 R 1()
= on B

0 R 0()
= on P

xmj
1()

0 R 1() xmj
1()()=

ul Uiϕi
l()

i
∑=
R 3 : T H E F I N I T E E L E M E N T M E T H O D

where are the basis functions for variable ul. Let U be the vector with the degrees
of freedoms Ui as its components. This vector is called the solution vector because it
is what you want to compute. M depends only on U, so the constraints can be written
0 = M(U).

Now consider the weak equation:

where µ(i) are the Lagrange multipliers. To discretize it, express the dependent
variables in terms of the DOFs as described earlier. Similarly, approximate the test
functions with the same finite elements (this is the Galerkin method):

Because the test functions occur linearly in the integrands of the weak equation, it is
enough to require that the weak equation holds when you choose the test functions as
basis functions:

When substituted into the weak equation, this gives one equation for each i. Now the
Lagrange multipliers must be discretized. Let

where are the Lagrange points defined earlier, and are certain weights (see
the following discussion). The term

is approximated as a sum over all mesh elements in B. The contribution from mesh
element number m to this sum is approximated with the Riemann sum

ϕi
l()

0 W 2() Ad
Ω
∫ W 1() sd

B
∫ W 0()

P
∑+ +=

v h 2()Tµ 2()⋅ Ad
Ω
∫– v h⋅ 1()Tµ 1() sd

B
∫– v h⋅ 0()Tµ 0()

P
∑–

vl Viϕi
l()

i
∑=

vl ϕi
l()

=

Λmj
d() µ d() xmj

d()()wmj
d()

=

xmj
d() wmj

d()

ϕi h⋅ 1()Tµ 1() sd
B
∫

U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 471

472 | C H A P T E
where is the length (or integral of ds) over the appropriate part of the mesh
element. The integral over Ω and the sum over P is approximated similarly.

All this means that you can write the discretization of the weak equation as

where L is a vector whose ith component is

evaluated for . Λ is the vector containing all the discretized Lagrange
multipliers . NF is a matrix whose ith row is a concatenation of the vectors

For problems using ideal constraints, NF is equal to the constraint Jacobian matrix
N, which is defined as

To sum up, the discretization of the stationary problem is

The objective is to solve this system for the solution vector U and the Lagrange
multiplier vector Λ. L is called the residual vector, M is the constraint residual, and
NF is the constraint force Jacobian matrix. Note that M is redundant in the sense
that some pointwise constraints occur several times. Similarly, Λ is redundant. Solvers
remove this redundancy.

N U M E R I C A L Q U A D R A T U R E

The integrals occurring in the components of the residual vector L (as well as K, as
noted later in this discussion) are computed approximately using a quadrature
formula. Such a formula computes the integral over a mesh element by taking a

ϕi xmj
1()() h 1()T xmj

1()()µ 1() xmj
1()()wmj

1()⋅
j
∑ ϕi xmj

1()() h 1()T xmj
1()()Λmj

1()⋅
j
∑=

wmj
1()

0 L NFΛ–=

W 2() Ad
Ω
∫ W 1() sd

B
∫ W 0()

P
∑+ +

vl ϕi
l()

=

Λmj
d()

ϕi xmj
d()()h d() xmj

d()()
T

N
U∂

∂M
–=

0 L U() NF U()Λ–=

0 M U()=
R 3 : T H E F I N I T E E L E M E N T M E T H O D

weighted sum of the integrand evaluated in a finite number of points in the mesh
element. The order of a quadrature formula on a 1D, triangular, or tetrahedral element
is the maximum number k such that it exactly integrates all polynomials of degree k.
For a quadrilateral element, a formula of order k integrates exactly all products
p(ξ1)q(ξ2), where p and q are polynomials of degree k in the first and second local
coordinates, respectively. A similar definition holds for hexahedral and prism elements.
Thus the accuracy of the quadrature increases with the order. On the other hand, the
number of evaluation points also increases with the order. As a rule of thumb, you can
take the order to be twice the order of the finite element being used. COMSOL
Multiphysics’ data structures refer to the order of the quadrature formula as gporder
(gp stands for Gauss points). The maximum available order of the quadrature formula
(the gporder value) is:

• 41 for 1D, quadrilateral, and hexahedral meshes

• 30 for triangular and prism meshes

• 8 for tetrahedral meshes

T I M E - D E P E N D E N T P R O B L E M S

The discretization of a time-dependent problem is similar to the stationary problem

where U and Λ now depend on time t.

L I N E A R I Z E D P R O B L E M S

Consider a linearized stationary problem (see “The Linear or Linearized Model” on
page 366). The linearization “point” u0 corresponds to a solution vector U0. The
discretization of the linearized problem is

where K is called the stiffness matrix, and L(U0) is the load vector. For problems
given in general or weak form, K is the Jacobian of −L:

0 L U U
·

U
··

t, , ,() NF U t,()Λ–=

0 M U t,()=

K U0() U U0–() NF U0()Λ+ L U0()=

N U0() U U0–() M U0()=

K
U∂

∂L
–=
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 473

474 | C H A P T E
The entries in the stiffness matrix are computed in a similar way to the load vector,
namely by integrating certain expressions numerically. This computation is called the
assembling the stiffness matrix.

If the original problem is linear, then its discretization can be written

Similarly, for a time-dependent model the linearization involves the damping matrix

and the mass matrix

When E = 0, the matrix D is often called the mass matrix instead of the damping
matrix.

E I G E N V A L U E P R O B L E M S

The discretization of the eigenvalue problem is

where U0 is the solution vector corresponding to the linearization “point.” If the
underlying problem is linear, then D, K, and N do not depend on U0, and you can
write

W E A K C O N S T R A I N T S

Weak constraints present an alternative way to discretize the Dirichlet conditions, as
opposed to the pointwise constraints described earlier. The idea is to regard the
Lagrange multipliers µ(d) as field variables and thus approximate them with finite

KU NFΛ+ L 0()=

NU M 0()=

D
U
·

∂

∂L
–=

E
U
··

∂

∂L
–=

λ2E U0()U λD– U0()U K+ U0()U NF U0()Λ+ 0=

N U0()U 0=

KU NFΛ+ λDU λ2EU–=

NU 0=
R 3 : T H E F I N I T E E L E M E N T M E T H O D

elements. This concept also introduces corresponding test functions ν(d). Multiply the
Dirichlet conditions with these test functions and integrate to end up with the
following system in the case of a stationary problem in 2D:

.

You could add these weak equations to form a single equation. This treatment of the
Lagrange multipliers as ordinary variables has thus produced a weak equation without
constraints. This can be useful if the Lagrange multipliers are of interest in their own
right.

Take care when combining pointwise and weak constraints. For instance, if you have
both types of constraints for some variable and the constraints are in adjacent domains,
the resulting discretization does not work. Note that you can obtain pointwise
constraints from the weak constraints formulation by using the basis functions

for the Lagrange multipliers and their test functions, that is, let

where δ is Dirac’s delta function.

0 W 2() Ad
Ω
∫ W 1() sd

B
∫ W 0()

P
∑+ +=

v h⋅ 2()Tµ 2() Ad
Ω
∫– v h 1()Tµ 1()⋅ sd

B
∫– v h 0()Tµ 0()⋅

P
∑–

0 ν 2() R 2()⋅
Ω
∫ dA=

0 ν 1() R 1()⋅
B
∫ ds=

0 ν 0()

P
∑ R 0()⋅=

δ x xmj
d()

–()

µ d() Λmj
d()δ

m j,
∑= x xmj

d()
–()
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 475

476 | C H A P T E
Wha t Equa t i o n s Doe s COMSOL
Mu l t i p h y s i c s S o l v e ?

This section explains how COMSOL Multiphysics forms the system of equations and
constraints that it solves. It also discusses the implications of Dirichlet conditions
involving several solution components in a multiphysics model.

You specify material parameters and boundary conditions in a number of application
modes. Enter these settings in the Subdomain Settings, Boundary Settings, Edge Settings,
and Point Settings dialog boxes, which you open from the Physics menu. Each
application mode forms one or several PDEs and boundary conditions from these
settings. If you use one of the PDE modes, you specify the equation coefficients and
terms directly.

The software collects all the equations and boundary conditions formulated by the
application modes into one large system of PDEs and boundary conditions. This
process also includes converting equations and boundary conditions to the selected
solution form, which can be coefficient form, general form, or weak form. You can
select the solution form on the Advanced page in the Solver Parameters dialog box. This
dialog box also provides the option automatic (the default setting), which means that
you let the software select the solution form. COMSOL Multiphysics uses the weak
solution form unless you have chosen to use the adaptive solver. The software then
selects the general solution form because the adaptive solver does not work with the
weak form. If any of the equation system forms is weak, the solution form is also the
weak form even if you use the adaptive solver because it is not possible to convert the
equations from weak form to general form.

In the Model Settings dialog box you can specify the equation system form—the form
of the system of equations and boundary conditions that you can see in the Equation

System dialog boxes. This form can differ from the solution form. If it does, COMSOL
Multiphysics first converts the equations to the solution form before solving. If you use
a PDE mode, notice the difference between the form of the PDE in the application
mode, the equation system form, and the solution form.

Occasionally you might want to change the PDEs generated by the application modes.
You can do this by editing the settings in Equation System>Subdomain Settings dialog
box (see “Viewing and Modifying the Full Equation System” on page 213 in the
COMSOL Multiphysics User’s Guide). Similarly, you can change the boundary
R 3 : T H E F I N I T E E L E M E N T M E T H O D

conditions generated by the application modes in the Equation System>Boundary

Settings dialog box (see “Modifying Boundary Settings for the Equation System” on
page 237 in the COMSOL Multiphysics User’s Guide). If you have PDEs or
constraints on edges or points, you can also modify the equations that the application
modes generate in the Equation System>Edge Settings and Equation System>Point

Settings dialog boxes.

The Equation System/Solution Forms

C O E F F I C I E N T F O R M

In the coefficient equation system form, the PDEs and boundary conditions are
written in following form (for a time-dependent model):

In addition to these PDEs, there can be weak-form contributions; see the weak and
dweak edit fields on the Weak page of the Equation System>Subdomain Settings dialog
box. If these edit fields are nonzero, COMSOL Multiphysics modifies the above PDE
by:

• Converting the PDE to the weak form by multiplying it by a test function,
integrating, and integrating the flux term by parts.

• Adding the dweak term to the left side of the resulting weak equation and adding
the weak term to the right side.

• Adding weak-form contributions from the Equation System>Boundary Settings,
Equation System>Edge Settings, and Equation System>Point Settings dialog boxes to
the resulting weak equation.

In addition to the above Dirichlet boundary condition, hu = r, there can be additional
constraints in the constr edit field on the Weak page of the Equation System>Boundary

Settings dialog box. The expressions in the constr edit field are constrained to be equal
to zero. Similarly, the constraints in the constr edit fields in Equation System>Subdomain

Settings, Equation System>Edge Settings, and Equation System>Point Settings dialog
boxes are enforced.

ea
t2

2

∂
∂ u da+

t∂
∂u ∇+ c u∇– α u– γ+()⋅ β ∇u au+⋅+ f= in Ω

n c u α u γ–+∇()⋅ qu = g hTµ–+ on Ω∂

hu r= on Ω∂
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

W H A T E Q U A T I O N S D O E S C O M S O L M U L T I P H Y S I C S S O L V E ? | 477

478 | C H A P T E
G E N E R A L F O R M

In the general equation system form, the PDEs and boundary conditions are written
in following form (for a time-dependent model):

Just like for the coefficient form, you can modify this PDE by adding weak-form
contributions in the weak and dweak edit field (see earlier discussion). Similarly, there
can be additional constraints in the constr edit fields.

W E A K F O R M

In the weak equation system form, the PDEs are written solely in the weak formulation
(see the weak and dweak edit fields on the Weak tab of Equation System>Subdomain

Settings, Equation System>Boundary Settings, Equation System>Edge Settings, and
Equation System>Point Settings dialog boxes). The dweak fields contribute to the left
side of the equations, and the weak fields contribute to the right side of the equations.

You specify constraints in the constr edit fields in the Equation System>Subdomain

Settings, Equation System>Boundary Settings, Equation System>Edge Settings, and
Equation System>Point Settings dialog boxes. These expressions are constrained to be
equal to zero.

The Full Equation System

In addition to the PDEs and boundary conditions that you can view in the dialog
boxes from the Equation System submenu on the Physics menu, there can sometimes
be extra contributions, which are generated by the application modes or by periodic
conditions and identity conditions. You cannot view these contributions directly in the
user interface but only in the Model M-file or by exporting the FEM structure to the
command window. The extra contributions show up in the fields elemmph and
elemcpl of the FEM structure. They occur in the following cases:

• Periodic conditions generate extra constraints.

• Identity conditions generate extra constraints.

eau·· d+ au· ∇+ Γ⋅ F= in Ω

n– Γ⋅ = G hTµ– on Ω∂

0 R= on Ω∂
⎩
⎪
⎪
⎨
⎪
⎪
⎧

R 3 : T H E F I N I T E E L E M E N T M E T H O D

• Dirichlet boundary conditions for the tangential component of a vector field
discretized using vector elements generate extra constraints.

• The Shell application mode in the Structural Mechanics Module generates extra
contributions to the equations.

The full system of equations and constraints is approximated using the finite element
method; see “Discretization of the Equations” on page 470.

Notes on Constraints in Multiphysics Models

In a multiphysics model, if a Dirichlet boundary condition involves two different
dependent variables and there is also a Neumann boundary condition, that Neumann
boundary condition is not the one displayed in the application mode. The displayed
Neumann boundary condition is modified by adding an extra Lagrange multiplier
term on the right-hand side.

To explain this, assume that you want to solve the system of PDEs

on the interval 0 < x < 1 with the Dirichlet boundary conditions u = 0 and v = 0 at x
= 0, and u = v at x = 1, and the Neumann boundary condition vx = 0 at x = 1. Use two
PDE, Coefficient Form application modes (one for u and one for v) and the general
equation system form.

The general form boundary conditions at x = 1 (which you can inspect in the Equation

System>Boundary Settings dialog box) read

where

The matrix h is

uxx– 1=

vxx– 1=⎩
⎨
⎧

n Γ⋅– G hTµ–=

0 R=⎩
⎨
⎧

n 1 Γ,
ux–

vx–
G, 0

0
R, v u–

0
= = = =
W H A T E Q U A T I O N S D O E S C O M S O L M U L T I P H Y S I C S S O L V E ? | 479

480 | C H A P T E
Thus, the resulting boundary conditions are

The boundary condition ux = −µ1 is expected. It just says that −ux is equal to the
Lagrange multiplier µ1, but because µ1 is an unknown this condition can be
eliminated. However, the condition vx = µ1 is not expected and it invalidates the
argument. The resulting boundary condition is vx = −ux. Note that the
boundary-condition description in the PDE application mode for v incorrectly states
that the Neumann condition is vx = 0.

The reason for this unexpected result is the Lagrange multiplier term µ1 in the
right-hand side of the Neumann boundary condition for v. Such Lagrange multiplier
terms are often called constraint forces in a structural mechanics model. The moral is
that if you have a Dirichlet boundary condition involving both u and v, you get
constraint forces in the Neumann boundary conditions for both variables u and v. This
means that the Neumann boundary-condition description in the application modes
must be modified if you use such Dirichlet boundary conditions.

The term hTµ in the right-hand side of the Neumann boundary condition is what
characterizes ideal constraints. In the above example, you would like to have a
non-ideal constraint where the term hTµ is changed to

To accomplish this, you can remove the constraint specification on the Coefficients tab
of the Boundary Settings dialog box. Instead select User defined from the Constraint type
list on the Weak page. Then enter the constraint and the constraint force independently
in the constr and constrf edit fields, respectively.

h
∂R1 ∂u⁄ ∂R1 ∂v⁄

∂R2 ∂u⁄ ∂R2 ∂v⁄
– 1 1–

0 0
= =

ux

vx

1– 0
1 0

µ1

µ2

=

0
0

v u–

0
=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

1– 0
0 0

µ1

µ2
R 3 : T H E F I N I T E E L E M E N T M E T H O D

 4
A d v a n c e d G e o m e t r y T o p i c s
This chapter describes some advanced geometry topics that are part of the solid
modeling tools in COMSOL Multiphysics.
 481

482 | C H A P T E
Ad v an c ed Geome t r y T op i c s

Rational Bézier Curves

A rational Bézier curve is a parameterized curve of the form

where the functions

are the Bernstein basis functions of degree p; bi = (x1, …, xn) are the control vertices
of the n-dimensional space; and wi are the weights, which should always be positive
real numbers. A rational Bézier curve has a direction defined by the parameter t. This
direction is used to uniquely determine subdomain numbers to the left and to the right
of a curve in 2D.

Note: The parameter t used in this section is named s or s1 when used as a variable.
It does not represent the arc length of a curve but is equivalent to the Bézier
parameter as described above.

The end-point interpolation property corresponds to b(0) = b0 and b(1) = bp.
Another useful property of the rational Bézier curves is that the direction of the tangent
vector at t = 0 and t = 1 is determined by the vectors b1 − b0 and bp − bp−1,
respectively. That is, the curve will always be tangent to the line connecting the control
vertices b0 and b1 and also to the line connecting bp−1 and bp. When joining curves
at end points, aligning the (nonzero) tangent vectors assures tangential continuity.
This technique produces visually smooth transitions between adjacent curves.

There is also an interaction between the control polygon and the curve. For instance,
the curve is always contained in the convex hull of its control polygon,

b t()

biwiBi
p t()

i 0=

p

∑

wiBi
p t()

i 0=

p

∑
-------------------------------------- 0 t 1≤ ≤,=

Bi
p t()

p
i⎝ ⎠

⎛ ⎞ ti 1 t–()p i–
=

R 4 : A D V A N C E D G E O M E T R Y TO P I C S

{ b0, b1, …, bp }. A useful property is that of invariance under translation, rotation,
and scaling. Translating, rotating, or scaling the control polygon by a certain amount,
translates, rotates, or scales the curve that the polygon defines by exactly the same
amount. In formal terms, this property of rational Bézier curves is called affine
invariance.

A rational Bézier curve is equivalent to a polynomial Bézier curve (or simply a Bézier
curve) if the control weights w0, … , wp are all equal. In this case the denominator
equals the binomial expansion of (t + (1 − t))p, in which each term is one of the
Bernstein basis functions. This implies that the polynomial Bézier curves are a subset
of the rational Bézier curves.

Note that a line could be viewed as a rational Bézier curve of degree 1.

Conic Sections

Rational Bézier curves of degree 2 can represent all conic sections: circles, ellipses,
parabolas, and hyperbolas. Elliptical or circular curve segments are often called arcs.
The conic sections are also called quadric curves or quadrics. Because the parameter t
is constrained to be in the interval [0, 1], only a segment of the conic section is
represented. A 2nd degree curve consists of three control vertices and three weights.
There is a simple rule for classifying a 2nd degree curve if the end point weights are set
to 1, only allowing the central weight w1 to vary: if w0 = w2 = 1, then 0 < w1 < 1 gives
ellipses, w1 = 1 gives parabolas, and w1>1 gives hyperbolas. For a fixed control
polygon, at most one value of w1 (among the ellipses generated by letting 0 < w1 < 1)
gives a circle segment. For example, a quarter of a full circle is generated by a control
polygon with a right angle and with a central weight of .

R E L A T I O N T O C U R V E S O N I M P L I C I T F O R M .

A rational Bézier curve of degree 2 is a rational parameterization of an algebraic
curve of degree 2, that is, a curve on the familiar implicit form for quadrics

The unit circle, for example, has a = b = 1, f = −1 and c = d = e = 0. The set of rational
Bézier curves of degree 2 is essentially equivalent to the set of algebraic curves of
degree 2.

1 2⁄

ax2 by2 cxy dx ey f+ + + + + 0=
A D V A N C E D G E O M E T R Y TO P I C S | 483

484 | C H A P T E
Cubic Curves

Rational Bézier curves of degree 3 (cubic curves) have more dynamic properties than
conic section curves. A cubic curve has four control vertices and four weights, making
it possible, for example, to create a self-intersecting control polygon or a zigzag control
polygon. A self-intersecting polygon may give rise to a self-intersecting curve, a loop.

A zigzag control polygon generates an S-shaped curve containing a point of inflection
where the tangent line lies on both sides of the curve.

A curve with a cusp is a limiting case of a curve with a loop. A cusp occurs when a loop
shrinks so that the area enclosed in the loop approaches zero. At the cusp the tangent
vector of the curve vanishes. That is, the curve has no well-defined tangent line at the
cusp.

R E L A T I O N T O C U R V E S O N I M P L I C I T F O R M

The set of rational Bézier curves of degree 3 is a strict subset of the set of algebraic
curves of degree 3, that is, curves that contain terms of the type x3, x2y, xy2, y3, x2,
and so on in their implicit form. This is because some algebraic curves of degree 3 do
not have a rational parameterization.

Rational Bézier Surfaces

When you create a 3D geometry object with a curved boundary, COMSOL
Multiphysics represents it by rational Bézier surfaces. The software supports two types
of Bézier surfaces: rectangular and triangular. A rectangular Bézier surface has a mixed
degree (m, n), which represents the degree of the surface in terms of two parameters,
often named s and t. A triangular Bézier surface has a single degree, m, just as a Bézier
curve.

A rectangular rational Bézier surface of degree p-by-q is described by

where and are the Bernstein basis functions of degree p and q, respectively, as
described in the previous section. This surface description is called rectangular because

S s t,()

bi j, wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

---, 0 s t 1≤,≤= ,

Bi
p Bj

q

R 4 : A D V A N C E D G E O M E T R Y TO P I C S

the parameter domain is rectangular, that is, the two parameters s and t can vary
freely in given intervals.

Another form of surface description is the triangular surface, also called a Bézier
triangle. A triangular rational Bézier surface is defined as

which differs from the Bézier curve description only by the use of bivariate
Bernstein polynomials instead of univariate, for the curve case. The bivariate
Bernstein polynomials of degree p are defined as

where the parameters s and t must fulfill the conditions

which form a triangular domain in the parameter space, therefore the name of this
surface description.

The normal vector, n(s , t), for a point, S (s , t), at a surface that is defined as

determines the direction of the surface. This direction is used to define the up- and
down subdomains of a surface.

The Bézier surfaces are contained in the convex hull of their control points. Bézier
surfaces also have the affine invariance property: invariance of surface under
translation, rotation, and scaling. Boundary curves of a Bézier surface are Bézier
curves, and the corners in the parameter grid that define the control points all lie on
the surface.

S s t,()

bi j, wi j, Bi j,
p s t,()

i j+ p≤
∑

wi j, Bi j,
p s t,()

i j+ p≤
∑

--- 0 s t 1≤,≤,=

Bi j,
p s t,() p!

i!j! p i– j–()!
----------------------------------sitj 1 s– t–()p i– j–

= , i j+ p≤

0 s t,≤
s t 1≤+⎩

⎨
⎧

n s t,()
s∂

∂S s t,()
t∂

∂S s t,()×=
485

486 | C H A P T E
The simplest form of surface is a plane. A Bézier triangle of degree 1 can define a plane
spanned by three distinct control points. A rectangular Bézier surface of degree (1, 1),
on the other hand, forms a bilinear surface where the boundary curves are lines.

COMSOL Multiphysics supports rectangular surfaces of mixed degree at most (3, 3)
and triangular surfaces of degree 1 to represent planar surfaces. Rectangular rational
Bézier surfaces of mixed degree up to (2, 2) can represent all common CAD surfaces,
including bilinear surfaces, cylinders, cones, spheres, ellipsoids, and tori. The
(3,3)-degree rational Bézier curves assist in the creation of additional free-form
surfaces. To model a cone or a cylinder you need a rectangular surface of degree (2,1).
Modeling a sphere or a torus requires rectangular surfaces of degree (2, 2).

C O N T R O L VE R T I C E S A N D W E I G H T S

A rectangular rational Bézier surface of degree (m,n) is defined by a control net
consisting of (m+1)-by-(n+1) control vertices assigned a positive weight. The surface
always interpolates the four corner points of the control net. A change in the net’s
shape produces a change in the surface’s appearance. Its shape mimics that of the
control net. The higher the surface degree the more complicated the shapes you can
create. Increasing the weight pulls the curve toward the corresponding control vertex.
This interaction between the control net and the surface makes the rational Bézier
surface representation useful.

T R I M M E D S U R F A C E S

The 3D geometry objects in COMSOL Multiphysics are formed by a set of trimmed
rational Bézier surfaces. A cylinder consists of four trimmed rectangular degree (2,1)
surfaces and two trimmed triangular planar surfaces. The planar surfaces are trimmed
by boundary curves in the parameter space so only a circular portion of each planar
surface is used. For the curved surfaces, the boundary curves in the parameter space
are lying on the rectangular boundary of the surface.

When using geometry modeling operations, the Bézier surfaces are trimmed by the
intersection curves between surfaces. By trimming surfaces, surface boundaries can
take virtually any shape. The connected surfaces of a 3D geometry object are called
faces. A surface can be divided into any number of faces, which are curved areas
bounded by trimming (intersection) curves.

Note: The parameters s and t used in this section are equivalent to the variables s1
and s2.
R 4 : A D V A N C E D G E O M E T R Y TO P I C S

R A T I O N A L B É Z I E R R E P R E S E N T A T I O N S A N D N U R B S

The NURBS representation (nonuniform rational B-spline) is another popular curve
and surface representation scheme. It is usually possible to split a curve having a
NURBS representation into a sequence of rational Bézier curves.

Parameterization of Curves and Surfaces

The curves and surfaces of a geometry object can have several mathematical
representations. Thus, a local parameter s1 is defined for curves, and two local
parameters s1 and s2 are defined for faces. These parameters prove helpful when setting
up a model or postprocessing the solution. More precisely, for each value of the curve
parameter s1 within its domain of definition, there is a unique point on the curve, while
each pair of values (s1, s2) corresponds to a unique point on a face.

The faces and edges in the COMSOL geometry representation consist of trimmed
surfaces and curves, respectively. Thus there is a well-defined boundary in the
parameter domain that determines the valid values of s1 and s2. In 2D, the possible
values of the curve parameter s1 often lie in the interval [0, 1], but in 3D the parameter
domain is more complicated for surfaces as well as for curves.

The best way to determine the parameterization is to plot the parameter values. For a
block, you can do this in the way described here:

1 Open the Model Navigator, select 3D in the Space dimension list and click OK.

2 Draw a Block object with side lengths 2, 4, and 1.

3 To enter Postprocessing mode, where the software displays the parameterization of
the curves and faces, click the Solve Problem button on the Main toolbar.

4 Open the Plot Parameters dialog box, for example by clicking the Plot Parameters
button on the Main toolbar. Clear the Slice plot type check box and select Edge plot
instead.

5 Find the Edge page in the Plot Parameters dialog box and set the Expression to s1.
A D V A N C E D G E O M E T R Y TO P I C S | 487

488 | C H A P T E
6 Click OK.

The different geometric variables available for plotting appear in the tables in
“Geometric Variables” on page 165.

7 To visualize the surface parameters on the faces, select Boundary plot in the Plot

Parameters dialog box, and enter either s1 or s2 as the Expression on the Boundary
R 4 : A D V A N C E D G E O M E T R Y TO P I C S

page. Make sure to clear the Smooth check box before plotting to avoid incorrect
smoothing over the edges.

Geometric Variables

Note: In the following table of geometric variables, replace all letters in italic font
with the actual names for the independent variables (spatial coordinates) in the
model. Replace x, y, and z with the first, second, and third spatial coordinate variable,
respectively. If the model contains a deformed mesh, you can replace the symbols x, y,
z with either the spatial coordinates (x, y, z by default) or the reference coordinates
(X, Y, Z by default).

The geometric variables in the following table characterize geometric properties.

DOMAIN \ SPACE DIM 1D 2D 3D ND

POINT

EDGE s1,t1x,t1y,
t1z
A D V A N C E D G E O M E T R Y TO P I C S | 489

490 | C H A P T E
In this table the space dimension refers to the number of independent variables. Most
geometric variables of interest are defined on boundaries.

The variables xg, yg, and zg contain the spatial coordinate values of the original
geometry as opposed to the standard spatial coordinate variables x, y, and z, which are
based on polynomial shape functions. It is the standard spatial coordinate variables’
values that COMSOL Multiphysics uses to compute the solution. The difference
between these two sets of spatial coordinate variables is normally very small. If a
deformed mesh is used, the variables xg, yg, zg are only available when x, y, z are the
reference coordinates (X, Y, Z by default).

BOUNDARY dnx,nx,unx dnx,dny,nx,
ny,s,tx,ty,
unx,uny

dnx,dny,dnz,
nx,ny,nz,s1,
s2,t1x,t1y,
t1z,t2x,t2y,
t2z,unx,uny,
unz

SUBDOMAIN h,sd,

reldetjac,

reldetjacmin

ALL x,xg,dvol x,y,xg,yg,
dvol

x,y,z,xg,yg,
zg,dvol

dvol,dom,

meshtype,

meshelement

DOMAIN \ SPACE DIM 1D 2D 3D ND
R 4 : A D V A N C E D G E O M E T R Y TO P I C S

 5
A d v a n c e d S o l v e r T o p i c s
This chapter describes some advanced solver settings in COMSOL Multiphysics—
settings that you for most simulations need not worry about. It also examines the
various solvers in COMSOL Multiphysics in some detail.
 491

492 | C H A P T E
Ad v an c ed S o l v e r S e t t i n g s

The Advanced page in the Solver Parameters dialog box controls solver settings you
normally do not need to change.

The Advanced page of the Solver Parameters dialog box.

The following sections describe the settings on this page.

Constraint Handling, Null-Space Functions, and Assembly Block Size

The Constraint handling method list controls how COMSOL Multiphysics handles
constraints. The default elimination method is always preferable, but see “Constraint
Handling” on page 499 for details.

The default selection in the Null-space function list is Automatic, which means that
COMSOL Multiphysics chooses the most appropriate of the orthonormal and sparse
null-space functions. To override this choice, select Orthonormal or Sparse in the
Null-space function list. The orthonormal null-space function computes an
orthonormal basis for the null space of the constraint Jacobian N. For models that
involve constraints (Dirichlet boundary conditions) that couple values at several nodes,
R 5 : A D V A N C E D S O L V E R TO P I C S

this method typically runs out of memory. For example, this can happens if the model
contains:

• Periodic boundary conditions

• Identity conditions

• Constraints involving coupling variables, for instance integral constraints

• Constraints involving derivatives (but you should always rewrite constraints on
normal derivatives as Neumann boundary conditions).

In these cases, the sparse null-space function performs better than the orthonormal.
On the other hand, the sparse null-space function has the following drawbacks:

• It does not always work well together with the Geometric multigrid solver/
preconditioner.

• The computation of initial values is less efficient.

• When two boundaries with different Dirichlet boundary conditions meet, the value
at the joining node is less predictable. In the case of the orthonormal null-space
function, the average value is obtained.

The Assembly block size edit field determines the number of mesh elements that the
solver processes together during the assembly process (default = 5000). A lower value
results in lower memory usage, but it can also make the assembly slower.

Settings Related to Complex-Valued Data and Undefined Operations

TA K I N G T H E C O M P L E X C O N J U G A T E F O R C O M P L E X - V A L U E D M O D E L S

For a complex-valued model, the Use Hermitian transpose of constraint matrix and in

symmetry detection check box affects the meaning of the Lagrange multiplier term hTµ
in the Neumann boundary condition of the general or coefficient form, and in general
the term NFΛ in the discretized model. If you select this check box, the complex
conjugate is taken for the matrix NF (that is). This check box also affects
the automatic symmetry detection. By default, the complex conjugate is not taken.
This check box is only active when Nonsymmetric or Automatic is selected in the Matrix

symmetry list on the General tab. Otherwise, the setting of the check box is determined
by the choice Symmetric/Hermitian. That is, if Symmetric is selected, the conjugate of
the constraint force matrix is not taken, and if Hermitian is selected, the conjugate -is
taken.

NF NF∗→
A D V A N C E D S O L V E R S E T T I N G S | 493

494 | C H A P T E
U S I N G C O M P L E X F U N C T I O N S W I T H R E A L I N P U T

If a function takes real inputs, you can assume the output is real by default. For
instance, sqrt(-1) generates an error message. To change this behavior, select the Use

complex functions with real input check box.

S T O P P I N G I F E R R O R D U E T O U N D E F I N E D O P E R A T I O N S O C C U R S

By default, the solver stops with an error message when it encounters an undefined
mathematical operation in an expression that appears in the model settings, for
instance, division by zero or square root of a negative number. To change this
behavior, clear the Stop if error due to undefined operation check box. Then the solver
treats the result of the operation as Inf (infinity) or NaN (not a number). This feature
can be useful in a nonlinear problem where the steps in the iterative solution process
lead to variable values for which an expression is undefined. The solver then reduces
the step size in the Newton iteration when it encounters Inf or NaN so that it can find
a solution.

Storing Solutions on File

By default, COMSOL Multiphysics stores the solution in memory. If you select the
Store solution on file check box, the solution is primarily stored in a file. This option is
useful if you do a time-dependent or parametric simulation with a large number of time
steps or parameter steps. The large amount of solution data would otherwise fill up the
computer’s memory. The software deletes the file that it creates when the solution is
no longer needed (for instance, when you exit COMSOL Multiphysics). This file is
located in the default directory for temporary files provided by the operating system.
You can override this location with an option when starting COMSOL Multiphysics
(see the chapter “Running COMSOL” in the COMSOL Installation and Operations
Guide).

Solution Form

The solution form determines the form into which COMSOL Multiphysics converts
a PDE and its boundary conditions before solving it. For a description of how the
software forms the PDE system, see “What Equations Does COMSOL Multiphysics
Solve?” on page 476.

The solution form does not have to be the same as the equation system form. The
equation system form is the form in which the Equation System dialog boxes display the
equations. You select the equation system form in the Model Settings dialog box. If the
R 5 : A D V A N C E D S O L V E R TO P I C S

solution form is different from the equation system form, COMSOL Multiphysics
transforms the equations to the solution form before solving.

When using a PDE mode, be sure not to confuse the PDE form with the solution
form; you can, for instance, solve a PDE, Coefficient Form model using the general
solution form.

When selecting the solution form, you have (at most) four options: automatic (the
default), coefficient, general, and weak. With the automatic option, COMSOL
Multiphysics selects the solution form according to the following rules:

• If you use the adaptive solver with Residual method set to Coefficient and the
equation system form is not the weak form, COMSOL Multiphysics selects the
general solution form.

• In all other cases, COMSOL Multiphysics selects the weak solution form

The reason the software selects the general solution form when using the adaptive
solver with Residual method set to Coefficient is that it does not work with the weak
solution form (see “The Adaptive Solver Algorithm” on page 505).

The only situation when you need to manually select the solution form is when you
want to use equation variables (for instance, cux and ncu), because these are not
available for the weak solution form (see “Special Variables” on page 175 of the
COMSOL Multiphysics User’s Guide). Consider the following aspects when
selecting the solution form:

• The weak solution form is usually the best choice because you normally get a
correct Jacobian (see “The Importance of a Correct Jacobian Matrix” on page
363 of the COMSOL Multiphysics User’s Guide) and the assembly is somewhat
faster than for the coefficient and general forms.

• The general solution form generates an incorrect Jacobian if the model has
derivatives in the boundary conditions or some terms in the PDE depend on a
second-order spatial derivative. It also generates an incorrect Jacobian if some
coefficient or term in the PDE or boundary conditions depends on a coupling
variable.

• The general solution form generates an incorrect Jacobian if the model contains
time derivatives in other places than multiplying the da or ea coefficients, or in
the weak or dweak edit fields.

• The coefficient solution form is more restricted than the general form. In
addition to the disadvantages of the general form, this solution form results in an
495

496 | C H A P T E
incorrect Jacobian if some of the coefficients depend on the solution. Therefore use
the coefficient form only for linear single-physics or uncoupled models.

Note that not all solution forms might be available, depending on the formulation of
the equations in the application modes in use. For instance, it is not possible to solve
the nonlinear Navier-Stokes equations in coefficient form.

Manual Control of Reassembly

It is important for the efficiency of the time-stepping algorithm to assemble the time-
independent matrices only once. The solver automatically detects the coefficients in
your equations that are time dependent and reassembles only those quantities. The
nonlinear and parametric solvers also follow this logic (with the parameter playing the
role of time).

If the Jacobian is incorrect (see “The Importance of a Correct Jacobian Matrix” on
page 363 of the COMSOL Multiphysics User’s Guide), the automatic detection can
fail, which means that you might get an incorrect solution. In this case you must either
manually control the reassembly (see below) or, better, use the weak solution form,
which you specify on the General tab. If you use periodic boundary conditions, identity
conditions, or coupling variables, the automatic detection is too sensitive, which means
that the solution you get is correct but the reassembly process might take an
unnecessarily long time. For such models, you can speed up time-stepping, by
manually specifying which matrices are constant. To do so, first select the Manual

control of reassembly check box and then select the check boxes in this area according
to the following guidelines:

• Select the Load constant check box if the PDE and Neumann boundary conditions
are linear with time-independent coefficients and right-hand sides. For the
discretized model, this means that the residual vector L depends linearly on U
(L = L0 − KU) and that L0, K, and the mass matrix D are constant. It is assumed
that the Jacobian matrix K is correct.

• Select the Jacobian constant check box if the Jacobian matrix K is time-independent.
You can also choose this option if you want to use the same Jacobian throughout
the time-dependent or nonlinear solver. This choice cuts down linear-system
factorization/preconditioning time but causes more iterations because the Newton
iteration is degraded into a fixed-point iteration.

• Select the Damping (mass) constant check box if the coefficients of the first-order
time-derivative terms are time independent (often the case). In the discretized
model, this means that the damping (sometimes called mass) matrix D is constant.
R 5 : A D V A N C E D S O L V E R TO P I C S

• Select the Mass constant check box if the coefficients of the second-order
time-derivative terms are time independent (often the case). In the discretized
model, this means that the mass matrix E is constant.

• Select the Constraint constant check box if the Dirichlet boundary conditions
(constraints) are linear and time-independent. For the discretized model, this means
that the constraint residual M depends linearly on U (M = M0 − NU) and that M0
and N are constant. It is also assumed that the constraint Jacobian N is correct.

• Select the Constraint Jacobian constant check box if the Dirichlet boundary
conditions are linear with time-independent coefficients (not right-hand side). For
the discretized model this means that N is constant.

Scaling of Variables and Equations

If the dependent variables in your model have widely different magnitudes, the solver
might have problems with the resulting ill-conditioned matrix. For instance, in a
structural-mechanics problem the displacements can be of the order of 0.0001 m while
the stresses are 1,000,000 Pa (1 MPa). To remedy this situation, COMSOL
Multiphysics internally rescales the variables so that a well-scaled system results.

The default is automatic scaling, which works well for most models. It is based on the
magnitudes of the elements in the Jacobian and mass matrices. If you know the order
of magnitudes of the variables in advance, you can opt for manual scaling. For
instance, suppose that a problem involves two degrees of freedom, u and sigma, and
that the values of u are on the order of 10−4 and the values of sigma are approximately
106. To take this knowledge into account, in the Scaling of variables area, select Manual
from the Type of scaling list and type u 1e-4 sigma 1e6 in the Manual scaling edit field.
When you start the solvers, they will internally use the rescaled degrees of freedom U
= u/1e-4 and Sigma = sigma/1e6, which both are of the order 1. If you provide an
initial value that gives a good estimate of the scales of your variables, another choice is
to use initial-value based scaling by selecting Initial value based in the Type of scaling
list. To turn off scaling, select None in the Type of scaling list.

Note: The automatic scaling in COMSOL Multiphysics does not work when using
the nonlinear stationary solver and one solution component is identically zero in the
solution (the solver does not converge). In this case use Manual or None.
A D V A N C E D S O L V E R S E T T I N G S | 497

498 | C H A P T E
Even if variables are well scaled, equations can have very different scales. To overcome
this problem you can equilibrate the equations by selecting On in the Row equilibration
list (the default). To turn off equation scaling, choose Off in the Row equilibration list.
To preserve the possible symmetry of the matrix, COMSOL Multiphysics does not use
row equilibration in the following cases:

• Automatic matrix symmetry detection is used and the system matrices are symmetric

• Symmetric or Hermitian is selected in the Matrix symmetry list

• The Conjugate gradients or Geometric multigrid solver is used

• The eigenvalue solver is used.

T H E R E S C A L E D L I N E A R S Y S T E M

The rescaling of the discretized linear system (see “The Discretized Linearized Model”
on page 367 of the COMSOL Multiphysics User’s Guide) occurs before constraint
handling. Assume that the degrees of freedom Ui are expressed terms of rescaled
degrees of freedom according to the formula

where si are positive scale factors. Using a diagonal matrix S, the relation between U
and is

,

and you can write the rescaled linear system as

where

and

.

Here, R is a diagonal matrix of positive scale factors chosen such that the rows in the
matrix are of magnitude 1.

Ui
˜

Ui siUi
˜=

U
˜

U SU
˜

=

K
˜

N
˜

F

N
˜

0

U
˜

Λ
˜

L
˜

M
˜

=

Λ RΛ
˜

= N
˜

F SNFR= K
˜

SKS= N
˜

RNS=

L SL M, RM= =

N
˜

R 5 : A D V A N C E D S O L V E R TO P I C S

Constraint Handling

Consider the linear (scaled) system

.

The Lagrange multiplier vector Λ is typically underdetermined, and COMSOL
Multiphysics does not solve for it. Similarly, the constraint NU = M often contains the
same equation several times. To handle this problem, COMSOL Multiphysics turns to
a constraint-handling method using elimination, Lagrange multipliers, or stiff
springs. Select the desired constraint-handling method on the Advanced page of the
Solver Parameters dialog box.

E L I M I N A T I O N C O N S T R A I N T H A N D L I N G

This is the default constraint-handling method. The solver computes a solution Ud to
the constraint NU = M as well as a matrix Null, whose columns form a basis for the
null space of N. For non-ideal constraints ()then a matrix Nullf is also
computed, whose column forms a basis for the null space of NF

T. Then it obtains the
solution as U = Null Un + Ud, where Un is the solution of Ke Un = Le, where

.

For the ideal constraint case , the corresponding eliminated D and E
matrices are

L A G R A N G E M U L T I P L I E R S C O N S T R A I N T H A N D L I N G

The linear solver computes a matrix Range, whose columns form a basis for the range
of N, and a matrix Rangef, whose columns form a basis for the range of NF

T. Then it
constrains Λ to be of the form where s is a scaling factor. This
transforms the system to

K NF

N 0

U
Λ

L
M

=

NF NT≠

Ke NullfT K Null=

Le NullfT L KUd–()=
⎩
⎪
⎨
⎪
⎧

Nullf Null=

De NullfT D Null Ee NullfTE Null=,=

Λ s Rangef Λ
ˆ

=

Kl
U

Λ
ˆ Ll=
A D V A N C E D S O L V E R S E T T I N G S | 499

500 | C H A P T E
where

.

COMSOL Multiphysics solves this system for both U and , but it returns only U.
The corresponding D matrix is

For the ideal constraint case .

S T I F F S P R I N G S C O N S T R A I N T H A N D L I N G

This method approximates the constraint NU = M by

where κ is a suitably large constant. Eliminating Λ gives the system KsU = Ls, where

.

The corresponding D matrix is Ds = D.

Kl
K sNFRangef

sRangeTN 0
= Ll

L

sRangeTM
=

Λ
ˆ

Dl
D 0
0 0

=

Rangef Range=

NU M 1
κ
---Λ+=

Ks K κNFN+=

Ls L κNFM+=
⎩
⎪
⎨
⎪
⎧

R 5 : A D V A N C E D S O L V E R TO P I C S

S o l v e r A l g o r i t hm s

The Nonlinear Solver Algorithm

The nonlinear solver uses an affine invariant form of the damped Newton method as
described in Ref. 1. You can write the discrete form of the equations as f(U) = 0, where
f(U) is the residual vector and U is the solution vector. Starting with the initial guess
U0, the software forms the linearized model using U0 as the linearization point. It
solves the discretized form of the linearized model f'(U0) δU = −f(U0) for the Newton
step δU using the selected linear system solver (f'(U0) is the Jacobian matrix). It then
computes the new iteration U1 = U0 + λ δU, where λ () is the damping
factor. Next the modified Newton correction estimates the error E for the new
iteration U1 by solving f'(U0) E = −f(U1). If the relative error corresponding to E is
larger than the relative error in the previous iteration, the code reduces the damping
factor λ and recomputes U1. This algorithm repeats the damping-factor reduction
until the relative error is less than in the previous iteration or until the damping factor
underflows the minimum damping factor. When it has taken a successful step U1, the
algorithm proceeds with the next Newton iteration.

A value of λ = 1 results in Newton’s method, which converges quadratically if the initial
guess U0 is sufficiently close to a solution. In order to enlarge the domain of attraction,
the solver chooses the damping factors judiciously. Nevertheless, the success of a
nonlinear solver depends heavily on a carefully selected initial guess. Thus you should
spend considerable time providing the best value for U0, giving at least an order of
magnitude guess for different solution components.

C O N V E R G E N C E C R I T E R I O N

The nonlinear iterations terminate when the following convergence criterion is
satisfied: Let U be the current approximation to the true solution vector, and let E be
the estimated error in this vector. The software stops the iterations when the relative
tolerance exceeds the relative error computed as the weighted Euclidean norm

Here N is the number of degrees of freedom and Wi = max(| Ui | , Si), where Si is a
scale factor that the solver determines on the basis of the Type of scaling option selected

0 λ 1≤≤

err 1
N
---- Ei Wi⁄()

i 1=

N
∑

2

⎝ ⎠
⎛ ⎞ 1 2⁄

=

S O L V E R A L G O R I T H M S | 501

502 | C H A P T E
in the Scaling of variables area on the Advanced page according to the following rules:

• For Automatic, Si is the average of |Uj| for all DOFs j having the same name as DOF
i times a factor equal to 10−5 if the Highly nonlinear problem check box is selected or
0.1 otherwise.

• For Manual, Si is the value for DOF i given in the Manual scaling edit field.

• For Initial value based, Si is the factor s (see below) times the average of |U0j| for all
DOFs j having the same name as DOF i, where U0 is the solution vector
corresponding to the initial value.

• For None, Wi = 1. In this case, err is an estimate for the absolute error.

The Augmented Lagrangian Solver Algorithm

Denoting the main components in step i of the algorithm Ui and the corresponding
augmented-Lagrangian components Vi, the following steps describe the algorithm:

1 Initialize U0 and V0, and set i = 0.

2 Solve the nonlinear problem for U = Ui+1 with Ui as initial data and with V = Vi held
fixed.

3 Solve the linear problem for V = Vi+1 with U = Ui+1 held fix.

4 If and , or i > imax, then
terminate, else set i = i + 1 and go to Step 2.

This procedure is called Uzawa iterations (or segregated iterations). The value in the
Tolerance edit field controls the tolerance δV in the convergence criterion, and you
control the other tolerance δU using the Relative tolerance edit field in the Nonlinear

settings area. The value in the Maximum number of iterations edit field controls the imax
parameter in Step 4. You can choose the linear system solver used for Step 3 in the
Solver list. The Structural Mechanics Module uses this process to solve contact
problems with the augmented-Lagrangian technique. See the Structural Mechanics
Module User’s Guide for more information.

The Time-Dependent Solver Algorithm

The finite element discretization of the time-dependent PDE problem is

,

Vi 1+ Vi– Vi 1+⁄ δV≤ Ui 1+ Ui– Ui 1+⁄ δU≤

0 L U U
·

U
··

t, , ,() NF U t,()Λ–=

0 M U t,()=
R 5 : A D V A N C E D S O L V E R TO P I C S

which is often referred to as the method of lines. Before solving this system, the
algorithm eliminates the Lagrange multipliers Λ. If the constraints 0 = M are linear and
time independent and if the constraint force Jacobian NF is constant then the
algorithm also eliminates the constraints from the system. Otherwise it keeps the
constraints, leading to a differential-algebraic system.

To solve the above ODE or DAE system, COMSOL Multiphysics uses a version of the
DAE solver DASPK created by Linda Petzold at the University of California, Santa
Barbara (see Ref. 3 and Ref. 4). The DASPK solver, in turn, is based on the older code
DASSL (see Ref. 2), which uses variable-order variable-step-size backward
differentiation formulas (BDF). Thus the solver is an implicit time-stepping scheme,
which implies that it must solve a possibly nonlinear system of equations at each time
step. It solves the nonlinear system using a Newton iteration, and it then solves the
resulting systems with an arbitrary COMSOL Multiphysics linear system solver. The
linearization of the above system used in the Newton iteration is

where K = −∂L / ∂U is the stiffness matrix, is the damping matrix, and
 is the mass matrix. When E = 0, D is often called the mass matrix.

For problems with second order time-derivatives (), extra variables are internally
introduced so that a first order time-derivative system can be formed. The vector of
extra variables, here Uv, comes with the extra equation

where U denotes the vector of original variables. The original ODE or DAE system is
by this procedure expanded to double size but the linearized system is reduced to the
original size with the matrix , where σ is a scalar inversely proportional
to the time-step. By the added equation the original variable U is therefore always a
differential variable (index-0). The variable Uv is excluded from the error test, unless
Consistent initialization of DAE systems is set to On, in which case the differential
Uv-variables are included in the error test and the Error estimation strategy applies to
the algebraic Uv-variables.

The Eigenvalue Solver Algorithm

Finite element discretization leads to the generalized eigenvalue system

EV
··

DV
·

KV+ + L NFΛ–=

NV M=

D ∂L ∂U
·

⁄–=

E ∂L ∂U
··

⁄–=

E 0≠

U
·

Uv=

E σD σ2K+ +
S O L V E R A L G O R I T H M S | 503

504 | C H A P T E
where the solver evaluates E, D, K, N and NF for the solution vector U0, λ denotes
the eigenvalue, and λ0 is the linearization point. If E = 0, it is a linear eigenvalue
problem; if E is nonzero, it is a quadratic eigenvalue problem. To solve the quadratic
eigenvalue problem, COMSOL Multiphysics reformulates it as a linear eigenvalue
problem. After constraint handling, it is possible to write the system in the form A x =
λ B x.

More general eigenvalue problems sometimes arise when boundary conditions or
material properties are nonlinear functions of the eigenvalue. These cases can be
handled as a series of quadratic eigenvalue problems. COMSOL Multiphysics treats
general dependences on the eigenvalue by assembling a quadratic approximation
around the eigenvalue linearization point λ0. Normally, iteratively updating the
linearization point leads to rapid convergence.

Finding the eigenvalues closest to the shift σ is equivalent to computing the largest
eigenvalues of the matrix C = (A − σB)−1B. To do this, the solver uses the ARPACK
FORTRAN routines for large-scale eigenvalue problems (Ref. 5). This code is based
on a variant of the Arnoldi algorithm called the implicitly restarted Arnoldi method
(IRAM). The ARPACK routines must perform several matrix-vector multiplications
Cv, which they accomplish by solving the linear system (A − σ B) x = Bv using one of
the linear system solvers.

The Parametric Solver Algorithm

The parametric solver performs a loop around the usual stationary solver in which it
estimates the initial guess using the solution for the previous parameter value. If the
nonlinear solver does not converge, it tries a smaller parameter step; the size of this step
it determined on the basis of the convergence speed of the Newton iteration. These
criteria for step size selection are based on work in Ref. 6.

The Stationary Segregated Solver Algorithm

C O N V E R G E N C E C R I T E R I O N

The segregated solver terminates if, for all the groups j, the error estimate is smaller
than the corresponding tolerance,

λ λ0–()2EU λ λ0–()DU– KU NFΛ+ + 0=

NU 0=
R 5 : A D V A N C E D S O L V E R TO P I C S

,

where the error estimate in segregated iteration k is

.

The number tolj is taken from the Relative tolerance edit field for the corresponding
group settings for the Stationary segregated solver on the General page of the Solver

Parameters dialog box. Furthermore,

is an estimate of the largest damped Newton error. Here l is taken for all iterations in
all substeps solving for the group j, αl is the damping factor, ∆U l, j, k is the Newton
increment vector, and Nj is the number of DOFs. The weight factor Wj

i is described
below. Moreover,

,

is the relative increment over one complete iteration k. In this expression, Uj,k is the
segregated solution vector for the group j, and Wj

i = max(|Uj
i|, Si), where Si is a scale

factor that the solver determines from the settings in the Scaling of variables area on the
Advanced page.

Now examine the possible choices in the Type of scaling list:

• For Automatic, Si is the factor 0.1 times the average of |Um| for all DOFs m having
the same name as DOF i.

• For Manual, Si is the value for DOF i given in the Manual scaling edit field.

• For Initial value based, Si is the factor 0.1 times the average of |U0m| for all DOFs
m having the same name as DOF i, where U0 is the solution vector corresponding
to the initial value.

• For None, Wi = 1.

The Adaptive Solver Algorithm

The L2 norm error estimate relies on an assumption of a strong stability estimate for
the PDE problem (satisfied, for example, for Poisson’s equation over a domain with a

errj k, tolj<

errj k, max ej k,
N ej k,

S
(,)=

ej k,
N maxl 1 αl–() 1

Nj
------ ∆Ul j k, ,()i

Wj
i

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

Nj∑
2 1 2⁄

=

ej k,
S 1

Nj
------ Uj k, Uj k, 1–

–()i

Wj
i

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

Nj∑
2 1 2⁄

=

S O L V E R A L G O R I T H M S | 505

506 | C H A P T E
smooth boundary). From such an assumption, it is possible to show that there is a
constant C, such that the L2 norm of the error, el, in the lth equation satisfies

where ρl is the residual in the lth equation and ql is the stability estimate derivative
order. The adaptive solver algorithm uses the following L2-norm error indicator:

with the default value ql = 2. This formula also introduces the scaling factors sl for the
residual with the default value sl = 1.The local error indicator for a mesh element is

where A is the area (volume, length) of the mesh element, and τl is the absolute value
of the lth equation residual (one number per mesh element). The residual methods
Weak and Coefficient compute τl in rather different ways.

The Coefficient residual method uses an explicit so-called strong form of the PDE to
compute the equation residual τl on each mesh element. This method evaluates the
PDE residual at the center of each element takes normal flux jumps to neighboring
elements into account. However, it does not take residual contributions from
equations formulated with the Weak solution form into account. Neither does it add
terms in the Weak edit fields, and constraint forces do not contribute to the residual.
Because there is no compelling reason to use the Coefficient residual method, you
should therefore avoid selecting it. It is provided for backward compatibility only.

The Weak residual method (the default) uses an auxiliary mesh case to estimate the
residualτl. This method automatically generates the mesh case by increasing the order
of the shape functions used (by one) for the problem considered, while using the same
mesh. The solution is mapped to this auxiliary mesh case and the discrete residual
vector L is assembled. The equation residualτl for a mesh element is computed by:

• Finding how the lth field variable (dependent variable) is coupled to the degrees of
freedom’s

• Taking an average per element for the corresponding components of L.

el C h
qlρl≤

sl
2–

l
∑ h

2ql

ρl
2 Ad

Ω
∫⎝ ⎠
⎜ ⎟
⎛ ⎞

1
2

sl
2–

l
∑ h

2ql

τl
2A
R 5 : A D V A N C E D S O L V E R TO P I C S

Due to the extra residual assembly work, the Weak residual method is somewhat slower
than the Coefficient residual method. On the other hand, the Weak method is more
general; for example, it supports vector elements. It also takes boundary fluxes into
account. Degrees of freedom that are constrained do not contribute to the residual.

The adaptive solver performs the following iterative algorithm (Ref. 7):

1 Solve the problem on the existing mesh using the stationary or eigenvalue solver.

2 Evaluate the residual of the PDE on all mesh elements.

3 Estimate the error in the solution on all mesh elements. The computed error
estimate is really just an error indicator because the estimate involves an unknown
constant (C above).

4 Terminate execution if it has made the requested number of refinements or if it has
exceeded the maximum number of elements.

5 Refine a subset of the elements based on the sizes of the local error indicators.

6 Repeat from Step 1.

References

1. P. Deuflhard, “A modified Newton method for the solution of ill-conditioned
systems of nonlinear equations with application to multiple shooting,” Numer. Math.,
22, pp. 289–315, 1974.

2. K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations, Elsevier, New York,
1989 (second edition, SIAM, 1996).

3. P.N. Brown, A.C. Hindmarsh, and L.R. Petzold, “Using Krylov methods in the
solution of large-scale differential-algebraic systems,” SIAM J. Sci. Comput., 15,
pp. 1467–1488, 1994.

4. http://www.netlib.org/ode.

5. The ARPACK Arnoldi package, http://www.caam.rice.edu/software/ARPACK.

6. P. Deuflhard, “A Stepsize Control for Continuation Methods and its Special
Application to Multiple Shooting Techniques,” Numer. Math., vol. 33, pp. 115–146,
1979.

7. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques, Teubner Verlag and J. Wiley, Stuttgart, 1996.
S O L V E R A L G O R I T H M S | 507

508 | C H A P T E
L i n e a r S y s t em So l v e r s

The UMFPACK Direct Solver

UMFPACK is the default linear system solver. It solves general systems of the form
A x = b using the nonsymmetric-pattern multifrontal method and direct LU
factorization of the sparse matrix A. It employs the COLAMD and AMD approximate
minimum degree preordering algorithms to permute the columns so that the fill-in is
minimized. The code, written in C, uses level-3 BLAS (Basic Linear Algebra
Subprograms) for optimal performance. COMSOL Multiphysics uses UMFPACK
version 4.2 written by Timothy A. Davis (Ref. 1).

In the Linear System Solver Settings dialog box you can set the memory-allocation
factor, a positive number (default = 0.7). The solver makes a rough estimate of the
required memory before performing the calculations. The memory-allocation factor
dictates how much memory COMSOL Multiphysics should allocate. A value of 0.7
results in using 70% of the estimate. A low allocation factor saves memory, but the
simulation might then run much slower.

If you select the Check tolerances check box, COMSOL Multiphysics estimates and
checks the error after the solution phase. For information about the error estimate see
the section “Convergence Criteria” on page 513. By default the error estimate is
turned off for UMFPACK.

You can also set the pivot threshold, a number between 0 and 1 (default = 0.1). The
solver permutes rows for stability. In any given column the algorithm accepts an entry
as a pivot element if its absolute value is greater than or equal to the pivot threshold
times the largest absolute value in the column. A low pivot threshold means less fill-in
and thus saves memory. If the default setting leads to poor accuracy in the linear
solution, try to increase the pivot threshold from the default to, for example, 1 (which
means that the linear solver always applies partial pivoting). This action can lead to a
more stable solution process and a more accurate solution of the linear systems.

When using UMFPACK as a preconditioner, you can also provide a drop tolerance in
the range 0 to 1. A value of 0.01 means that it drops matrix entries smaller than 1% of
the maximum value in each column of the LU factors. Doing so reduces the size of the
factors and reduces memory requirements. However, the dropping occurs only when
writing the LU factors, and it does not affect the rest of the factorization process. In
R 5 : A D V A N C E D S O L V E R TO P I C S

contrast, in the Incomplete LU preconditioner the element dropping affects the rest
of the factorization process, which leads to a more memory-efficient preconditioner.

The SPOOLES Direct Solver

The SPOOLES solver works on general systems of the form A x = b using the
multifrontal method and direct LU factorization of the sparse matrix A. When the
matrix A is symmetric or Hermitian, the solver uses an LDLT version of the algorithm,
which saves half the memory. SPOOLES uses several preordering algorithms to
permute the columns and thereby minimize the fill-in. The code is written in C.
COMSOL Multiphysics uses SPOOLES version 2.2 developed by Cleve Ashcraft and
collaborators (Ref. 2).

In the Linear System Solver Settings dialog box you choose among the following
preordering algorithms:

• Minimum degree (the default algorithm)

• Nested dissection

• Multisection

• The best of nested dissection and multisection

If you select the Check tolerances check box, COMSOL Multiphysics estimates and
checks the error after the solution phase. For information about the error estimate see
the section “Convergence Criteria” on page 513. By default the error estimate is
turned off for SPOOLES.

You can also specify a pivot threshold in the range of 0 to 1 (default = 0.1). When using
SPOOLES as a preconditioner, you can provide a drop tolerance in the range of 0 to
1 (see “The UMFPACK Direct Solver” on page 508).

The PARDISO Direct Solver

The parallel sparse direct linear solver PARDISO works on general systems of the form
A x = b. In order to improve sequential and parallel sparse numerical factorization
performance, the solver algorithms are based on a Level-3 BLAS update, and they
exploit pipelining parallelism with a combination of left-looking and right-looking
supernode techniques. The code is written in C and Fortran. COMSOL Multiphysics
uses the PARDISO version developed by Olaf Schenk and collaborators (Ref. 3),
which is included with Intel MKL (Intel Math Kernel Library).
L I N E A R S Y S T E M S O L V E R S | 509

510 | C H A P T E
In the Linear System Solver Settings dialog box you choose among the following
preordering algorithms:

• Minimum degree

• Nested dissection (the default algorithm)

You can also specify if the solver should use a maximum weight matching strategy by
choosing row preordering on (default) or off.

In order to avoid pivoting, PARDISO uses a pivot perturbation strategy that tests the
magnitude of the potential pivot against a constant threshold of

, where P and PMPS are permutation matrices, Dr and Dc
are diagonal scaling matrices, and is the infinity norm. If the solver encounters a
tiny pivot during elimination, it sets it to . You can
specify the pivot threshold ε. The perturbation strategy is not as robust as ordinary
pivoting. In order to improve the solution PARDISO uses iterative refinements.

COMSOL Multiphysics can optionally estimate and check the error after the solution
phase. You control this option through the Check tolerances list. For the Automatic
selection, error checking is at least done for problems where pivot perturbation or
iterative improvement has been used. For information about the error estimate, see the
section “Convergence Criteria” on page 513. By default the error checking is enabled
(On). You can disable the check by instead selecting Off.

For information about running COMSOL Multiphysics using parallelism, see “Parallel
COMSOL” on page 63 in the COMSOL Installation and Operations Guide.

Note: PARDISO is available on Linux and Windows only. On Sun and Mac,
COMSOL Multiphysics switches to UMFPACK instead.

The TAUCS Cholesky Direct Solver

The TAUCS Cholesky direct solver handles systems of the form A x = b, where A is a
positive definite symmetric sparse matrix (see “Which Models Are Positive Definite?”
on page 399 of the COMSOL Multiphysics User’s Guide) using a multifrontal
supernodal Cholesky factorization. It employs the multiple minimum degree
reordering algorithm to permute the rows and columns and thus minimize the fill-in.
Written in C, it uses level-3 BLAS for maximum performance. COMSOL Multiphysics
uses TAUCS version 2.2 written by Sivan Toledo and collaborators (Ref. 4).

ε α PPMPSDrADcP ∞=

. ∞
sign lii()ε PPMPSDrADcP ∞
R 5 : A D V A N C E D S O L V E R TO P I C S

Due to the algorithm’s recursive nature, it can run out of stack space for large models.
If this happens, you can increase the value of the STACKSIZE parameter in the
appropriate COMSOL startup script. For PC/Windows set the STACKSIZE parameter
in the \bin\comsol.opts file, located in the COMSOL installation directory; for
UNIX/Linux/Mac OS X set the STACKSIZE parameter in the /bin/comsol
command, located in the COMSOL installation directory. The default value is 2m (2
MB). For example, if you edit the script and double the value of STACKSIZE to 4m (4
MB), the maximum recursion depth for the algorithm also doubles. Continue
doubling the value of STACKSIZE until the TAUCS algorithm is successful.

Note: To use the TAUCS Cholesky and LDLT solvers, you must select Symmetric or
Hermitian in the Matrix symmetry list in the Solver Parameters dialog box.

The TAUCS LDLT Direct Solver

This linear system solver handles real symmetric or Hermitian matrices. It has no
parameters to set. You can use the direct LDLT (TAUCS) solver as an alternative to
the SPOOLES symmetric solver.

The GMRES Iterative Solver

This linear system solver uses the restarted GMRES (generalized minimum residual)
method (see Ref. 5 and Ref. 6). This is an iterative method for general linear systems
of the form A x = b. For fast convergence it is important to use an appropriate
preconditioner (see “Selecting a Preconditioner” on page 395 of the COMSOL
Multiphysics User’s Guide).

The value in the Number of iterations before restart edit field in the Linear System Solver

Settings dialog box specifies the number of iterations the solver performs until it
restarts (the default is 50). There is no guarantee that a restarted GMRES will converge
for a small restart value. A larger restart value increases the robustness of the interactive
procedure, but it also increases memory use and computational time. For large
problems, the computational cost is often very large to produce a preconditioner of
such a high quality that the termination criteria are fulfilled for a small number of
iterations and for a small restart value. For those problems it is often advantageous to
set up a preconditioner with a somewhat lesser quality and instead increase the restart
value or iterate more steps. Doing so typically increases the condition number for the
L I N E A R S Y S T E M S O L V E R S | 511

512 | C H A P T E
preconditioned system, so an increase in the error-estimate factor might be needed as
well.

Two slightly different versions of GMRES are available in COMSOL Multiphysics.
The difference between these two versions is whether left or right preconditioning is
used (see “The Preconditioned Linear System” on page 400 of the COMSOL
Multiphysics User’s Guide). Select the preconditioning type from the Preconditioning

list. The default choice is left preconditioning. Normally, the two versions of GMRES
have similar convergence behavior (see Ref. 7). If the preconditioner is ill-conditioned
there could, however, be differences in the behavior.

For information about the convergence criterion used by GMRES and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
513.

If the solver does not converge, it terminates with an error message when it reaches the
value in the Maximum number of iterations edit field (default = 10,000).

The FGMRES Iterative Solver

This solver uses the restarted FGMRES (flexible generalized minimum residual)
method (see Ref. 8). The solver is a variant of the GMRES solver that can handle a
wider class of preconditioners in a robust way. You can, for example, use any iterative
solver as preconditioner for FGMRES. The downside with the method is that it uses
twice as much memory as GMRES for the same value in the Number of iterations before

restart edit field. FGMRES uses right preconditioning and therefore has the same
convergence criterion as right-preconditioned GMRES. If FGMRES is used together
with a constant preconditioner such as, for example, the Incomplete LU
preconditioner, then the FGMRES solver is identical to the right preconditioned
GMRES solver.

For information about the convergence criterion used by FGMRES and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
513.

The Conjugate Gradients Iterative Solver

This solver uses the conjugate gradients iterative method (see Ref. 9, Ref. 10, and Ref.
11). It is an iterative method for linear systems of the form A x = b where the matrix A
is positive definite and (Hermitian) symmetric (see “Which Models Are Positive
Definite?” on page 399 of the COMSOL Multiphysics User’s Guide). Sometimes the
R 5 : A D V A N C E D S O L V E R TO P I C S

solver also works when the matrix is not positive definite, especially if it is close to
positive definite. This solver uses less memory and is often faster than the GMRES
solver, but it applies to a restricted set of models.

For fast convergence it is important to use an appropriate preconditioner (see
“Selecting a Preconditioner” on page 395 of the COMSOL Multiphysics User’s
Guide), which should be positive definite and (Hermitian) symmetric.

Select the preconditioning type from the Preconditioning list. The default choice is left
preconditioning. For the Conjugate gradient method this choice only affects the
convergence criterion and not the algorithm itself. For information about the
convergence criterion and the Relative tolerance and Factor in error estimate edit fields,
see “Convergence Criteria” on page 513

Convergence Criteria

When you use an iterative solver COMSOL Multiphysics estimates the error of the
solution while solving. Once the error estimate is small enough, as determined by the
convergence criterion

 (5-1)

the software terminates the computations and returns a solution. When you use a
direct solver COMSOL Multiphysics can optionally make a check (Error check), to
determine if the above convergence criterion is fulfilled after the solution step. If the
error criterion is not met, the solution process is stopped an error message is given.

The definitions of M for the various solvers are:

• For UMFPACK, PARDISO and SPOOLES, M = LU, where L and U are the LU
factors computed by the solver.

• For left-preconditioned GMRES and left-preconditioned Conjugate Gradients, M
is the preconditioner matrix.

• For the remaining iterative solvers, M is the identity matrix.

The convergence criterion 5-1, states that the iterations terminate when the relative
(preconditioned) residual times the factor ρ is less than a tolerance tol. You can set the
factor ρ in the Factor in error estimate edit field (default = 400). For solvers where M
is equal to the identity matrix, the iterations can sometimes terminate too early with
an incorrect solution if the system matrix A is ill-conditioned. For solvers where M is
not equal to the identity matrix, the iterations can sometimes terminate too early if M

ρ M 1– b Ax–() tol M 1– b⋅<
L I N E A R S Y S T E M S O L V E R S | 513

514 | C H A P T E
is a poor preconditioner. If the iterations terminate too early due to an ill-conditioned
system matrix or a poor preconditioner, increase the factor ρ to a number of the order
of the condition number for the matrix M−1A. Note that if ρ is greater than the
condition number for the matrix M−1A, the convergence criterion implies that the
relative error is less than tol: | x − A−1b | < tol ·| A−1b |.

L I N E A R S Y S T E M T O L E R A N C E

For the Stationary linear solver and the Stationary segregated solver, the tolerance tol in
the convergence criterion 5-1 is the value specified in the Relative tolerance edit field
in the Linear System Solver Settings dialog box.

For the Stationary nonlinear solver, tol is adaptive and based on the maximum of the
number entered in the Relative tolerance edit field in the Linear System Solver Settings
dialog box and the number entered in the Relative tolerance edit field on the Stationary
page of the Solver Parameters dialog box. During the nonlinear iterations tol can,
however, be larger or smaller than this number.

For the Parametric solvers, tol is used in the same way as for the corresponding
Stationary solver.

When using the Time dependent solver, tol is the maximum of the number in the
Relative tolerance edit field in the Linear System Solver Settings dialog box and the
number in the Relative tolerance edit field on the General page of the Solver Parameters
dialog box.

When using the Eigenvalue solver together with an iterative method, tol is the number
in the Relative tolerance edit field in the Linear System Solver Settings dialog box times
a safety factor of 10−4. When using a direct method, tol is the number in the Relative

tolerance edit field in the Linear System Solver Settings dialog box without any safety
factor.

For the main components of the Augmented Lagrangian solver, tol is used in the same
way as for the Stationary solver. For the Augmentation components the error check for
the direct solvers is disabled.

References

1. http://www.cise.ufl.edu/research/sparse/umfpack.

2. http://www.netlib.org/linalg/spooles

3. http://www.computational.unibas.ch/cs/scicomp/software/pardiso/
R 5 : A D V A N C E D S O L V E R TO P I C S

4. http://www.tau.ac.il/~stoledo/taucs

5. Greenbaum, A., “Iterative Methods for Linear Systems,” Frontiers in Applied
Mathematics 17, SIAM, 1997.

6. Y. Saad and M.H. Schultz, “GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 7,
pp. 856–869, 1986.

7. Y. Saad, Iterative Methods for Sparse Linear Systems, Boston, 1996.

8. Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,”
SIAM J. Sci. Statist. Comput., vol. 14, pp. 461–469, 1993.

9. A. Greenbaum, “Iterative Methods for Linear Systems,” Frontiers in Applied
Mathematics, vol. 17, SIAM, 1997.

10. M.R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear
systems,” J. Res. Nat. Bur. Standards, 49, pp. 409–435, 1952.

11. C. Lanczos, “Solutions of linear equations by minimized iterations,” J. Res. Nat.
Bur. Standards, vol. 49, pp. 33–53, 1952.
L I N E A R S Y S T E M S O L V E R S | 515

516 | C H A P T E
P r e c ond i t i o n e r s f o r t h e I t e r a t i v e
S o l v e r s

The Incomplete LU Preconditioner

The Incomplete LU preconditioner performs an incomplete LU factorization of the
system matrix A. That is, it drops small elements during the column-oriented Gaussian
elimination (see Ref. 1 and Ref. 2). Thus it saves memory, and the resulting factors L
and U are approximate. The resulting preconditioner is an approximation to A. The
preconditioner supports threshold drop, fill-ratio drop, and threshold pivoting. It can
optionally respect the nonzero pattern in the original matrix. The preconditioner
accepts matrices in symmetric and Hermitian format but expands these to full storage
before factorization.

In the Linear System Solver Settings dialog you can select a drop rule (see the following
section) from the Drop using list. Depending on the selected drop rule, you can specify
a Drop tolerance or a Fill ratio. You can also control the drop tolerance on the General
tab of the Solver Parameters dialog box either numerically (by supplying a number
between 0 and 1) or using the Memory efficiency/Precond. quality slider. A smaller drop
tolerance means that the preconditioner drops fewer elements and so the
preconditioner becomes more accurate. This leads to fewer iterations in the iterative
solver, but on the other hand memory requirements and preconditioning time
increases. A larger drop tolerance means that the preconditioner drops more elements
and so memory use and preconditioning time decrease. In this case, however, the
preconditioner becomes less accurate, which leads to more iterations in the iterative
solver, or, if the drop tolerance is too high, to no convergence at all. Often it is most
efficient to use as high a drop tolerance as possible, that is, choose it so that the iterative
solver barely converges.

You can also set the Pivot threshold, a number between 0 and 1 (default = 1). The solver
permutes rows for stability. In any given column, if the absolute value of the diagonal
element is less than the pivot threshold times the largest absolute value in the column,
it permutes rows such that the largest element is on the diagonal. Thus the default
value 1 means that it uses partial pivoting.

Once the approximate factors L and U have been computed, you can use the
incomplete LU factorization as an iterative preconditioner/smoother (see “The
SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms” on page 527). Here,
R 5 : A D V A N C E D S O L V E R TO P I C S

M = (LU) / ω, where ω is a relaxation factor, and L and U are the approximate factors.
When using incomplete LU factorization as a preconditioner or smoother, it performs
a fixed number of sweeps as dictated by the value in the Number of iterations edit field
in the Linear System Solver Settings dialog box (default = 1).

Specify ω in the Relaxation factor (omega) edit field (default = 1).

S E L E C T I N G A D R O P R U L E

The Incomplete LU preconditioner uses either the threshold drop rule (the default) or
the fill-ratio drop rule. The preconditioner drops (neglects) an element during the
elimination phase if its absolute value is smaller than the Euclidean norm of the entire
column times a drop tolerance. In contrast, the fill-ratio drop rule limits the number
of nonzeros in the incomplete factors L and U, and it keeps the largest absolute values.
The number of values it keeps depends on the number of nonzeros in the
corresponding column of the original matrix times a fill-ratio factor. There are two
exceptions to these drop rules:

• The preconditioner never drops diagonal elements.

• The preconditioner optionally drops nonzeros in positions where the original matrix
is nonzero. The default is to keep these nonzeros. To make the preconditioner drop
them, clear the Respect pattern check box in the settings for the Incomplete LU
preconditioner.

The primary problem with setting up a preconditioner is the tradeoff between
resources (computer time and memory) and the preconditioner’s quality. The
computational cost of setting up a preconditioner with the Incomplete LU
preconditioner is at least proportional to the number of nonzeros in the produced
factors L and U. An advantage of using the fill-ratio drop rule is that you can estimate
and limit the cost beforehand; the main disadvantage is that the quality of the
preconditioner is typically not as good as using the threshold drop rule with a drop
tolerance resulting in the same number of nonzeros. However, with the threshold drop
rule there is no good way of estimating resource requirements beforehand.
Furthermore, there is no general formula for these drop rules that gives a drop
tolerance or fill ratio that guarantees fast convergence for a certain iterative method.
Therefore, it is often necessary to rely on experiments and experience for this difficult
and, from a performance point of view, crucial choice.
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 517

518 | C H A P T E
The TAUCS Incomplete Cholesky Preconditioner

This TAUCS incomplete Cholesky preconditioner is applicable to models where the
system matrix is (Hermitian) symmetric positive definite (see “Which Models Are
Positive Definite?” on page 399 of the COMSOL Multiphysics User’s Guide). It
performs an incomplete Cholesky factorization L LT of the system matrix A. The
resulting preconditioner M = L LT is an approximation to A. The code, written in C,
uses a column-based left-looking approach with row lists. COMSOL Multiphysics uses
TAUCS version 2.2 written by Sivan Toledo and collaborators (see http://
www.tau.ac.il/~stoledo/taucs).

In the Linear System Solver Settings dialog box you can specify a value for the drop tol-
erance and select an option for a modified Cholesky factor. You can also control the
drop tolerance on the General tab of Solver Parameters dialog box either numerically
(giving a number between 0 and 1) or using the Memory efficiency/Precond. quality
slider. The preconditioner drops elements from the L matrix if they are smaller than
the drop tolerance times the norm of the corresponding column of L, provided that
they are not on the diagonal and not in the nonzero pattern of A (see “The Incom-
plete LU Preconditioner” on page 516 for details on the implications of changing the
drop tolerance). If you select the Modified Cholesky check box (which is not the

default state) the preconditioner modifies the factor L so that the row sums of L LT
are equal to the row sums of the input matrix.

Note: To use the incomplete Cholesky preconditioner you must select Symmetric or
Hermitian in the Matrix symmetry list in the Solver Parameters dialog box.

The Geometric Multigrid Solver/Preconditioner

The Geometric multigrid solver or preconditioner is a fast and memory-efficient
iterative method for elliptic and parabolic models (see “Elliptic and Parabolic Models”
on page 400 of the COMSOL Multiphysics User’s Guide). It performs one or several
cycles of the geometric multigrid method. The classical multigrid algorithm uses one
or several auxiliary meshes that are coarser than the original (fine) mesh. The idea is to
perform just a fraction of the computations on the fine mesh. Instead, it performs
computations on the coarser meshes when possible, which leads to fewer operations.
The size of the extra memory used for the coarser meshes and associated matrices is
R 5 : A D V A N C E D S O L V E R TO P I C S

comparable to the size of the original data. This leads to an iterative algorithm that is
both fast and memory efficient. See Ref. 3 for more information.

COMSOL Multiphysics uses a hierarchy of multigrid levels where each corresponds
to a mesh and a choice of shape functions. Thus, in addition to coarsening the mesh it
is possible to construct a new “coarser” level by lowering the order of the shape
functions. The number of degrees of freedom decreases when you go to a coarser
multigrid level. The meshes for the different levels can be constructed either
“manually” or automatically. The automatic version applies a coarsening algorithm to
the fine mesh, which leads to meshes that are not aligned to each other. There is also
an option to generate the finer meshes from the coarsest mesh by successive mesh
refinements, which leads to aligned (nested) meshes. The manual option can be useful
when you have a quadrilateral, hexahedral, or prism mesh, or when you for some other
reason wish to control details in the meshes.

To describe the multigrid algorithm, assume that you have N + 1 multigrid levels
numbered from 0 to N, where 0 is the finest level (the level for which you seek the
solution). To solve the linear system A0 x = b (corresponding to level 0), the algorithm
must reform the system matrices A1, …, AN for the coarse multigrid levels. It must also
compute the prolongation matrices Pi that map a solution x vector on level i to the
corresponding solution vector Pi x on the next finer level i − 1.

The prolongation matrices are constructed using plain interpolation from one
multigrid level to the other. The system matrices for the coarse levels can be
constructed in two ways:

• By assembling Ai on the mesh of level i (the default method).

• By projection from the finer level: Ai = Pi
TAi − 1Pi. This is also called the Galerkin

method. It typically leads to more nonzero elements in the system matrix Ai, but
the convergence can be faster than in the default method.

The following algorithm describes one multigrid cycle:

1 The input to the algorithm is some initial guess x0 to the solution of the system
A0x = b.

2 Starting with x0, apply a few iterations of a presmoother to the linear system A0x = b,
yielding a more accurate iterate x0s. Typically the presmoother is some simple
iterative algorithm such as SOR, but you also chose an arbitrary iterative solver.

3 Compute the residual r0 = b − A0 x0s. The presmoother “smooths” the residual so
the oscillations in r have such a long wavelength that they are well resolved on the
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 519

520 | C H A P T E
next coarser level (1). Therefore, project the residual onto level 1 by applying the
transpose of the prolongation: r1 = P1

Tr0.

4 If N = 1 use the coarse solver to solve the system A1x1 = r1. The coarse solver is
typically a direct solver such as UMFPACK. The number of degrees of freedom on
level 1 is less than for level 0, which means that solving A1x1 = r1 is less expensive.
If instead N > 1, solve the system A1x1 = r1 (approximately) by recursively applying
one cycle of the multigrid algorithm for levels 1, 2, …, N. In both cases the obtained
solution x1 is called the coarse grid correction.

5 Map the coarse grid correction to level 0 using the prolongation matrix:
x0c = x0s + P1x1.

6 Starting with x0c, apply a few iterations of a postsmoother to the linear system
A0x = b, yielding a more accurate iterate x0mg. The default postsmoother is SORU
(the version of SOR using the upper triangle of the matrix). The iterate x0mg is the
output of the multigrid cycle.

The cycle just described is called the V-cycle. The recursive call in Step 4 (when N > 1)
is a also a V-cycle. For the W-cycle and the F-cycle, the Steps 1–6 above are the same
but with the twist that the recursive call in Step 4 is substituted with two multigrid calls
for the coarser levels. For the W-cycle these two calls are recursive calls, they are
W-cycle calls. For the F-cycle the first call is a W-cycle and the second a V-cycle.

For only two multigrid levels (N = 1) these cycles are the same because the algorithm
uses the coarse solver in Step 4. Also note that the amount of work on the finest level
is the same for the different cycles. Normally the V-cycle is sufficient, but the W-cycle
and the F-cycle can be useful for more difficult problems.

When using multigrid as a preconditioner, the action of this preconditioner is obtained
by applying a fixed number of multigrid cycles. When using multigrid as a solver, the
multigrid cycle repeats until it reaches convergence.

When using multigrid as a preconditioner for the conjugate gradients method for a
symmetric matrix A, the preconditioning matrix M should also be symmetric. This
requirement is fulfilled if the matrices M (see “The SSOR, SOR, SORU, and Diagonal
Scaling (Jacobi) Algorithms” on page 527) associated with the presmoother and the
postsmoother are transposes of each other. For instance, this is the case if the
presmoother is SOR and the postsmoother is SORU, and if the same number of
smoothing steps is used. This combination with two smoothing steps is the default.
R 5 : A D V A N C E D S O L V E R TO P I C S

N O T E S O N T H E E F F I C I E N C Y O F S M O O T H E R S

COMSOL Multiphysics performs smoothing on all but the coarsest multigrid level. A
smoother should be computationally cheap and be effective at reducing the part of the
error that has a high spatial frequency on the mesh to which it is applied. Therefore,
the applying a smoother on several meshes with a hierarchy of mesh sizes results in a
more efficient solver than if the smoother were applied only on the finest mesh.

The efficiency of the multigrid method with simple iterations as a smoother (such as
the Jacobi and SOR iteration) hinges on the ellipticity of the underlying mathematical
problem. For Helmholtz problems originating from an equation

or

the obtained linear problem is indefinite for large frequencies ω. For these problems, a
simple iteration amplifies smooth eigenmodes if the mesh is too coarse and makes these
methods unsuitable as smoothers. To determine when to use a simple iteration, apply
the Nyquist criterion

which says that the mesh must have at least two mesh elements per wavelength. Thus,
when using the Geometric multigrid solver for these type of problems, you should
ensure that this criterion is fulfilled on the coarsest mesh if simple iterations is used as
a smoother. In situations where the criterion is not fulfilled on coarse meshes GMRES
can be a suitable smoother (Ref. 4).

C O N S T R U C T I N G A M U L T I G R I D H I E R A R C H Y

The multigrid hierarchy can be constructed either automatically or manually. To select
which method to use, go to the General tab of the Solver Parameters dialog box and
click the Settings button. This action opens the Linear System Solver Settings dialog box.

∇ 1
a
--- u∇⎝ ⎠
⎛ ⎞⋅– ω2u– f=

1
a
--- E∇×⎝ ⎠
⎛ ⎞∇× ω2E– F=

hmax
λ
2
---< π

ω a
------------=
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 521

522 | C H A P T E
If you use multigrid as a preconditioner, select Preconditioner in the list to the left,
otherwise select Linear system solver.

Preconditioner settings for the Geometric multigrid solver.

In the Hierarchy generation method list you can select among the following methods:

• Lower element order first (all) (default). In this method, the coarse levels are
constructed automatically from the finest level by lowering the shape-function
orders in steps of one. When a given shape function order cannot be decreased
more, the mesh is instead coarsened by the factor given in the Mesh coarsening factor
edit field (default = 2). The coarsened mesh is constructed by generating a new mesh
of the geometry such that the element edge size at any location is approximately
equal to the mesh coarsening factor times the element edge size in the old mesh.
This procedure repeats until the number of multigrid levels (including the finest
level) equals the Number of levels (default = 2).

• Lower element order first (any). In this method, the coarse levels are constructed
automatically from the finest level by lowering the shape-function orders in steps of
one. When none of the given shape function orders can be decreased more, the
mesh is instead coarsened by the factor given in the Mesh coarsening factor edit field
(default = 2). The coarsened mesh is constructed by generating a new mesh of the
geometry such that the element edge size at any location is approximately equal to
the mesh coarsening factor times the element edge size in the old mesh. This
R 5 : A D V A N C E D S O L V E R TO P I C S

procedure repeats until the number of multigrid levels (including the finest level)
equals the Number of levels (default = 2).

• Coarse mesh and lower order. The coarse levels are constructed automatically from
the finest level by coarsening the mesh and lowering the order of the shape functions
at the same time. More precisely, the first coarse level is constructed by coarsening
the mesh by a factor given in the Mesh coarsening factor edit field (default = 2) and
lowering the shape function orders by 1. If some of the shape function orders cannot
be decreased, only the mesh coarsening is done. This procedure repeats until the
number of multigrid levels (including the finest level) equals the Number of levels
(default = 2).

• Coarse mesh. The coarse levels are constructed automatically from the finest level by
coarsening the mesh by the factor given in the Mesh coarsening factor edit field
(default = 2). This procedure repeats until the number of multigrid levels (including
the finest level) equals the Number of levels (default = 2).

• Refine mesh. In this method the current mesh is refined multiple times until the
number of multigrid levels (including the finest level) equals the Number of levels
(default = 2). Thus the given mesh becomes the coarsest multigrid level, and the
solution is delivered for a refined mesh. When you use the Refine mesh method, the
software automatically selects the Keep generated mesh cases check box because the
refined mesh is needed in postprocessing. You can also make a selection from the
Refinement method list. Selecting Regular (the default) refines the elements in a
regular pattern, whereas Longest refines only the longest element edge. For 3D
models, we recommend the Longest method because it produces fewer mesh
elements. The Longest method is not available for 1D models.

• Manual. When you select this method the Manual tab shows a list of all available mesh
cases where a mesh case is a mesh together with the choice of shape functions (and
corresponding integration orders and constraint point orders). You can construct
new ones by going to the Mesh menu and choosing Mesh Cases, which opens the
Mesh Case Settings dialog box where you add and delete them. Each mesh case is
identified by a nonnegative number. Existing mesh cases appear at the bottom of the
Mesh menu, where it also indicates the current mesh case. The current mesh case
also appears in the status bar. The mesh, shape functions, integration orders, and
constraint point orders are specific to the mesh case. To change those settings for a
mesh case, first make that mesh case current by selecting it in the list on the Mesh
menu. Then modify any desired settings, for instance changing mesh parameters and
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 523

524 | C H A P T E
generating a new mesh, or changing the shape functions in the Subdomain Settings
dialog box. For more information, see “Mesh Cases” on page 355.

When you have defined some mesh cases, go to the settings for Geometric multigrid
in the Linear System Solver Settings dialog box. On the Manual tab you can choose
for each mesh case whether it should be used in the multigrid hierarchy (select the
Use check box) and whether the system matrix should be assembled on this level
(select the Assemble check box). By default the hierarchy includes all mesh cases, and
matrices are not assembled on the coarse levels; that is, the software uses Galerkin
projection. The solver sorts the multigrid levels according to decreasing number of
degrees of freedom. The solution is delivered for the finest of the selected mesh
cases, and that mesh case is made current when the solver returns.

If you select the Assemble on all levels check box on the Automatic tab, the solver
assembles the system matrices on the coarse levels (the default). Otherwise the coarse
level matrices are formed using the Galerkin projection method.

When using the automatic hierarchy generation methods, the default behavior is that
the solver deletes the coarse levels when it finishes. If you want to inspect them, select
the Keep generated mesh cases check box, which makes the generated levels appear as
new mesh cases. When this happens, the hierarchy generation method changes to the
manual method. This means that the solver reuses the generated mesh cases the next
time you solve, which saves some work.

The automatic hierarchy generation methods operate only on the geometries specified
in the Use hierarchy in geometries edit field, where you provide a space-separated list of
positive numbers. The mesh coarsening and shape function changes are applied only
to these geometries.

Note: The automatic hierarchy generation methods construct coarsened meshes
consisting of isotropic triangles or tetrahedra. If the original mesh contains
quadrilaterals, hexahedrons, or prisms, or if it is anisotropic, you get better results by
constructing the coarse meshes manually.

S E T T I N G S F O R T H E M U L T I G R I D S O L V E R / P R E C O N D I T I O N E R

Apart from settings controlling the multigrid hierarchy, you can specify the following
settings in the Linear System Solver Settings dialog box. If multigrid is used as a
preconditioner, you can specify the number of iterations (default = 2). This gives the
R 5 : A D V A N C E D S O L V E R TO P I C S

number of times the multigrid cycle is performed each time the preconditioner is
applied.

If you use multigrid as a linear system solver, you can instead specify a relative
tolerance, a factor in error estimate, and a maximum number of iterations. For
information about the convergence criterion used by multigrid and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
513. The tolerance in the convergence criterion is determined by the nonlinear
stationary solver or the time-dependent solver. When using the linear stationary solver
or the eigenvalue solver, you can adjust the tolerance in the Relative tolerance edit field
(default = 10−6).

If the solver does not converge, it terminates with an error message when it reaches the
value in the Maximum number of iterations edit field (default = 10,000).

You can also select the type of multigrid cycle: V-cycle, W-cycle, or F-cycle.

S E T T I N G S F O R T H E S M O O T H E R S

To control the settings for the presmoother, select one in the list on the left side of the
Linear System Solver Settings dialog box. In the Presmoother list you can select among
the following smoothers: SOR (default), SORU, SSOR, SOR vector, SORU vector,
SSOR vector, SOR gauge, SORU gauge, SSOR gauge, Jacobi, Vanka, Incomplete LU,
GMRES, FGMRES, Conjugate gradients, and Algebraic multigrid. Change settings
for the selection in the Presmoother area (see the sections on the specific smoothers in
the following sections). For instance, it is possible to control the number of smoothing
iterations here.

You control settings for the postsmoother in a similar fashion. The default
postsmoother is SORU (the version of SOR using the upper triangle of the matrix).

When solving an electromagnetics model using vector elements for a PDE involving
the curl-curl operator, you should select the SOR vector presmoother and the SORU
vector postsmoother.

When solving fluid-dynamics problems using the incompressible Navier-Stokes
equations or when using weak constraints, an algebraic so-called saddle-point problem
is the result. These problems often have zeros on the diagonal of the system matrix,
which makes the standard smoothers fail. Use the Vanka smoother (or Incomplete LU)
in that case.
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 525

526 | C H A P T E
S E T T I N G S F O R T H E C O A R S E S O L V E R

To control the settings for the coarse solver, select its name in the list to the left in the
Linear System Solver Settings area. In the Coarse solver list you can choose from the
following: UMFPACK, SPOOLES, PARDISO, TAUCS Cholesky (if Symmetric is
selected), GMRES, FGMRES, Conjugate gradients, Algebraic multigrid, SSOR, SOR,
SORU, SSOR vector, SSOR gauge, and Jacobi. Normally choose a direct solver
(UMFPACK, SPOOLES, PARDISO, or TAUCS Cholesky). Make any desired
modifications to the settings in the Coarse solver area (refer to the sections on the
specific linear system solvers).

When an iterative solver is used as coarse solver you can choose whether to solve using
a tolerance (default) or to perform a fixed number of iterations. Choose either Use

tolerance or Fixed number of iterations in the Termination list. Note that some default
values for an iterative solver, when used as a coarse solver, are different from the default
values when the solver is used as a linear system solver, preconditioner, or smoother.
The edit fields that have different default values are: Relative tolerance (default = 0.1),
Factor in error estimate (default = 1), Maximum number of iterations (default = 500),
and Number of iterations (default = 10).

The Algebraic Multigrid Solver/Preconditioner

The algebraic multigrid solver or preconditioner performs one or several cycles of the
algebraic multigrid method. This is similar to the geometric multigrid algorithm (see
“The Geometric Multigrid Solver/Preconditioner” on page 518), the difference being
that it constructs the multigrid levels directly from the finest-level system matrix A0.
That is, it constructs the prolongations Pi from A0 without using auxiliary meshes. It
constructs the coarse level matrices Ai from A0 with the Galerkin projection method.
The advantage is that you need not bother about the coarse multigrid levels. The
disadvantages are twofold:

• Algebraic multigrid does not work well for vector-valued PDEs in COMSOL’s
implementation. That is, it handles only scalar PDEs.

• COMSOL’s implementation does not support complex-valued system matrices.

In the Linear System Solver Settings dialog box you can control the automatic
construction of the multigrid hierarchy with the Maximum number of levels, Max DOFs

at coarsest level, and Quality of multigrid hierarchy edit fields. Coarse levels are added
until the number of DOFs at the coarsest level is less than the max DOFs at coarsest
level (default = 5000) or until it has reached the maximum number of levels, including
the finest level (default = 6). In the Quality of multigrid hierarchy edit field specify an
R 5 : A D V A N C E D S O L V E R TO P I C S

integer value between 1 and 10 (default = 3) to make a tradeoff between memory
requirements and preconditioner quality. For instance, if the linear solver does not
converge or if it uses too many iterations, try a higher value to increase the accuracy in
each iteration, meaning fewer iterations. In contrast, if the algebraic multigrid
algorithm runs into memory problems, try a lower value to use less memory. When
using algebraic multigrid as a preconditioner, it is also possible to set the value for the
quality of the multigrid hierarchy in the Linear system solver area on the General tab of
Solver Parameters dialog box either numerically or by using the Memory efficiency/

Preconditioner quality slider.

The remaining settings for the algebraic multigrid solver/preconditioner and its
smoothers and coarse solver are identical to those for the Geometric multigrid solver
(see “The Geometric Multigrid Solver/Preconditioner” on page 518).

The SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms

These simple and memory-efficient solvers/preconditioners/smoothers are based on
classical iteration methods for solving a linear system of the form A x = b. Given a
relaxation factor ω (usually between 0 and 2), a sweep of the Jacobi (diagonal scaling)
method transforms an initial guess x0 to an improved approximation x1 = x0 +
M−1(b − Ax0), where M = D / ω, and D is the diagonal part of A.

The SOR (successive over-relaxation) method uses the same formula with M = L + D /
ω, where L is the strictly lower triangular part of A. When ω = 1 (the default), the
Gauss-Seidel method is obtained. In the SORU method, M = U + D/ω, where U is the
strictly upper triangular part of A. The SOR and SORU methods use a more accurate
approximation of the matrix, which leads to fewer iterations but slightly more work per
iteration than in the Jacobi method.

The SSOR (symmetric successive over-relaxation) method is one SOR sweep followed
by a SORU sweep. The output x1 for an input x0 also comes from the above formula
but with

.

When A is symmetric, the SSOR method has the advantage that M is symmetric.
Symmetry of the preconditioner matrix is necessary when using the conjugate
gradients iterative method. In such cases, the SSOR preconditioner is preferable to the
SOR preconditioner.

M ω
2 ω–
------------- L D

ω
----+⎝ ⎠

⎛ ⎞D 1– U D
ω
----+⎝ ⎠

⎛ ⎞=
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 527

528 | C H A P T E
A blocked version of the SOR algorithms is available. It is optimized for parallel
computations. In this case M is constructed from a column permuted version of A.

When these algorithms run as linear system solvers, they perform sweeps until they
have established convergence or they have reached the maximal number of iteration.
You control this aspect with the parameters in the Relative tolerance, Factor in error

estimate, and Maximum number of iterations edit fields in the same way as for the other
iterative solvers (see for instance “Settings for the Multigrid Solver/Preconditioner”
on page 524 of the COMSOL Multiphysics User’s Guide and “Convergence Criteria”
on page 513 of this Reference Guide).

When the algorithms run as preconditioners or smoothers, they perform a fixed
number of sweeps as dictated by the value in the Number of iterations edit field in the
Linear System Solver Settings dialog box (default = 2).

Specify ω in the Relaxation factor (omega) edit field (default = 1).

The SSOR Vector, SOR Vector, and SORU Vector Algorithms

These preconditioners/smoothers are intended for problems involving the
curl-curl operator and where you use so-called vector elements. The vector elements
are available primarily for electromagnetic-wave simulations in the RF Module. The
algorithm is an implementation of the concepts in Ref. 7 and Ref. 8. The algorithm
applies SOR iterations on the main linear equation A x = b but also makes SOR
iterations on a projected linear equation TTA T y = TTb. Here the projection matrix,
T, is the discrete gradient operator, which takes values of a scalar field in the mesh
vertices and computes the vector-element representation of its gradient. Loosely
speaking, the argument for using this projection is the following: For example, let the
linear equation A x = b represent the discretization of a PDE problem originating from
the vector Helmholtz equation

for the unknown vector field E, where a and c are scalars, and F is some right-hand
side vector. Standard preconditioners/smoothers cannot smooth the error in the null
space of the operator . This null space is the range of the gradient operator.
This algorithm adds a correction to the standard SOR smoothed
solution (or residual), where it computes from SOR iterations on a projected
problem. The projected problem is obtained by taking the divergence (or discretely
−TT) of the Helmholtz equation and plugging in the correction. You then obtain (for
clarity, boundary constraints are disregarded)

a .∇×()∇×

a E∇×()∇× cE+ F=

a .∇×()∇×
E E φ∇+→

φ

R 5 : A D V A N C E D S O L V E R TO P I C S

,

which, if c is definite (strictly positive or strictly negative), is a standard elliptic type of
equation for the scalar field .

When using this algorithm as a smoother for the multigrid solver/preconditioner, it is
important—for the correct discrete properties of the projected problem—to generate
nested meshes. Also note that it does assembly on all mesh levels (controlled by the
multigrid Assemble check box). You can generate nested meshes through manual mesh
refinements or do so automatically by going to the Linear System Solver Settings dialog
box and selecting Refine mesh from the Hierarchy generation method list.

The projection matrix T is computed in such a way that non-vector shape functions are
disregarded, and therefore you can use it in a multiphysics setting. It can also handle
contributions from different geometries. Non-vector shape function variables are not
affected by the correction from the projected system, and the effects on them are
therefore the same as when you apply the standard SOR algorithm (see above).

The parameter in the Number of iterations edit field in the Presmoother (or
Postsmoother) area controls the number of main iterations (default = 2). For each main
iteration, the algorithm makes a number of SOR iterations for the projected equation
system; set that number (default = 1) in the Number of secondary iterations edit field.

In more detail, to preserve symmetry as a preconditioner and also when used as
symmetric pre- and postsmoother in a multigrid setting, the SOR iterations are done
in the following order:

• In each main iteration, the SOR vector version of this algorithm makes one SOR
iteration on the main system followed by a number of secondary SOR iterations on
the projected system.

• In each main iteration, the SORU vector version first makes a number of secondary
SORU iterations on the projected system followed by one SORU iteration on the
main system.

• In each main iteration, the SSOR vector version makes one SOR iteration on the
main system followed by a number of secondary SSOR iterations on the projected
system and then one SORU iteration on the main system.

You specify the relaxation factor ω in the Relaxation factor (omega) edit field (default =
1). It applies to all the different types of SOR iterations in this algorithm.

∇ c φ∇()⋅– ∇ F⋅–=

φ

P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 529

530 | C H A P T E
The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms

These preconditioners/smoothers are primarily intended for 3D magnetostatic
problems in the AC/DC Module discretized with vector elements. The smoothers are
basically SOR smoothers with some added functionality.

Magnetostatic problems are often formulated in terms of a magnetic vector potential.
The solution of problems formulated with such a potential is in general not unique.
Infinitely many vector potentials result in the same magnetic field, which typically is
the quantity of interest. A finite element discretization of such a problem results in a
singular linear system of equations, A x = b. Despite being singular, these systems can
be solved using iterative solvers, provided that the right hand side of the discretized
problem is the range of the matrix A. For discretized magnetostatic problems, the
range of A consists of all divergence free vectors. Even if the right side of the
mathematical problem is divergence free, the right side of the finite element
discretization might not be numerically divergence free. To ensure that b is in the
range of A, SOR gauge performs a divergence cleaning of the right side by using the
matrices T and TT; see “The SSOR Vector, SOR Vector, and SORU Vector
Algorithms” on page 451. To this end, the system TTTψ = −TTb is first solved. Adding
Tψ to b will then make the numerical divergence of the right side small.

As in the case of SOR there are blocked versions available that perform better in when
running on a parallel machine.

In addition to the initial divergence cleaning, SOR gauge also performs a number of
cleaning iterations in each linear solver iteration. You can control the number of such
divergence cleaning iterations in the Number of secondary iterations edit field in the
Linear System Solver area. The default number of secondary iterations is 1. In the
Variables edit field you can specify which vector degrees of freedom to include in the
divergence cleaning (this applies both to the initial and secondary cleaning iterations).
By default, all vector degrees of freedom are included in the divergence cleaning.

The settings Number of iterations and Relaxation factor (omega) work in the same way
as for the usual SOR smoothers; see “The SSOR, SOR, SORU, and Diagonal Scaling
(Jacobi) Algorithms” on page 450.

The Vanka Algorithm

This preconditioner/smoother is intended for, but not restricted to, problems
involving the Navier-Stokes equations. Formally it applies to saddle-point problems. A
saddle-point problem is a problem where the (equilibrium) solution is neither a
R 5 : A D V A N C E D S O L V E R TO P I C S

maximum nor a minimum. The corresponding linear system matrix is indefinite, and
often it has zeros on the diagonal. This is the case for the Navier-Stokes equations but
also for problems formulated with weak constraints.

The algorithm is a local smoother/preconditioner of Vanka type. It is based on the
ideas in Ref. 9, Ref. 10, and Ref. 11. It is possible to describe it as a block SOR method,
where the local coupling of the degrees of freedom (DOFs) determines the blocks. The
important idea in this algorithm is to use the Lagrange multiplier variable (or set of
variables) to form the blocks. For illustration purposes, consider the Navier-Stokes
equations. For these equations the pressure variable plays the role of Lagrange
multiplier. The linearized equations on discrete form has the following structure:

where U and P are the velocity and pressure degrees of freedom, respectively. The
algorithm loops over the Lagrange multiplier variable DOFs, here the pressure DOFs
Pj, and finds the direct connectivity to this DOF. To do so, the algorithm locates the
nonzero entries in the matrix column corresponding to Pj. The row indices of the
nonzero entries defines the DOFs Uk, and the software forms a local block matrix
based on this connectivity:

One Vanka update loops over all Pj and updates

where the (.)j denotes the restriction of a vector to the rows corresponding to the block
j. ω is a relaxation parameter. The algorithm does not form the inverses of the block
matrices explicitly. Instead, it computes the Vanka update either with a LAPACK direct
solver subroutine call or by a GMRES iterative method subroutine call. The GMRES
method is the restarted GMRES without preconditioning. The algorithm relies on that
it is possible to invert the submatrices Aj. If it is not possible, the algorithm gives an
error message. Note that a zero on the diagonal of A or Aj is not necessarily a problem
for this updating strategy.

A U
P

S DT

D 0

U
P

F
G

= =

Aj
Sj Dj

T

Dj 0
=

Uj

Pj

Uj

Pj

ωAj
1– F

G
A U

P
–

⎝ ⎠
⎜ ⎟
⎛ ⎞

j

+←
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 531

532 | C H A P T E
Note: If you use the Vanka algorithm as preconditioner, or as smoother to a
multigrid preconditioner when either GMRES or Conjugate gradients is used as the
linear system solver, you should use the Direct option in the Solver list in order to get
a stationary preconditioner. The GMRES option can be useful if you use the FGMRES
method as linear system solver since it can handle preconditioners that are not
stationary. The GMRES option can also be useful if you use the Vanka algorithm as
smoother to a multigrid solver because GMRES can be a bit faster than the direct
solver.

In general, the Vanka update does not necessarily update all DOFs. This is, for
example, the case for problems with weak constraints, where only a small subset of the
problem’s DOFs are directly coupled to the Lagrange multipliers for the constraints.
Another example is the Navier-Stokes equations (or similar types of equations) coupled
to other equations, but where the coupling is not directly through the pressure
variable. This is, for example, the case with the k-ε turbulence model. The Vanka
algorithm automatically detects DOFs that are not updated by the above Vanka
updating procedure and performs, for each Vanka update, a number of SSOR sweeps
for these DOFs. This part of the algorithm is denoted the SSOR update. The SSOR
update only works for a submatrix that has a nonzero diagonal. Just as the SOR and
Jacobi preconditioner algorithms, this algorithm gives an error message if it finds zeros
on the diagonal for the DOFs in the SSOR update.

As in the case of SOR there is a blocked version that works on a permuted version of
the system matrix. It is especially suited for parallel computations.

Control the number of Vanka updates and consecutive SSOR updates by the parameter
in the Number of iterations edit field in the Linear System Settings dialog box. For the
Vanka update, control the Lagrange variables used for the local block definitions by the
Variables edit field, and control the type of solver used for the block inverse operation
by the Solver list. If you choose GMRES, then you can control the convergence
tolerance and the number of iterations before restart by the parameters in the Tolerance
and Number of iterations before restart edit fields, respectively. Control the Vanka
update relaxation parameter ω by the parameter in the Relaxation factor edit field. For
the SSOR update, control the number of SSOR sweeps by the parameter in the Number

of secondary iterations edit field and control the SSOR relaxation factor, used in these
sweeps, with the parameter in the Relaxation factor edit field.
R 5 : A D V A N C E D S O L V E R TO P I C S

References

1. J.R. Gilbert and S. Toledo, “An Assessment of Incomplete-LU Preconditioners for
Nonsymmetric Linear Systems,” Informatica, vol. 24, pp. 409–425, 2000.

2. Y. Saad, ILUT: A dual threshold incomplete LU factorization, Report
umsi-92-38, Computer Science Department, University of Minnesota, available from
http://www-users.cs.umn.edu/~saad.

3. W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin,
1985.

4. H.C. Elman and others, “A Multigrid method enhanced by Krylov subspace
iteration for discrete Helmholtz equations,” SIAM J. Sci. Comp., vol. 23, pp. 1291–
1315, 2001.

COMSOL’s implementations of the algebraic multigrid solver and preconditioner are
based on the following references:

5. K. Stüben, Algebraic Multigrid (AMG): An introduction with Applications,
GMD Report 70, GMD, 1999.

6. C. Wagner, Introduction to Algebraic Multigrid, Course notes, University of
Heidelberg, 1999.

7. R. Hiptmair, “Multigrid method for Maxwell’s equations,” SIAM J. Numer. Anal.,
vol. 36, pp. 204–225, 1999.

8. R. Beck and R. Hiptmair, “Multilevel solution of the time-harmonic Maxwell’s
equations based on edge elements,” Int. J. Num. Meth. Engr., vol. 45, pp. 901–920,
1999.

9. S. Vanka, “Block-implicit multigrid calculation of two-dimensional recirculating
flows,” Computer methods in Applied Mechanics and Engineering, vol. 59, no. 1,
pp. 29–48, 1986.

10. V. John and G. Matthies, “Higher-order finite element discretization in a
benchmark problem for incompressible flows,” Int. J. Numer. Meth. Fluids, vol. 37,
pp. 885–903, 2001.

11. V. John, “Higher-order finite element methods and multigrid solvers in a
benchmark problem for the 3D Navier-Stokes equations,” Int. J. Numer. Meth.
Fluids, vol. 40, pp. 775–798, 2002.
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 533

534 | C H A P T E
 R 5 : A D V A N C E D S O L V E R TO P I C S

 6

T h e C O M S O L M u l t i p h y s i c s F i l e s
This chapter describes the COMSOL Multiphysics files in binary format and text
format.
 | 535

536 | C H A P T E
Ove r v i ew

A COMSOL Multiphysics file is used to store COMSOL Multiphysics data. The
format is suitable for exchange of mesh or CAD data between COMSOL Multiphysics
and other software systems. It is possible to save a COMSOL Multiphysics file in a text
file format, using the extension .mphtxt, or a binary file format, using the extension
.mphbin. The file formats contain the same data in the same order.

File Structure

The COMSOL Multiphysics file format has a global version number, so that it is
possible to revise the whole structure. The first entry in each file is the file format,
indicated by two integers. The first integer is the major file version and the second is
referred to as the minor file version. For the current version, the first two entries in a
file is 0 1.

The following sections describe the file structure of the supported version.

F I L E V E R S I O N 0 . 1

After the file version, the file contains three groups of data:

• A number of tags stored as strings, which gives an identification for each record
stored in the file.

• A number of types, which are strings that can be used in serializing the object. The
tag should be used as an indication of the contents of the file, but can also be an
empty string.

• The records containing the serialized data in the file.

Example When using flsave from COMSOL Script to save a COMSOL
Multiphysics mesh, the tag equals the variable name (m1) in COMSOL script, the type
is set to obj (but this is not used), and the record contains the serialization of the mesh
object, including point coordinates and element data of the mesh. See “Examples” on
page 571 for more examples of COMSOL Multiphysics text files.

Created by COMSOL Multiphysics Fri Aug 26 14:19:54 2005

Major & minor version
0 1
######### Tags
1 # number of tags
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

2 m1

######## Types
1 # number of types
3 obj

######## Records

A planar face object

0 0 1
4 Mesh # class
...

Records

The record contains the serialization data in the file and additional information on how
to process the serialized data. It also has a version number.

The record is a wrapper for serializable types stored in the file. The reason for having
this wrapper is to be able to use a version number, so that the serialization can be
revised in the future while maintaining backward compatibility.

The following sections describe the format of the supported version:

R E C O R D VE R S I O N 0

This record is a wrapper for serializable types stored in the file. The following table
contains the attributes of the records:

Serialization type 1 indicates that the following field is a subtype to Serializable.
COMSOL Multiphysics uses type equal to 0 internally, but such files are only used for
temporary purposes.

ENTITY/OBJECT VARIABLE DESCRIPTION

Integer Version

Integer Not used

Integer type Serialization type, 1 for Serializable

Serializable obj If type equals 1, this field follows
O V E R V I E W | 537

538 | C H A P T E
Terminology

The following data types are used in the serialization:

• Boolean refers to an 8-bit signed character which must be 0 or 1.

• Character refers to an 8-bit signed character.

• Integer refers to a 32-bit signed integer.

• Double refers to a 64-bit double.

Matrices are stored in row-major order. In this documentation we use brackets to
indicate a matrix. Hence, integer[3][4] means that 12 integers representing a
matrix are store in the file. The first three entries corresponds to the integers in the first
row of the matrix, and so on.

Text File Format

COMSOL Multiphysics text file, using the file extension .mphtxt, are text files where
values are stored as text separated by whitespace characters.

Lexical conventions:

• Strings are serialized as the length of the string followed by a space and then the
characters of the string, for example, “6 COMSOL”. This is the only place where
whitespace matters.

• The software ignores everything following a # on a line except when reading a
string. This makes it possible to store comments in the file.

Binary File Format

COMSOL Multiphysics binary file, using the extension .mphbin, are binary files with
the following data representation:

• Integers and doubles are stored in little-endian byte order.

• Strings are stored as the length of the string (integer) followed by the characters of
the string (integers).

S A V I N G A N D L O A D I N G

You can import COMSOL Multiphysics files into the COMSOL Multiphysics GUI or
load them as variables into COMSOL Script (or MATLAB).
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

To load and save COMSOL Multiphysics files in COMSOL Script, use the functions
flsave and flload, respectively.

To export to a COMSOL Multiphysics file from the GUI, select File>Export>Geometry

to File. There is also a corresponding import menu. Note that the multiphysics files do
not describe a complete model, so it is not possible to open them from the standard
Open File dialog box.
O V E R V I E W | 539

540 | C H A P T E
S e r i a l i z a b l e T y p e s
Attribute on page 541

BezierCurve on page 542

BezierMfd on page 543

BezierSurf on page 544

BezierTri on page 545

BSplineCurve on page 546

BSplineMfd on page 547

BSplineSurf on page 549

Ellipse on page 550

Geom0 on page 552

Geom1 on page 553

Geom2 on page 554

Geom3 on page 556

GeomFile on page 557

Manifold on page 558

Mesh on page 559

MeshCurve on page 561

MeshSurf on page 562

Plane on page 563

PolChain on page 564

Serializable on page 565

Straight on page 566

Transform on page 567

VectorDouble on page 568

VectorInt on page 569

VectorString on page 570
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Attribute
AttributeSupported Versions 0

Subtype of Serializable

Fields The class is defined by the following fields:

Description An Attribute is a general purpose class from which different subtypes can be
derived. Each such subtype should then be serialized using the serialization of the
Attribute class, which means that all that it should add to the serialization is the
version number.

Attributes are used in COMSOL Multiphysics for internal purposes, and these
attributes are not documented. However, because Attribute has a strict
serialization structure, the serialization of these attributes is well documented.

Example This is a serialization of an attribute used internally in COMSOL Multiphysics. It is
serialized as a vector of integers.

11 AssocAttrib # class
0 0 # version
1 # nof attribute fields
9 VectorInt # class
18 3 2 2 2 1 0 1 1 1 1 1 1 0 1 1 1 1 0

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer n Number of attribute fields

Serializable[n] Each entity field is stored as a serializable
541

BezierCurve

542 | C H A P T
BezierCurveSupported Versions 0

Subtype of BezierMfd

Fields The class is defined by the following fields:

Description A rational Bézier curve is a parameterized curve of the form

where the functions

are the Bernstein basis functions of degree p, bi = (x1, …, xn) are the control
vertices of the n-dimensional space, and wi are the weights, which should always be
positive real numbers to get a properly defined rational Bézier curve. A rational
Bézier curve has a direction defined by the parameter t.

Example The following illustrates a linear Bézier curve.

11 BezierCurve # class
0 0 # version
2 # sdim
0 2 1 # transformation
1 0 # degrees
2 # number of control points
control point coords and weights
0 0 1
1 1 1

See also BSplineCurve

ENTITY/OBJECT DESCRIPTION

integer Version

BezierMfd Parent class containing common data

b t()

biwiBi
p t()

i 0=

p

∑

wiBi
p t()

i 0=

p

∑
-------------------------------------- 0 t 1≤ ≤,=

Bi
p t()

p
i⎝ ⎠

⎛ ⎞ ti 1 t–()p i–
=

E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BezierMfd
BezierMfdSupported Versions 0

Subtype of Manifold

Fields The class is defined by the following fields:

Description The BezierMfd type is the abstract base class for the different type of Bézier surfaces
and curves that are supported. These can all be represented in using the generalized
equation

where B are functions as described in the respective entry, and b are the control
point coordinates in P and w are the weights stored in the last column of P.

See also BSplineMfd

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation class

integer m Degree in first parameter

integer n Degree in second parameter

integer k Number of control points

double[k][d+1] P Matrix of control points with the weights in the last
column

S s t,()

bi j, wi j, B s t,()
j 0=

n

∑
i 0=

m

∑

wi j, B s t,()
j 0=

n

∑
i 0=

m

∑

-- =
543

BezierSurf

544 | C H A P T
BezierSurfSupported Versions 0

Subtype of BezierMfd

Fields The class is defined by the following fields:

Description A rectangular rational Bézier patch of degree p-by-q is described by

where and are the Bernstein basis functions of degree p and q, respectively,
as described in the entry of BezierCurve. This surface description is called
rectangular because the parameter domain is rectangular, that is, the two parameters
s and t can vary freely in given intervals.

See also BSplineSurf, BezierTri

ENTITY/
OBJECT

DESCRIPTION

integer Version

BezierMfd Parent class containing common data

S s t,()

bi j, wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

--- , 0 s t 1≤,≤= ,

Bi
p Bj

q

E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BezierTri
BezierTriSupported Versions 0

Subtype of BezierMfd

Fields The class is defined by the following fields:

Description Another form of surface description is the triangular patch, also called a Bézier
triangle. A triangular rational Bézier patch is defined as

which differs from the Bézier curve description only by the use of bivariate
Bernstein polynomials instead of univariate, for the curve case. The bivariate
Bernstein polynomials of degree p are defined as

where the parameters s and t must fulfill the conditions

which form a triangular domain in the parameter space, therefore the name of this
surface description.

See also BezierSurf

ENTITY/
OBJECT

DESCRIPTION

integer Version

BezierMfd Parent class containing common data

S s t,()

bi j, wi j, Bi j,
p s t,()

i j+ p≤
∑

wi j, Bi j,
p s t,()

i j+ p≤
∑

--- 0 s t 1≤,≤,=

Bi j,
p s t,() p!

i!j! p i– j–()!
----------------------------------sitj 1 s– t–()p i– j–

= , i j+ p≤

0 s t,≤
s t 1≤+⎩

⎨
⎧

545

BSplineCurve

546 | C H A P T
BSplineCurveSupported Versions 0

Subtype of BSplineMfd

Fields The class is defined by the following fields:

Description The BSplineCurve, describes a general spline curve, using B-spline basis functions,
as defined in BSplineMfd. Splines on this form are often referred to as B-splines.

A pth-degree spline curve is defined by

where Pi are the control points., the wi are the weights and the Ni
p are the pth

degree B-spline basis functions defined in the nonperiodic and nonuniform knot
vector

For non-rational B-splines, all weights are equal to 1 and the curve can be expressed
as

See also BezierCurve

ENTITY/
OBJECT

DESCRIPTION

integer Version

BSplineMfd Parent class containing common data

C u()

Ni
p u()wiPi

i 0=

n

∑

Ni
p u()wi

i 0=

p

∑
-- a u b≤ ≤,=

U a … a up 1+ … um p– 1– b … b, , , , , , , ,{ }=

C u() Ni
p u()wiPi

i 0=

n

∑ a u b≤ ≤,=
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BSplineMfd
BSplineMfdSupported Versions 0

Subtype of Manifold

Fields The class is defined by the following fields:

Description The BSplineMfd type is the abstract base type for BSplineCurve and
BSplineSurf, that represents general spline curves and surfaces respectively.

They are represented using B-spline basis functions. Let U = { u0, …, um } be a non
decreasing sequence of real numbers. U is called the knot vector and the elements
ui of U are called knots. The ith B-spline basis function of p-degree, , is
defined as

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation class

integer Dimension (1 if curve, 2 if surface)

integer p, q Degree in each dimension (1 or 2 integers)

boolean If rational equal to1

integer Number of knot vectors (1 for curves, 2 for
surfaces)

integer m1 Length of first knot vector

double[m1] U First knot vector

integer m2 Length of second knot vector (not for curves)

double[m2] V Second knot vector (not for curves)

integer n1 Number of control points in first parameter
direction

integer n2 Number of control points in second parameter
dimension

integer n3 Number of coordinates per control point

double

[n1][n2][n3]

P Matrix of coordinates where the last dimension is
increased by 1 to store the weights if the manifold
is rational

Ni
p u()
547

BSplineMfd

548 | C H A P T
A general B-spline can be described by

where

and

are the two knot vectors stored in the entry, and b and w are the control points
coordinates and weights stored in P.

For periodic splines, the first and last parameter values in the knot vectors are not
duplicated.

Ni
0 u() 1 ui u ui 1+<≤

0 otherwise⎩
⎨
⎧

=

Ni
p u()

u ui–

ui p+ ui–
------------------------Ni

p 1– u()
ui p 1+ + u–

ui p 1+ + ui 1+–
---------------------------------------Ni 1+

p 1– u()+=

S u v,()

Ni
p u()Nj

q v()wi j, bi j,
j 0=

m

∑
i 0=

n

∑

Ni
p u()Nj

q v()wi j,
j 0=

m

∑
i 0=

n

∑

-- a u b c v d≤ ≤,≤ ≤,=

U a … a up 1+ … um p– 1– b … b, , , , , , , ,{ }=

V c … c vp 1+ … vm p– 1– d … d, , , , , , , ,{ }=
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BSplineSurf
BSplineSurfSupported Versions 0

Subtype of BSplineMfd

Fields The class is defined by the following fields:

Description The generalization of B-spline curves to surfaces is a tensor product surfaces given
by

See also BezierSurf

ENTITY/
OBJECT

DESCRIPTION

integer Version

BSplineMfd Parent class containing common data

S u v,()

Ni
p u()Nj

q v()wi j, Pi j,
j 0=

m

∑
i 0=

n

∑

Ni
p u()Nj

q v()wi j,
j 0=

m

∑
i 0=

n

∑

--- a u v, b≤ ≤,=
549

Ellipse

550 | C H A P T
EllipseSupported Versions 0

Subtype of Manifold

Fields The class is defined by the following fields:

Description This manifold defines an ellipse in the two or three dimensional space.

In 2D, an ellipse is defined by a center point center, a vector defining the major
axis M of the ellipse (including the magnitude of the major axis), the radius ratio of
the minor axis length to the major axis length rat, the direction of the ellipse, and
the parameter offset at the major axis offset.

In 3D, an ellipse is defined by a center point center, a unit vector normal to the
plane of the ellipse normal, a vector defining the major axis of the ellipse M
(including the magnitude of the major axis), the radius ratio, and the parameter
offset at the major axis offset. The direction of the ellipse is defined by the right
hand rule using the normal vector.

An ellipse is a closed curve that has a period of 2π. It is parameterized as:

point = center + M cos(t - offset) + N sin(t - offset)

where M and N are the major and minor axes respectively.

Example 7 Ellipse # class
0 0 # version
2 # sdim
0 2 1 # transformation
0 0 # center

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation class

double[d] center Center coordinate

boolean Equal to 1 if clockwise rotation (only if d==2)

double[d] normal Normal vector coordinates,

double[d] M Major axis

double rat Ratio of minor axis length to major axis length

double offset Parameter at the end of major axis

boolean Equal to 1 if ellipse is degenerated
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Ellipse
0 # reverse?
2 0 # major axis
0.5 # minor axis length / major axis length
0 # parameter value at end of major axis
0 # degenerated?
Attributes
0 # nof attributes
551

Geom0

552 | C H A P T
Geom0Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 0D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 205.

The type can be either 0 for solid or −1 for general object.

Example A solid 0D geometry object.

5 Geom0 # class
1 0 1e-010 1
0 # nof attributes

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer type Geometry type

double Relative geometry tolerance

integer p Number of points (0 or 1)

integer na Number of attributes

Attribute[na] Vector of attributes
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Geom1
Geom1Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 1D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 205.

The type can be either 0, 1, or −1 for point, solid or general objects.

Example A solid 1D object.

5 Geom1 # class
1 # version
1 # type
1e-010 # gtol
3 # number of vertices
Vertex coordinates
0
1
3
Vertex up/down
1 0
2 1
0 2
Attributes
0 # nof attributes

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer type Geometry type

double Geometry tolerance

integer nv Number of vertices

double[nv] vtx Vector of vertex coordinates

integer[nv][2] ud Matrix of integers giving subdomains on up and
down side of each vertex
553

Geom2

554 | C H A P T
Geom2Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 2D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 205.

The type can be either 0, 1, 2 or −1 for point, curve, solid or general objects.

Example 5 Geom2 # class
1 # version
1 # type
1e-010 # gtol
0.0001 # resTol
2 # number of vertices
Vertices
X Y sub tol
0 0 -1 NAN
1 2.2999999999999998 -1 NAN

1 # number of edges
Edges
vtx1 vtx2 s1 s2 up down mfd tol
1 2 0 1 0 0 1 NAN
1 # number of manifolds
11 BezierCurve # class
0 0 # version
2 # sdim
0 2 1 # transformation

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer Type

double Relative geometry tolerance

integer nv Number of vertices

integers/doubles
[nv][4]

vertex Matrix of vertex data

integer ne Number of edges

integers/doubles
[ne][8]

edge Matrix of edge data

integer nc Number of curves

Manifold[nc] curve An array of Manifold objects
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Geom2
1 0 # degrees
2 # number of control points
0 0 1
1 2.2999999999999998 1
0 # nof attributes
555

Geom3

556 | C H A P T
Geom3Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 3D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 205.

The type can be either 0, 1, 2, 3 or -1 for point, curve, shell, solid or general objects.

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer type Type

double Relative geometry tolerance

double Relative resolution tolerance

integer nv Number of vertices

integers/doubles
[nv][5]

vertex Matrix of vertex data

integer npv Number of parameter vertices

integers/doubles
[npv][6]

pvertex Matrix of parameter vertex data

integer ne Number of edges

integers/doubles
[ne][7]

edge Matrix of edge data

integer npe Number of parameter edges

integers/doubles
[nep][10]

pedge Matrix of parameter edge data

integer nf Number of faces

integers/doubles
[nf][4]

face Matrix of face data

integer nm Number of 3D manifolds, curves and surfaces

Manifold[nmfd] mfd Vector of manifolds

integer npc Number of parameter curves

Manifold[npc] pcurve Vector of parameter curves
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

GeomFile
GeomFileSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description This curve represent a trimmed part of a boundary described by a geometry M-file.
The boundary index, and start and end parameters of the trimming parts are store
din the curve entry. For details on Geometry M-files, see the entry geomfile on
page 226.

Example A curve representation using the cardg.m Geometry M-file.

8 GeomFile # class
0 0 # version
2 # sdim
0 2 1 # transformation
5 cardg # filename
1 # boundary number
1.5707963267948966 3.1415926535897931 # parameter range

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

string M-file name

integer Boundary number in M-file

double Start parameter value

double End parameter value
557

Manifold

558 | C H A P T
ManifoldSupported Versions 0

Subtype of Serializable

Fields This is an abstract class with no fields.

Description A manifold is the common supertype for curve and surface types. It is used by the
geometry types.

See also Geom0, Geom1, Geom2, Geom3
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Mesh
MeshSupported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description This type represent a mesh that can be used by COMSOL Multiphysics. The entries
p, elem, par, dom, and ud are all described in the reference entry femmesh on page
134.

Example The following displays a mesh with triangular elements on a unit square. Neither
point or edge elements are present.

4 Mesh # class
2 # sdim
5 # number of mesh points
0 # lowest mesh point index
Mesh point coordinates on unit square
0 0

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer d Space dimension (if equal to 0 no more fields)

integer np Number of mesh points

integer Lowest mesh point index

double[d][np] p Mesh points

integer nt Number of element types (fives the number of
repeats of the following fields)

string Element type

integer nep Number of nodes per element

integer ne Number of elements

integer[ne][nep] elem Matrix of point indices for each element.

integer ner Number of parameter values per element

integer nr Number of parameter sets

double[nr][ner] par Matrix of parameter values

integer ndom Number of domain values

integer[ndom] dom Vector of domain labels for each element

integer nud Number of up/down boundary relations

integer[nud] ud Matrix of integers stating subdomain number on
up and down side of the boundary
559

Mesh

560 | C H A P T
1 0
1 1
0 1
0.5 0.5
1 # number of element types
3 tri # type name
3 # number of nodes per element
4 # number of elements
Elements, 4 triangular elements
0 1 4
3 0 4
2 3 4
1 2 4
6 # number of parameter values per element
0 # number of parameters
4 # number of domains
Domains
1
1
2
2
0 # number of up/down pairs
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

MeshCurve
MeshCurveSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description Mesh structures can also be used to define manifolds. Because meshes contain a
number of nodes and, in the case of COMSOL Multiphysics, corresponding
parameter values, a good geometric representation can be obtained using a suitable
interpolation method for evaluating the values of the manifolds and its derivatives
on parameter values that are inside the intervals between the given nodes. Mesh
curves are handled by cubic spline interpolation.

The matrix p and the vector par corresponds to the structures corresponding
structures in an edge mesh representation. For the MeshCurve, they serve as the
interpolation data to obtain intcurve.

See also BSplineCurve

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer Space dimension

Transform Transformation

integer np Number of points

double[np][d] p Matrix of point coordinates

double[np] par Vector of point parameters

Manifold intcurve Interpolating curve
561

MeshSurf

562 | C H A P T
MeshSurfSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description Mesh structures for surface meshes can be used to make a geometric definition of
unstructured data. Since a mesh type in COMSOL Multiphysics have coordinates as
well as parameter values for each element, interpolation can be employed to create
smooth surfaces.

A quadratic interpolation is used to define a parametric surface from a surface mesh.

The matrix p of coordinates and the triangles elem with indices into p are used as
the interpolation data.

See also Mesh

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer Space dimension

Transform Transformation

integer nv Number of vertices

double[nv][3] p Matrix of mesh vertex coordinates

double[nv][2] Matrix of mesh vertex parameters

integer nt Number of triangles

integers[nv][3] elem Matrix of vertex indices for each element
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Plane
PlaneSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description This manifold defines a plane in the three dimensional space. It is represented by a
point, a unit vector normal to the plane, and the vector of the u derivative.

A plane is open in both parameter directions and neither periodic nor singular at any
point. It is parameterized as:

pos = p + u*b + v*(n x b)

Example 5 Plane # class
0 0 # version
3 # sdim
0 3 1 # transformation
1.3 0.80000000000000004 1.6000000000000001 # root point
-6.1257422745431001e-017 0 1 # normal
-1 0 -6.1257422745431001e-017 # derivatives
0 # degenerated?

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation

double[d] p The point in the plane with parameter value (0,0)

double[d] n Normal vector

double[d] b Direction of first parameter axis
563

PolChain

564 | C H A P T
PolChainSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description Polygon chains are piece wise linear curves, that are used as approximations of
curves in the decomposition algorithm. They have an implicit parameter
representation, that is on the ith interval in a polygon
chain with p points. This is not a suitable representation because the derivatives may
vary substantially along the curve.

See also MeshCurve

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation

integer n1 First dimension of matrix of point coordinates
(equal to d)

integer n2 Second dimension of matrix point coordinates,
number of points

doubles pol n1-by-n2 matrix of point coordinates

i 1–() p 1–()§ i p 1–()§,[]
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Serializable
SerializableSupported Versions 0

Subtype of

Fields This is the abstract base type of all other types. It has no fields.

Description Serializable is the abstract base type. It is used to indicate that a field can contain all
supported types, as is the case for the Attribute type.

See also Attribute
565

Straight

566 | C H A P T
StraightSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description This manifold defines an infinite straight line in the two or three dimensional space.
It is represented by a point and a unit vector specifying the direction. A straight also
has a scale factor for the parameterization, so the parameter values can be made
invariant under transformation. If not specified the value of this parameter is set to
1.0.

A straight line is an open curve that is not periodic. It is parameterized as:
pos = root + u*pscale*dir

where u is the parameter.

Example 8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
1.3 0.8 0.0 # root point
-1 0 0 # direction
1 # parameter scale

See also Plane

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation

double[d] root The point from which the ray starts

double[d] dir The direction in which the ray points

double pscale Parameter scale
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Transform
TransformSupported Versions 1

Subtype of Serializable

Fields The class is

Description The transformation class is defined by the transformation matrix, that operates as a
pre-multiplier on column vectors containing homogeneous coordinates thus

where the conventional 3D coordinates are

The matrix thus consists of

where R is a non singular transformation matrix, containing the rotation, reflection,
non-uniform scaling and shearing components, T is a translation vector and S is a
global scaling factor greater than zero.

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer d Space dimension

boolean 1 if transformation is a unit transformation, 0
otherwise. If the value is 1, no more fields are present

double
[d+1][d+1]

M Values in transformation matrix

boolean 1 if determinant is positive, 0 otherwise

boolean 1 if matrix is isotropic, 0 otherwise

x' y' z' s' M x y z s '⋅=

x
s
--- y

s
--- z

s
--

R

Tx

Ty

Tz

0 0 0 S
567

VectorDouble

568 | C H A P T
VectorDoubleSupported Versions

Subtype of Serializable

Fields The class is defined by the following fields:

Description This is just a wrapper for a vector of doubles, that can be used to store fields in the
Attribute class.

See also Attribute

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer n Number of elements

double[n] d Elements
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

VectorInt
VectorIntSupported Versions

Subtype of Serializable

Fields The class is defined by the following fields:

Description This is just a wrapper for a vector of integers, that can be used to store fields in the
Attribute class.

See also Attribute

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer n Number of elements

integer[n] d Elements
569

VectorString

570 | C H A P T
VectorStringSupported Versions

Subtype of Serializable

Fields The class is defined by the following fields:

Description This is just a wrapper for a vector of strings, that can be used to store fields in the
Attribute class.

See also Attribute

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer n Number of elements

string[n] d Elements
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Ex amp l e s

To illustrate the use of the serialization format, some text files are listed in this session.

A Mesh with Mixed Element Types

A file containing a 3D mesh with 2nd order tetrahedral, prism and block elements.
Some rows in the file are removed and replaced by an ellipsis(...).

Created by COMSOL Multiphysics Fri Aug 26 12:43:42 2005

Major & minor version
0 1
1 # number of tags
Tags
7 fem35.0
1 # number of types
Types
3 obj

A mesh object

0 0 1
4 Mesh # class
3 # sdim
1503 # number of mesh points
0 # lowest mesh point index

Mesh point coordinates
0 0 0
2.5 0 0
5 0 0

...
12.5 28.333330000000004 15
12.5 30 13.125
12.5 28.333330000000004 13.125

7 # number of element types

Type #0
4 tet2 # type name

10 # number of nodes per element
318 # number of elements
Elements
926 18 13 17 971 958 61 967 66 60
11 345 918 342 950 951 1137 949 373 1129
924 164 345 5 1026 1138 384 938 385 378
E X A M P L E S | 571

572 | C H A P T E
20 339 15 16 352 68 356 69 960 64
...
287 919 930 285 1100 1102 1152 317 1096 1098
3 227 4 8 936 28 243 35 945 36

30 # number of parameter values per element
0 # number of parameters
Parameters
318 # number of domains
Domains
1
...
1
1

0 # number of up/down pairs
Up/down

Type #1
6 prism2 # type name

18 # number of nodes per element
96 # number of elements
Elements
85 174 90 476 474 557 221 118 237 499 1171 494 1170 1172 566 496 563 597
174 225 90 474 588 557 238 237 244 494 1173 579 1172 1174 566 598 597 604
174 175 225 474 472 588 222 238 239 494 1175 489 1173 1176 579 491 598 599
...
654 528 530 404 409 408 693 692 541 703 1333 538 1332 1334 543 460 459 465
654 504 528 404 405 409 687 693 694 703 1324 520 1333 1335 538 453 460 461
504 506 528 405 410 409 523 694 536 520 1336 525 1335 1337 538 462 461 466

54 # number of parameter values per element
0 # number of parameters
Parameters

96 # number of domains
Domains
2
2
2
...
2
2

0 # number of up/down pairs
Up/down

Type #2
4 hex2 # type name

27 # number of nodes per element
36 # number of elements
Elements
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

410 506 409 528 762 760 831 859 525 466 1337 536 538 780 1339 775 1338 1343
1340 840 1341 853 777 837 1342 865 867
506 507 528 529 760 758 859 860 526 536 1281 537 539 775 1344 770 1340 1348
1345 853 1346 854 772 865 1347 866 868
...
893 785 809 787 718 719 722 723 908 910 1446 804 815 916 1487 801 1495 1502
1499 817 1500 806 747 750 1501 751 754

81 # number of parameter values per element
0 # number of parameters
Parameters

36 # number of domains
Domains
3
3
...
3
3

0 # number of up/down pairs
Up/down

Type #3
3 vtx # type name

1 # number of nodes per element
16 # number of elements
Elements
0
4
20
...
723

0 # number of parameter values per element
0 # number of parameters
Parameters

16 # number of domains
Domains
0
1
...
14
15

0 # number of up/down pairs
Up/down

Type #4

4 edg2 # type name
E X A M P L E S | 573

574 | C H A P T E
3 # number of nodes per element
102 # number of elements
Elements
4 9 37
9 14 50
14 19 63
...
175 174 222
174 85 221

3 # number of parameter values per element
102 # number of parameters
Parameters
0 5 2.5
5 10 7.5
10 15 12.5
...
7.5 11.25 9.375
11.25 15 13.125

102 # number of domains
Domains
0
0
...
27
27
27

0 # number of up/down pairs
Up/down

Type #5

4 tri2 # type name

6 # number of nodes per element
224 # number of elements
Elements
18 17 13 66 61 60
164 5 345 385 384 378
20 339 15 352 68 356
...
404 409 405 460 453 461
405 409 410 461 462 466

12 # number of parameter values per element
0 # number of parameters
Parameters

224 # number of domains
Domains
12
7
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

7
...
5
5
5

224 # number of up/down pairs
Up/down
1 0
1 0
1 0
1 0
...
2 0
2 0

Type #6

5 quad2 # type name

9 # number of nodes per element
102 # number of elements
Elements
85 90 476 557 118 499 1170 566 563
85 476 174 474 499 221 1171 496 494
...
809 787 722 723 815 817 1500 806 754
718 722 719 723 750 747 1501 754 751

18 # number of parameter values per element
0 # number of parameters
Parameters

102 # number of domains
Domains
1
4
4
...
8
2

102 # number of up/down pairs
Up/down
2 0
2 0
...
3 0
3 0

A Planar Face

The following listing is a complete representation of a planar 3D face.
E X A M P L E S | 575

576 | C H A P T E
Created by COMSOL Multiphysics Fri Aug 26 14:19:54 2005

Major & minor version
0 1
######### Tags
1 # number of tags
Tags
2 b1

######## Types
1 # number of types
Types
3 obj

######## Records

A planar face object

0 0 1
5 Geom3 # class
1 # version
2 # type
1e-010 # gtol
0.0001 # resTol
4 # number of vertices
Vertices
X Y Z sub tol
0 0 0 -1 1e-010
1 0 6.1257422745431001e-017 -1 1e-010
0 1 0 -1 1e-010
1 1 6.1257422745431001e-017 -1 1e-010
4 # number of parameter vertices
Parameter vertices
vtx s t fac mfd tol
1 0 0 -1 1 NAN
2 1 0 -1 1 NAN
3 0 1 -1 1 NAN
4 1 1 -1 1 NAN

4 # number of edges
Edges
vtx1 vtx2 s1 s2 sub mfd tol
1 2 0 1 -1 2 NAN
2 4 0 1 -1 3 NAN
4 3 0 1 -1 4 NAN
3 1 0 1 -1 5 NAN
4 # number of parameter edges
Parameter edges
edg v1 v2 s1 s2 up down mfdfac mfd tol
1 1 2 0 1 1 0 1 1 NAN
2 2 4 0 1 1 0 2 1 NAN
3 4 3 0 1 1 0 3 1 NAN
4 3 1 0 1 1 0 4 1 NAN

1 # number of faces
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Faces
up down mfd tol
0 0 1 NAN

5 # number of 3D manifolds
Manifold #0
5 Plane # class
0 0 # version
3 # sdim
0 3 1 # transformation
0 0 0 # root point
-6.1257422745431001e-017 0 1 # normal
1 0 6.1257422745431001e-017 # derivatives
0 # degenerated?

Manifold #1
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
0 0 0 # root point
1 0 6.1257422745431001e-017 # direction
1 # parameter scale

Manifold #2
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
1 0 6.1257422745431001e-017 # root point
0 1 0 # direction
1 # parameter scale

Manifold #3
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
1 1 6.1257422745431001e-017 # root point
-1 0 -6.1257422745431001e-017 # direction
1 # parameter scale

Manifold #4
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
0 1 0 # root point
0 -1 0 # direction
1 # parameter scale

4 # number of parameter curves
Paramerer curve #0
8 PolChain # class
0 0 # version
E X A M P L E S | 577

578 | C H A P T E
2 # sdim
0 2 1 # transformation
2 2 0 0 1 0 # chain

Paramerer curve #1
8 PolChain # class
0 0 # version
2 # sdim
0 2 1 # transformation
2 2 1 0 1 1 # chain

Paramerer curve #2
8 PolChain # class
0 0 # version
2 # sdim
0 2 1 # transformation
2 2 1 1 0 1 # chain

Paramerer curve #3
8 PolChain # class
0 0 # version
2 # sdim
0 2 1 # transformation
2 2 0 1 0 0 # chain

Attributes
0 # nof attributes
R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

 7
C O M S O L E n g i n e A P I
 579

580 | C H A P T E
I n t r o du c t i o n

The COMSOL Engine API (Application Programming Interface) makes it possible to
set up, solve, and postprocess a PDE problem using COMSOL as a “black box.” The
API uses a Java VM to communicate with the COMSOL shared library. To create an
application with the API requires the Java SDK 1.4.2, which you must download and
install separately.

We recommend you run the COMSOL Engine API from the Java VM (Java Virtual
Machine) that ships with COMSOL. The Java VM needs access to the COMSOL class
library and the COMSOL shared libraries. The COMSOL API lets you control
COMSOL through commands similar to those in COMSOL Script. In fact, to run a
COMSOL model through the API, you can use the exact same command sequence
that you get by saving a Model M-file from the COMSOL user interface. COMSOL
commands sent to the Java VM describe the geometry, mesh, PDE, and boundary
conditions; you send additional commands to solve the model and perform
postprocessing. Finally, other COMSOL Engine API methods fetch the data into Java.

The next section, “Using the COMSOL Engine API,” explains how to get started
using the API. Additionally, the COMSOL Multiphysics Scripting Guide is useful
reading for working with the API, and the “Command Reference” chapter on page 1
in this manual describes the COMSOL Multiphysics commands in detail.

Note that it is possible to start the COMSOL API from a C program, as well. You must
use the JNI (Java Native Interface) to start a Java VM from the C program, and then
send commands to the Java VM using the JNI. Also use the JNI to fetch numerical
results from COMSOL. It is clearly easier to use the COMSOL API from a program
that is already integrated with Java.
R 7 : C O M S O L E N G I N E A P I

U s i n g t h e COMSOL Eng i n e AP I

An external program can communicate with COMSOL through a Java API that is
based on executing COMSOL Script commands. The interface classes are declared in
the Java package com.femlab.script.api.

When it receives commands through the API, COMSOL evaluates them sequentially.
The subset of MATLAB from which these commands come consists of those that can
appear in Model M-files; for additional details in this regard as well as a description of
which COMSOL functions that you can call and in what order, see “The Structure of
a Model M-file” on page 65 in the COMSOL Multiphysics Scripting Guide that is
part of the COMSOL Multiphysics documentation set.

Classes

T H E A P I WO R K S P A C E C L A S S

ApiWorkspace is the main class for communicating with COMSOL. It corresponds to
the root workspace in MATLAB. It provides the following interface:

• ApiWorkspace() creates a new COMSOL workspace.

• void destroy() deactivates the workspace and frees all memory it has allocated.

• void eval(String command) executes a COMSOL command written in the
MATLAB language. The command can contain several MATLAB statements
separated by semicolons, commas, or newline characters.

• boolean isNumeric(String var) returns True if a variable called var exists and
its value is or can be converted to a real or complex matrix.

• boolean isComplex(String var) returns True if a variable called var exists and
its value has a non-zero imaginary part.

• double[][] getMatrixReal(String var) returns a matrix containing the real
parts of the matrix var. If no such variable exists an exception is thrown.

• double[][] getMatrixImag(String var) returns a matrix containing the
imaginary parts of the matrix var. If no such variable exists, an exception is thrown.

• String getVar(String var) returns the value of a the variable var as a string.

• void setVar(String var, String value) assigns the variable var the value of
the expression value.
U S I N G T H E C O M S O L E N G I N E A P I | 581

582 | C H A P T E
T H E A P I E X C E P T I O N C L A S S

ApiException is an exception thrown by all member functions of ApiWorkspace. It
provides the following interface:

• String getMessage() returns a descriptive error message.

Some common situations where this exception is thrown include:

• The command sent to ApiWorkspace.eval() could not be parsed.

• The command sent to ApiWorkspace.eval() contains MATLAB commands,
expressions, or functions not supported by COMSOL.

• The command sent to ApiWorkspace.eval() contains invalid calls to COMSOL
functions.

• The variable name passed to ApiWorkspace.getMatrixReal() or
ApiWorkspace.getVar() does not correspond to an existing matrix variable.

Example

The following code snippet illustrates how it is possible to use the API.

import com.femlab.script.api.*;
import java.io.*;

public class Example {

 public static void main(String[] args) {

 try {

 ApiWorkspace ws = new ApiWorkspace();

 // Create geometry: A square
 ws.eval(“g1 = rect2(1, 1, ‘base’, ‘corner’, ‘pos’,[0, 0]);”);
 ws.eval(“s.objs = {g1};”);
 ws.eval(“s.name = {‘R1’};”);
 ws.eval(“s.tags = {‘g1’};”);
 ws.eval(“fem.draw = struct(‘s’, s);”);
 ws.eval(“fem.geom = g1;”);

 // Create mesh
 ws.eval(“fem.mesh = meshinit(fem);”);

 // Use the Electrostatics application mode
 ws.eval(“appl.mode.class = ‘Electrostatics’;”);
 ws.eval(“appl.assignsuffix = ‘_es’;”);
R 7 : C O M S O L E N G I N E A P I

 // Set boundary constraints: Potentials 0 and 10V on
 // the left and right sides, respectively.
 ws.eval(“bnd.V0 = {0, 0, 10};”);
 ws.eval(“bnd.type = {‘V0’, ‘nD0’, ‘V’};”);
 ws.eval(“bnd.ind = [2, 3, 2, 1];”);
 ws.eval(“appl.bnd = bnd;”);
 ws.eval(“fem.appl{1} = appl;”);

 // Solve the problem using the linear solver
 ws.eval(“fem = multiphysics(fem);”);
 ws.eval(“fem.xmesh = meshextend(fem);”);
 ws.eval(“fem.sol = femlin(fem);”);

 // Retrieve the potential in the midpoint of the square
 ws.setVar(“coord”, “[0.5 ; 0.5]”);
 ws.eval(“sol = postinterp(fem, 'V', coord);”);
 double[][] sol = ws.getMatrixReal(“sol”);
 ws.destroy();

 // Print the results
 for (int i=0; i<sol.length; i++) {
 for (int j=0; j<sol[i].length; j++)
 System.out.print(sol[i][j]);
 System.out.println();
 }

 } catch (ApiException e) {
 System.out.println(e.getMessage());
 }
 }
}

Running the Example

W I N D O W S

To run this example under Windows, you must first have COMSOL 3.4 installed. Next
download and install Java SDK 1.4.2 for Windows. You also need the batch files
comsolapic.bat and comsolapi.bat (available in the COMSOL bin directory) and
the example file Example.java (available in the COMSOL api/engine directory).
Put all three of these files in a new directory. Edit the variable SDKROOT in the batch
file comsolapic.bat to reflect the installation directory of Java SDK 1.4.2.

To compile the function enter

comsolapic.bat Example.java

and to run the model enter
U S I N G T H E C O M S O L E N G I N E A P I | 583

584 | C H A P T E
comsolapi.bat Example

You can determine exactly which parameters Java needs in order to run a model using
the COMSOL API by looking at the file comsolapi.bat. You must also perform these
tasks: provide the correct class path to Java, update the PATH variable, and set the
variable LMCOMSOL_LICENSE_FILE.

L I N U X / S U N / M A C

To run the example just presented under Linux, Sun, or the Mac, you must first have
COMSOL 3.4 installed. Next download and install Java SDK 1.4.2 for your platform.
You also need the shell scripts comsolapic and comsolapi plus the example file
Example.java. Edit the variables FLROOT, SDKROOT, and ARCH in the shell scripts to
reflect the installation directories of COMSOL 3.4, Java SDK 1.4.2, as well as the
computer architecture.

To compile the function enter

comsolapic Example.java

and to run the model enter

comsolapi Example

You can determine exactly which parameters Java needs in order to run a model using
the COMSOL API by looking at the file comsolapi. You must also perform these
tasks: provide the correct class path to Java, update the LD_LIBRARY_PATH variable
(DYLD_LIBRARY_PATH on Mac), and set the variable LMCOMSOL_LICENSE_FILE.
R 7 : C O M S O L E N G I N E A P I

I N D E X

 61

1D geometry object 205

3D mesh 287

A A matrix 30

adaption 20

adaptive solver 20

error indicator in 507

iterative algorithm for 507

affine invariance

of rational Bézier curves 483

AL matrix 30

algebraic multigrid preconditioner 526

algebraic multigrid solver 526

Allman 115

analyzed geometry 217, 236, 244

angle 39

animation 376

API 580

arc1 28

arc2 28

Argyris 115

Argyris element 406

Argyris elements 456

Arnoldi method 504

ARPACK 504

assemble 29

assembling the stiffness matrix 474

assembly 29

block size for 493

asseminit 34

Attribute 541

augmented Lagrangian technique 141

B backward differentiation formulas 503

basis functions 453, 471

BE matrix 30

Bernstein basis 482, 542

Bernstein polynomials

bivariate 485, 545

univariate 485, 545

Bézier curve 46, 542

Bézier patch 122

Bézier surface

rectangular 544, 545

Bézier triangles 485, 545

binary file format 536

BLAS 508

block2 38, 41, 89, 400, 422

block3 37

Boolean operations 217

boundary coupled equation variables 278

boundary coupled shape variables 278

B-spline

basis functions 547

curve 546

surface 549

bubble element 407, 460

C C matrix 30

CAD Import Module 233

cardg 227

cardioid 227

chamfer 39

Cholesky direct solver 510

circ1 41

circ2 41

circular rounded corners 186

coarse grid correction 520

coarse solver

settings for 526

coefficient solution form 477, 495

coerce geometry object 215

collapsed element 139
I N D E X | 585

586 | I N D E X
color specification 353, 356, 365, 390

COMSOL Engine API 580

COMSOL Multiphysics file 535

exporting from GUI 539

opening 539

comsol.opts

specifying the stack size 511

cone2 44

cone3 44

conic sections 483

conjugate gradients solver 512

constr edit field 477

constraint force 480

constraint force Jacobian matrix 472

constraint handling method 492

constraint Jacobian matrix 472

constraint residual 472

constraint-handling methods 499

elimination 499

using Lagrange multipliers 499

using stiff springs 500

constraints

ideal 480

in multiphysics models 479

non-ideal 480

contact map operators 55

control polygon 482

Control System Toolbox 170

control vertices 482, 542

corners

flattened 39

rounded 186

trimmed 39, 186

cubic Bézier curve 484

curl element 408, 461

curl-curl operators 528

curve

cusp on 484

implicit form of 483

inflection point for 484

quadratic 483

third-degree 484

curve2 46

curve3 46

curved mesh elements 454

cusp

on a curve 484

cylinder2 48

cylinder3 48

D D matrix 30, 474

DA matrix 30

DAE 178

damped Newton method 501

damping factor 501

damping matrix 474

DASPK 503

DASSL 503

Decomposed Geometry matrix 236, 336,

337

degenerated element 139

degree

of rational Bézier curve 482, 486, 542

degree of freedom 197

degrees of freedom 452, 470

Delaunay algorithm 287

density element 409, 465

diagnostics 435

diagonal scaling preconditioner 527

differential algebraic equation 178

direct solvers

LDLT (TAUCS) 511

PARDISO 509

SPOOLES 509

TAUCS Cholesky 510

TAUCS LDLT 511

UMFPACK 508

Dirichlet boundary conditions

in multiphysics models 479

discontinuous element 410, 464

discrete sine transform 50

discretization 452

of equations 470

divergence element 411, 467

divergence elements 467

DOF. See degrees of freedom

drop rule

selecting for preconditioner 517

drop tolerance 508, 517

DST 50

dst 50

dweak edit field 477

dynamic model 150

E E matrix 30, 474

EA matrix 30

econe2 52

econe3 51

edge element 408

edge elements 461

edge segment 236

eigenvalue solver 126

eigenvalues

field in solution object for 127

specifying search location for 127

using adaptive solver for 20

elemcpl 478

element coordinates 453

element syntax 69

element types

Argyris elements 456

divergence elements 467

Hermite elements 458

Lagrange elements 455

vector elements 461

elemmph 478

elevate 78

elimination constraint handling 499

ellip2 89, 400, 422

ellipse 483, 550

ellipsoid2 92

ellipsoid3 91

embed 119

equation system

how COMSOL Multiphysics forms it

476

equation system form 476, 494

equilibrium solution 150

error estimation function 21

error indicator 507

error messages 436

general 445

in assembly and extended mesh 439

in geometry modeling 436

in mesh generation 437

in solvers 442

Euclidean norm

for the relative tolerance 501

in the threshold drop rule 517

Euler step 178

extrude 120

extrusion coupling variables 58

extrusion map operators 95

F F vector 30

face segment 236

face3 122

F-cycles 520

FEM structure 175

FEM. See finite element method

femdiff 124

femeig 126

femlab 43

femlin 129

femmesh 134
I N D E X | 587

588 | I N D E X
femnlin 141

femsim 149

femsol 153

femstate 170

femstatic 172

femstruct 175

femtime 176

femwave 181

FGMRES solver 512

file format

binary 536

COMSOL Multiphysics 536

text 536

file record 536, 537

fillet 186

fill-ratio drop rule 517

finite element method 452

finite element space 453, 470

finite elements 452

first fundamental matrices 238

flattened corners 39

flcompact 187

flcontour2mesh 188

fldc1hs 189

fldc2hs 189

fldsmhs 202

fldsmsign 202

fleel2 22

flform 190

flim2curve 192

flload 194

flmesh2spline 195

flngdof 197

flreport 200

flsave 536

flsmhs 189, 202

flsmsign 189, 202

fltpft 22

fltpqty 22

fltpworst 22

flux computation 368

G G vector 30

GA vector 30

Gauss points 473

Gauss-point pattern 412

Gauss-Seidel method 527

gencyl2 204

gencyl3 203

general dynamic model 150

general solution form 478, 495

general static model 150

generalized minimum residual solver 511,

512

geom0 205

geom1 205

geom2 205

geomanalyze 211

geomarray 213

geomcoerce 215

geomcomp 216

geomcsg 217

geomdel 222, 224

geometric entity 218, 236

geometric multigrid preconditioner 518

geometric multigrid solver 518

geometric variables 489

Geometry M-file 226

geometry model 217

geometry shape order 454

geomfile 226

geomgetwrkpln 229

geominfo 236, 243

geomplot 244

geomposition 249

geomspline 250

geomsurf 252

George, P. L. 296

GMG preconditioner 518

GMG solver 518

GMRES solver 511

gporder 473

H H matrix 30

Heaviside function

smoothed 189, 202

helix geometry objects 254

helix1 254

helix2 254

helix3 254

Helmholtz’ equation 93

Helmholtz-Kirchhoff integral solutions

93

Hermite element 413

Hermite elements 458

hexahedron2 255

hexahedron3 255

highly nonlinear 143

Hnlin 143

hyperbola 483

I ideal constraints 472, 480

idst 50

implicit form of curve 483

implicitly restarted Arnoldi method 504

import of geometry

IGES file 233

incomplete Cholesky

preconditioner 518

using TAUCS 518

incomplete LU preconditioner 516

inflection point

for cubic curves 484

initial values

for the nonlinear solver 501

Initstep 143

inline functions 82

integration coupling variables 66

destination-aware 61

Intel MKL 509

invariance

of rational Bézier curves 483

isoparametric elements 454, 456

iterative solvers

conjugate gradients 512

FGMRES 512

GMRES 511

J Jacobian

matrix 473

K K matrix 30, 473

knot vector 547

knots 547

Ksp matrix 30

L L vector 30

Lagrange constraint handling 499

Lagrange element 414, 455

Lagrange multipliers 471

as field variables 474

extra term for 479

vector containing 472

Lagrange points 455

Lenoir method 79

lighting 147

lighting model 147

line 256

line1 256

line2 256

linear adaptive solver 20

linear elements 452, 455

linear solver 129

linearization 473

linearized dynamic simulation 150

linearized static model 151

load vector 473
I N D E X | 589

590 | I N D E X
local coordinates 453

loft 257

M M vector 30, 470

mass matrix 474

mesh

adaptive refinement 20

object 287

plotting 303

mesh cases

for geometric multigrid solver 523

mesh object 287

mesh refinement

2D algorithm 316

meshcopy 269

meshdel 271

meshenrich 274

meshexport 277

meshextend 278

meshimport 284

meshinit 287

meshplot 303

meshpoi 310

meshqual 313

meshrefine 315

meshsmooth 319

method of lines 503

Mindlin plate 113

mirror 325

model reduction 151

move

geometry object 326

move 326

mphbin files 538

mphtxt files, text files, file format

text 538

multigrid cycles 519

F-cycles 520

V-cycles 520

W-cycles 520

multigrid hierarchy, constructing 521

multigrid levels 519

multigrid solver 518

settings for 524

multiphysics 327

N N matrix 30

NASTRAN 284

Nédélec’s edge element 461

Newton method 501

NF matrix 30

node points 453

non-ideal constraints 480

nonlinear 143

adaptive solver 20

solver 141, 172

non-uniform rational basis spline. See

NURBS

null-space function 492

numerical quadrature 472

NURBS 487

curve 546

surface 549

Nyquist criterion 521

O order

of Lagrange elements 455

of quadrature formulas 473

P parabola 483

parallel solver 509

parameterization

curves 487

faces 487

parametric solver 144

PARDISO direct solver 509

parts

extracting from assembly 253

patch mesh plot 303

PDE Toolbox 236

conversion of data 12, 335, 336, 337

pde2draw 335

pde2fem 336, 337

piecewise functions 103

piecewise polynomial interpolation 79

pivot threshold 508

PMLs 415

point1 338

point2 338

point3 338

poisson 340

poly1 342

poly2 342

polygon 256, 342

polynomial Bézier curves 483

post data 357

postanim 343

postarrow 344

postarrowbnd 345

postcont 346

postcoord 347

postcrossplot 349

postdataplot 356

posteval 357

postflow 361

postglobaleval 362

postglobalplot 364

postgp 366

postint 367

postinterp 369

postiso 372

postlin 373

postmovie 376

postname 114

postplot 378

postprinc 393

postprincbnd 394

postprocessing function 357

postslice 395

postsmoothers 520

settings for 525

postsurf 396

posttet 397

preconditioners

algebraic multigrid 526

diagonal scaling 527

geometric multigrid 518

incomplete Cholesky (TAUCS) 518

incomplete LU 516

SOR 527

SOR vector 528, 530

SORU 527

SORU vector 528, 530

SSOR 527

SSOR vector 528

Vanka 530

preordering algorithms 509, 510

presmoother 519

presmoothers

settings for 525

projection coupling variables 63

prolongation matrices 519

pyramid2 399

pyramid3 398

Q Q matrix 30

quadratic elements 453, 455

quadrature formulas 472

quadric curves 483

R R matrix 30

radius of curvature 293

rational Bézier curves 482

rational Bézier patches 484

rectangular 484

record

file 536, 537
I N D E X | 591

592 | I N D E X
relative tolerance

in nonlinear solver 502

relaxation factor 527

residual vector 472

revolve 402

rotate 403

rounded corners 186

S saddle-point problems 530

scalar plane wave basis function 468

scale 405

scaling

of variables and equations 497

search location for eigenvalues 127

second fundamental matrices 238

second-order spatial derivative

incorrect Jacobian when using 495

segregated iterations 502

serendipity element 138

serializable 537

serializable objects 540

serialization

records 536, 537

tags 536

terminology 538

types 536

set formula 219

shape functions 454

sharg_2_5 406

sharg_2_5 Argyris element 457

shbub 407

shbub bubble element 460

shcurl 408, 462

shdens 409

shdisc 410

shdisc discontinuous element 464, 466

shdiv 411

shdiv divergence element 467

shgp 412

shherm Hermite element 458

shlag 413

shlag Lagrange element 455

shuwhelm scalar plane wave basis func-

tion 469

sign function 202

Simulink 149, 170

Simulink export

dynamic model 150

general dynamic model 150

general static model 150

linearized dynamic simulation 150

linearized static model 151

static model 150

Simulink structure 149

smoothed sign function 202

smoothers

efficiency of 521

settings for 525

SOR vector 528, 530

SORU vector 528, 530

SSOR vector 528

Vanka 530

sol 143

solid table 218

solid0 416

solid1 416

solid2 416

solid3 416

solsize 418

solution

storing on file 494

solution form 476, 494

automatic 476

coefficient 495

general 495

weak 495

solution matrix 127

solution object 131, 143, 153, 178

solution objects

eigenvalues in 127

solution structure 127

solution vector 471

solver errors and diagnostics 447

solvers

algebraic multigrid 526

conjugate gradients 512

FGMRES 512

geometric multigrid 518

GMRES 511

PARDISO 509

SPOOLES 509

TAUCS Cholesky 510

UMFPACK 508

SOR preconditioner 527

SOR vector preconditioner 528, 530

SOR vector smoother 528, 530

SORU vector preconditioner 528, 530

SORU vector smoother 528, 530

sphere2 420

sphere3 419

spline curve 546

spline surface 549

SPOOLES direct solver 509

SSOR preconditioner 527

SSOR update 532

SSOR vector preconditioner 528

SSOR vector smoother 528

STACKSIZE parameter 511

standard simplex 453

state-space form 170

static model 150

stationary

adaptive solver 20

linear solver 129

nonlinear solver 141, 172

step function

smoothed 189, 202

stiff spring constraint handling 500

stiffness matrix 473

Stratton-Chu formula 93

subdomain 236

successive over-relaxation methods 527

surface object 122

symmetric successive over-relaxation

method 527

T tags

serialization 536

tangential derivative variables

for Argyris elements 458

for Bubble elements 461

for curl elements 464

for discontinuous elements 465

for divergence elements 468

for Hermite elements 460

for Lagrange elements 456

TAUCS Cholesky direct solver 510

TAUCS incomplete Cholesky precondi-

tioner 518

TAUCS LDLT direct solver 511

test function 471

tetrahedron2 426

tetrahedron3 426

text file format 536

third-degree curve 484

threshold drop rule 517

time dependencies 179

time-dependent solver 176

torus2 427

torus3 427

triangular Bézier surface 545

triangular Bézier surfaces 485

trimmed curves 487

trimmed patch 123
I N D E X | 593

594 | I N D E X
trimmed surfaces 487

U ultraweak variational formulation 415,

468

UMFPACK direct solver 508

undefined operations 494

untrimmed patch 123

Uzawa iterations 502

V Vanka algorithm 530

Vanka preconditioner/smoother 530

Vanka update 531

variables

geometric 489

V-cycles 520

vector elements 408, 461

preconditioners for 528

smoothers for 525

vertex 236

W W-cycles 520

weak constraint 368

weak constraints 474

weak edit field 477

weak solution form 478, 495

weak terms

contribution to equation 477

weights

in control polygon 486

wireframe mesh plot 303

X xmesh 278

	CONTENTS
	Chapter 1: Command Reference
	Summary of Commands 2
	Commands Grouped by Function 7

	Chapter 2: Diagnostics
	Error Messages 436

	Chapter 3: The Finite Element Method
	Understanding the Finite Element Method 452
	What Equations Does COMSOL Multiphysics Solve? 476

	Chapter 4: Advanced Geometry Topics
	Advanced Geometry Topics 482

	Chapter 5: Advanced Solver Topics
	Advanced Solver Settings 492
	Solver Algorithms 501
	Linear System Solvers 508
	Preconditioners for the Iterative Solvers 516

	Chapter 6: The COMSOL Multiphysics Files
	Overview 536
	Serializable Types 540
	Examples 571

	Chapter 7: COMSOL Engine API
	Introduction 580
	Using the COMSOL Engine API 581

	Command Reference
	Summary of Commands
	Commands Grouped by Function
	User Interface Functions
	Solver Functions
	Geometry Functions
	Geometry Objects
	Mesh Functions
	Utility Functions
	Postprocessing Functions
	Low-Level Functions
	Shape Function Classes
	Element Syntax Classes
	Mathematical Functions
	Obsolete Functions in 3.3
	Obsolete Functions in 3.2
	Obsolete Functions in 3.1
	Obsolete Functions in FEMLAB 3.0

	adaption
	arc1, arc2
	assemble
	asseminit
	block2, block3
	chamfer
	circ1, circ2
	comsol
	cone2, cone3
	curve2, curve3
	cylinder2, cylinder3
	dst, idst
	econe2, econe3
	elcconstr
	elconst
	elcontact
	elcplextr
	elcplgenint
	elcplproj
	elcplscalar
	elcurlconstr
	elempty
	elepspec
	eleqc
	eleqw
	elevate
	elgeom
	elgpspec
	elinline
	elinterp
	elinv
	elirradiation
	ellip1, ellip2
	ellipsoid2, ellipsoid3
	elkernel
	elmapextr
	elmesh
	elode
	elpconstr
	elpiecewise
	elplastic
	elpric
	elsconstr
	elshape
	elshell_arg2
	eluwhelm
	elvar
	embed
	extrude
	face3
	femdiff
	femeig
	femlin
	femmesh
	femmesh/get
	femnlin
	femplot
	femsim
	femsol
	femsolver
	femstate
	femstatic
	femstruct
	femtime
	femwave
	fillet
	flcompact
	flcontour2mesh
	flc1hs, flc2hs, fldc1hs, fldc2hs
	flform
	flim2curve
	flload
	flmesh2spline
	flngdof
	flnull
	flreport
	flsave
	flsmhs, flsmsign, fldsmhs, fldsmsign
	gencyl2, gencyl3
	geom0, geom1, geom2, geom3
	geom0/get, geom1/get, geom2/get, geom3/get
	geomanalyze
	geomarrayr
	geomcoerce
	geomcomp
	geomcsg
	geomdel
	geomedit
	geomexport
	geomfile
	geomgetwrkpln
	geomgroup
	geomimport
	geominfo
	geomobject
	geomplot
	geomposition
	geomspline
	geomsurf
	getparts
	helix1, helix2, helix3
	hexahedron2, hexahedron3
	line1, line2
	loft
	mesh2geom
	meshbndlayer
	meshcaseadd
	meshcasedel
	meshcopy
	meshdel
	meshembed
	meshenrich
	meshexport
	meshextend
	meshextrude
	meshhex2tet
	meshimport
	meshinit
	meshintegrate
	meshmap
	meshplot
	meshpoi
	meshquad2tri
	meshqual
	meshrefine
	meshrevolve
	meshsmooth
	meshsweep
	mirror
	move
	multiphysics
	pde2draw
	pde2geom
	pde2fem
	point1, point2, point3
	poisson
	poly1, poly2
	postanim
	postarrow
	postarrowbnd
	postcont
	postcoord
	postcrossplot
	postdataplot
	posteval
	postflow
	postglobaleval
	postglobalplot
	postgp
	postint
	postinterp
	postiso
	postlin
	postmax
	postmin
	postmovie
	postplot
	postprinc
	postprincbnd
	postslice
	postsurf
	posttet
	pyramid2, pyramid3
	rect1, rect2
	revolve
	rotate
	scale
	sharg_2_5
	shbub
	shcurl
	shdens
	shdisc
	shdiv
	shgp
	shherm
	shlag
	shuwhelm
	solid0, solid1, solid2, solid3
	solsize
	sphere3, sphere2
	split
	square1, square2
	tangent
	tetrahedron2, tetrahedron3
	torus2, torus3
	xmeshinfo

	Diagnostics
	Error Messages
	2000-2999 Geometry Modeling
	4000-4999 Mesh Generation
	6000-6999 Assembly and Extended Mesh
	7000-7999 Solvers and Preconditioners
	9000-9999 General Errors
	Solver Error Messages

	The Finite Element Method
	Understanding the Finite Element Method
	Mesh
	Finite Elements
	Discretization of the Equations

	What Equations Does COMSOL Multiphysics Solve?
	The Equation System/Solution Forms
	The Full Equation System
	Notes on Constraints in Multiphysics Models

	Advanced Geometry Topics
	Advanced Geometry Topics
	Rational Bézier Curves
	Conic Sections
	Cubic Curves
	Rational Bézier Surfaces
	Parameterization of Curves and Surfaces
	Geometric Variables

	Advanced Solver Topics
	Advanced Solver Settings
	Constraint Handling, Null-Space Functions, and Assembly Block Size
	Settings Related to Complex-Valued Data and Undefined Operations
	Storing Solutions on File
	Solution Form
	Manual Control of Reassembly
	Scaling of Variables and Equations
	Constraint Handling

	Solver Algorithms
	The Nonlinear Solver Algorithm
	The Augmented Lagrangian Solver Algorithm
	The Time-Dependent Solver Algorithm
	The Eigenvalue Solver Algorithm
	The Parametric Solver Algorithm
	The Stationary Segregated Solver Algorithm
	The Adaptive Solver Algorithm
	References

	Linear System Solvers
	The UMFPACK Direct Solver
	The SPOOLES Direct Solver
	The PARDISO Direct Solver
	The TAUCS Cholesky Direct Solver
	The TAUCS LDLT Direct Solver
	The GMRES Iterative Solver
	The FGMRES Iterative Solver
	The Conjugate Gradients Iterative Solver
	Convergence Criteria
	References

	Preconditioners for the Iterative Solvers
	The Incomplete LU Preconditioner
	The TAUCS Incomplete Cholesky Preconditioner
	The Geometric Multigrid Solver/Preconditioner
	The Algebraic Multigrid Solver/Preconditioner
	The SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms
	The SSOR Vector, SOR Vector, and SORU Vector Algorithms
	The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms
	The Vanka Algorithm
	References

	The COMSOL Multiphysics Files
	Overview
	File Structure
	Records
	Terminology
	Text File Format
	Binary File Format

	Serializable Types
	Attribute
	BezierCurve
	BezierMfd
	BezierSurf
	BezierTri
	BSplineCurve
	BSplineMfd
	BSplineSurf
	Ellipse
	Geom0
	Geom1
	Geom2
	Geom3
	GeomFile
	Manifold
	Mesh
	MeshCurve
	MeshSurf
	Plane
	PolChain
	Serializable
	Straight
	Transform
	VectorDouble
	VectorInt
	VectorString
	Examples
	A Mesh with Mixed Element Types
	A Planar Face

	COMSOL Engine API
	Introduction
	Using the COMSOL Engine API
	Classes
	Example
	Running the Example

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

