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 1
I n t r o d u c t i o n
The AC/DC Module 3.4 is an optional package that extends the COMSOL 
Multiphysics® modeling environment with customized user interfaces and 
functionality optimized for the analysis of electromagnetic effects, components, 
and systems. Like all modules in the COMSOL family, it provides a library of 
prewritten ready-to-run models that make it quicker and easier to analyze 
discipline-specific problems.

This particular module solves problems in the general areas of electrostatic fields, 
magnetostatic fields, and quasi-static fields. The application modes (modeling 
interfaces) included here are fully multiphysics enabled, making it possible to 
couple them to any other physics application mode in COMSOL Multiphysics or 
the other modules. For example, to find the heat distribution in a motor you would 
first find the current in the coils using one of the quasi-static application modes in 
this module, and then couple it to a heat equation in the main COMSOL 
Multiphysics package or the Heat Transfer Module.

The underlying equations for electromagnetics are automatically available in all of 
the application modes—a feature unique to COMSOL Multiphysics. This also 
makes nonstandard modeling easily accessible.
 1



2 |  C H A P T E R  1
The documentation set for the AC/DC Module consists of three books. The one in 
your hands, the AC/DC Module User’s Guide, introduces you to the basic 
functionality in the module, reviews new features in the version 3.4 release, reviews 
basic modeling techniques and includes reference material of interest to those working 
in electromagnetics. The second book in the set, the AC/DC Module Model Library, 
contains a large number of ready-to-run models that illustrate real-world uses of the 
module. Each model comes with an introduction covering basic theory, the modeling 
purpose, and a discussion about the results, as well as step-by-step instructions that 
illustrate how to set it up. Further, we supply these models as COMSOL Multiphysics 
Model MPH-files so you can import them into COMSOL Multiphysics for immediate 
execution. This way you can follow along with the printed discussion as well as use 
them as a jumping-off point for your own modeling needs. A third book, the AC/DC 
Module Reference Guide, contains reference material about application-mode 
implementations and command- line functions and programming. It is available in 
HTML and PDF format from the COMSOL Help Desk.

Typographical Conventions

All COMSOL manuals use a set of consistent typographical conventions that should 
make it easy for you to follow the discussion, realize what you can expect to see on the 
screen, and know which data you must enter into various data-entry fields. In 
particular, you should be aware of these conventions:

• A boldface font of the shown size and style indicates that the given word(s) appear 
exactly that way on the COMSOL graphical user interface (for toolbar buttons in 
the corresponding tooltip). For instance, we often refer to the Model Navigator, 
which is the window that appears when you start a new modeling session in 
COMSOL; the corresponding window on the screen has the title Model Navigator. 
As another example, the instructions might say to click the Multiphysics button, and 
the boldface font indicates that you can expect to see a button with that exact label 
on the COMSOL user interface.

• The names of other items on the graphical user interface that do not have direct 
labels contain a leading uppercase letter. For instance, we often refer to the Draw 
toolbar; this vertical bar containing many icons appears on the left side of the user 
interface during geometry modeling. However, nowhere on the screen will you see 
the term “Draw” referring to this toolbar (if it were on the screen, we would print 
it in this manual as the Draw menu).

• The symbol > indicates a menu item or an item in a folder in the Model Navigator. 
For example, Physics>Equation System>Subdomain Settings is equivalent to: On the 
:  I N T R O D U C T I O N



Physics menu, point to Equation System and then click Subdomain Settings. 
COMSOL Multiphysics>Heat Transfer>Conduction means: Open the COMSOL 

Multiphysics folder, open the Heat Transfer folder, and select Conduction.

• A Code (monospace) font indicates keyboard entries in the user interface. You might 
see an instruction such as “Type 1.25 in the Current density edit field.” The 
monospace font also indicates COMSOL Script codes.

• An italic font indicates the introduction of important terminology. Expect to find 
an explanation in the same paragraph or in the Glossary. The names of books in the 
COMSOL documentation set also appear using an italic font.
 |  3



4 |  C H A P T E R  1
Ove r v i ew o f  t h e  AC /DC Modu l e

This manual describes the AC/DC Module, an optional add-on package for 
COMSOL Multiphysics designed to assist you in solving and modeling 
electromagnetic problems. Here you find an introduction to the modeling stages of 
the AC/DC Module, including some realistic and illustrative models, as well as 
information that serves as a reference source for more advanced modeling.

What Can the AC/DC Module Do?

The AC/DC Module contains a set of application modes adapted to a broad category 
of electromagnetic simulations. Those who are not familiar with computational 
techniques but have a solid background in electromagnetics should find this module 
extremely beneficial. It can serve equally well as an excellent tool for educational 
purposes.

Because the AC/DC Module is smoothly integrated with all of the COMSOL 
Multiphysics functionality, you can couple a simulation in this module to an arbitrary 
simulation defined in any of the COMSOL Multiphysics application modes. This 
forms a powerful multiphysics model that solves all the equations simultaneously.

You can transform any model developed with the AC/DC Module into a model 
described by the underlying partial differential equations. This offers a unique way to 
see the underlying physical laws of a simulation. You can also export a simulation to 
COMSOL Script or MATLAB. Alternatively, save it as a Model M-file, a script file that 
runs in both COMSOL Script and MATLAB. This makes it possible to incorporate 
models with other products in those technical computing environments.

What Problems Can You Solve?

The AC/DC Module is a collection of application modes for COMSOL Multiphysics 
that handles static, time-dependent, and time-harmonic problems. The application 
modes fall into two main categories:

• Statics

• Quasi-statics

- Harmonic analysis

- Transient analysis
:  I N T R O D U C T I O N



All categories are available in both 2D and 3D. In 2D the package offers in-plane 
application modes for problems with a planar symmetry as well as axisymmetric 
application modes for problems with a cylindrical symmetry.

One major difference between quasi-static and high-frequency modeling is that the 
formulations depend on the electrical size of the structure. This dimensionless measure 
is the ratio between the largest distance between two points in the structure divided by 
the wavelength of the electromagnetic fields.

The quasi-static application modes in the AC/DC Module are suitable for simulations 
of structures with an electrical size in the range up to 1/10. The physical assumption 
of these situations is that the currents and charges generating the electromagnetic 
fields vary so slowly in time that the electromagnetic fields are practically the same at 
every instant as if they had been generated by stationary sources.

When the variations in time of the sources of the electromagnetic fields are more rapid, 
it is necessary to solve the full Maxwell equations for high-frequency electromagnetic 
waves. They are appropriate for structures of electrical size 1/100 and larger. Thus, an 
overlapping range exists where you can use both the quasi-static and the full Maxwell 
formulations. Application modes for high-frequency electromagnetic waves are 
available in the RF Module.

Independently of the structure size, the AC/DC Module accommodates any case of 
nonlinear, inhomogeneous, or anisotropic media. It also handles materials with 
properties that vary as a function of time as well as frequency-dispersive materials.

Examples of applications you can successfully simulate with the AC/DC Module 
include electric motors, generators, permanent magnets, induction heating devices, 
and dielectric heating. For a more detailed description of some of these applications, 
refer to the matching book that comes with this product, the AC/DC Module Model 
Library.

New Features in the AC/DC Module 3.4

This new release of the AC/DC Module includes a number of valuable new 
capabilities, including the following features:

• Small-signal analysis support, combining a static or transient analysis with a 
time-harmonic analysis. See “Small-Signal Analysis” on page 76 for more 
information.
O V E R V I E W  O F  T H E  A C / D C  M O D U L E  |  5



6 |  C H A P T E R  1
• Easy-to-use graphical interface for SPICE circuit import. See “SPICE Circuit 
Import” on page 70 for more information.

• Simplified interfaces for modeling periodic boundaries and sector symmetry. See 
“Periodic Boundary Conditions” on page 42 for more information.
:  I N T R O D U C T I O N



App l i c a t i o n  Mode S umma r y

An application mode in COMSOL Multiphysics is a specification of the equations and 
the set of dependent variables you want to solve for. When you have selected the 
application mode, you can also choose an analysis type. However, you can also change 
this later in the COMSOL Multiphysics user interface. The available analysis types are 
static analysis, time-harmonic analysis, and transient analysis. For some application 
modes, it is not necessary to specify the analysis type because only one is applicable. 
For example, static analysis is the only analysis type in the Electrostatics application 
mode. Below you first find a short introduction to the field variables (dependent 
variables) in some of the 2D application modes. Following that is a section with some 
general details about the two analysis types in time-dependent problems. Finally, there 
is a summary with a short description of all the application modes in the AC/DC 
Module.

Field Variables in 2D

When you want to solve for a vector field in 2D you usually get two different cases. In 
statics and quasi-statics, these are perpendicular currents and in-plane currents 
(azimuthal and meridional currents for axial symmetry). “In-plane” means that the 
current flows parallel to the cross section.

The restrictions on the currents result in a simplified generated field, which usually 
determines the dependent variable in the problem. For perpendicular and azimuthal 
currents the dependent-field variable is the magnetic vector potential, A, which only 
gets a z or component, respectively. The in-plane and meridional currents result in 
a magnetic field, H, with a component in the z or direction, respectively. As a result, 
the magnetic field is the dependent field in the In-Plane Induction Currents, Magnetic 
Field application mode. However, in many cases it is more convenient to use the A 
field combined with the electrostatic potential, V, especially if you have electric 
boundary conditions like constant potentials. In those cases, select the In-Plane 
Induction Currents, Potentials application mode. The same alternatives exist for the 
axisymmetric cross section.

Time-Dependent and Time-Harmonic Analysis

When variations in time are present there are two main approaches to represent the 
time dependence. The most straightforward is to solve the problem by calculating the 

ϕ
ϕ
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8 |  C H A P T E R  1
changes in the solution for each time step. However, this approach can be time 
consuming if small time steps are necessary for the desired accuracy. It is necessary to 
use this approach when your inputs are transients like turn-on and turn-off sequences.

An efficient simplification is to assume that all variations in time occur as sinusoidal 
signals. Then the problem is time-harmonic and you can formulate it as a stationary 
problem with complex-valued solutions. The complex value represents both the 
amplitude and the phase of the field, while the frequency is specified as a predefined 
scalar variable. This approach is useful because, combined with Fourier analysis, it 
applies to all periodic signals with the exception of nonlinear problems. Examples of 
typical harmonic simulations are quasi-static problems where the input variables are 
sinusoidal signals. The model “Electromagnetic Forces on Parallel Current-Carrying 
Wires” on page 8 in the AC/DC Module Model Library is a quasi-static problem 
using both the time-harmonic and the time-dependent analysis types.

For nonlinear problems you can use a time-harmonic analysis after a linearization of 
the problem, which assumes that the distortion of the sinusoidal signal is small. See 
“Distributed SPICE Model of an Integrated Bipolar Transistor” on page 457 in the 
COMSOL Multiphysics Model Library.

You need to specify a time-dependent analysis when you think that the nonlinear 
influence is very strong, or if you are interested in the harmonic distortion of a sine 
signal. It might also be more efficient to use a time-dependent analysis if you have a 
periodic input with many harmonics, like a square-shaped signal.

Application Modes

Each of the mode descriptions below has a reference to the page where you can find a 
more detailed description. You can also look at Table 4-1 on page 129, which provides 
a summary of all the application modes with dependent variables and references to the 
detailed information.

S T A T I C S

The application modes available for simulation of electrostatics and magnetostatics are 
listed below. Common for all of them is that no time dependence is allowed, so only 
the static analysis is available.

• Conductive Media DC

Simulates the current in a conductive material under the influence of an electric 
field. See “Conductive Media DC Application Mode” on page 134.
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• Electrostatics

Simulates electric fields in dielectric materials with a fixed charge present. See 
“Electrostatics Application Mode” on page 140.

• Electrostatics, Generalized

Simulates electric fields and currents in dielectric and conductive materials. This is 
an approximative combination of the two previous application modes. See 
“Electrostatics, Generalized Application Mode” on page 145.

• Magnetostatics

This application mode handles problems for magnetic fields with currents sources. 
In 2D the modes are divided into perpendicular currents and in-plane currents, or 
azimuthal currents and meridional currents for an axisymmetric 2D geometry. See 
“Magnetostatics” on page 151.

• Magnetostatics, No Currents

This application mode handles magnetic fields without currents. When no currents 
are present, the problem is easier to solve using the magnetic scalar potential. See 
“Magnetostatics, No Currents Application Mode” on page 181.

Q U A S I - S T A T I C S

When slow variations are present in the problem, it is quasi-static. This means that the 
entire geometry should only be a fraction of the wavelength. The main difference to 
the static case is that part of the coupling between the electric and magnetic fields is 
taken into account. The available analysis types for the quasi-static application modes 
is usually the time-harmonic and time-dependent types. However, it is possible to 
select the static analysis type although you have selected a quasi-static application 
mode, but then you are actually solving a magnetostatic problem.

In 3D, the quasi-static problems are divided into three categories:

• Electric and Induction Currents

• Induction Currents

See “3D and 2D Quasi-Statics Application Modes” on page 154 for more 
information about both of the previous categories.

• Electric Currents

This is a quasi-static formulation where the induced currents can be neglected, and 
the electric and magnetic fields are decoupled. See “Quasi-Statics for Electric 
Currents” on page 154.
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The only available analysis type is the time-harmonic analysis.

In 2D there are several application modes due to the different cases of limitations in 
the currents. The analysis types available for these application modes are the 
time-harmonic and time-dependent analysis types.

• Perpendicular Induction Currents, Vector Potential and Azimuthal Induction 
Currents, Vector Potential

Use these application modes to simulate currents perpendicular to the cross section, 
generating a magnetic field. See “Perpendicular Induction Currents, Vector 
Potential Application Mode” on page 166 and “Azimuthal Induction Currents, 
Vector Potential Application Mode” on page 171.

• In-Plane Electric and Induction Currents, Potentials and Meridional Electric and 
Induction Currents, Potentials

Here the currents are parallel to the cross section, with the magnetic vector potential 
and the electrostatic potential as dependent variables. See “3D and 2D Quasi-Statics 
Application Modes” on page 154.

• In-Plane Induction Currents, Vector Potential and Meridional Induction Currents, 
Vector Potential

Here the currents are parallel to the cross section, with the magnetic vector potential 
only as the dependent variable. See “3D and 2D Quasi-Statics Application Modes” 
on page 154.

• In-Plane Induction Currents, Magnetic Field and Meridional Induction Currents, 
Magnetic Field

This application mode has the same problem formulation as the previous 
“Potentials” version, but it uses the magnetic field as the dependent variable instead. 
See “In-Plane Induction Currents, Magnetic Field Application Mode” on page 174 
and “Meridional Induction Currents, Magnetic Field Application Mode” on page 
178.

• In-Plane Electric Currents and Meridional Electric Currents

This application mode contains a quasi-static formulation that neglects the induced 
currents, thereby decoupling the electric and magnetic fields. See “Quasi-Statics for 
Electric Currents” on page 154.
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A C / D C  M o d e l i n g
The goal of this chapter is to familiarize you with the modeling procedure in the 
AC/DC Module. Because this module is totally integrated with COMSOL 
Multiphysics, the modeling process is similar. This chapter also shows a number of 
models illustrating different aspects of the simulation process. It steps you through 
all the stages of modeling, from geometry creation to postprocessing.
 11
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Fo rma t  f o r  t h e  Mode l  De s c r i p t i o n s

The way COMSOL Multiphysics orders its toolbar buttons and menus mirrors the 
basic procedural flow during a modeling session. You work your way from left to right 
in the process of modeling, defining, solving, and postprocessing a problem using the 
COMSOL Multiphysics graphical user interface (GUI). Thus, this manual as well as 
the accompanying AC/DC Module Model Library manual and the COMSOL 
Multiphysics Model Library maintain a certain style convention when describing 
models. The format includes headlines that correspond to each major step in the 
modeling process; the headlines also roughly correspond to the various GUI modes 
and menus.

Model Navigator

The Model Navigator appears when you start COMSOL Multiphysics or when you 
restart completely within COMSOL Multiphysics by selecting New from the File menu 
or by clicking on the New button on the Main toolbar. On the New page in the Model 

Navigator you specify the application mode, the names of the dependent variables, and 
the analysis type: static, time-harmonic, or transient. You can also set up a combination 
of application modes from the AC/DC Module, COMSOL Multiphysics, or any other 
available module. See the section “Creating and Opening Models” on page 22 in the 
COMSOL Multiphysics Quick Start and Quick Reference for more information 
about the Model Navigator.

Options and Settings

This section reviews basic settings, for example, those for the axes and grid spacing. All 
settings are accessible from the Options menu, and some can be reached by double-
clicking on the status bar. It is often convenient to use the Constants dialog box to enter 
constant parameters for the model or use the dialog boxes that you reach by pointing 
to Expressions to enter expression variables. Advanced models might also need 
coupling variables. COMSOL Multiphysics maintains user-defined libraries of 
materials and coefficients accessible through the Materials/Coefficients Library dialog 
box.
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Geometry Modeling

The process of setting up a model’s geometry requires knowledge of how to use the 
Draw menu and the Draw toolbar. For 2D the details appear in the section “Creating 
a 2D Geometry Model” on page 39 of the COMSOL Multiphysics User’s Guide. For 
3D you find them under “Creating a 3D Geometry Model” on page 56.

Boundary Conditions

You specify the boundary conditions for a model in the Boundary Settings dialog box. 
For details, see “Specifying Boundary Conditions” on page 234 in the COMSOL 
Multiphysics User’s Guide. Valid boundary conditions for each electromagnetics 
mode are summarized in “The Application Mode Formulations” on page 128 of this 
manual. See also “Boundary Conditions” on page 18 for an overview of how to use 
boundary conditions in AC/DC simulations.

Subdomain Settings

You specify equation parameters in the Subdomain Settings dialog box. For details see 
“Specifying Subdomain Settings and PDE Coefficients” on page 205 in the COMSOL 
Multiphysics User’s Guide. The physical parameters of specific interest for 
electromagnetics modeling are summarized in “The Application Mode Formulations” 
on page 128 of this manual, where you can also learn about the derivation of the 
equations as well as the boundary conditions.

Scalar Variables

In the Application Scalar Variables dialog box you can examine and modify the values of 
predefined application-specific scalar variables such as the frequency and the 
permittivity and permeability of vacuum.

Mesh Generation

The program must mesh the geometry before it can solve the problem. Sometimes it 
is sufficient to click the Initialize Mesh button on the Main toolbar. In other cases you 
need to adjust settings in the Free Mesh Parameters dialog box and the other mesh-
generation tools on the Mesh menu. Read more about meshing in “Creating Meshes” 
on page 286 of the COMSOL Multiphysics User’s Guide.
F O R M A T  F O R  T H E  M O D E L  D E S C R I P T I O N S  |  13



14 |  C H A P T E R
Computing the Solution

To solve a problem, for most cases simply click the Solve button on the Main toolbar. 
In other cases it might be necessary to adjust the solver properties, which you do in 
the Solver Parameters dialog box. For details see “Selecting a Solver” on page 360 of 
the COMSOL Multiphysics User’s Guide.

Postprocessing and Visualization

The powerful visualization of COMSOL Multiphysics tools are accessible in the 
program’s Postprocessing mode, but to use them you must be familiar with the Plot 

Parameters dialog box and the other postprocessing tools on the Postprocessing menu. 
See “Postprocessing Results” on page 420 in the COMSOL Multiphysics User’s 
Guide for details.

Additional Postprocessing

For further postprocessing calculations, you can export the solution to COMSOL 
Script or MATLAB. Details of modeling by programming are available in “The 
Programming Language” on page 60 of this manual and in the COMSOL 
Multiphysics Scripting Guide.
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P r ep a r i n g  f o r  Mode l i n g

This section is intended to guide you through the selection process among the 
application modes in the AC/DC Module. Several topics in the art of modeling are 
covered here that you may not find in ordinary textbooks on electromagnetic theory. 
You will get help in answering questions like:

• Which spatial dimension should I use: 2D, 3D, or 2D axial symmetry?

• Is my problem suited for time-dependent or time-harmonic formulations?

• Can I use the quasi-static application modes or do I need wave propagation?

• What sources can I use to excite the fields?

• When do I need to resolve the thickness of thin shells and when can I use boundary 
conditions?

This section is not intended to give detailed descriptions about each application mode 
but to give references to the information elsewhere in this manual. First you get a few 
general tips about modeling, helping you to decide what to include in your simulation. 
The next topic is related to the geometry, what you can do to minimize the size of your 
problem, and which spatial dimension (2D or 3D) that suits your model. This section 
also includes some tips about boundary conditions, because you can use these to 
minimize the geometry. Then the issues regarding the numerical part of your model 
are discussed, that is, meshing and solving. The final topics cover more specific issues 
about the application modes, the analysis types, and how the fields and sources are 
treated.

G E N E R A L  T I P S

Before you start modeling, try first to answer the following questions:

• What is the purpose of the model?

• What information do you want to extract from the model?

It is important to remember that a model never captures all the details of reality. 
Increasing the complexity of a model to make it more accurate usually makes it more 
expensive to simulate. A complex model is also more difficult to manage and interpret 
than a simple one. Keep in mind that it can be more accurate and efficient to use several 
simple models instead of a single, complex one.
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Simplifying Geometries

Most of the problems that you solve with COMSOL Multiphysics are three-
dimensional (3D) in the real world. In many cases, it is sufficient to solve a two-
dimensional (2D) problem that is close to or equivalent to your real problem. 
Furthermore, it is good practice to start a modeling project by building one or several 
2D models before going to a 3D model. This is because 2D models are easier to 
modify and solve much faster. Thus, modeling mistakes are much easier to find when 
working in 2D. Once you have verified your 2D model, you will be in a much better 
position to build a 3D model.

2 D  P R O B L E M S

The text below guides you through some of the common approximations made for 2D 
problems. Remember that the modeling in 2D usually represents some 3D geometry 
under the assumption that nothing changes in the third dimension.

Cartesian Coordinates
In this case you view a cross section in the xy-plane of the actual 3D geometry. The 
geometry is mathematically extended to infinity in both directions along the z-axis, 
assuming no variation along that axis. All the total flows in and out of boundaries are 
per unit length along the z-axis. A simplified way of looking at this is to assume that 
the geometry is extruded one unit length from the cross section along the z-axis. The 
total flow out of each boundary is then from the face created by the extruded boundary 
(a boundary in 2D is a line).

There are usually two approaches that lead to a 2D cross-section view of a problem. 
The first approach is when you know there is no variation of the solution in one 
particular dimension. The second approach is when you have a problem where you can 
neglect the influence of the finite extension in the third dimension. See the model 
“Linear Electric Motor of the Moving Coil Type” on page 30 in the AC/DC Module 
Model Library. The motor has a finite width but the model neglects the effects from 
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the faces parallel to the cross section, because the strongest forces are between the 
perpendicular faces (those seen as lines in the cross section).

Figure 2-1: The cross sections and their real geometry for Cartesian coordinates and 
cylindrical coordinates (axial symmetry).

Axial Symmetry (Cylindrical Coordinates)
If you can construct the 3D geometry by revolving a cross section about an axis, and 
no variations in any variable occur when going around the axis of revolution, you can 
use an axisymmetric application mode. The spatial coordinates are called r and z, where 
r is the radius. The flow at the boundaries is given per unit length along the third 
dimension. Because this dimension is a revolution, you have to multiply all flows with 
αr, where α is the revolution angle (for example, 2π for a full turn).

3 D  P R O B L E M S

Although COMSOL Multiphysics fully supports arbitrary 3D geometries, it is 
important to simplify the problem. This is because 3D problems easily get large and 
require more computer power, memory, and time to solve. The extra time you spend 
on simplifying your problem is probably well spent when solving it. Below are a few 
issues that should be addressed before starting to implement a 3D model in the 
AC/DC Module.

• Check if it is possible to solve the problem in 2D. Given that the necessary 
approximations are small, the solution will be more accurate in 2D because you can 
use a much denser mesh. If you find this applicable, take a look at the section “2D 
Problems”.

• Look for symmetries in the geometry and model. Many problems have planes where 
the solution on either side of the plane looks the same. A good way to check this is 
to flip the geometry around the plane, for example, by turning it up-side down 
around the horizontal plane. You can then remove the geometry below the plane if 
P R E P A R I N G  F O R  M O D E L I N G  |  17
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you do not see any differences between the two cases regarding geometry, materials, 
and sources. Boundaries created by the cross section between the geometry and this 
plane need a symmetry boundary condition, which is available in all 3D application 
modes. See “Eddy Currents in 3D” on page 202 in the AC/DC Module Model 
Library for an example.

• There are also cases when the dependence along one direction is known, so you can 
replace it by an analytical function. You can use this approach either to convert 3D 
to 2D or to convert a layer to a boundary condition (see also the section “Boundary 
Conditions”).

B O U N D A R Y  C O N D I T I O N S

An important technique to minimize the problem size is to use efficient boundary 
conditions. Truncating the geometry without introducing too large errors is one of the 
great challenges in modeling. Below are a few suggestions of how to do this. They 
apply to both 2D and 3D problems.

• Many models extend to infinity or might have regions where the solution only 
undergoes small changes. This problem is addressed in two related steps. First, you 
need to truncate the geometry in a suitable position. Second, you need to apply a 
suitable boundary condition there. For static and quasi-static models, it is often 
possible to assume zero fields at the open boundary, provided that this is at a 
sufficient distance away from the sources.

• Replace thin layers with boundary conditions where possible. There are several types 
of boundary conditions in COMSOL Multiphysics suitable for such replacements. 
You can, for example, replace materials with high conductivity with the shielding 
boundary condition, which assumes a constant potential through the thickness of 
the layer. If you have a magnetic material with a high relative permeability, you can 
also model it using the shielding boundary condition (see the model “Magnetic 
Signature of a Submarine” on page 241 in the AC/DC Module Model Library).

• Use boundary conditions for known solutions. A current-carrying wire with a high 
conductivity at high frequency has the current density confined to a thin region 
beneath the surface of the wire. If it is possible to calculate the total current, you can 
often replace the current in the wire by a surface current boundary condition (see 
“Inductive Heating of a Copper Cylinder” on page 16 in the AC/DC Module 
Model Library).
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S O U R C E S

You can apply electromagnetic sources in many different ways. The typical options are 
volume sources, boundary sources, line sources, and point sources, where point 
sources in 2D formulations are equivalent to line sources in 3D formulations. The way 
sources are imposed can have an impact on what quantities you can compute from the 
model. For example, a point source in an electrostatics model represents a singularity, 
and the electric potential does not have a finite value at the position of the source. In 
a COMSOL Multiphysics model, a point source has a finite but mesh-dependent value. 
Thus, it does not make sense to compute a point-to-point capacitance, because this is 
defined as the ratio of charge to voltage. In general, using volume or boundary sources 
is more flexible than using line or point sources but the meshing of the source domains 
becomes more expensive.

Meshing and Solving

The finite element method approximates the solution within each element, using some 
elementary shape function that can be constant, linear, or of higher order. Depending 
on the element order in the model, a finer or coarser mesh is required to resolve the 
solution. In general, there are three problem-dependent factors that determine the 
necessary mesh resolution:

• The first is the variation in the solution due to geometrical factors. The mesh 
generator automatically generates a finer mesh where there is a lot of fine 
geometrical details. Try to remove such details if they do not influence the solution, 
because they produce a lot of unnecessary mesh elements.

• The second is the skin effect or the field variation due to losses. It is easy to estimate 
the skin depth from the conductivity, permeability, and frequency. You need at least 
two linear elements per skin depth to capture the variation of the fields. If you do 
not study the skin depth, you can replace regions with a small skin depth with a 
boundary condition, thereby saving elements.

• The third and last factor is the wavelength. To resolve a wave properly, it is necessary 
to use about 10 linear (or 5 2nd-order) elements per wavelength. Keep in mind that 
the wavelength might be shorter in a dielectric medium.

S O L V E R S

You can, in most cases, use the solver that COMSOL Multiphysics suggests. The 
choice of solver is optimized for the typical case for each application mode and analysis 
type in the AC/DC Module. However, in special cases you might need to tune the 
solver settings. This is especially important for 3D problems, because they use a large 
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amount of memory. For extremely large 3D problems, you may need a 64-bit 
platform. You can find a more detailed description on the solver settings in “Solving 
the Model” on page 359 in the COMSOL Multiphysics User’s Guide. See also 
“Solving Large 3D Problems” on page 84.
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An Examp l e—Eddy Cu r r e n t s

Introduction

To help you understand how to create models using the AC/DC Module, this section 
walks through an example in great detail. You can apply these techniques to all the 
models in this module, other optional modules, or even the many models that ship 
with the base COMSOL Multiphysics package. 

The first example model concerns an AC coil surrounding a metal cylinder, and the 
coil induces eddy currents in the cylinder. It illustrates how to examine a system using 
several different approaches. You can model the coil with or without the skin effect, 
and it shows how varying the frequency of the current source also alters the depth of 
the skin effect.

Model Definition

To build this model, work with the axisymmetric Quasi-Statics Azimuthal Currents 
application mode and a time-harmonic formulation. The model represents the cylinder 
as a rectangle and the coil as a circle. The modeling plane is the rz-plane; the horizontal 
axis represents the r-axis, and the vertical axis represents the z-axis. To obtain the actual 
3D geometry, revolve the 2D geometry about the z-axis.

D O M A I N  E Q U A T I O N S

The dependent variable in this application mode is the azimuthal component of 
magnetic vector potential, A, which obeys the relation:

where ω is the angular frequency, σ is the electric conductivity, µ is the permeability, ε 
is the permittivity, and  denotes the current density due to an external source. One 
way to define the current source is to specify a distributed current density in the right-
hand side of the above equation. This current density gives rise to a current I as defined 
by:

jωσ ω2ε–( )Aϕ ∇ µ 1– ∇ Aϕ×( )×+ Jϕ
e

=

Jϕ
e

Je ds⋅
S
∫ I=
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B O U N D A R Y  C O N D I T I O N S

This model requires boundary conditions for the exterior boundary and the symmetry 
axis, and to specify boundary currents when applicable. You can apply a condition 
corresponding to zero magnetic flux through the exterior boundary by setting the 
vector potential to zero. Next, give the symmetry boundary a symmetry condition. 
You can also specify the applied current source using equivalent surface currents:

Model Library path: AC/DC_Module/Tutorial_Models/coil_eddy_currents

The Model Library path shows the location of the Model MPH-file. You can open it 
directly from the Model Navigator by clicking the Model Library tab and browsing to 
AC/DC Module>Tutorial Models>coil eddy currents.

Coil Without Skin Effect

Begin this study of induced currents by modeling a current-carrying coil without skin 
effect.

M O D E L  N A V I G A T O R

1 Begin a new COMSOL Multiphysics session by invoking the Model Navigator.

2 On the New page, select Axial symmetry 2D from the Space dimension list.

3 In the list of application modes, click on AC/DC Module, then select Quasi-Statics, 

Magnetic>Azimuthal Induction Currents, Vector Potential and finally Time-harmonic 

analysis.

n Js×( ) dl⋅
C
∫° I=
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4 Click OK to close the Model Navigator.

O P T I O N S  A N D  S E T T I N G S

Start the modeling session by adjusting the drawing area to hold the geometry you 
plan to draw. Another aid in making the simulation easier is to define variables for later 
use when defining the problem.

1 Select Axes/Grid Settings from the Options menu to open the Axes/Grid Settings dialog 
box.

2 On the Axis page, type -0.05 and 0.5 in the r min and r max edit fields. Then set 
the z-axis limits to -0.3 and 0.3.

3 To manually define new grid settings, first click the Grid tab and then clear the Auto 
check box.
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4 Type 0.05 in the r spacing edit field and type the value 0.03 in the Extra r edit field. 
Set the value in the z spacing edit field to 0.05 and add two extra grid lines by typing 
-0.01 0.01 in the Extra z edit field.

5 Click Apply to see the effects of the new settings. Notice that the interface adjusts 
the r-axis settings to maintain the correct aspect ratio. Click OK to close the dialog 
box.

6 To define global constants for the model, select Constants from the Options menu. 
Doing so opens the Constants dialog box.

7 Enter values in the Name, Expression, and (optionally) Description edit fields 
according to the following table:

The numerical values used in the model are now visible in the dialog box.

8 Click OK.

G E O M E T R Y  M O D E L I N G

Now define the structure’s geometry using the CAD tools built into COMSOL 
Multiphysics.

NAME EXPRESSION DESCRIPTION

sigCoil 0[S/m] Conductivity in coil

sigCyl 3.7e7[S/m] Conductivity in cylinder

I0 1[kA] Current

diam 2[cm] Coil diameter

circ pi*diam Coil circumference

area pi*(diam/2)^2 Coil area

J0 I0/area Current density in coil

Js0 I0/circ Surface current of coil
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1 Start by drawing a circle that represents the coil. To do so, go to the Draw menu, 
point to Draw Objects, and then choose Ellipse/Circle (Centered); alternately, go to the 
Draw toolbar on the left of the main drawing area and click the Ellipse/Circle 

(Centered) button. Click the right mouse button at (0.05, 0) and move the cursor 
to (0.05, 0.01) and then release the button. This action creates the desired circle.

2 Click the Rectangle/Square button on the Draw toolbar or choose the corresponding 
entry on the Draw menu (Draw Objects>Rectangle/Square), then using the left mouse 
button draw a rectangle with opposite corners at (0, −0.25) and (0.2, 0.25).

3 Choose Draw>Draw Objects>Rectangle/Square once again and create a new rectangle 
from (0, −0.05) to (0.03, 0.05). The use of extra grid lines together with the snap 
functionality makes this task easier to accomplish.

4 Double-click GRID in the status bar at the bottom of the window to hide the grid 
lines.

P H Y S I C S  S E T T I N G S

Scalar Variables
1 The predefined variables specific to the active application mode are called 

application scalar variables. Just as you can do with global variables, you can use 
these in any expression for physical quantities, boundary conditions, or 
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postprocessing entities. Open the corresponding dialog box by selecting Scalar 
Variables from the Physics menu.

2 The current has a frequency of 100 Hz; enter the value 100 in the corresponding 
edit field in the Expression column on the nu_emqa row. This model uses the default 
values of the permittivity and permeability of vacuum, so leave these fields 
untouched.

3 Click OK to close the dialog box.

Boundary Conditions
1 Open the Boundary Settings dialog box by selecting Boundary Settings from the 

Physics menu.

2 Enter the boundary conditions according to the following table:

SETTING BOUNDARIES 1, 3, 5 BOUNDARIES 2, 7, 9

Boundary condition Axial symmetry Magnetic insulation
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Note: You can select a boundary either in the Boundary selection list or by clicking on 
it in the main drawing area. To select several boundaries simultaneously, use the Shift 
and Ctrl keys.

3 Click OK.

Boundaries 1, 3, and 5 make up the vertical boundary along the z-axis, and the axial 
symmetry boundary condition makes certain the solution is symmetric around this 
axis. The boundary condition at the other three boundaries (2, 7, and 9) sets the 
magnetic potential, , to zero along that boundary.

Subdomain Settings
1 From the Physics menu, choose Subdomain Settings. Click the Electric Parameters 

tab.

2 The domain properties for this model appear in the following table. Use default 
values for any properties not supplied.

SETTINGS SUBDOMAIN 1 SUBDOMAIN 2 SUBDOMAIN 3

 σ 0 sigCyl sigCoil

0 0 J0

Aϕ

Jϕ
e
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3 Click OK.

M E S H  G E N E R A T I O N

In this model, as in many others dealing with electromagnetic phenomena, the effects 
on fields near the interfaces between materials are of special interest. To get accurate 
results make sure to generate a very fine mesh in these areas. To do so in this case, 
refine the mesh one time.

1 To generate a mesh, choose Initialize Mesh from the Mesh menu, or use the 
corresponding button on the Main toolbar.

2 Choose Refine Mesh from the Mesh menu or use the corresponding button on the 
Main toolbar.

3 To better see the mesh in the region of interest, choose Zoom>Zoom Window from 
the Options menu. You can now draw a rectangular window around the coil and the 
cylinder to get a better view.

C O M P U T I N G  T H E  S O L U T I O N

Select Solve Problem from the Solve menu.
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

After solving the problem, the software automatically displays a surface plot for the 
dependent variable, in this case, the magnetic vector potential. The buttons on the Plot 
toolbar allow you to generate other types of plots.

To change the default plot parameters follow this procedure:

1 Open the Plot Parameters dialog box by choosing Plot Parameters from the 
Postprocessing menu.

2 On the General page, select the Surface and Streamline check boxes in the Plot type 
area.

3 Click the Surface tab.

4 From the Predefined quantities list on the Surface Data page, select 
Total current density, phi component (Jphi_emqa).

5 Click the Streamline tab.

6 From the Predefined quantities list on the Surface Data page, select Magnetic flux 

density.

7 Click OK to generate the plot.

The plot shows the eddy currents induced in the cylinder and the constant current 
density in the coil.
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Coil With Skin Effect

If the current-carrying coil is homogeneous, you know that a skin effect prevails, and 
it is easy to model this effect. In the previous example where the conductivity was zero 
in the coil, you prescribed the current density. Now all you must do is set a conductivity 
in the current-carrying coil. 

O P T I O N S  A N D  S E T T I N G S

1 From the Options menu, choose Constants.

2 Select sigCoil in the variable list and then type 3.7e7 in the corresponding 
Expression edit field.

3 Click OK.

M E S H  G E N E R A T I O N

The existing mesh is adequate, so there is no need to generate a new one.

C O M P U T I N G  T H E  S O L U T I O N

From the Solve menu, select Solve Problem; alternatively click the Solve button on the 
Main toolbar.

The skin effect in the coil is clearly visible.
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The Use of Surface Currents

You can also create a similar model by specifying surface currents at the coil’s 
boundaries. To do so you must modify the boundary conditions around the coil and 
remove the current source inside the domain representing the coil. 

O P T I O N S  A N D  S E T T I N G S

Because you can consider all currents as concentrated at the coil boundaries, set the 
conductivity in the coil domain to zero. Otherwise the surface currents would induce 
currents in the interior of the domain in the opposite direction. 

1 From the Options menu, open the Constants dialog box.

2 Set the Expression of the variable sigCoil to 0, then click OK.

P H Y S I C S  S E T T I N G S

Boundary Conditions
1 From the Physics menu, choose Boundary Settings to open the Boundary Settings 

dialog box.

2 Select the Interior Boundaries check box.

3 Do not change the boundary conditions at the exterior boundaries of the domain, 
but set the conditions at the interior boundaries according to the following table:

Subdomain Settings
1 Open the Subdomain Settings dialog box.

2 Do not alter the properties in the cylinder and the surrounding air, but modify the 
parameters in the coil as follows:

M E S H  G E N E R A T I O N

The existing mesh is adequate so there is no need to generate a new one.

SETTINGS BOUNDARIES 10–13

Boundary condition Surface current

Js0

SETTINGS SUBDOMAIN 3

 σ sigCoil

0

Jsϕ

Jϕ
e

A N  E X A M P L E — E D D Y  C U R R E N T S  |  31



32 |  C H A P T E R
C O M P U T I N G  T H E  S O L U T I O N

From the Solve menu, select Solve Problem or click the Solve button on the Main 
toolbar.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

The plot settings you specified earlier are still valid. Although this model solves 
virtually the same problem, the surface plot looks quite different—it shows no current 
density in the coil. The reason, of course, is that you have represented all currents as 
being present only at the boundaries.
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F l o a t i n g  Po t e n t i a l s  a nd E l e c t r i c  
S h i e l d i n g

Floating Potentials

The floating potential boundary condition sets the potential on the boundary to a 
constant. The value of the constant is set so that the integral of the current density 
normal to the boundary is equal to the source current that you have specified

You can specify boundaries far apart to have the same potential by using the Group 

index edit field to assign these boundaries to a certain index, or boundaries adjacent to 
each other to have different floating potentials by specifying different group indexes. 
You enter the total current in the Source current edit field.

For the Electrostatics application mode the total charge replaces the total current, so 
the voltage is set so the integral of the charge density is equal to the charge specified 
in the Charge edit field.

The floating potential boundary condition is available for all application modes that 
solves for the electrostatic potential, which are:

• Conductive Media DC (except the Shell, Conductive Media DC application mode)

n– J⋅
Ω∂
∫ I0=
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• Electrostatics

• Quasi-Statics, Electric—Electric Currents

• Quasi-Statics, Electromagnetic—Electric and Induction Currents

It is also available for all analysis types. For the Quasi-Statics, Electromagnetic 
application mode, which solves for both the electrostatic potential and the magnetic 
vector potential, it is necessary to select a constraint boundary condition on the vector 
potential for the floating potential condition to become available. The constraint 
boundary conditions are Magnetic insulation and Magnetic potential, and you find them 
on the Magnetic Parameters page. Any other condition disables the Electric Parameter 
page, which holds all the electric boundary conditions. It is on this page you can select 
the floating potential boundary condition.

Electric Shielding

The electric shielding condition adds the same equation as in the subdomain on the 
boundary using tangential derivative variables. You can read more about these variables 
in the section “Modeling with PDEs on Boundaries, Edges, and Points” on page 294 
in the COMSOL Multiphysics Modeling Guide. This is the equation used for the 
Conductive Media DC application mode.

The variable d accounts for the thickness of the shield, but the solution is constant 
through the thickness. The conductivity that you enter here is the conductivity of the 
boundary. You can use this boundary condition when approximating a thin subdomain 
with a boundary to reduce the number of mesh elements.

∇t σd Vt∇( )⋅– 0=
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For the Quasi-statics, Electric application mode, it is also possible to specify a dielectric 
constant.

The Electrostatics application mode only uses the relative permittivity material 
parameter. In addition, you can specify a surface charge density.

Example Model—Floating Potential

This is a tutorial model to show how to use the floating potential and electric shielding 
boundary conditions in the Conductive Media DC application mode. The analysis 
includes solving the same model changing between the two different boundary 
conditions and with and without weak constraints on the boundaries.

Model Definition

The modeling domain is a box filled with air containing an electrode. The sides of the 
box are insulated while the top has a potential and the bottom is grounded.

B O U N D A R Y  C O N D I T I O N S  O N  T H E  E L E C T R O D E

First use the electric shielding boundary condition on the electrode. Setting the 
conductivity of the electrode to the conductivity of a metal gives you an electrode with 
an almost constant potential. In this way you can set a constant potential without 
knowing the actual value of it. 
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Then set the boundary condition on the electrode to a floating potential. If the source 
current is zero this gives you a potential so that the flux over the boundary is zero. The 
integral is calculated with a coupling variable. You can keep the default solver settings.

Finally solve the model with a floating potential boundary condition and use weak 
constraints on the electrode. The reason to use the weak constraints is that this gives a 
more accurate computation of the current density normal to the boundary in the 
postprocessing stage. When using weak constraints you solve for the variable lm1 (the 
Lagrange multiplier), which is equal to the normal flux on the boundary. The floating 
point boundary condition uses this variable to calculate the integral of the current 
flowing to the boundary. You cannot use the default AMG preconditioner when 
dealing with weak constraints, so therefore you need to select the Incomplete LU 
preconditioner instead. Note that the solution is exactly the same with and without 
weak constraints, it is access to the accurate flux that you get with weak constraints. 
For more information on weak constraints, see “Using Weak Constraints” on page 300 
in the COMSOL Multiphysics Modeling Guide.

Results and Discussion

The differences between the three ways to model a floating electrode can be 
investigated by calculating the integral of the current flowing to the electrode. Ideally, 
this current should be zero. Using the electric shielding boundary condition, you get 
a current of approximately 0.19 A. Using the floating potential boundary condition 
without weak constraints, you also get a current of 0.19 A, most of which is due to 
interpolation errors. Finally, when using weak constraints, you get a current of about 
8.9 nA. The approach using weak constraints is clearly the best if you need access to 
the total flux. The electric shielding boundary condition does not strictly impose a 
fixed potential on the electrode as it allows for a small but finite tangential gradient in 
the potential which of course may be an advantage if you need to account for small 
resistive loss in the electrode. The advantage of not using weak constraints is that you 
can use the default solver settings.

Model Library path: ACDC_Module/Tutorial_Models/floating_potential
 2 :  A C / D C  M O D E L I N G



Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator select 3D from the Space dimension list.

2 Open the AC/DC Module folder, then select Statics>Conductive Media DC.

3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Click the Block button. Set the Base to Center and the Length to 10 in all directions. 
When done, click OK.

2 Click the Cylinder button. Set the Style to Face and enter the following settings. 
When done, click OK.

3 Click the Split Object button when the cylinder is selected.

4 Click the Zoom Extents button on the Main toolbar.

PROPERTY VALUE

Radius 1

Height 2

Axis base point -1, 0, 0

Axis direction vector 1, 0, 0
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5 Select the face F1 and delete it.

P H Y S I C S  S E T T I N G S — E L E C T R I C  S H I E L D I N G

Subdomain Settings
1 Open the Subdomain Settings dialog box.

2 Select Subdomain 1 and type 1 in the σ (isotropic) edit field for the electric 
conductivity.

3 Click OK.

Boundary Conditions
1 Open the Boundary Settings dialog box.

2 Select all boundaries and change boundary condition to Electric insulation.

3 Set an Electric potential boundary condition with V0 = 1 on boundary 4.

4 Select Boundary 3 and set the boundary condition to Ground.

5 Select all the interior boundaries (Boundaries 6–8) and select the Interior boundaries 
check box.

6 Set the boundary condition to Electric shielding, the Electric conductivity to 5.99e7, 
and the Thickness to 0.01.
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7 Click OK.

M E S H  G E N E R A T I O N  A N D  S O L U T I O N

Initialize the mesh and solve with the default settings.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Calculate the integral of the current flowing to the electrode.

1 Open the Boundary Integration dialog box from the Postprocessing menu.

2 Type nJs_emdc in the Expression field and click Apply.

The result appears in the message log at the bottom of the user interface. The current 
is approximately 0.19 A.

P H Y S I C S  S E T T I N G S — F L O A T I N G  PO T E N T I A L

Boundary Conditions
1 Open the Boundary Settings dialog box.

2 Select Boundaries 6–8.

3 Set the boundary condition to Floating potential.

4 Click OK.

M E S H  G E N E R A T I O N  A N D  S O L U T I O N

Initialize the mesh and solve with the default settings.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Calculate the integral of the current flowing to the electrode.

1 Open the Boundary Integration dialog box from the Postprocessing menu.

2 Type nJs_emdc in the Expression field and click Apply.

The result appears in the message log at the bottom of the user interface. You should 
get a current of approximately 0.19 A. Note that this current calculation is not very 
accurate; the actual current is almost zero. It is the evaluation of the derivatives in the 
expression for nJs_emdc that is the source of the error.

P R O P E R T I E S — WE A K  C O N S T R A I N T S

1 From the Physics menu, choose Properties to open the Application Model Properties 
dialog box.

2 Select On from the Weak constraints list, then click OK.
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P H Y S I C S  S E T T I N G S — WE A K  C O N S T R A I N T S

Boundary Conditions
1 Open the Boundary Settings dialog box.

2 Select Boundaries 6–8.

3 Click the Weak Constr. tab and make sure that Use weak constraints is selected.

4 Click OK.

M E S H  G E N E R A T I O N

Click the Initialize Mesh button on the Main toolbar.

C O M P U T I N G  T H E  S O L U T I O N

1 Open the Solver Parameters dialog box.

2 Change the Linear system solver to GMRES.

3 Make sure that Automatic or Nonsymmetric is selected in the Matrix symmetry list.

4 Change the Preconditioner to Incomplete LU.

5 Click OK.

6 Click the Solve button on the Main toolbar to compute the solution.

If you selected Automatic in the Matrix symmetry list, a warning message appears. You 
can ignore this warning because it only tells you that the solver settings cannot take 
advantage of the matrix symmetry, so the solver uses the nonsymmetric setting instead.

PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

Calculate the integral of the current flowing to the electrode.

1 Open the Boundary Integration dialog box from the Postprocessing menu.

2 Select Boundaries 6–8.

3 Type nJs_emdc in the Expression field, then click OK.

The result appears in the message log at the bottom of the user interface. You should 
get a current of approximately 8.9·10−9 A. This is also the true value of the total 
current in the previous solution step without weak constraints.

To plot the potential on the electrode as a boundary plot, suppress the display of some 
of the outer boundaries:

1 In the Options menu, select Suppress>Suppress Boundaries.

2 Select Boundaries 6–8, then click Apply.
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3 Click Invert Suppression, then click OK.

4 Open the Plot Parameters dialog box from the Postprocessing menu.

5 On the Slice page, set the Number of levels in the x direction to 1.

6 Click the Boundary tab.

7 Select the Boundary plot check box.

8 Click the Range button and clear the Auto check box.

9 Type 0 in the Min edit field and type 1 in the Max edit field.

10 Click OK twice.
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Pe r i o d i c  Bounda r y  Cond i t i o n s

The section “Using Periodic Boundary Conditions” on page 245 in the COMSOL 
Multiphysics User’s Guide presents a general description on how to define periodic 
Boundary conditions. The AC/DC Module has an automatic Periodic condition 
accessible from the Boundary Settings dialog box, so it is not necessary to use the 
Periodic Boundary Conditions dialog box. Use the latter dialog box for special cases 
when you need full control of the periodic condition. The automatic periodic 
condition can identify simple mappings on plane groups of source and destination 
boundaries with equal shape. The destination can also be rotated with respect to the 
source.

The application modes that use vector elements include a variable, Ψ, that implements 
an extra equation to explicitly set the divergence of the A field to zero. Similar to using 
assemblies with vector elements, periodic conditions must use this extra equation when 
the source and destination of the periodic condition have incompatible meshes; see 
“Using Assemblies in Electromagnetics Problems” on page 97 for more details. This 
variable Ψ must also be made periodic, something the automatic periodic condition 
takes care of if the Gauge fixing is turned on or is set to automatic. You must explicitly 
turn the Gauge fixing off if you use an application mode that does not require Gauge 
fixing and you have compatible meshes for the periodic boundaries. The following list 
shows the application modes that use vector elements:

• Magnetostatics for 3D, in-plane currents or meridional currents.

• Quasi-statics, Magnetic for 3D, in-plane or meridional currents.

• Quasi-statics, Electromagnetic for 3D, in-plane or meridional currents.

All other application modes do not need any special consideration when using periodic 
boundaries.

User Interface for Periodic Conditions

You specify the periodic condition in the Physics>Boundary Settings dialog box. Select 
the boundaries that define one periodic condition and choose Periodic condition from 
the Boundary condition list. The boundaries can consist of one or more source 
boundaries plus one or more destination boundaries. The combined cross section of 
all source boundaries must be equal in shape to the combined cross section of all 
destination boundaries. If you want several periodic conditions with different 
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orientations, separate them with a group index that you enter in the Group index edit 
field. If you, for example, want to set periodic boundaries on all sides of a cube, you 
must use three indexes to separate the three orientations of the periodic boundaries.

You select the type of periodic condition from the Type of periodicity list, where there 
are two available choices:

• Continuity—The solution variables are equal on the source and destination.

• Antiperiodicity—The solution variables on the destination have an opposite sign 
compared to the variables on the source.

The boundary with the lowest number becomes the source by default. It is possible to 
change this order by selecting the Change source and destination order check box.

Sector Symmetry

For many rotating machines, it is possible to use sector symmetry. This is when a 
structure repeats itself a number of times, forming a complete rotating machine. You 
can model such structures with the AC/DC Module using a special pair boundary 
condition called sector symmetry. The condition has two versions: sector symmetry and 
sector antisymmetry. For sector symmetry, the sources in one sector are mapped using 
the identity map to the other sectors. In sector antisymmetry, the sources are mapped 
with an opposite sign with respect to the neighboring sector. The sector symmetry 
condition is only available for the Perpendicular Currents application mode with static 
or transient analysis.
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You find the sector symmetry in the Boundary condition list when you have selected a 
pair in the Pair selection area. You can choose Sector symmetry or Sector antisymmetry 
from the list. In the Number of sectors edit field, you specify the number of sectors that 
are necessary to form the complete geometry.

Figure 2-2: The Boundary Settings dialog box with sector antisymmetry selected for Pair 1.
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The sector symmetry condition is a type of sliding mesh condition with extra couplings 
between the sectors not drawn in the geometry. So no matter where the rotating sector 
is positioned, the coupling connects it with the static part.

Figure 2-3: The rotating sector has rotated more than half a revolution but is still coupled 
with the static sector.

Note: When you calculate forces and torques with sector symmetry, the values you 
get are those for a single sector. Multiply the force with the number of sectors to get 
the total force or torque.

Example in the Model Library

The model “Generator with Mechanical Dynamics and Symmetry” on page 53 of the 
AC/DC Module Model Library uses both periodic conditions and sector symmetry.
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I n f i n i t e  E l emen t s

Many environments that are modeled with finite elements are unbounded or open, 
meaning that the electromagnetic fields extend toward infinity. The easiest approach 
to modeling an unbounded domain is to extend the simulation domain “far enough” 
that the influence of the terminating boundary conditions at the far end becomes 
negligible. This approach can create unnecessary mesh elements and make the 
geometry difficult to mesh due to large differences between the largest and smallest 
object.

Another approach is to use infinite elements. There are many implementations of 
infinite elements available, and the one used in the AC/DC Module is often referred 
to as mapped infinite elements (see Ref. ?). This implementation maps the model 
coordinates from the local, finite-sized domain, to a stretched domain. The inner 
boundary of this stretched domain is coincident with the local domain, but at the 
exterior boundary the coordinates are scaled toward infinity.

The inner coordinate, t0, and the width of the infinite element region, δ t, are input 
parameters for each region. The software uses default values for these properties for 
geometries that are Cartesian, cylindrical, or spherical. However, these default 
parameters might not work well for complex geometries, so it might be necessary to 
define other parameters. The following figures show typical examples of infinite 
element regions that work nicely for each of the infinite element types. These types are:

• Stretching in Cartesian coordinate directions, labeled Cartesian.

• Stretching in cylindrical directions, labeled Cylindrical.

• Stretching in spherical direction, labeled Spherical.

• User-defined coordinate transform for general infinite elements.

t' t0
δt

t0 δt t–+
------------------------=
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Figure 2-4: A square surrounded by typical infinite-element regions of Cartesian type.

Figure 2-5: A cylinder surrounded by typical cylindrical infinite-element regions.
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Figure 2-6: A sphere surrounded by a typical spherical infinite-element region.

If you use other shapes for the infinite element regions not similar to the shapes shown 
in the previous figures, it might be necessary to define the infinite-element parameters 
manually. The software stores the default parameters in variables with the naming 
convention param_guess_suffix, where param is the name of the parameter, and 
suffix is the application mode suffix.
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You can check their values by choosing Equation System>Subdomain Settings from the 
Physics menu. Click the Variables tab and look for variables with _guess_ in the name.

Example Model—3D Coil with Infinite Elements

This is a simple tutorial in 3D that shows how to set up infinite elements and compares 
the result with an analytical solution. The best approach to modeling a current-
carrying coil is to use the Magnetostatics application mode, which solves for the 
magnetic vector potential using vector elements. This example uses second-order 
vector elements to improve the accuracy. It is possible to write the analytical solution 
as an integral over the coil, which has the z-axis as its center line:

This integral get a simple expression along the z-axis.

where R is the radius of the coil, and Z its position along the z-axis.

You first create the version without the infinite elements.

B r( ) µ
4π
------ J r'( ) r r'–( )×

r r'–
3

------------------------------------- v'd∫ µI
4π
------

aϕ r r'–( )×

r r'–
3

-------------------------------r'dϕ
coil
∫°= =

Bz z( ) µIR2

R2 z Z–( )2–( )3 2/
----------------------------------------------=
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Model Library path: ACDC_Module/Tutorial_Models/
coil_with_infinite_elements

Modeling Using the Graphical User Interface

1 In the Model Navigator select 3D from the Space dimension list.

2 Open the AC/DC Module folder, then select Statics>Magnetostatics.

3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Select Draw>Work Plane Settings. In the Work Plane Settings dialog box, click the y-
z option button and click OK.

2 With the Specify Objects>Circle menu option on the Draw menu, create a circle with 
radius 0.4 centered at the origin, and then another one with radius 0.6 also centered 
at the origin. Click OK after specifying the radius to create each circle.

3 Select both circles and click the Union button.

4 Using Specify Objects>Rectangle, create a rectangle with width 0.6, height 1.2, and 
the corner at location (0, −0.6). When done, click OK.

5 Select the circle objects and the rectangle and click the Intersection button on the 
Draw toolbar.

6 Using Specify Objects>Point, add a point at location (0.2, −0.2).

7 Select all objects and choose Draw>Revolve. In the Revolve dialog box, enter 90 in 
the α2 edit field and click OK.

You now have a quarter of a sphere with a quarter of a coil inside. Due to symmetry, 
it suffices to model this fraction of the full geometry.

O P T I O N S  A N D  S E T T I N G S

1 Open the Constants dialog box from the Options menu. Create constants according 
to the table below. The descriptions are optional.

NAME EXPRESSION DESCRIPTION

I 1[A] Current through the coil

R 0.2[m] Coil radius

Z -0.2[m] z-coordinate of the coil
 2 :  A C / D C  M O D E L I N G



2 Open the Scalar Expression dialog box, using the Options>Expressions>Scalar 

Expressions menu option. Create the following expression for the analytical solution 
of the z-component of the magnetic flux density (the descriptions are optional):

P H Y S I C S  S E T T I N G S

Subdomain Settings
Use the default subdomain settings, which apply to air.

Boundary Conditions
You can use the default settings because the boundary conditions at infinity and at the 
symmetry boundaries are all the same: magnetic insulation.

Edge Settings
1 Open the Edge Settings dialog box from the Physics menu.

2 Select the edge representing the coil, number 7, and enter -I in the I0 edit field to 
specify the current in this edge segment flowing counterclockwise.

3 Click OK.

M E S H  G E N E R A T I O N

To improve the comparison you need a finer mesh along the z-axis.

1 Open the Free Mesh Parameters dialog box by pressing F9 or choosing Free Mesh 

Parameters from the Mesh menu.

2 Click the Edge tab, select Edge 10, and type 2e-2 in the Maximum element size edit 
field.

3 Click Remesh to generate the mesh. Click OK.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button to start solving.

This model uses an efficient approach for handling the gauge fixing with the SOR 
gauge smoothers for the geometric multigrid preconditioner; see “Solver Settings for 
Numerical Gauge Fixing in Magnetostatics” on page 92 in the AC/DC Module User’s 
Guide for more information.

NAME EXPRESSION DESCRIPTION

Bz_exact mu0_emqa/2*I*R^2/
(R^2+(z-Z)^2)^(3/2)

Analytical solution of Bz 
along the z-axis
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PO S T P R O C E S S I N G  A N D  V I S U A L I Z A T I O N

1 From the Postprocessing menu, open Domain Plot Parameters.

2 In the dialog box that appears, click the Line/Extrusion tab.

3 Select Edge 10.

4 In the y-axis data area, enter Bz_emqa in the Expression edit field.

5 In the x-axis data area, click first the lower option button then the Expression button.

6 In the X-Axis Data dialog box, type z in the Expression edit field, then click OK.

7 Click Apply to get a line plot of the flux density along the z-axis.

8 Now enter Bz_exact in the Expression edit field.

9 Click the Line Settings button. In the Line Settings dialog box, select Color from the 
Line color list, Dashed line from the Line style list, and Plus sign from the Line marker 
list. Click OK.

10 Click the General tab, and select the Keep current plot check box.

11 Click OK to create the following figure.
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Comparison With Infinite Elements

1 Open the Subdomain Settings again. Click the Infinite Elements tab, select 
Subdomain 1, and select Spherical from the Type of infinite element list.

2 Click OK.

3 The variables dr_guess_emqa and R0_guess_emqa contain the automatic defaults 
for the infinite element region. To check these values choose 
Physics>Equation System>Subdomain Settings. Click the Variables tab, and you 
should see the values 0.2*(1+100*eps) for dr_guess_emqa and 0.4 for 
R0_guess_emqa for Subdomain 1.

4 Click Cancel to close the dialog box without changing anything.

5 Click the Solve button on the Main toolbar again. Note that the assembly takes some 
time due to the complex expressions evaluated for spherical infinite elements.

6 Open the Domain Plot Parameters dialog box from the Postprocessing menu.

7 Click the Line/Extrusion tab. Make sure that Bz_emqa remains in the Expression edit 
field.

8 Click the Line Settings button. In the Line Settings dialog box, select Triangle from 
the Line marker list. Click the Color button and in the dialog box that appears select 
a dark green color from the palette. Then click OK twice to close both dialog boxes.

The figure now also includes the magnetic flux density with infinite elements, and 
although all the curves have the similar profiles there is a clear shift between the curve 
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without infinite elements and the others. In fact, the curve with infinite elements even 
compares well with the analytical solution inside the infinite element region.

Known Issues When Modeling Using Infinite Elements

When modeling with infinite elements you should be aware of the following:

• The expressions resulting from the stretching get quite complicated for spherical 
and cylindrical infinite elements in 3D. This increases the time for the assembly stage 
in the solution process. After the assembly, the computation time and memory 
consumption is comparable to a problem without infinite elements. The number of 
iterations for iterative solvers might increase if the infinite element regions have a 
coarse mesh.

• Infinite element regions deviating significantly from the typical configurations 
shown in the beginning of this section can cause the automatic calculation of the 
infinite element parameter to give erroneous result. Enter the parameter values 
manually if you find that this is the case.

• The infinite element region is designed to model uniform regions extended toward 
infinity. Avoid using objects with different material parameters or boundary 
conditions that influence the solution inside an infinite element region.

Reference

1. O.C. Zienkiewicz, C. Emson, and P. Bettess, “A Novel Boundary Infinite Element,” 
Int. J. Num. Meth. Engrg, vol. 19(3), pp. 393–404, 1983.
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Fo r c e  and To r qu e  Compu t a t i o n s

Computing Electromagnetic Forces and Torques

To compute electromagnetic forces and torques in COMSOL Multiphysics, two 
methods are available. This section describes one of them, which uses Maxwell’s stress 
tensor. There are also two functions, cemforce and cemtorque, which you can use 
when running COMSOL Multiphysics together with COMSOL Script or MATLAB. 
These functions use the method of virtual displacement to calculate the force and 
torque (see page 114 of the AC/DC Module Reference Guide).

Force and torque calculations using Maxwell’s stress tensor are available in the 
application modes for electrostatics, magnetostatics, and quasi-statics. In electrostatics 
the force is calculated by integrating

 (2-1)

on the surface of the object that the force acts on. In magnetostatics and quasi-statics 
the expression

 (2-2)

is integrated on the surface to obtain the force. E is the electric field, D the electric 
displacement, H the magnetic field, B the magnetic flux density, and n1 the outward 
normal from the object. For a theoretical discussion about the stress tensor see the 
section “Electromagnetic Forces” on page 110.

n1T2
1
2
---n1 E D⋅( )– n1 E⋅( )DT

+=

n1T2
1
2
---n1 H B⋅( )– n1 H⋅( )BT

+=
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Example of a Force Calculation

How to calculate forces using the AC/DC Module is best shown by an example. 
Consider a permanent magnet beside a piece of iron modeled in the Perpendicular 
Currents application mode. The objective is to calculate the force on the iron.

Figure 2-7: The model geometry.

D E F I N I N G  F O R C E  A N D  TO R Q U E  V A R I A B L E S

To define force variables, use the Subdomain Settings dialog box. On the Forces page 
there is a table where you define the variables. Select the two subdomains representing 
the iron and enter a name in the Name column, for example, iron.
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This generates a set of variables. The variables iron_nTx_emqa and iron_nTy_emqa 
are defined on the exterior boundary of the piece of iron. These are the components 
in the x and y directions, respectively, of the contraction of the Maxwell stress tensor 
given in Equation ?-???. Together, they represent the surface force density. In addition, 
the variable definition generates two force scalar variables, iron_forcex_emqa and 
iron_forcey_emqa, which are the total force components on the iron in the x and 
y directions, respectively. Finally, a torque variable is generated: iron_torque_z, 
which represents the torque around the z-axis going through the point defined in the 
Point column. For 3D models, there is also an Axis column. Here you define an axis 
direction. The torque computation then finds the total torque around this axis.

The table on the Forces page makes it possible to define multiple variables. The set of 
subdomains where each name appears in the table specifies where to compute the 
force. The surface variables exist on the exterior boundaries of the subdomains where 
the variable name is given.

The naming of the torque variables follows a similar syntax. Note that for 2D only one 
nonzero torque component exists, because all the forces are in the plane. For models 
using axial symmetry no nonzero components exist, so no torque variables are 
computed, and the table only contain the Name column.

R E S U L T S

To display the forces on the piece of iron you can use the Global Data Display dialog 
box. Select the variable Electromagnetic force (iron), x-component from the Predefined 

quantities list and click OK to obtain the force in the x direction in the message log at 

NAME DIMENSION GENERATED VARIABLE DESCRIPTION

iron all iron_nTx_emqa Surface force density in the x direction

all iron_nTy_emqa Surface force density in the y direction

all iron_forcex_emqa Total force in the x direction

all iron_forcey_emqa Total force in the y direction

2D, 3D iron_torquez_emqa Total torque in the z direction around 
the specified point

3D iron_torquex_emqa Total torque in the x direction around 
the specified point

3D iron_torquey_emqa Total torque in the y direction around 
the specified point

3D iron_torqueax_emqa Total torque around the specified axis 
and point
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the bottom of the user interface. Alternatively, just enter the expression 
iron_forcex_emqa in the Expression edit field. Because the variable 
iron_forcex_emqa is global it is possible to evaluate it in any point.

The result is equal to the boundary integral of iron_nTx_emqa on the exterior 
boundary of the piece of iron. You can verify this using the Boundary Integration dialog 
box to make this integration.
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Note: Because the force and torque variables are global, a conflict in variable names 
can occur if two application modes of the same type have the same suffix. Always 
make sure that the application mode suffix are different when you add extra 
application modes in other geometries.

Models Showing How to Compute Electromagnetic Forces

There are a number of examples in the AC/DC Module Model Library showing how 
to compute electromagnetic forces in different situations.

The models “Electromagnetic Forces on Parallel Current-Carrying Wires” on page 8 
and “Linear Electric Motor of the Moving Coil Type” on page 30 in the AC/DC 
Module Model Library both show how to compute the total force on a device by 
integrating the volume force J × B. This is the most important method for computing 
forces in current-carrying devices. For materials that can be described as pure 
conductors (see later on in this section) this method gives the exact distribution of 
forces inside a device.

Additionally, “Linear Electric Motor of the Moving Coil Type” shows how to compute 
the force by the alternative method of virtual work, while “Electromagnetic Forces on 
Parallel Current-Carrying Wires” illustrates how to compute the force by integrating 
the Maxwell stress tensor on boundaries.

The model “Permanent Magnet” on page 21 in the AC/DC Module Model Library 
demonstrates how to compute the total force on a magnetizable rod close to a 
permanent magnet by integrating the Maxwell stress tensor in the air on the outside 
of the rod. This is the most important method for accurately computing the total force 
on magnetic devices for which the exact distribution of volume forces is not known. 
To retrieve the exact distribution of volume forces requires a material model that 
describes the interactions of the magnetizations and strains. Such material models are 
not always available. Therefore you are often limited to compute the total force by 
integrating the stress tensor or using the method of virtual work. Note that none of 
these methods allows you to compute and visualize the force distribution inside a 
domain, but only to compute the total force and torque in situations where the device 
is surrounded by air (or when this is a good approximation).

Torque calculations are used in “Generator with Mechanical Dynamics and 
Symmetry” on page 53 in the AC/DC Module Model Library.
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Lumped Pa r ame t e r s

Lumped parameters are matrices describing electromagnetic properties such as 
resistance, capacitance, and inductance. In the time-harmonic case the lumped 
parameter matrix is either an impedance matrix or an admittance matrix. In a static 
calculation you only get the resistive, capacitive, or inductive part of the lumped 
parameter matrix.

Calculating Lumped Parameters with Ohm’s Law

To calculate the lumped parameters, there must be at least two electrodes in the 
system, where one is grounded. You can force either a voltage or a current on the 
electrodes. After the simulation you can extract the other property or you can extract 
the energy and use it when calculating the lumped parameter.

F O R C E D  VO L T A G E

If voltages are applied between the electrodes, the extracted currents represent 
elements in the admittance matrix, Y. This matrix determines the relation between the 
applied voltages and the corresponding currents with the formula

so when V1 is one (in some unit system) and all other voltages are zero, the vector I is 
equal to the first column of Y.

F I X E D  C U R R E N T

It might be necessary to calculate the Z-matrix in a more direct way. Similar to the Y 
calculation, the Z calculation can be done by forcing the current through one electrode 
at the time to one while the others are set to zero, and then extracting the voltages on 
all electrodes. Then, the columns of the impedance matrix are the voltage values:

I1

I2

I4

I4

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

V1

V2

V3

V4

=
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F I X E D  C U R R E N T  D E N S I T Y

An alternative approach for calculating the Z-matrix is to force the current density to 
a uniform value across each electrode. The total current through the electrode is the 
area times the current density, which is selected to be one or zero. The voltage can then 
vary across the port, so averaging is necessary. With this approach the Z-matrix is 
calculated with the formula

.

Here An represents the area and In the normal current density of port n. The current 
density is just the current divided by the area of that electrode.

Calculating Lumped Parameters Using the Energy Method

When using this method the potential or the current is one on one or two ports at a 
time and you extract the energy density integrated over the whole geometry. The 
following formulas show how to calculate the capacitance matrix from the integral of 
the electric energy density.

V1

V2

V3

V4

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44

I1

I2

I3

I4

=

1
A1
------- V1 Ad

A1

∫
1

A2
------- V2 Ad

A2

∫
1

A3
------- V3 Ad

A3

∫
1

A4
------- V4 Ad

A4

∫

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44

I1

I2

I3

I4

=

Jn
In

An
-------=
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You can calculate the inductance matrix in the same way from the magnetic energy 
density:

Lumped Parameters in the AC/DC Module

To study lumped parameters you use the Port boundary condition for each electrode. 
This boundary condition is available in the following application modes:

• Conductive Media DC

• Electrostatics

• Magnetostatics (when the electric potential is one of the dependent variables)

• Quasi-Statics, Electric

• Quasi-Statics, Electromagnetic

The AC/DC Module includes the two different approaches, explained above, for 
calculating the lumped parameters. The static Electrostatics and Magnetostatics 
application modes use the energy method, while the method based on Ohm’s law is 
used in the time-harmonic Quasi-Statics application mode and in the Conductive 
Media DC application mode.

T H E  PO R T  P A G E

To specify the properties for the port, click the Port tab. Each port must have a unique 
port number. On the ports where you want to force the value of the input parameter 
to be one, select the Use port as inport check box. In some application modes you can 

Cii 2 We Ωd
Ω
∫= Vj

0
1⎩

⎨
⎧

= j i≠
j i=

Cij We Ωd
Ω
∫ 1

2
--- Cii Cjj+( )–= Vk

0
1⎩

⎨
⎧

= k i j,≠
k i j,=

Lii 2 Wm Ωd
Ω
∫= Ij

0
1⎩

⎨
⎧

= j i≠
j i=

Lij Wm Ωd
Ω
∫ 1

2
--- Lii Ljj+( )–= Ik

0
1⎩

⎨
⎧

= k i j,≠
k i j,=
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ix 

x 

ix 

y 
d j
choose which property (for example, a forced voltage or a fixed current) to use as input 
from the Input property list.

A C C U R A C Y

To get a good accuracy when calculating the total current over the boundary you need 
to use weak constraints. This is necessary for the forced voltage input property.

When the current density is fixed the weak constraints are unnecessary, which makes 
this the preferred method in large problems where you need iterative solvers. The only 
requirement for this method is that the port has a small variation in potential across its 
surface, which generally is the case for metal electrodes.

The fixed current property performs a coupling that guarantees that the total current 
is equal to one, although you cannot verify this without adding weak constraints. The 
result is the same with and without weak constraints, but a model without weak 
constraints is beneficial for iterative solvers. The fine tuning of the iterative solver 
settings is slightly more complicated than the fixed current density input property.

VA R I A B L E S

Depending on which application mode you are working with and what input property 
you choose you get different postprocessing variables. 

In an application mode using the energy method, i and j are the input port numbers. 
If there is only one input port the AC/DC Module calculates the diagonal matrix 

APPLICATION MODE FORCED 
VOLTAGE

FIXED CURRENT OR 
CURRENT DENSITY

Quasi-Statics, 
Electromagnetic, time 
harmonic

Yij Admittance matrix 
element (i, j)

Zij Impedance matr
element (i, j) 

Conductive Media DC Gij Conductance matrix 
element (i, j)

Rij Resistance matri
element (i, j)

Electrostatics Cii Capacitance matrix 
element (i, i)

- -

Electrostatics intWeij Integrated energy 
between input ports 
i and j

- -

Magnetostatics - - Lii Inductance matr
element (i, i)

Magnetostatics - - intWmij Integrated energ
input ports i an
 2 :  A C / D C  M O D E L I N G



element Cii or Lii. In the other application modes,  j  is the input port number and  i  is 
the port number. The software generates the variables for all port numbers for the 
input port in use.

If you, for example, in the Conductive Media DC application mode have two ports, 
Port 1 and Port 2, and use Port 1 as an input port you get two variables:

• G11_emdc and G21_emdc, if voltage is the input property 

• R11_emdc and R21_emdc, if current or current density is the input property

If you have two ports in the Electrostatics application mode, Port 1 and Port 2, and 
Port 1 is an input port, the AC/DC Module generates the variable C11_emes and 
intWe11_emes. If you use both Port 1 and Port 2 as input ports, the software 
generates the variables intWe12_emes and intWe21_emes instead.

PO S T P R O C E S S I N G

The lumped parameters are defined as global variables, so you can access them from 
the Postprocessing menu, under either of the menu options Global Plot Variables or Data 

Display>Global. Use the Global Plot Variables dialog box if you want to plot one or 
several lumped parameters as a function of a swept parameter. In the Global Data Display 
dialog box, you can get the value of a lumped parameter (real or complex) printed at 
the bottom of the COMSOL Multiphysics window. The defined lumped parameters 
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are available from the Predefined quantities list under the application mode to which 
they belong.

You have access to global variables at any level in a geometry, and the lumped 
parameters are also available from the Predefined quantities list in the Point Evaluation 
and Domain Plot Parameters dialog boxes, which you open from the Postprocessing 
menu. For the Domain Plot Parameters dialog box you access the lumped parameters 
on the Point page.

Note: Because the lumped parameters are global variables, a conflict in variable 
names can occur if two application modes of the same type have the same suffix. 
Always make sure that the application mode suffixes are different when you add extra 
application modes in other geometries.

Example—Microstrip

To illustrate how to calculate the lumped parameters, this model calculates the 
capacitance in a microstrip. The example shows the two different ways of calculating 
the capacitance. The model is solved twice: once with a static analysis and a second time 
with a time-harmonic analysis.
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R E S U L T S

When making a static analysis you get the capacitance directly as a variable. When 
solving the time-harmonic problem you need to calculate the capacitance from the 
admittance by dividing the imaginary part of the admittance with the angular 
frequency.

Model Library path: ACDC_Module/Tutorial_Models/microstrip

Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, select 2D from the Space dimension list.

2 Open the AC/DC Module folder, then select Statics>Electrostatics.

3 Click OK.

G E O M E T R Y  M O D E L I N G

1 Select Specify Objects>Rectangle from the Draw menu.

2 Type 1.5e-3 in the Width edit field and type 6.45e-4 in the Height edit field.

3 Click OK.

4 Click the Zoom Extents button on the Main toolbar.

1 Select Specify Objects>Rectangle from the Draw menu.

2 Type 3.3e-4 in the Width edit field and 3.56e-5 in the Height edit field.

3 In the Position area, type 6e-4 in the x edit field and 3.05e-4 in the y edit field.

4 Click OK.

5 Press Ctrl+A to select both rectangles.

6 Click the Difference button on the Draw toolbar.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 Open the Subdomain Settings dialog box.

C Im Y( )
ω

-----------------=
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2 Select Subdomain 1 and set the relative permittivity to 3.25.

3 Click OK.

Boundary Conditions
1 Open the Boundary Settings dialog box.

2 Select Boundaries 1 and 8 and set the boundary condition to Zero charge/Symmetry.

3 Set the boundary condition on Boundaries 4–7 to Port.

4 Click the Port tab and select the Use port as input check box.

5 Click OK.

Application Mode Properties
1 Open the Application Mode Properties dialog box by selecting Properties from the 

Physics menu.

2 Select On from the Weak constraints list, then click OK.

M E S H  G E N E R A T I O N  A N D  S O L U T I O N

1 Initialize the mesh and refine it once.

2 Solve with the default settings.

PO S T P R O C E S S I N G

1 Select Point evaluation from the Postprocessing menu.

2 Select Capacitance matrix, element 11 in the Predefined quantities list, select Point 1, 
and click OK to see the capacitance value in the message log.

T I M E - H A R M O N I C  A N A L Y S I S

1 Open the Model Navigator from the Multiphysics menu.

2 Select Quasi-Statics, Electromagnetic>In-Plane Electric and Induction Currents, 

Potentials>Time-harmonic analysis.

3 Click Add, then click OK.

P H Y S I C S  S E T T I N G S

Subdomain Settings
1 Open the Subdomain Settings dialog box.

2 Select Subdomain 1 and click the Electric Parameters tab.

3 Set the relative permittivity to 3.25, then click OK.
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Boundary Conditions
1 Open the Boundary Settings dialog box.

2 Select Boundaries 1 and 8 and click the Electric Parameters tab.

3 Set the boundary condition to Electric insulations.

4 Set the boundary condition on Boundaries 4–7 to Port.

5 Click the Port tab and select the Use port as input check box. Click OK.

Application Mode Properties
1 Open the Application Mode Properties dialog box by selecting Properties from the 

Physics menu.

2 Set the Weak constraints to Ideal, then click OK.

C O M P U T I N G  T H E  S O L U T I O N

Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G

1 Select Data Display>Global from the Postprocessing menu.

2 Type imag(Y11_emqap)/omega_emqap in the Expression to evaluate edit field and 
click OK to see the capacitance in the message log.
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S P I C E  C i r c u i t  Impo r t

It is possible to add circuit elements as ODE variables to a COMSOL Multiphysics 
model. These variables can be connected to a physical device model to perform co-
simulations of circuits and multiphysics. The model acts as a device connected to the 
circuit so that you can analyze its behavior in larger systems.

The circuit definition comes from a netlist entered in the SPICE format developed at 
University of California, Berkeley (Ref. 1). Most circuit simulators can export to this 
format or some dialect of it. The SPICE circuit import contains an additional syntax 
to support linking to COMSOL Multiphysics models.

SPICE Import in the AC/DC Module

If you choose SPICE Circuit Editor from the Physics menu a dialog box appears where 
you can enter a netlist. You can either enter the netlist commands directly in the SPICE 

netlist text area or use any of the toolbar buttons to generate the proper commands. It 
is also possible to load a netlist file saved on disk. The contents of the text area are saved 
with the COMSOL Multiphysics model, so the netlist is still there when you open the 
model again.

The two check boxes controls two options during the import. Selecting the Force AC 

analysis check box always produces a time-harmonic implementation of the circuit. If 
you couple the circuit to a time-harmonic application mode, the import automatically 
use a time-harmonic circuit implementation. If you select the Include model parameters 
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check box all parameters to any device models are included to the global expressions 
as individual variables. With the check box cleared the parameters are included as 
numbers to reduce the number of variables. The model parameters are necessary to 
include if you, for example, want to do a parameter extraction or if you just want to be 
able to change their values in a parameter ramp.

When you click any of the toolbar buttons, a dialog box appears where you enter the 
name of the device, the terminal names (node names) that it connects to as space-
separated entries, and finally a device value.

For subcircuit definitions of links to a COMSOL Multiphysics model, the dialog box 
is slightly different. Here you enter a subcircuit reference name that you use to refer 
to this subcircuit. The terminal names are the circuit terminal indexes or variables 
defined in the COMSOL Multiphysics model.

There are two toolbar buttons to create links to a COMSOL Multiphysics model. The 
Create Link to Current Model button connects the circuit to the model present in the 
main window. The Create Link to Model File button connects the circuit to a model file 
saved on disk.

These two buttons only generate a subcircuit definition of the link, exactly like a 
standard SPICE subcircuit definition. In order to use the link in a circuit you must also 
add a subcircuit instantiation command. You can do this with the Create Subcircuit 

Instance toolbar button. In the dialog box you enter the name of the instance, the 
nodes in the circuit that the subcircuit nodes are connected to, and finally the 
subcircuit reference name defining the link. If the subcircuit definition links to a model 
file, creating the link also appends new geometries to the current model.
S P I C E  C I R C U I T  I M P O R T  |  71



72 |  C H A P T E R
Supported SPICE Functionality

Currently the SPICE import supports the devices summarized in Table 2-1 below with 
mentioned limitations.

The SPICE import also supports some commands in the netlist file, listed in Table 2-2.

TABLE 2-1:  SUMMARY OF SUPPORTED DEVICES

SYMBOL DESCRIPTION LIMITATION

R Resistor No temperature dependence

C Capacitor No voltage and temperature dependence

L Inductor No current and temperature dependence

V Independent voltage 
source

Supports constant sources, pulse sources, 
and sine sources. Variable names can be 
used to implement arbitrary expressions by 
adding them later as global expressions

I Independent 
current source

See above

E Voltage-controlled 
voltage source

Gain-controlled source

F Current-controlled 
current source

See E device

G Voltage-controlled 
current source

See E device

H Current-controlled 
voltage source

See E device

D Diode No temperature dependence other than the 
diode equation

Q Bipolar transistor Implements parts of the Gummel-Poon 
transistor model of NPN type. No small-
signal model available.

M MOS transistor Implements the MOS transistor model as 
defined by Shichman and Hodges of N-type. 
No small-signal model available.

X Subcircuit Instantiate a subcircuit

TABLE 2-2:  SUPPORTED COMMANDS IN THE NETLIST

COMMAND DESCRIPTION

.LIB “<library>” Loads the library within quotes

.INC “<file>” Includes the file within quotes
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All other commands and unsupported model parameters are ignored.

I N S T A N C E S  O F  C O M S O L  M U L T I P H Y S I C S  M O D E L S

The .SUBCKT command also handles instances of COMSOL Multiphysics model files. 
The extra option COMSOL: defines the model filename or application mode to link to. 
An asterisk (*) here automatically searches in the current model for the first geometry 
or application mode with proper terminal definitions, which either can be circuit 
terminal boundary conditions or global variables. Note that any ground boundary 
condition in the COMSOL Multiphysics model file using the circuit terminal method 
gets directly connected to the ground node 0 of the circuit.

Circuit Terminals
Application modes with the circuit terminal boundary condition can handle the 
connection automatically in the model. It is also possible to connect more than two 
terminals to one subcircuit definition. In the Boundary Settings dialog box, you select 
the circuit terminal boundary condition for those boundaries you want to connect the 
circuit to. The terminals are separated by different group indices that you enter in the 
Group index edit field present for all circuit terminal boundaries. The following netlist 
shows an example:

Vin 0 1 1V
R1 0 2 10k
R2 0 310k
X1 1 2 3 mph

.SUBCKT mph a b c COMSOL: *

.ENDS

The subcircuit command searches the current model for circuit terminal conditions 
with group indices a, b, and c. The boundary with index a gets connected to node 1 
in the circuit, and so on.

.MODEL Creates a device model with user-defined 
parameter values

.SUBCKT Creates a subcircuit

.TEMP Sets the global temperature

TABLE 2-2:  SUPPORTED COMMANDS IN THE NETLIST

COMMAND DESCRIPTION
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Note: The circuit terminal boundary condition is actually identical to the floating 
potential boundary condition, but without possibility to specify the current. The 
SPICE Import dialog automatically specifies the current to a circuit terminal to be 
controlled by the circuit. You can also use the floating potential boundary conditions 
for circuit connections.

Terminal Variables
Application modes without the circuit terminal boundary conditions need two 
variables: one for device voltage and one for device current. The names of these 
variables are passed to the .SUBCKT command after the name of the device. If there are 
more than two terminals in the model file, you must define one subcircuit for each 
voltage-current pair. The following netlist shows a simple example when using terminal 
variables:

Vin 0 2 1V
R1 2 1 10k
X1 1 0 Rfem
.SUBSCKT Rfem V_res I_res COMSOL: Rmodel.mph
.ENDS

This circuit connects the finite element model in the file Rmodel.mph to a circuit with 
a voltage source Vin and a resistor R1 through the instance X1. The model file 
Rmodel.mph has two variables, V_res and I_res, defined in the global scope. The 
variable I_res must be a variable defined in the Global Variables dialog box, because it 
is altered by the SPICE Import. The instance X1 is connected to nodes 1 and 0, and 
the voltage between these nodes is made equal to V_res, by changing the current 
I_res. I_res controls the current from node 1 to node 0.

If the second variable begins with one of the letters V, v, U, or u, COMSOL 
Multiphysics defines the circuit so it controls the voltage and reads the current. It is 
always the second variable that has to be present in the Global Variables dialog box, 
which in this case is interpreted as a voltage. This approach can generate less ODE 
variables for models where it is easier to give the voltage and calculate the current.

Note: The number of instances of a model file that you can use in a circuit is limited 
to one for the terminal variable approach. Using additional instances causes variable-
name conflicts. The circuit terminal approach can use several instances.
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L I M I T A T I O N S  O F  T H E  S P I C E  I M P O R T

Not all device models are implemented, and those implemented do not support the 
full range of parameters available. Table 2-1 lists the supported devices. You might 
therefore have to simplify the netlist prior to the import. In addition, support for 
model parameters specifying a temperature dependence is not implemented. However, 
the temperature affects the leakage current on all modeled p-n junctions according to 
the diode equation.

The transit-time capacitance is not supported for the semiconductor device models 
where it is used.

All statements for specifying input signals are not supported. Currently the supported 
statements are SIN and PULSE.

The SPICE import does not support small-signal analysis of semiconductor device 
models. In a time-harmonic simulation you can only connect sources and passive 
devices.

S C R I P T  S U P P O R T

You can also access the functionality described in the preceding section from 
COMSOL Script using the spiceimport command; see the chapter “Function 
Reference” on page 111 in the AC/DC Module Reference Guide.

Reference

1. http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

Example Models using SPICE Import

There are two models in the model library that use SPICE Import. The model “High 
Current Cables in a Circuit” on page 170 in the AC/DC Module Model Library uses 
the circuit terminal approach, and the model “Inductor in Amplifier Circuit” on page 
189 in the same manual is an example of the terminal variable approach.
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Sma l l - S i g n a l  Ana l y s i s

A time-harmonic simulation is always performed under the assumption that the model 
is linear. If a solution variable depends nonlinearly on a material parameter, the value 
of that material parameter has to be linearized around a certain bias point before any 
time-harmonic analysis is performed. The bias point is typically a stationary solution 
for the dependent variable on which a small time-harmonic signal is superimposed. 
The bias can also be a transient solution that varies slowly compared to the period of 
the time-harmonic signal.

Small-Signal Analysis in the AC/DC Module

A small-signal analysis in the AC/DC Module requires two application modes:

• A stationary or transient application mode called the bias application mode

• A time-harmonic application mode, which is linked to the bias application mode

The software transfers the material parameters from the bias application mode to the 
time-harmonic application mode by differentiation with respect to the dependent 
variable. If the material parameter is independent of the dependent variable, the time-
harmonic application mode gets the material parameter as it is specified in the bias 
application mode.

The Application Mode Properties dialog box of the time-harmonic application mode 
contains a property called Bias application mode, which connects it to any of the 
compatible bias application modes in the geometry.

The criterion for a compatible bias application mode is that its dependent variable 
represents the same quantity as that of the time-harmonic application mode. The 
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default value for this property is None, which means that the application mode 
performs normal time-harmonic analysis (unless you start a predefined small-signal 
analysis; see “Predefined Small-Signal Analysis Combinations” on page 77). When you 
set the property for any of the application modes in the list, the software removes 
common material properties from the Subdomain Settings dialog box of the time-
harmonic application mode. A text at the bottom of the dialog box lists the removed 
parameters.

If infinite elements are active in the bias application mode, they are also active in the 
time-harmonic application mode. Due to the automatic differentiation, the material 
parameters in an infinite element domain also contain the infinite element scaling, so 
the linearized parameter value does not make sense in such domains.

P R E D E F I N E D  S M A L L - S I G N A L  A N A L Y S I S  C O M B I N A T I O N S

There are several possible combinations of bias application modes and time-harmonic 
application modes. The most common ones are available in the Model Navigator as 
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Small-signal analysis groups for most of the application modes in the Quasi-Statics, 

Electric; Quasi-Statics, Magnetic; and Quasi-Statics, Electromagnetic folders.

Choosing the Small-signal analysis type automatically adds a time-harmonic 
application mode and a bias application mode, and properly sets up the 
Bias application mode property. The most common combination is two instances of the 
same application mode, with static or transient analysis type in the bias application 
mode and time-harmonic analysis type in the time-harmonic application mode. These 
choices are available as Static bias and Transient bias if you expand the Small-signal 

analysis node in the Application Modes tree. For the time-harmonic version of the 
Electric Currents application mode there are three possible choices for bias application 
mode:

•  Static conduction bias, which uses the Conductive Media DC application mode as 
bias application mode.

•  Electrostatic bias, using the Electrostatics application mode as bias application 
mode.

•  Transient bias, using the Electric Currents application mode with transient analysis 
as bias application mode.

All these options are available under the Small-signal analysis node of the 
Electric Currents application mode in 3D and the corresponding application modes for 
in-plane and axisymmetric 2D models.
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M O D E L I N G  S T E P S

Although it is possible to do the calculation in one step, it is recommended to do it in 
separate steps. Especially if you are doing a parameter sweep or solving a large model. 
The model is always one-way coupled from the bias application mode to the time-
harmonic application mode. The following steps describe the recommended 
procedure:

1 Try to find an appropriate small-signal analysis combination in the Model Navigator 
window. Otherwise, use the Multiphysics and Add buttons to create your own valid 
combination.

2 Finish all modeling steps defining variables, physics settings, and mesh.

3 Use the Solver Manager dialog box to solve only for the bias application mode. If you 
are doing a parameter sweep, solve for all parameters for this application mode.

4 Go back to the Solver Manager dialog box, click the Store Solution button, and store 
all solutions. On the Initial Value page, use Stored solution as the linearization point, 
and choose All from the Solution at time list. This ensures that the subsequent 
parameter sweep uses the correct solution of the bias application mode for each 
parameter step.

5 Repeat the solve step, solving only for the time-harmonic application mode. The 
final solution contains the bias solution and the time-harmonic solution as separate 
variables. The nonlinear material parameters are differentiated at each parameter 
step with respect to the bias solution in that step.

Example—Small-Signal Analysis of an Inductor

This example uses the model “Inductor in Amplifier Circuit” on page 189 of the  
AC/DC Module Model Library before the SPICE Import. This model consists of an 
inductor with a nonlinear magnetic core that shows a changing inductance when the 
current increases. In this example you investigate the small-signal inductance as a 
function of current through the inductor.

Model Library path:  
AC/DC_Module/Tutorial_Models/small_signal_analysis_of_inductor
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Modeling Using the Graphical User Interface

M O D E L  N A V I G A T O R

1 In the Model Navigator, click the Model Library tab.

2 Choose the model AC/DC Module>Electrical Components>amplifier and inductor 

nocircuit.

3 Click OK.

4 From the Multiphysics menu, choose Model Navigator.

5 Open the AC/DC Module folder, then select Quasi-Statics, Magnetic>Azimuthal 

Induction Currents, Vector Potential>Time-harmonic analysis.

6 Click the Add button, then click OK to close the Model Navigator.

P H Y S I C S  S E T T I N G S

Application Mode Properties
1 From the Physics menu, choose Properties.

2 In the Application Mode Properties dialog box, select Azimuthal Induction Currents, 

Vector Potential (emqa) from the Bias application mode list.

3 Click OK.

Global and Scalar Expressions
1 From the Options menu, choose Expressions>Global Expressions.

2 Add the following variables with names expressions, and descriptions.

3 Click OK.

NAME EXPRESSION DESCRIPTION

I_ac 1[A] AC current in coil

L_coil imag(V_ac/I_ac)/(2*pi*50) Inductance of coil

R_coil real(V_ac/I_ac) Resistance of coil
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4 From the Options menu, choose Expressions>Scalar Expressions.

5 Add a variable named J_ac with the expression I_ac*N/A.

6 Click OK.

Integration Coupling Variables
1 From the Options menu, choose Integration Coupling Variables>Subdomain Variables.

2 In the Subdomain Integration Variables dialog box, add a variable named V_ac 
according to the table below.

3 Click OK.

Subdomain Settings
1 Open the Subdomain Settings dialog box from the Physics menu.

2 Select Subdomain 3 and enter J_ac in the edit field for the external current density.

3 Click OK. Note that some material parameters are inherited from the bias application 
mode settings.

Boundary Conditions
1 Open the Boundary Settings dialog box from the Physics menu.

2 Select Boundaries 1, 2 and 4. Set the Boundary condition to Axial symmetry.

3 Click OK.

M E S H  G E N E R A T I O N

Use the mesh of the original model.

C O M P U T I N G  T H E  S O L U T I O N

Although both the bias application mode and the time-harmonic application mode can 
be solved simultaneously, the following steps show how to solve them separately. This 
is done to illustrate the correct procedure for solving larger-size problems.

1 From the Solve menu, open the Solver Parameters dialog box.

2 From the Solver list, choose Parametric.

3 Type I_coil in the Parameter name edit field and 1:0.2:10 in the Parameter values 
edit field.

4 Click OK.

5 From the Solve menu, open the Solver Manager.

NAME EXPRESSION IN SUBDOMAIN 3

V_ac N*2*pi*r*(I_ac/(sigma_coil*pi*r_coil^2)-Ephi_emqa2)/A
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6 On the Solve For page, select the 
Azimuthal Induction Currents, Vector Potential (emqa) application mode.

7 Click Apply, then click Solve.

8 When the solution process has finished, select the 
Azimuthal Induction Currents, Vector Potential (emqa2) application mode.

9 Click the Initial Value tab.

10 In the Values of variables not solved for and linearization point area, click the Current 

solution option button. From the Parameter value list, choose All.

11 Click OK.

12 Click the Solve button on the Main toolbar.

PO S T P R O C E S S I N G

1 From the Postprocessing menu, choose Global Variables Plot.

2 From the list in the Predefined quantities area, choose Inductance of coil, then click 
the > button.

3 Click OK to see the following plot.

4 Go to the Postprocessing menu again and choose Plot Parameters.
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5 From the Parameter value list, choose the solution for I_coil equal to 5.8 A.

6 Click the Surface tab. In the Predefined quantities list, expand the group Azimuthal 

Induction Currents, Vector Potential (emqa2), then choose Relative permeability from 
that group.

7 Click OK. This creates a plot similar to the one below. Notice how the relative 
permeability has dropped from its zero-bias value of 1200; only at the edges does 
the permeability gets close to that value.
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S o l v i n g  L a r g e  3D P r ob l em s

For large 3D electromagnetic problems, where the default direct linear solver requires 
too much memory, you can use the iterative linear solver GMRES together with the 
Geometric multigrid (GMG) preconditioner for problems without gauge fixing. For 
gauge fixed electromagnetic problems you can use GMG as iterative linear solver and 
the Vanka preconditioner as presmoother and postsmoother. Gauge fixing is necessary 
for magnetostatic problems in 3D and quasi-static problems when solving for the 
magnetic vector potential and the electric potential. Note that for magnetostatic 
problems an alternative to explicit gauge fixing exists. This alternative consists of fixing 
the gauge numerically with one of the SOR gauge smoothers. This section describes 
how to use the iterative solvers in the context of the mentioned problems. You can find 
general information about the GMG solver in the section “The Geometric Multigrid 
Solver/Preconditioner” on page 518 in the COMSOL Multiphysics Reference Guide.

Hierarchy Generation

There are several types of hierarchy used by the geometric multigrid preconditioner. 
The default is to use the element order, where the coarsest mesh usually is the 1st order 
element. The finer hierarchy can then be either quadratic or cubic vector elements. It 
can also use a hierarchy of meshes, where the finer meshes in the hierarchy have to be 
obtained by refining the coarsest mesh. It is also possible to manually make all the 
meshes using the Mesh Cases dialog box and tell the preconditioner to use these 
meshes; see the section “Hierarchy Generation Method” on page 85.

Note: The solver calculates the solution for the finest of the meshes in the hierarchy. 
Therefore, when you let the preconditioner generate the meshes automatically, you 
obtain a solution for a much finer mesh than the one you have made.

C O N S T R A I N T S  O N  T H E  C O A R S E S T  M E S H

The coarsest mesh cannot be arbitrarily coarse because then the iterative solver does 
not converge. For eddy-currents problems, for instance, the skin depth must be 
resolved with at least two mesh elements.

A direct solver is used to solve the equation on the coarsest mesh, and if the iterative 
solver does not converge a too coarse mesh here might be the cause.
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Solver Settings

Magnetostatic, quasi-static magnetic, and quasi-static electromagnetic problems 
depend on the Geometric multigrid solver (used as preconditioner), and this solver 
relies on a hierarchy of meshes. The next section describes the options you have when 
you create the hierarchy, because this is crucial for a converging solution in most cases.

H I E R A R C H Y  G E N E R A T I O N  M E T H O D

There are several hierarchy generation methods that you can use with the geometric 
multigrid solver, and not all are suitable for electromagnetic problems. You select them 
from the Hierarchy generation method list in the Linear System Solver Settings dialog 
box. The default is Lower element order first. This option finds the lower order 
elements and use them as coarser levels. Another option is Refine mesh, which 
automatically generates the finer meshes in the hierarchy. The Manual option lets you 
pick a set of meshes that you have created beforehand. If you solve with the Refine mesh 
option, the solve step stores the generated meshes and automatically switches to the 
Manual option.

Figure 2-8: The multigrid settings for the GMG preconditioner.

Lower Element Order
The use of higher-order vector elements opens up the possibility to use different 
element orders in the hierarchy. You have to use a vector element order of at least 2. 
Specify the element order either at model creation in the Model Navigator or in the 
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Subdomain Settings dialog box on the Element page. The default vector element order 
is 2, so the default hierarchy is 1st order on the coarsest level and 2nd order on the 
finest level. This is a robust setting that often produces convergence. Another efficient 
option is to use 3rd order as the finest level and 1st order on the coarsest level. The 
main drawback with 3rd order vector elements is that they produce around 20 degrees 
of freedoms (DOFs) per mesh element, which sometimes makes it hard to resolve the 
geometry and keep the number of DOFs at a reasonable level. The same figure for 2nd 
order is around 6.5 DOFs per mesh element. Generally, it is best to use as high order 
as possible, because the overall error is often lower for higher-order elements with the 
same number of DOFs.

Refine Mesh
The refine mesh option automatically generates finer meshes. The settings on the 
Automatic page determine how this refinement is done.

• The values in the Number of levels edit field determine how many meshes the mesh 
refinement generates, that is, how many times the original mesh is refined. This 
number is the total number of meshes including the original mesh. For example, the 
default number 2 gives you one refinement.

• The selection in the Refinement method list specifies how the multigrid solver refines 
the mesh. See the section “Refinement Methods” on page 327 in the COMSOL 
Multiphysics User’s Guide for general information about the refinement methods. 
Regular refinement creates finer meshes than the Longest method.

These two parameters often have to be tuned given how coarse the original mesh is. If 
the original mesh just fulfills the Nyquist criterion of two mesh elements per 
wavelength, then two regular refinements are needed to obtain an accurate solution. 
If on the other hand the original mesh is finer, for example, because the geometry 
makes it difficult to make it coarser, then two regular refinements might give a too fine 
mesh, making the solvers use more memory than necessary. If so, one regular 
refinement can be sufficient, or the longest method might be a better choice.

Manual
Manual hierarchy generation lets you pick meshes that you have made manually. This 
gives you better control of which meshes the solver uses. To create a set of meshes, 
open the Mesh Cases dialog box on the Mesh menu and create as many mesh cases as 
the number of meshes you need. Then switch between the mesh cases by selecting 
them from the Mesh menu and mesh the geometry for each mesh case. Make the mesh 
of each mesh case finer than the previous one. Alternatively, you can select the element 
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order manually in the Subdomain Settings dialog box for each mesh case, and use the 
same mesh for both mesh cases.

Figure 2-9: Specifying the same mesh for both meshes in the Mesh Case Settings dialog box.

Note: If you use the same element order, the meshes must be made by refining the 
coarsest one.

On the Manual page of the Linear System Solver Settings dialog box, select the meshes 
you want to use. Make sure that the Assemble check box is selected for all meshes.
S O L V I N G  L A R G E  3 D  P R O B L E M S  |  87



88 |  C H A P T E R
S O L V E R  S E T T I N G S  F O R  E L E C T R O M A G N E T I C S  P R O B L E M S

In most cases you can use the default setting, which is GMRES for the Linear system 

solver and Geometric multigrid for the Preconditioner. In other cases you need to adjust 
how the solver generates the mesh hierarchy or to fine tune the solver settings.

Presmoother
The default presmoother is SOR vector.

Figure 2-10: The presmoother settings (the figure shows only the upper part of the dialog 
box).
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Postsmoother
The default postsmoother is SORU vector.

Figure 2-11: The postsmoother settings (the figure shows only the upper part of the dialog 
box).

Coarse Solver
The default coarse solver is PARDISO.

Figure 2-12: The coarse solver settings (the figure shows only the upper part of the dialog 
box).

Solver Settings for Gauge-Fixed Electromagnetic Problems
There are also realistic defaults for the solver settings when you start with a gauge-fixed 
electromagnetic problem. The default presmoother and postsmoother is then Vanka, 
configured with suitable defaults for large 3D problems. In some cases it is necessary 
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to adjust how the solver generates the mesh hierarchy and fine tune the settings for the 
Vanka preconditioner.

For geometric multigrid with Vanka the preferred setting for the Multigrid cycle is F-
cycle in contrast to ungauged problems where it is V-cycle.

Figure 2-13: The linear system solver settings (the figure shows only the upper part of the 
dialog box).

As an alternative to the GMRES linear system solver you can also use Geometric 
multigrid as the solver. The default settings are the same as those described below.
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Presmoother
The presmoother must be set to Vanka. The dialog box shows the default settings.

Figure 2-14: The presmoother settings (the figure shows only the upper part of the dialog 
box).

The default setting in the Variables edit field is psi, which is the default gauge variable. 
This default setting does not change if you specify a different name for the gauge 
variable, so you have to update this setting manually for both the presmoother and the 
postsmoother.

Postsmoother
The postsmoother must be set to Vanka. The default settings are the same as for the 
presmoother.

Figure 2-15: The postsmoother settings (the figure shows only the upper part of the dialog 
box).
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Coarse Solver
The coarse solver is preferably PARDISO or SPOOLES.

Figure 2-16: The coarse solver settings (the figure shows only the upper part of the dialog 
box).

Note: When a 3D electromagnetic application mode is the single application mode in 
the model, it automatically adjusts the default values of the solver settings described 
above to values that are suitable for the calculation. If a 3D electromagnetic 
application mode is part of a multiphysics model the default settings might not be 
properly set. In that case, make sure you adjust all settings as described in the previous 
sections. This is also necessary if you alter the application mode properties, for 
instance, from an ungauged problem to a gauged problem.

Solver Settings for Numerical Gauge Fixing in Magnetostatics
For magnetostatic problems it is possible to avoid explicit gauge fixing. Instead, the 
gauge can be fixed numerically with the SOR gauge preconditioners/smoothers. This 
is the default when you choose the Magnetostatics application mode. Typical settings 
that can be used for magnetostatic problems are as follows:

• Make sure that Gauge fixing under Physics>Properties is set to Off.

• On the General page of the Solver Parameters dialog box, select FGMRES as Linear 

system solver.
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• On the same page, select Geometric multigrid as Preconditioner.

Figure 2-17: Linear system solver and preconditioner selections (the figure shows only the 
upper part of the dialog box).
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• Click Settings and select SOR as Presmoother and SORU gauge as Postsmoother.

Figure 2-18: The presmoother and postsmoother settings (the snapshots show only the upper 
part of the dialog box).

• Finally, select GMRES as Coarse solver and turn off preconditioning for the coarse 
solver by choosing None as preconditioner.

Figure 2-19: The coarse solver and preconditioner settings (the snapshots show only the 
upper part of the dialog box).

The models “Magnetic Field of a Helmholtz Coil” on page 122 and “Integrated 
Square-Shaped Spiral Inductor” on page 141 in the AC/DC Module Model Library 
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are examples where the described approach involving SOR gauge is used. In these two 
models the entire computational domain is treated as being magnetostatic. The models 
therefore include all vector degrees of freedom in the divergence cleaning performed 
by SORU gauge; see “The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms” 
on page 530 in the COMSOL Multiphysics Reference Guide. By default, all vector 
degrees of freedom are included in the divergence cleaning. Leaving the Variables edit 
field empty for the SORU gauge postsmoother therefore gives the same result for the 
two mentioned models as entering tAxAyAz10, tAxAyAz20, and tAxAyAz21 in that 
edit field.

Note: The SOR gauge smoothers remove any nondivergence-free parts of the right-
hand side of the linear system of equations. For instance, the external current density, 
Je, appears in the right-hand side. Nondivergence-free components of Je are 
consequently removed.

Solver Settings for Ungauged Formulations
In some situations it is possible to solve a problem without any gauge fixing. The 
models “Magnetic Brake in 3D” on page 72 and “Railgun” on page 84 of the 
AC/DC Module Model Library use these special ungauged formulations. There are 
also separate entries for 3D models in the Model Navigator that have these settings as 
default, for example, Quasi-Statics, Electromagnetic>Electric and Induction Currents> 

Time-harmonic analysis, ungauged AV.

The Mesh Cases After Solving

When you have solved using automatic generation of the mesh hierarchy using the 
Refine mesh method, you can find the meshes as mesh cases on the Mesh menu. The 
finest mesh is the one that the solver used to calculate the final solution, and it shows 
how well the geometry has been resolved.

When you have solved using the refine mesh hierarchy, the Hierarchy generation method 
in the Linear Solver Settings dialog box switches to Manual. This means that if you solve 
again, the solver uses the same meshes.

If you want to use the refine mesh generation again but with different refinement 
parameters or another coarse mesh, you must change the Hierarchy generation method 
back to Refine mesh. The solver then generates another set of meshes. In the Mesh Cases 
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dialog box, you can delete the additional meshes that were used for the previous 
solution but are no longer used.

If you solve using the Lower element order first method, the solver generates the 
hierarchy on the current mesh each time you solve, so you do not have to adjust any 
solver parameters.
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U s i n g  A s s emb l i e s  i n  E l e c t r omagne t i c s  
P r ob l em s

The use of assemblies in models can simplify and improve several aspects of modeling. 
For electromagnetics applications you can use it to make devices move and rotate with 
the sliding mesh technique. The model “Generator” in the AC/DC Module Model 
Library is an example that uses this technique. Another situation when assemblies 
come in handy is when you need to introduce a discontinuity for the solution variable 
at an interface. Such interface conditions are generally called slit boundary conditions. 
For example, a distributed impedance between two conducting layers that creates a 
voltage difference between the two layers. The sliding mesh interface can also be seen 
as a slit boundary. A third example of assembly usage is when you want to mix mesh 
element types and mesh resolution, because you can mesh the two neighboring parts 
of the assembly independently. You can mix element without using assemblies as long 
as the boundary mesh elements at an interface are the same. This is true for interfaces 
between quadrilateral and triangular elements in 2D, and tetrahedral elements facing 
the triangular bases of prism elements in 3D.

Although assemblies simplifies several task in modeling, there are a few important rules 
and recommendations that need consideration, and these are covered in the following 
sections.

Assemblies and Vector Elements

If you use an application mode with vector elements it might be necessary to activate 
gauge fixing. This is the same type of gauge fixing that you need when solving 
magnetostatics problems. The property value Automatic in the Gauge fixing list 
automatically turns on gauge fixing if the model has assemblies with pairs. The only 
situation where you can turn the gauge fixing off is when the boundary meshes on each 
side of the assembly interface are identical.

For 2D problems, for which you can use direct solvers, activating gauge fixing usually 
does not cause any trouble. It is when you solve 3D problems with iterative solvers that 
you need to know wether the gauge fixing is activated or not. When gauge fixing is 
activated there is an extra solution variable, psi, added to the problem that needs the 
Vanka preconditioner/solver with psi as Vanka variable. You can find details about 
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these solver settings in “Solver Settings for Gauge-Fixed Electromagnetic Problems” 
on page 89.

The application modes in the AC/DC Module that use vector elements all solve for 
the magnetic vector potential, A.

Note: The property value Automatic in the Gauge fixing list also detects if the 
application mode needs gauge fixing even without assemblies. It does not detect 
whether the meshes at the interface are identical. In that case you must manually 
select Off in the Gauge fixing list.

Generally, avoid activating gauge fixing if it is possible. The problem is much tougher 
to solve when it is activated in terms of solution time and memory usage. There are 
techniques to create compatible (or identical) meshes, and these are briefly described 
below.

C O M P A T I B L E  M E S H E S

Use interactive meshing and mesh only the source or destination side of pair 
boundaries first. Then select both source and destination boundaries and click the Copy 

Mesh button on the Mesh toolbar. You can read more about the copy mesh feature in 
“Copying Meshes” on page 342 in the COMSOL Multiphysics User’s Guide.

Note: For a sliding mesh interface it is not possible to generate compatible meshes. A 
mesh that is compatible at a one time is probably not compatible at a later time when 
the destination side has moved slightly.

Assemblies and Weak Constraints

It might be necessary to use weak constraints to improve the accuracy at the assembly 
interface. Especially when the interface is a sliding mesh interface. Weak constraints 
also add extra complexity for the settings of the iterative solvers, so it might not be 
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possible to use them for large 3D problems. Below are a few recommendations when 
to use and how to use weak constraints for assemblies:

• If you have a transient problem with a moving assembly interface that fails to 
converge after some time, you might get better convergence if you turn on weak 
constraints.

• The recommendation is generally to mesh the destination boundary finer than the 
source boundary, but it is not as crucial when you use weak constraints compared 
to pointwise constraints.

When you turn on weak constraints, it is activated for all boundaries with constraints 
on the solution variable, and for all boundaries with coupling through assembly pairs 
(for example, identity pairs). The difference in magnitude of the Lagrange multiplier 
between the assembly pairs and other constraints may be several orders of magnitude, 
which can cause convergence problems and even a singular matrix error. If you get 
such problems, it is recommended to deactivate the weak constraints manually for all 
other constraints except the assembly pair boundaries. You do this by clearing the Use 

weak constraints check box on the Weak Constr. page in the Boundary Settings dialog 
box.
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 3
R e v i e w  o f  E l e c t r o m a g n e t i c s
This chapter contains an overview of the theory behind the AC/DC Module. It is 
intended for readers that wish to understand what goes on behind the scenes.
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Maxwe l l ’ s  Equa t i o n s

The problem of electromagnetic analysis on a macroscopic level is the problem of 
solving Maxwell’s equations subject to certain boundary conditions. Maxwell’s 
equations are a set of equations, written in differential or integral form, stating the 
relationships between the fundamental electromagnetic quantities. These quantities 
are the electric field intensity E, the electric displacement or electric flux density D, 
the magnetic field intensity H, the magnetic flux density B, the current density J, 
and the electric charge density ρ.

The equations can be formulated in differential or integral form. The differential form 
is presented here, because it leads to differential equations that the finite element 
method can handle. For general time-varying fields, Maxwell’s equations can be 
written as

The first two equations are also referred to as Maxwell-Ampère’s law and Faraday’s law, 
respectively. Equation three and four are two forms of Gauss’ law—the electric and 
magnetic form, respectively. 

Another fundamental equation is the equation of continuity, which can be written as

Out of the five equations mentioned, only three are independent. The first two 
combined with either the electric form of Gauss’ law or the equation of continuity 
form such an independent system. 

Constitutive Relations

To obtain a closed system, the equations include constitutive relations that describe the 
macroscopic properties of the medium. They are given as

∇ H× J D∂
t∂

-------+=

∇ E× B∂
t∂

-------–=

∇ D⋅ ρ=

∇ B⋅ 0=

∇ J⋅ ρ∂
t∂

------–=
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Here ε0 is the permittivity of vacuum, µ0 is the permeability of vacuum, and σ the 
electric conductivity. In the SI system, the permeability of vacuum is chosen to be  
4π·10−7 H/m. The velocity of an electromagnetic in vacuum is given as c0 and the 
permittivity of vacuum is derived from the relation

The electric polarization vector P describes how the material is polarized when an 
electric field E is present. It can be interpreted as the volume density of electric dipole 
moments. P is generally a function of E. Some materials can have a nonzero P also 
when there is no electric field present.

The magnetization vector M similarly describes how the material is magnetized when 
a magnetic field H is present. It can be interpreted as the volume density of magnetic 
dipole moments. M is generally a function of H. Permanent magnets, for instance, 
have a nonzero M also when there is no magnetic field present.

For linear materials, the polarization is directly proportional to the electric field, 
P = ε0 χe E , where χe is the electric susceptibility. Similarly in linear materials, the 
magnetization is directly proportional to the magnetic field, M = χm H , where χm is 
the magnetic susceptibility. For such materials, the constitutive relations can be 
written

The parameter εr is the relative permittivity, and µr is the relative permeability of the 
material. These are usually scalar properties but they can, for a general anisotropic 
material, be 3-by-3 tensors. The properties ε and µ (without subscripts) are the 
permittivity and permeability of the material.

G E N E R A L I Z E D  C O N S T I T U T I V E  R E L A T I O N S

Generalized forms of the constitutive relations are well suited for modeling nonlinear 
materials. The relation used for the electric fields is

D ε0E P+=
B µ0 H M+( )=

J σE=

ε0
1

c0
2µ0

---------- 8.854 10 12–  F/m 1
36π
--------- 10 9–  F/m⋅≈⋅= =

D ε0 1 χe+( )E ε0εrE εE= = =

B µ0 1 χm+( )H µ0µrH µH= = =
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The field Dr is the remanent displacement, which is the displacement when no electric 
field is present.

Similarly, a generalized form of the constitutive relation for the magnetic field is

where Br is the remanent magnetic flux density, which is the magnetic flux density 
when no magnetic field is present.

For some materials, there is a nonlinear relationship between B and H such that

The relation defining the current density is generalized by introducing an externally 
generated current Je. The resulting constitutive relation is

Potentials

Under certain circumstances it can be helpful to formulate the problems in terms of 
the electric scalar potential V and the magnetic vector potential A. They are given 
by the equalities

The defining equation for the magnetic vector potential is a direct consequence of the 
the magnetic Gauss’ law. The electric potential results from Faraday’s law.

In the magnetostatic case where there are no currents present, Maxwell-Ampère’s law 
reduces to . When this holds, it is also possible to define a magnetic scalar 
potential by the relation

Electromagnetic Energy

The electric and magnetic energies are defined as 

D ε0εrE Dr+=

B µ0µrH Br+=

B f H( )=

J σE Je
+=

B ∇ A×=

E ∇V– A∂
t∂

-------–=

∇ H× 0=

H ∇Vm–=
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The time derivatives of these expressions are the electric and magnetic power

These quantities are related to the resistive and radiative energy, or energy loss, 
through Poynting’s theorem (Ref. 3)

where V is the computation domain and S is the closed boundary of V.

The first term on the right-hand side represents the resistive losses,

which result in heat dissipation in the material. (The current density J in this 
expression is the one appearing in Maxwell-Ampère’s law.)

The second term on the right-hand side of Poynting’s theorem represents the radiative 
losses,

The quantity S = E × H is called the Poynting vector.

Under the assumption the material is linear and isotropic, it holds that

We E Dd⋅
0

D

∫⎝ ⎠
⎛ ⎞ Vd

V∫ E D∂
t∂

-------⋅ td
0

T

∫⎝ ⎠
⎛ ⎞ Vd

V∫= =

Wm H Bd⋅
0

B

∫⎝ ⎠
⎛ ⎞ Vd

V∫ H B∂
t∂

-------⋅ td
0

T

∫⎝ ⎠
⎛ ⎞ Vd

V∫= =

Pe E D∂
t∂

-------⋅ Vd
V∫=

Pm H B∂
t∂

-------⋅ Vd
V∫=

E D∂
t∂

-------⋅ H B∂
t∂

-------⋅+⎝ ⎠
⎛ ⎞ Vd

V∫– J E⋅ Vd
V∫ E H×( ) n⋅ dS

S∫°+=

Ph J E⋅ Vd
V∫=

Pr E H×( ) n⋅ dS
S∫°=

E D∂
t∂

-------⋅ εE E∂
t∂

-------⋅
t∂

∂ 1
2
---εE E⋅⎝ ⎠

⎛ ⎞= =

H B∂
t∂

-------⋅ 1
µ
---B B∂

t∂
-------⋅

t∂
∂ 1

2µ
-------B B⋅⎝ ⎠

⎛ ⎞= =
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By interchanging the order of differentiation and integration (justified by the fact that 
the volume is constant and the assumption that the fields are continuous in time), you 
get

The integrand of the left-hand side is the total electromagnetic energy density

The Quasi-Static Approximation and the Lorentz Term

A consequence of Maxwell’s equations is that changes in time of currents and charges 
are not synchronized with changes of the electromagnetic fields. The changes of the 
fields are always delayed relative to the changes of the sources, reflecting the finite 
speed of propagation of electromagnetic waves. Under the assumption that you can 
ignore this effect, it is possible to obtain the electromagnetic fields by considering 
stationary currents at every instant. This is called the quasi-static approximation. The 
approximation is valid provided that the variations in time are small and that the 
studied geometries are considerably smaller than the wavelength (Ref. 1).

The quasi-static approximation implies that the equation of continuity can be written 
as

and that the time derivative of the electric displacement ∂D / ∂t can be disregarded in 
Maxwell-Ampère’s law.

There are also effects of the motion of the geometries. Consider a geometry moving 
with velocity v relative to the reference system. The force F per charge q is then given 
by the Lorentz force equation 

This means that to an observer traveling with the geometry, the force on q can be 
interpreted as caused by an electric field . In a conductive medium, 
the observer accordingly sees the current density 

t∂
∂ 1

2
---εE E⋅ 1

2µ
-------B B⋅+⎝ ⎠

⎛ ⎞ Vd
V∫– J E⋅ Vd

V∫ E H×( ) n⋅ dS
S∫°+=

w we wm+=
1
2
---εE E⋅ 1

2µ
-------B B⋅+=

∇ J⋅ 0=

F q⁄ E v B×+=

E' E v B×+=

J σ E v B×+( ) Je
+=
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where Je is an externally generated current density. 

Maxwell-Ampère’s law for quasi-static systems is consequently extended to

whereas Faraday’s law remains unchanged.

Material Properties

Until now, there has only been a formal introduction of the constitutive relations. 
These seemingly simple relations can be quite complicated at times. There are four 
main groups of materials where they require some consideration. A given material can 
belong to one or more of these groups. The groups are:

• Inhomogeneous materials

• Anisotropic materials

• Nonlinear materials

• Dispersive materials

The least complicated of the groups above is that of the inhomogeneous materials. An 
inhomogeneous medium is one where the constitutive parameters vary with the space 
coordinates, so that different field properties prevail at different parts of the material 
structure.

For anisotropic materials, the field relations at any point are different for different 
directions of propagation. This means that a 3-by-3 tensor is required to properly 
define the constitutive relations. If this tensor is symmetric, the material is often 
referred to as reciprocal. In these cases, the coordinate system can be rotated in such 
a way that a diagonal matrix is obtained. If two of the diagonal entries are equal, the 
material is uniaxially anisotropic. If none of the elements have the same value, the 
material is biaxially anisotropic (Ref. 2). An example where anisotropic parameters are 
used is the conductivity when modeling solenoids.

Nonlinearity is the effect of variations in permittivity or permeability with the intensity 
of the electromagnetic field. This also includes hysteresis effects, where not only the 
current field intensities influence the physical properties of the material, but also the 
history of the field distribution.

Finally, dispersion describes changes in the velocity of the wave with wavelength. In 
the frequency domain, dispersion is expressed by a frequency dependence in the 
constitutive laws.

∇ H× σ E v B×+( ) Je
+=
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Boundary and Interface Conditions

To get a full description of an electromagnetic problem, you also need to specify 
boundary conditions at material interfaces and physical boundaries. At interfaces 
between two media, the boundary conditions can be expressed mathematically as

where ρs and Js denote surface charge density and surface current density, 
respectively, and n2 is the outward normal from medium 2. Of these four conditions, 
only two are independent. One of the first and the fourth equations, together with one 
of the second and third equations, form a set of two independent conditions. 

A consequence of the above is the interface condition for the current density,

I N T E R F A C E  B E T W E E N  A  D I E L E C T R I C  A N D  A  P E R F E C T  C O N D U C T O R

A perfect conductor has infinite electric conductivity and thus no internal electric field. 
Otherwise, it would produce an infinite current density according to the third 
fundamental constitutive relation. At an interface between a dielectric and a perfect 
conductor, the boundary conditions for the E and D fields are simplified. If, say, 
subscript 1 corresponds to the perfect conductor, then D1 = 0 and E1 = 0 in the 
relations above. For the general time-varying case, it holds that B1 = 0 and H1 = 0 as 
well (as a consequence of Maxwell’s equations). What remains is the following set of 
boundary conditions for time-varying fields in the dielectric medium.

Phasors

Whenever a problem is time-harmonic the fields can be written in the form

n2 E1 E2–( )× 0=

n2 D1 D2–( )⋅ ρs=

n2 H1 H2–( )× Js=

n2 B1 B2–( )⋅ 0=

n2 J1 J2–( )⋅
ρs∂
t∂

--------–=

n– 2 E2× 0=

n– 2 H2× Js=

n– 2 D2⋅ ρs=

n– 2 B2⋅ 0=
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Instead of using a cosine function for the time dependence, it is more convenient to 
use an exponential function, by writing the field as

The field is a phasor, which contains amplitude and phase information of the field 
but is independent of t. One thing that makes the use of phasors suitable is that a time 
derivative corresponds to a multiplication by jω,

This means that an equation for the phasor can be derived from a time-dependent 
equation by replacing the time derivatives by a factor jω. All time-harmonic equations 
in the AC/DC Module are expressed as equations for the phasors. (The tilde is 
dropped from the variable denoting the phasor.)

When postprocessing the solution of a time-harmonic equation, it is important to 
remember that the field that has been calculated is a phasor and not a physical field. 
For example, all plot functions visualize  by default, which is E at time t = 0. 
To obtain the solution at a given time, you can specify a phase factor in all 
postprocessing dialog boxes and in the corresponding functions. For more details 
about phase factors, see “The Phasor Variable” on page 177 in the COMSOL 
Multiphysics User’s Guide.

E r t,( ) Ê r( ) ωt φ+( )cos=

E r t,( ) Ê r( ) ωt φ+( )cos Re Ê r( )ejφejωt( ) Re Ẽ r( )ejωt( )= = =

Ẽ r( )

E∂
t∂

------- Re jωẼ r( )ejωt( )=

Re Ẽ r( )( )
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E l e c t r omagne t i c  F o r c e s

There are several ways to compute electromagnetic forces in COMSOL Multiphysics. 
In the most general case, the calculation of electromagnetic forces involves the 
computation of volume forces acting on a body, and of surface forces originating from 
jumps in the electromagnetic fields on the boundaries. The volume and surface forces 
are derived from a general stress tensor that includes electromagnetic terms.

The derivation of the expressions for the electromagnetic stress tensor utilizes 
thermodynamic potential (energy) principles (Ref. 3 and Ref. 4). The distribution of 
electromagnetic forces in a system depends on the material. Accordingly, the 
techniques and expressions used when computing electromagnetic forces are different 
for different types of materials.

Another technique for calculating forces using the method of virtual work is described 
in the section “Electromagnetic Energy and Virtual Work” on page 119.

The modeling of torque and forces with the AC/DC Module is described in the 
section “Force and Torque Computations” on page 39.

Overview of Forces in Continuum Mechanics

Cauchy’s equation of continuum mechanics reads

where ρ is the density, r denotes the coordinates of a material point, T is the stress 
tensor, and fext is an external volume force such as gravity (fext = ρg). This is the 
equation solved in the structural mechanics application modes for the special case of a 
linear elastic material, neglecting the electromagnetic contributions.

In the stationary case there is no acceleration, and the equation representing the force 
balance is

The stress tensor must be continuous across a stationary boundary between two 
materials. This corresponds to the equation

ρ
t2

2

d

d r ∇ T fext+⋅=

0 ∇ T fext+⋅=
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where T1 and T2 represent the stress tensor in Materials 1 and 2, respectively, and n1 
is the normal pointing out from the domain containing Material 1. This relation gives 
rise to a surface force acting on the boundary between Material 1 and 2.

In certain cases, the stress tensor T can be divided into one part that depends on the 
electromagnetic field quantities and one part that is the mechanical stress tensor,

For the special case of an elastic body, the mechanical stress tensor is proportional only 
to the strain and the temperature gradient. The exact nature of this split of the stress 
tensor into an electromagnetic and a mechanical part depends on the material model, 
if it can be made at all. For more information on the mechanical stress tensor for elastic 
materials, see the documentation on the application modes for structural mechanics, 
for example, the “Structural Mechanics” chapter on page 195 in the COMSOL 
Multiphysics Modeling Guide.

It is sometimes convenient to use a volume force instead of the stress tensor. This force 
is obtained from the relation

This changes the force balance equation to

or, as stated in the structural mechanics application modes,

n1 T2 T1–( ) 0=

Material 1

Material 2

n1

T TEM σM+=

fem ∇ TEM⋅=

0 ∇ σM⋅ fem fext+ +=

∇– σM⋅ f    where    f fem fext+==
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Forces on an Elastic Solid Surrounded by Vacuum or Air

Consider now a solid (Material 1) surrounded by vacuum (Material 2). It is natural to 
associate the surface force on the boundary between the materials with the solid. Note 
that in many applications air can be approximated by vacuum.

In practice, the equation for the force balance also needs to include an external 
boundary force gext. It is nonzero on those parts of the boundary where it is necessary 
to compensate for the contributions to the stress tensor that you are not interested in 
or do not have enough information on. These contributions come from the influence 
of the adjacent domains. By approximating the surroundings by vacuum or air, the 
influence of these boundaries and their adjacent domains (that are not part of our 
model) on the electromagnetic fields are neglected.

On the boundary, the following equations apply:

The external boundary force gext can represent the reaction force from another body 
that the solid is attached to.

The equations for the balance of forces on the solid now become

For computing the total force F on the solid these equations need to be integrated 
over the entire solid and the solid/vacuum boundary

Now, according to Gauss’ theorem

This means that the external force

n1 T̃2 T1–( ) 0=

n1T̃2 n1T2 gext+=

∇ T1 fext+⋅ 0=

n1 T2 T1–( ) gext+ 0=

∇ T1 fext+⋅( ) Vd
Ω1

∫ n1 T2 T1–( ) gext+( ) Sd
Ω1∂
∫°+ 0=

∇ T1⋅ Vd
Ω1

∫ n1T1 Sd
Ω1∂
∫°– 0=
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is needed to balance the term for the boundary integral of the stress tensor in the 
surrounding vacuum

to keep the solid stationary. That is

If the external forces are suddenly removed, the solid is no longer stationary, but F 
causes the solid to begin to move with an initial acceleration according to

where m is the total mass and a is the acceleration of the solid. 

To summarize, the total force, F, is computed as a boundary integral of the stress 
tensor in vacuum on the outside of the solid. Note that to obtain this result, the 
contribution from the air pressure gradient has been neglected. This is equivalent of 
assuming that . A more detailed treatment shows that the pressure gradient 
contributes with a lifting (buoyancy) force on the solid.

Torque

The torque in the case of the previous section is given by

where rO is a point on the axis of rotation. This follows from a derivation similar to 
the one made for forces.

Forces in Stationary Fields

The electromagnetic fields are stationary if

Fext fext Vd
Ω1

∫ gext Sd
Ω1∂
∫°+=

F n1T2 Sd
Ω1∂
∫°=

Fext F+ 0=

ma ρd2r

dt2
--------- Vd

Ω1

∫ F= =

∇ T2⋅ 0=

MO r rO–( ) n1T2( )× Sd
Ω1∂
∫°=
E L E C T R O M A G N E T I C  F O R C E S  |  113



114 |  C H A P T E R
that is, if the fields vary so slowly that you can neglect the contributions from induced 
currents and displacement currents.

Also assume that the objects modeled are not moving

so that there is no contributions from Lorentz forces. These are treated later on.

T H E  E L E C T R O M A G N E T I C  S T R E S S  TE N S O R

The expressions for the stress tensor in a general electromagnetic context stems from 
a fusion of material theory, thermodynamics, continuum mechanics, and 
electromagnetic field theory. With the introduction of thermodynamic potentials for 
mechanical, thermal, and electromagnetic effects, explicit expressions for the stress 
tensor can be derived in a convenient way by forming the formal derivatives with 
respect to the different physical fields (Ref. 3 and Ref. 4). Alternative derivations can 
be made for vacuum (Ref. 5) but these cannot easily be generalized to polarized and 
magnetized materials.

Air and Vacuum
For air, the stress tensor is

where p is the air pressure, I is the identity 3x3 tensor (or matrix), and E and B are 
3x1 vectors. In this expression of the stress tensor, air is considered to be 
nonpolarizable and nonmagnetizable. When air is approximated by vacuum, p = 0. 
This expression, with p = 0, of the stress tensor is also known as the Maxwell stress 
tensor.

Using the fact that, for air, D = ε0E and B = µ0H the expression for the stress tensor 
can be written as

t∂
∂B 0=

t∂
∂D 0=

v 0=

T2 pI–
ε0
2
-----E E 1

2µ0
---------B B⋅+⋅⎝ ⎠

⎛ ⎞ I– ε0EET 1
µ0
------BBT

+ +=

T2 pI–
1
2
---E D 1

2
---H B⋅+⋅⎝ ⎠

⎛ ⎞ I– EDT HBT
+ +=
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The equation for the balance of forces becomes

Maxwell’s equations in free space give that the contribution of the electromagnetic 
part of the stress tensor is zero, and the resulting expression is

Thus, using the same terminology as earlier, fem = 0 for air, with σM = −pI. Note that 
in the derivation of the total force on an elastic solid surrounded by vacuum or air, the 
approximation has been used.

When operating with the divergence operator on the stress tensor, the relation

is useful (and similarly for B). From the right-hand side it is clear (using Maxwell’s 
equations) that this is zero for stationary fields in free space.

Consider again the case of a solid surrounded by air. To compute the total force, the 
projection of the stress tensor on the outside of the solid surface is needed,

where n1 is the surface normal, a 1-by-3 vector, pointing out from the solid. This 
expression can be used directly in the boundary integral of the stress tensor for 
computing the total force F on the solid.

See the model “Permanent Magnet” on page 21 in AC/DC Module Model Library 
for an example of how to apply the stress tensor in air for computing the total force 
and torque on a magnetizable rod close to a permanent magnet.

Elastic Pure Conductor
A material that is nonpolarizable and nonmagnetizable (P = 0 and M = 0) is called a 
pure conductor. Note that this is not necessarily equivalent to a perfect conductor, for 
which E = 0, but merely a restriction on the dielectric and magnetic properties of the 
material. The stress tensor becomes identical to the one for air, except for −pI being 
replaced by the purely mechanical stress tensor σM

0 ∇ pI–
1
2
---E D 1

2
---H B⋅+⋅⎝ ⎠

⎛ ⎞ I– EDT HBT
+ +⎝ ⎠

⎛ ⎞ fext+⋅=

0 p∇– fext+=

p∇ 0=

∇ EET 1
2
---E EI⋅–⎝ ⎠

⎛ ⎞⋅ E ∇ E⋅( ) E ∇ E×( )×–=

n1T2 pn1–
1
2
---E D 1

2
---H B⋅+⋅⎝ ⎠

⎛ ⎞ n1– n1 E⋅( )DT n1 H⋅( )BT
+ +=
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where D = ε0E and B = µ0H.

The situation is slightly different from the case of air because there can be currents and 
volume charges in the conductor. The current density is

and the volume charge density

The equation for the balance of forces now becomes

and this means that

See the model “Electromagnetic Forces on Parallel Current-Carrying Wires” on page 
8 in the AC/DC Module Model Library for an example of how to compute the total 
force on two parallel wires either by integrating the volume force or by integrating the 
stress tensor on the surrounding surface.

General Elastic Material
For an elastic solid, in the general case of a material that is both dielectric and magnetic 
(nonzero P and M), the following equation describes the stress tensor:

where in σ(E, B) the dependence of E and B has not been separated out. Thus σ is 
not a purely mechanical stress tensor in this general case. Different material models 
give different appearances of σ(E, B). The electromagnetic contributions to σ(E, B) 
typically represent pyroelectric, pyromagnetic, piezoelectric, piezomagnetic, dielectric, 
and magnetization effects. The expression for the stress tensor in vacuum, air, and pure 
conductors can be derived from this general expression by setting M = P = 0.

T1 σM
1
2
---E D 1

2
---H B⋅+⋅⎝ ⎠

⎛ ⎞ I– EDT HBT
+ +=

J ∇ H× 1
µ0
------∇ B×= =

ρ ∇ D⋅ ε0∇ E⋅= =

0 ∇ σM⋅ ρE J B fext+×++=

fem ρE J B×+=

T1 σ E B,( )
ε0
2
-----E E 1

2µ0
---------B B M B⋅–⋅+⋅⎝ ⎠

⎛ ⎞ I– ε0EET 1
µ0
------BBT

EPT MBT
–

+ +

+

=
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Note that T1 must be symmetric. The terms EPT and −MBT are symmetric in the case 
of a linear dielectric and magnetic material because

Here, the magnetic susceptibility χB differs slightly from the classical χm. The other 
explicit terms are all symmetric, as is σ(E, B). In the general case this imposes 
constraints on the properties of σ(E, B). For a nonlinear material σ(E, B) might need 
to include terms such as −EPT or +MBT to compensate for asymmetric EPT or 
−MBT.

To instantiate the stress tensor for the general elastic case you need an explicit material 
model including the magnetization and polarization effects. Such material models can 
easily be found for piezoelectric materials (Ref. 4).

Forces in a Moving Body

Computing forces in moving objects is important, especially for electric motors and 
other moving electromagnetic devices. When performing the computations in a 
coordinate system that moves with the object, the electromagnetic fields are 
transformed. The most well-known relation for moving objects is the one for the 
electric field. The transformed quantity of the electric field is called the electromotive 
intensity and is described below.

F I E L D  TR A N S F O R M A T I O N S  A N D  G A L I L E I  I N V A R I A N T S

Assume that the object modeled is moving with a constant velocity,

The equations now take on a slightly different form that includes the Galilei invariant 
versions of the electromagnetic fields. The term Galilei invariant is used due to the fact 
that they remain unchanged after a coordinate transformation of the type

In continuum mechanics, this transformation is commonly referred to as a Galilei 
transformation.

The Galilei invariant fields of interest are

P ε0χeE=

M χBB=

v v0=

r' r v0t+=
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As mentioned earlier the electromotive intensity is the most important of these 
invariants. The Lorentz magnetization is significant only in materials for which neither 
the magnetization M nor the polarization P is negligible. Such materials are rare in 
practical applications. The same holds for the magnetization term of the 
magnetomotive intensity. Notice that the term ε0v × E is very small compared to B/
µ0 except for cases when v and E are both very large. Thus in many practical cases you 
can neglect this term.

Air and Vacuum
The stress tensor in the surrounding air or vacuum on the outside of a moving object is

Notice that there is an additional term in this expression compared to the stationary 
case.

Elastic Pure Conductor
The stress tensor in a moving elastic pure conductor is

where D = ε0E and B = µ0H.

To get the equation for the balance of forces you need to compute the divergence of 
this expression. Doing this requires an introduction of an extra term in Cauchy’s 
equation corresponding to an additional electromagnetic contribution to the linear 
momentum. Cauchy’s equation with this extra term reads

Ẽ E v B      (Electromotive intensity)×+=

J̃ J ρv            (Free conduction current density)–=

P̃ P∂
t∂

------- v ∇ P⋅( ) ∇ v P×( )    (Polarization flux derivative)×–+=

M̃ M v P×      (Lorentz magnetization)+=

H̃ B
µ0
------ ε0v E M̃–×     (Magnetomotive intensity)–=

T2 pI–
1
2
---E D 1

2
---H B⋅+⋅⎝ ⎠

⎛ ⎞ I– EDT HBT D B×( )vT
+ + +=

T1 σM
1
2
---E D 1

2
---H B⋅+⋅⎝ ⎠

⎛ ⎞ I– EDT HBT D B×( )vT
+ + +=

ρ
t2

2

d

d r D B×+ ∇ T fext+⋅=
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The extra term is canceled out by the additional term in the stress tensor, and the final 
result is

For the case of no acceleration, with the explicit appearance of the transformed 
quantities,

The terms containing v × B cancel out, which yields the following equation:

which is the same expression as for the stationary case.

General Elastic Material
The stress tensor for a moving general elastic material is

Notice that the magnetization M and the polarization P occur explicitly in this 
expression.

To instantiate the stress tensor for the general elastic case you need a material model 
explicitly including the magnetization and polarization effects as mentioned earlier in 
this section.

Electromagnetic Energy and Virtual Work

Another technique for computing forces is the one of deriving the electromagnetic 
energy of the system and computing the force by studying the effect of a small 
displacement. This is known as the method of virtual work or the principle of virtual 
displacement.

The method of virtual work is used for the electric energy and magnetic energy 
separately for computing the total electric or magnetic force as follows.

ρ
t2

2

d

d r ∇ σM⋅ ρẼ J̃ B fext+×++=

0 ∇ σM⋅ ρ E v B×+( ) J ρv–( ) B fext+×++=

0 ∇ σM⋅ ρE J B fext+×++=

T1 σ Ẽ B,( )
ε0
2
-----E E 1

2µ0
---------B B M̃ B⋅–⋅+⋅⎝ ⎠

⎛ ⎞ I– ε0EET 1
µ0
------BBT

ẼPT M̃BT
– ε0 E B×( )vT

+ +

+ +

=
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M A G N E T I C  F O R C E  A N D  TO R Q U E

The method of virtual work utilizes the fact that under constant magnetic flux 
conditions (Ref. 1), the total magnetic force on a system is computed as

If the system is constrained to rotate about an axis the torque is computed as

where is the rotational angle about the axis.

Under the condition of constant currents, the total force and torque are computed in 
the same way but with opposite signs,

E L E C T R I C  F O R C E  A N D  TO R Q U E

Under the condition of constant charges, the total electric force and torque on a 
system are computed as

Under the condition of constant potentials, the total electric force and torque on a 
system are computed as

The functions cemforce and cemtorque in the AC/DC Module use the technique of 
virtual displacement. See the Function Reference in the AC/DC Module Reference 
Guide for details.

FΦ Wm∇–=

TΦ ϕ∂
∂Wm–=

ϕ

FI Wm∇=

TI ϕ∂
∂Wm=

FQ We∇–=

TQ ϕ∂
∂We–=

FV We∇=

TV ϕ∂
∂We=
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S p e c i a l  C a l c u l a t i o n s

Mapped Infinite Elements

In general, infinite elements are used at outer boundaries to model open boundaries, 
extending toward infinity. With proper settings infinite elements techniques enable 
termination of the simulations volume closer to the active regions (regions with 
sources), drastically reducing the amount of degrees of freedoms.

There are several different types of infinite elements, and the one used in the AC/DC 
Module is taken from Ref. 6. This technique is usually referred to as mapped infinite 
elements in the literature because it uses coordinate mapping of a region so its outer 
boundary is located at infinity. The principle can be explained in a one-coordinate 
system, where this coordinate represents Cartesian, cylindrical, or spherical 
coordinates. Mapping multiple coordinate directions (for Cartesian and cylindrical 
systems only) is just the sum of the individual coordinate mappings.

Figure 3-1: The coordinate transform used for the mapped infinite element technique. The 
meaning of the different variables are explained in the text.

Figure 3-1 shows a simple view of an arbitrary coordinate system. The coordinate r is 
the unscaled coordinate that COMSOL Multiphysics draw the geometry in (reference 
system). The position r0 is the new origin from where the coordinates are scaled, rmin 
is the coordinate from this new origin to the beginning of the scaled region, and dr is 
the unscaled length of the scaled region. The scaled coordinate, rs, approaches infinity 
when r approaches r0 + rmin + dr. The true coordinate that the PDEs are formulated 
in is given by

where rs comes from the formula

r0

r

rmin

rs

unscaled regionunscaled region scaled region

dr

r' r0 rs+=
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Lumped Parameter Conversion

When the impedance matrix, Z, or the admittance matrix, Y, is available it is possible 
to calculate all other types of lumped parameter matrices from the relations below.

where L is the inductance, C is the capacitance, R is the resistance, and G is the 
conductance. S is the S-parameter. The relations also include the following matrices 

where Z0 is the characteristic impedance.

rs rmin
dr

rmin dr rminsgn r–+
--------------------------------------------------------=

S Gref E Zref∗ Y⋅( ) E Zref Y⋅+( ) 1– Gref
1–⋅ ⋅–⋅=

Z Y 1–
=

L Im Z( ) ω⁄=

C Im Y( ) ω⁄=

R Re Z( )=

G Re Y( )=

E

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=

Zref E Z0⋅=

Gref E 1
2 Re Z0( )
------------------------------⋅=
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E l e c t r omagne t i c  Quan t i t i e s

The table below shows the symbol and SI unit for most of the physical quantities that 
appear in the AC/DC Module. Although COMSOL Multiphysics supports other unit 
systems, the equations in the AC/DC Module are written for SI units. The default 
values for the permittivity of vacuum, ε0 = 8.854187817·10−12 F/m, and for the 
permeability of vacuum, µ0 = 4π·10−7 H/m, require that you provide all other 
quantities in SI units and that you use meter for the length scale of the geometry. If 
you draw the geometry using another length scale, it becomes necessary to change the 
numerical values for the physical quantities accordingly. For example, if you draw the 
geometry using µm as the length scale, you need to have ε0 = 8.854187817·10−18 F/
µm and µ0 = 4π·10−13 H/µm.

TABLE 3-1:  ELECTROMAGNETIC QUANTITIES

QUANTITY SYMBOL UNIT ABBREVIATION

Angular frequency ω radian/second rad/s

Attenuation constant α meter-1 m-1

Capacitance C farad F

Charge q coulomb C

Charge density (surface) ρs coulomb/meter2 C/m2

Charge density (volume) ρ coulomb/meter3 C/m3

Current I ampere A

Current density (surface) Js ampere/meter A/m

Current density (volume) J ampere/meter2 A/m2

Electric displacement D coulomb/meter2 C/m2

Electric field E volt/meter V/m

Electric potential V volt V

Electric susceptibility χe (dimensionless) −

Electric conductivity σ siemens/meter S/m

Energy density W joule/meter3 J/m3

Force F newton N

Frequency ν hertz Hz

Impedance Z, η ohm Ω

Inductance L henry H
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Magnetic field H ampere/meter A/m

Magnetic flux Φ weber Wb

Magnetic flux density B tesla T

Magnetic potential (scalar) Vm ampere A

Magnetic potential (vector) A weber/meter Wb/m

Magnetic susceptibility χm (dimensionless) −

Magnetization M ampere/meter A/m

Permeability µ henry/meter H/m

Permittivity ε farad/meter F/m

Polarization P coulomb/meter2 C/m2

Poynting vector S watt/meter2 W/m2

Propagation constant β radian/meter rad/m

Reactance X ohm Ω

Relative permeability µr (dimensionless) −

Relative permittivity εr (dimensionless) −

Resistance R ohm Ω

Resistive loss Q watt/meter3 W/m3

Torque T newton-meter N·m
Velocity v meter/second m/s

Wavelength λ meter m

Wave number k radian/meter rad/m

TABLE 3-1:  ELECTROMAGNETIC QUANTITIES

QUANTITY SYMBOL UNIT ABBREVIATION
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 4
T h e  A p p l i c a t i o n  M o d e s
The purpose of this chapter is to give the user a detailed summary of what the 
application modes contains. For example, what each boundary condition does and 
what the application mode properties means.
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Th e  App l i c a t i o n  Mode Fo rmu l a t i o n s

The application modes in the AC/DC Module form a complete set of simulation tools 
for electromagnetic field simulations. To select the right application mode for 
describing the real-life physics you need to consider the geometric properties and the 
time variations of the fields.

The application modes in the AC/DC Module are listed below with the physical 
quantity solved for and the standard abbreviation that is used for the application modes 
in COMSOL Multiphysics. The physical quantities used are

• the magnetic field H

• the electric scalar potential V

• the magnetic vector potential A

• the magnetic scalar potential Vm

You can also use the application modes with the COMSOL Script or MATLAB. See 
“Programming Reference” on page 59 in the AC/DC Module Reference Guide for 
details.

Application Mode Guide

Table 4-1 on page 129 lists the available application modes in the AC/DC Module. 
For a descriptive illustration and more details on each of these modes, see the 
corresponding section in the table’s Page column.

In the Name column you find the default name that is given to the application mode. 
This name appears as a label on the application mode when you use it and is of special 
importance when performing multiphysics simulations in order to distinguish between 
different application modes in the model. The variables defined by the application 
modes get an underscore plus the application mode name appended to their names.

The Dependent Variables column contains the variables that the PDEs are formulated 
for. For most 2D modes, the PDEs solved in the simulations are formulated for the 
components that are perpendicular to the modeling plane. For axisymmetric 
simulations, COMSOL Multiphysics makes a variable transformation to avoid 
singularities at the rotation axis.
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The Field Components columns list the nonzero field components. In the application 
modes using Cartesian coordinates, the components are indexed by x, y, or z; for 
cylindrical coordinates, r, , or z are used.

Finally, the Analysis Capabilities columns indicate the analysis types that the application 
mode supports.

TABLE 4-1:  AC/DC MODULE APPLICATION MODES

APPLICATION MODE PAGE NAME DEPENDENT 
VARIABLES

FIELD COMPONENTS ANALYSIS 
CAPABILITIES

M
A

G
N

E
T

IC
 F

IE
L

D

E
L

E
C

T
R

IC
 F

IE
L

D

M
A

G
N

E
T

IC
 P

O
T

E
N

T
IA

L

C
U

R
R

E
N

T
 D

E
N

S
IT

Y

S
T

A
T

IC

T
R

A
N

S
IE

N
T

T
IM

E
-H

A
R

M
O

N
IC

ELECTROSTATICS 151

Conductive Media 
DC

134 emdc V x 
y 
z

x 
y 
z

√

Shell, Conductive 
Media DC

139 emdcsh V x 
y 
z

x 
y 
z

√

Electrostatics 140 emes V x 
y 
z

√

Electrostatics, 
Generalized

145 emqv V x 
y 
z

x 
y 
z

√

MAGNETOSTATICS AND 
QUASI-STATICS

151

3D Quasi-Statics, 
Electromagnetic

154 emqav V, A x 
y 
z

x 
y 
z

x 
y 
z

x 
y 
z

√

3D Quasi-Statics, 
Magnetic

154 emqa A x 
y 
z

x 
y 
z

x 
y 
z

x 
y 
z

√ √

3D Magnetostatics 154 emqa, 
emqav

V, A x 
y 
z

x 
y 
z

x 
y 
z

x 
y 
z

√

ϕ
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3D Quasi-Statics, 
Electric

154 emqvw V x 
y 
z

x 
y 
z

√ √

Perpendicular 
Induction Currents, 
Vector Potential

166 emqa Az x 
y

z z z √ √ √

Azimuthal Induction 
Currents, Vector 
Potentials

171 emqa r 
z

√ √ √

In-plane Electric and 
Induction Currents, 
Potentials

154 emqap V, A z x 
y

x 
y

x 
y

√ √

In-plane Induction 
Currents, Potentials

154 emqap A z x 
y

x 
y

x 
y

√ √ √

Meridional Electric 
and Induction 
Currents, Potentials

154 emqap V, A r 
z

r 
z

r 
z

√ √

Meridional Induction 
Currents, Potentials

154 emqap A r 
z

r 
z

r 
z

√ √ √

In-plane Induction 
Currents, Magnetic 
Field

174 emqh Hz z x 
y

x 
y

√ √ √

Meridional Induction 
Currents, Magnetic 
Field

178 emqh r 
z

r 
z

√ √ √

In-Plane Electric 
Currents

154 emqvw V x 
y

x 
y

√ √

TABLE 4-1:  AC/DC MODULE APPLICATION MODES

APPLICATION MODE PAGE NAME DEPENDENT 
VARIABLES

FIELD COMPONENTS ANALYSIS 
CAPABILITIES
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Aϕ r⁄ ϕ ϕ ϕ

ϕ

ϕ

Hϕ r⁄ ϕ
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To carry out different kinds of simulations for a given set of parameters in an 
application mode, you only have to change the solver type or specify the analysis type, 
which is an application mode property. The concept of application mode properties is 
introduced for setting up the coefficients in the underlying equations in a way that is 
consistent with the analysis carried out. The available analysis types are static, 
transient, and time-harmonic. Not all analysis types are available in all application 
modes.

You select the application mode from the Model Navigator when starting a new model. 
You can also add application modes to an existing model to create a multiphysics 
model.

When using the axisymmetric modes it is important to note that the horizontal axis 
represents the r direction and the vertical axis the z direction, and that you must create 
the geometry in the right half-plane, that is, for positive r only.

You specify all scalar properties that are specific to the application mode in the 
Application Scalar Variables dialog box. Their default values are either physical constants 
or arbitrary values in a value range that is commonly used for modeling, for example, 
the frequency 50 Hz for quasi-static modes.

Enter the application-specific domain properties in the Subdomain Settings dialog box. 
It is possible to define subdomain parameters for problems with regions of different 
material properties. Some of the domain parameters can either be a scalar or a matrix 
depending on if the material is isotropic or anisotropic.

Meridional Electric 
Currents

154 emqvw V r 
z

r 
z

√ √

Magnetostatics, No 
Currents

181 emnc Vm x 
y 
z

√

TABLE 4-1:  AC/DC MODULE APPLICATION MODES

APPLICATION MODE PAGE NAME DEPENDENT 
VARIABLES

FIELD COMPONENTS ANALYSIS 
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The Boundary Settings dialog box also adapts to the current application mode and lets 
you select application-specific boundary conditions. A certain boundary type might 
require one or several fields to be specified, while others generate the boundary 
conditions without user-specified fields. 

The Edge Settings and Point Settings dialog boxes similarly let you specify 
application-specific conditions on edges and points.

Finally, use the Plot Parameters, Cross-Section Plot Parameters, and Domain Plot 

Parameters dialog boxes to visualize the relevant physical variables for all application 
modes in the model. The nonzero components of the electromagnetic vector fields 
contain the name of the coordinate; for example, Aphi is the component of the 
magnetic vector potential.

The remainder of this chapter contains all the details necessary to get full insight into 
the different application modes, that is, the physical assumptions and mathematical 
considerations they are based on and all the functionality that is available. Each section 
describing a particular mode is divided into the following sections:

In the PDE Formulation section, the equation or equations that are solved in the 
application mode are derived.

In the Application Mode Properties section you find properties that are specific for the 
application mode. You can use these properties to, for example, select the analysis type.

The Application Scalar Variables section lists the parameters that are specific for the 
application mode. Their default values are either physical constants or arbitrary values 
in a value range that is commonly used for modeling, for example, the frequency 50 
Hz for quasi-static modes.

The Boundary and Interface Conditions section contains the available boundary 
conditions and explanations of their physical interpretation. 

In the Line Sources and Point Sources sections you find the available settings on edges 
and points, respectively.

Information about the Application Mode Variables can be found in Chapter 2, “The 
Application Modes,” in the AC/DC Module Reference Guide. That section lists all 
variables that are available in postprocessing and when formulating the equations. You 
can use any function of these variables when postprocessing the result of the analysis. 
It is also possible to use these variables in the expressions for the physical properties in 
the equations.

ϕ
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M A T E R I A L  L I B R A R Y

All application modes in the AC/DC Module support the use of the COMSOL 
Multiphysics material libraries. The electromagnetic material properties that you can 
store in the material databases are:

• The electric conductivity and resistivity.

• The relative permittivity

• The relative permeability

• Nonlinear BH-curves.

• The refractive index

In addition, the AC/DC Module provides a special AC/DC Material Properties 
library, which contains electromagnetic and other material properties for materials 
such as soft iron, samarium-cobalt alloy, and graphite. Some properties depend on the 
magnetic flux density, location, or temperature. An additional tabbed page for, Electric 

(AC/DC), appears in the Materials/Coefficients Library dialog box. It can contain, 
depending on the material, the following additional properties:

• Remanent flux density

• Reference temperature

• Temperature coefficient

• Nonlinear BH-curves

• Resistivity at reference temperature

For an example of a model using these properties to model samarium cobalt magnets 
and soft iron with a nonlinear B-H curve, see “Generator in 2D” on page 39 in the 
AC/DC Module Model Library.

See “Using the Materials/Coefficients Library” on page 223 in the COMSOL 
Multiphysics User’s Guide for details about the material and coefficients libraries.
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E l e c t r o s t a t i c  F i e l d s

Modeling of static electric fields is carried out using the electric potential V. By 
combining the definition of the potential with Gauss’ law and the equation of 
continuity, you can derive the classical Poisson’s equation.

Under static conditions, the electric potential V is defined by the equivalence

Using this together with the constitutive relation D = ε0E + P between D and E, you 
can rewrite Gauss’ law as Poisson’s equation

This equation holds for nonconducting media and is used in the Electrostatics 
application mode. When handling conducting media, the equation of continuity is 
considered. In a stationary coordinate system, the point form of Ohm’s law states that

where Je is an externally generated current density. The static form of the equation of 
continuity then gives us

To handle current sources the equation can be generalized to

This equation forms the basis for the Conductive Media DC application mode.

Conductive Media DC Application Mode

The Conductive Media DC application mode is available for 3D, 2D in-plane, and 2D 
axisymmetric models.

P D E  F O R M U L A T I O N

In the Conductive Media DC application mode the equation

E V∇–=

∇– ε0 V∇ P–( )⋅ ρ=

J σE Je
+=

∇ J⋅ ∇– σ V∇ Je
–( )⋅ 0= =

∇– σ V∇ Je
–( )⋅ Qj=

∇– σ V∇ Je
–( )⋅ Qj=
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is solved.

The in-plane Conductive Media DC application mode assumes that your model has 
a symmetry where the electric potential varies only in the x and y directions and is 
constant in the z direction. This implies that the electric field E is tangential to the x-y 
plane. The application mode solves the following equation where d is the thickness in 
the z direction.

The axisymmetric Conductive Media DC application mode is useful in the situation 
where the fields and the geometry are axially symmetric. In this case the electric 
potential is constant in the direction, which implies that the electric field is tangential 
to the rz-plane.

Writing the equation in cylindrical coordinates and multiplying it by r to avoid 
singularities at r = 0, the equation becomes

Specifying the Conductivity
You can provide the conductivity using two different types of conductivity relations:

• The conductivity, either as an isotropic conductivity (a scalar number or expression) 
or as an anisotropic conductivity, using several components of a conductivity tensor 
to define an anisotropic material. See “Modeling Anisotropic Material” on page 215 
in the COMSOL Multiphysics User’s Guide for information about entering 
anisotropic material properties.

• A linear temperature relation for modeling a temperature-dependent conductivity 
(Joule heating or resistive heating). In this case the following equation describes the 
conductivity:

where ρ0 is the resistivity at the reference temperature T0. α is the temperature 
coefficient of resistivity, which describes how the resistivity varies with temperature. 
T is the current temperature, which can be a value that you specify or the 

∇– d σ V∇ Je
–( )⋅ dQj=

ϕ

r∂
∂

z∂
∂

T

– rσ r∂
∂V

z∂
∂V

rJe
–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ rQj=

σ 1
ρ0 1 α T T0–( )+( )
-----------------------------------------------=
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temperature from a heat transfer application mode (in the Joule Heating predefined 
multiphysics coupling, this is the default setting).

Select the type of conductivity from the Conductivity relation list.

B O U N D A R Y  C O N D I T I O N S

The relevant interface condition at interfaces between different media for this mode is

This is fulfilled by the natural boundary condition

Current Flow
The current flow boundary condition 

specifies the normal component of the current density flowing across the boundary.

Inward Current Flow
The inward current flow boundary condition

is similar to the above current flow boundary condition. In this case you specify the 
normal component of the current density rather than the complete vector. When the 
normal component Jn is positive the current flows inward through the boundary.

Distributed Resistance
You can use the distributed resistance boundary condition

to model a thin sheet of a resistive material. The sheet has thickness d and is connected 
to the potential Vref.

Electric Insulation
The electric insulation boundary condition

n2 J1 J2–( )⋅ 0=

n σ V∇ Je
–( )1 σ V∇ Je

–( )2–[ ]⋅ n– J1 J2–( )⋅ 0= =

n J⋅ n J0⋅=

n J⋅– Jn=

n J⋅ σ
d
--- V Vref–( ),= n J1 J2–( )⋅ σ

d
--- V Vref–( )=

n J⋅ 0=
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specifies that there is no current flowing across the boundary.

You can also use this boundary condition at symmetry boundaries where the potential 
is known to be symmetric with respect to the boundary.

Electric Potential
The electric potential boundary condition 

specifies the voltage at the boundary. Because the potential is the dependent variable 
that the application mode solves for, its value has to be defined at some point or 
boundary in the geometry to be fully determined.

Ground
The ground boundary condition 

is a special case of the previous one specifying a zero potential. You can also use this 
boundary condition at symmetry boundaries, where the potential is known to be 
antisymmetric with respect to the boundary.

Current Source
The current source boundary condition

represents either a source or a sink of current at interior boundaries.

Continuity
The continuity boundary condition

specifies that the normal component of the electric current is continuous across the 
interior boundary.

Floating Potential
To set a floating potential with an integral constraint, use this boundary condition:

V V0=

V 0=

n J1 J2–( )⋅ Jn=

n J1 J2–( )⋅ 0=

n J1 J2–( )⋅
Ω∂
∫ I0= n J⋅–

Ω∂
∫ I0=
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This sets the potential to a constant value on the boundary such that the integral is 
fulfilled. See the section “Floating Potentials and Electric Shielding” on page 17 for an 
example.

Circuit Terminal
The circuit terminal is a special version of the floating potential boundary condition 
specialized for connection to external circuits. See the section “SPICE Circuit Import” 
on page 70 for more information.

Electric Shielding
The electric shielding boundary condition describes a thin layer of a dielectric medium 
that shields the electric field. See the section “Floating Potentials and Electric 
Shielding” on page 17 for an example.

Port
Use the port condition on the electrodes to calculate the conductance or resistance. 
This condition forces the potential or current to one or zero depending on the 
settings. See the section “The Port Page” on page 50 for more information about port 
conditions.

Contact Resistance
You can use the contact resistance boundary condition

to model a thin layer of a resistive material. The layer has the thickness d and the 
conductivity σ. This boundary condition is only available at the border between the 
parts in an assembly.

Axial Symmetry
Use the axial symmetry boundary condition on the symmetry axis r = 0 in 
axisymmetric models only. For a thorough discussion of this boundary condition, see 
“Axial Symmetry” on page 149 for the generalized electrostatic formulation.

Periodic Boundary Condition
The periodic boundary condition sets up a periodicity between the selected 
boundaries. See section “Periodic Boundary Conditions” on page 26 for more details 
on this boundary condition.

n J⋅( )1
σ
d
--- V1 V2–( )=

n J⋅( )2
σ
d
--- V2 V1–( )=
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L I N E  S O U R C E S

In 3D line sources can be specified along the edges of the geometry.

Line Current Source
A line current source Qjl can be applied to edges. This source represents electric 
current per unit length.

PO I N T  S O U R C E S  A N D  C O N S T R A I N T S

Point sources and constraints can be specified in 2D and 3D.

Point Current Source
A point current source Qj0 can be applied to points. This source represents an electric 
current flowing out of the point.

Point Constraint (Electric Potential)
The electric potential can be constrained to the value V0 in a point using a constraint.

A P P L I C A T I O N  M O D E  VA R I A B L E S

See the section “Conductive Media DC Application Mode” on page 5 of the AC/DC 
Module Reference Guide.

Shell, Conductive Media DC Application Mode

You can use the Shell, Conductive Media DC application mode in 3D to model thin 
shells of conductive media. This application mode is similar to the 2D Conductive 
Media DC application mode. It solves the problem on 2D surfaces in a 3D geometry. 
The difference is that the shell does not have to be flat as they obviously are when using 
the 2D Conductive Media DC application mode.

P D E  F O R M U L A T I O N

The application mode solves the following equation where  d is the thickness of the 
shell:

The operator  represents the tangential derivative along the shell.

For boundary conditions and application mode variables see the section “Conductive 
Media DC Application Mode” on page 134.

∇t d σ∇tV Je
–( )⋅– dQj=

∇t
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Electrostatics Application Mode

You can use the Electrostatics application mode for 3D, 2D in-plane and 2D 
axisymmetric models.

Applications involving electrostatics include high-voltage apparatus, electronic devices, 
and capacitors. The statics means that the time rate of change is slow and that 
wavelengths are very large compared to the size of the domain of interest.

P D E  F O R M U L A T I O N

The 3D Electrostatics  application mode solves the equation

This equation assumes the constitutive relation D = ε0E + P. The corresponding 
equations for the constitutive relations D = ε0εrE and D = ε0εrE + Dr can also be 
handled.

The in-plane Electrostatics application mode assumes a symmetry where the electric 
potential varies only in the x and y directions and is constant in the z direction. This 
implies that the electric field E is tangential to the xy-plane. Given this symmetry, it 
solves the same equation as in the 3D case.

Use the axisymmetric Electrostatics  application mode when the fields and the 
geometry are axially symmetric. In this case, the electric potential is constant in the 

direction, which implies that the electric field is tangential to the rz-plane.

Writing the equation in cylindrical coordinates and multiplying it by r to avoid 
singularities at r = 0, the equation becomes

A P P L I C A T I O N  S C A L A R  V A R I A B L E S

The application-specific scalar variable in this mode is given below.

PROPERTY NAME DEFAULT DESCRIPTION

ε0 epsilon0 8.854187817·10-12 F/m Permittivity of vacuum

∇– ε0 V∇ P–( )⋅ ρ=

ϕ

r∂
∂

z∂
∂

T

– rε0
r∂

∂V

z∂
∂V

rP–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ rρ=
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B O U N D A R Y  C O N D I T I O N S

The relevant interface condition at interfaces between different media for this 
application mode is

In the absence of surface charges this is fulfilled by the natural boundary condition

Electric Displacement
Use the electric displacement boundary condition

to specify the normal component of the electric displacement at a boundary.

Surface Charge
The surface charge boundary condition

makes it possible to specify the surface charge density at an exterior boundary or at the 
interior boundary between two media.

Zero Charge/Symmetry
The zero charge/symmetry boundary condition

specifies that the normal component of the electric displacement is zero.

You can also use this boundary condition at symmetry boundaries where the potential 
is known to be symmetric with respect to the boundary.

Electric Potential
The electric potential boundary condition 

specifies the voltage at the boundary. Because you are solving for the potential, it is 
necessary to define its value at some boundary in the geometry for the potential to be 
fully determined.

n2 D1 D2–( )⋅ ρs=

n ε0 V∇ P–( )1 ε0 V∇ P–( )2–[ ]⋅ n– D1 D2–( )⋅ 0= =

n D⋅ n D0⋅=

n– D⋅ ρs,= n D1 D2–( )⋅ ρs=

n D⋅ 0=

V V0=
E L E C T R O S T A T I C  F I E L D S  |  141



142 |  C H A P T E R
Ground
The ground boundary condition 

is a special case of the previous one specifying a zero potential. You can also use this 
boundary condition at symmetry boundaries, where the potential is known to be 
antisymmetric with respect to the boundary.

Port
Use the port condition on the electrodes to calculate the capacitance. This condition 
forces the potential to one or zero depending on the settings (see the section “Lumped 
Parameters” on page 47).

Electric Shielding
The electric shielding boundary condition describes a thin layer of a dielectric medium 
that shields the electric field. See the section “Floating Potentials and Electric 
Shielding” on page 17 for an example.

Floating Potential
To set a floating potential with an integral constraint, use the boundary condition

which sets the potential to a constant value on the boundary such that the total charge 
is equal to Q0. See the section “Floating Potentials and Electric Shielding” on page 17 
for an example.

Continuity
The continuity boundary condition

specifies that the normal component of the electric displacement is continuous across 
the interior boundary.

Thin Low Permittivity Gap
Use the thin low permittivity gap condition

V 0=

ρs

Ω∂
∫ Q0=

n D1 D2–( )⋅ 0=
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to model a thin gap of a material with a small permittivity compared to the adjacent 
domains. The gap has the thickness d and the relative permittivity εr. This boundary 
condition is only available at the border between parts in an assembly.

Axial Symmetry
Apply the axial symmetry boundary condition to the symmetry axis r = 0 in 
axisymmetric models.

Periodic Boundary Condition
The periodic boundary condition sets up a periodicity between the selected 
boundaries. See section “Periodic Boundary Conditions” on page 26 for more details 
on this boundary condition.

L I N E  S O U R C E S

In 3D line sources can be specified along the edges of the geometry.

Line Charge
A line charge Ql can be applied along the edges. The source is interpreted as electric 
charge per unit length.

PO I N T  S O U R C E S  A N D  C O N S T R A I N T S

Point charges and point constraints are available in 2D and 3D.

Point Charge
A point charge Q0 can be applied to points.

Point Constraint (Electric Potential)
The electric potential can be constrained to the value V0 in a point.

A P P L I C A T I O N  M O D E  VA R I A B L E S

See the section “The Electrostatics Application Mode” on page 7 in the AC/DC 
Module Reference Guide.

n D⋅( )1
ε
d
--- V1 V2–( )=

n D⋅( )2
ε
d
--- V2 V1–( )=
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Generalized Electrostatics

To handle interfaces between conducting and nonconducting media in a simple 
manner, the equation of continuity is taken into special consideration. The equation of 
continuity reads

where the right-hand side disappears in static cases. Instead of removing the source 
term, you can model the electric fields by letting t approach infinity. The following 
approximation of the right-hand side then applies:

where ρ0 is a given space charge density at t = 0, and T is a time constant that depends 
on the magnitudes of σ and ε. This implies that in dividing Gauss’ law with T, it is 
possible to add the two equations, giving the resulting equation

Solving this equation gives a solution V(T) of the electric scalar potential that is 
dependent of the choice of T. The desired solution is

In practice, choose T to be large compared to the maximal charge relaxation time of 
the system. Note that choosing a too large value of T might result in an ill-conditioned 
discretized PDE problem.

To get an intuitive understanding of the constant T, make an analogy with circuit 
theory, representing the long-term behavior of the PDE problem by an electric circuit 
with a resistance R and a capacitance C. The (relaxation) time constant of an RC circuit 
is known from elementary circuit theory as τG = RC. An analogous expression exists 
for the local charge relaxation time of conductors in a lossy medium, τL = ε/σ. Because 
τG represents the long-term behavior, τG > τL. For T, it is required that τG << T, to 
ensure that you are well above the characteristic charge relaxation times for the original 
simulated system.

∇– σ V∇ Je
–( )⋅

t∂
∂ρ–=

t∂
∂ρ ρ ρ0–

T
---------------≈

∇ σ ε0 T⁄+( ) V∇ Je P T⁄+( )–( )⋅ ρ0 T⁄=–

V∞ V T( )
T ∞→
lim=
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Note: The default value for T is 10−17 seconds. This is large for conducting materials 
such as copper, which has a relaxation time in the order of  10−19 seconds. Make sure 
that you adjust T according to the physical parameters in your model.

Electrostatics, Generalized Application Mode

The Electrostatics, Generalized application mode is available for 3D, 2D in-plane, and 
2D axisymmetric models.

P D E  F O R M U L A T I O N

In the 3D Electrostatics, Generalized application mode the equation derived above is 
solved,

This equation assumes the constitutive relation D = ε0E + P. The software also handles 
the corresponding equations for the constitutive relations D = ε0εrE and 
D = ε0εrE + Dr.

In the in-plane Electrostatics, Generalized application mode, you assume a symmetry 
where the electric potential varies only in the x and y directions, and is constant in the 
z direction. This implies that the electric field, E, is tangential to the xy-plane. Given 
this symmetry, it solves the same equation as in the 3D case.

Use the axisymmetric Electrostatics, Generalized application mode when the fields 
and the geometry are axially symmetric. In this case, the electric potential is constant 
in the direction, which implies that the electric field is tangential to the rz-plane.

Writing the equation in cylindrical coordinates, and multiplying it by r to avoid 
singularities at r = 0, the equation becomes

∇ σ ε0 T⁄+( ) V∇ Je P T⁄+( )–( )⋅ ρ0 T⁄=–

ϕ

r∂
∂

z∂
∂

T

– r σ ε0 T⁄+( ) r∂
∂V

z∂
∂V

r Je P T⁄+( )–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ rρ0 T⁄=
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A P P L I C A T I O N  S C A L A R  V A R I A B L E S

The application-specific scalar variables in this application mode are given below.

The time constant T needs to be large compared to the characteristic relaxation time 
of the materials; see “Generalized Electrostatics” on page 144.

B O U N D A R Y  C O N D I T I O N S

The relevant interface conditions at interfaces between different media for this 
application mode are

and

The natural boundary condition for this formulation is 

In the case of two conductive media, this implies that the first of the above interface 
conditions is fulfilled. This means that a surface charge density ρs can be present, and 
its value is obtained by evaluating n·  ( D1 − D2 ) on the interior boundary.

At interfaces between two nonconductive media, the natural condition implies the 
continuity of the normal component of the electric displacement over the domain 
boundary. No surface charges can be present in this case.

Current Flow
The current flow boundary condition 

specifies the normal component of the current density flowing across the boundary.

PROPERTY NAME DEFAULT DESCRIPTION

µ0 mu0 4π·10-7 H/m Permeability of vacuum

ε0 epsilon0 8.854187817·10-12 F/m Permittivity of vacuum

T T 10-17 s Time constant

n2 J1 J2–( )⋅ 0=

n2 D1 D2–( )⋅ ρs=

n σ ε T⁄+( ) V∇ Je P T⁄+( )–( )1 σ ε T⁄+( ) V∇ Je P T⁄+( )–( )2–[ ]⋅

n J D T⁄+( )1 J D T⁄+( )2–[ ]⋅– 0= =

n J⋅ n J0⋅=
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Inward Current Flow
The inward current flow boundary condition

is similar to the above current flow boundary condition. In this case you specify the 
normal component of the current density rather than the complete vector. When the 
normal component Jn is positive the current flows inward through the boundary.

Distributed Resistance
The distributed resistance boundary condition

describes a thin sheet of a resistive material. The sheet has a thickness d and is 
connected to the potential Vref.

Electric Displacement
Use the electric displacement boundary condition

to specify the normal component of the electric displacement at a boundary of a 
nonconducting medium.

Surface Charge
Use the surface charge boundary condition

to specify the surface charge density at a boundary of a nonconducting medium or at 
the interior boundary between two nonconducting media. To specify the surface 
charge density at the interior boundary between one conducting medium and one 
nonconducting medium, you must use the general flow boundary condition below.

General Flow
The general flow boundary condition 

is a combination of the ones above. You can use it at the interior boundary between a 
conducting and a nonconducting medium.

n J⋅– Jn=

n J⋅ σ
d
--- V Vref–( ),= n J1 J2–( )⋅ σ

d
--- V Vref–( )=

n D⋅ n D0⋅=

n– D⋅ ρs,= n D1 D2–( )⋅ ρs=

n– J n D⋅ T⁄– qV+⋅ g=
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Electric Insulation
The electric insulation boundary condition

specifies that there is no current flowing across the boundary, and that the electric 
displacement is zero outside the boundary.

You can also use this boundary condition at symmetry boundaries where the potential 
is known to be symmetric with respect to the boundary.

Electric Potential
The electric potential boundary condition 

specifies the voltage at the boundary. Because you solve for the potential, it is necessary 
to define its value at some boundary or point in the geometry for the solution to be 
fully determined.

Ground
The ground boundary condition 

is a special case of the previous one specifying a zero potential. You can also use this 
boundary condition at symmetry boundaries, where the potential is known to be 
antisymmetric with respect to the boundary.

Current Source
The current source boundary condition

is applicable to interior boundaries that represent either a source or a sink of current. 
You can also use this boundary condition at an interior boundary between two 
conducting media.

General Source
The general source boundary condition

n J D T⁄+( )⋅ 0=

V V0=

V 0=

n J1 J2–( )⋅ Jn=

n J1 J2–( ) n D1 D2–( )⋅ T⁄ q+ V+⋅ g=
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is a generalization of the surface charge and current source boundary condition. It can 
be used to define a source at an interior boundary between one conducting and one 
nonconducting medium.

Continuity
The continuity boundary condition

specifies that the normal components of the electric current and electric displacement 
are continuous across the interior boundary.

Axial Symmetry
Use the axial symmetry boundary condition on the symmetry axis r = 0 in 
axisymmetric models. This boundary condition is simply the natural Neumann 
boundary condition, which in the axisymmetric case is 

The requirement that you must use this boundary condition on the z-axis comes from 
the symmetry reasons

The second equation can be rewritten as follows

This equation is fulfilled if the first of the conditions above is fulfilled all along the axis. 
This condition is in turn implied via the natural Neumann condition. Due to the 
numerical method, the boundary condition is evaluated for an r that is small but 
nonzero. This causes the radial component of the electric field to vanish along the axis.

L I N E  S O U R C E S

In 3D, you can specify line sources along the edges of the geometry.

Line Charge
A line charge Ql can be applied along an edge around nonconducting media. The 
source is interpreted as electric charge per unit length.

n J1 J2–( ) D1 D2–( ) T⁄+( )⋅ 0=

n r σ ε T⁄+( ) V∇ r Je P T⁄+( )–( )⋅ 0=–

Er 0=

r∂
∂Ez 0=

r∂
∂Ez

r∂
∂

z∂
∂V

⎝ ⎠
⎛ ⎞–

z∂
∂

r∂
∂V

⎝ ⎠
⎛ ⎞–

z∂
∂Er–= = =
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Line Current Source
A line current source Qjl can be applied to edges around conducting media. This 
source represents electric current per unit length.

PO I N T  S O U R C E S  A N D  C O N S T R A I N T S

Two types of point sources can be specified: electric charges and current sources. In 
addition you can specify the electric potential, which acts as a point constraint.

Point Charge
A point charge Q0 can be applied to points around nonconducting media.

Point Current Source
A point current source Qj0 can be applied to points around conducting media. This 
source represents an electric current flowing out of the point.

Point Constraint (Electric Potential)
The electric potential can be constrained to the value V0 in a point.

A P P L I C A T I O N  M O D E  V A R I A B L E S

See the section “Electrostatics, Generalized Application Mode” on page 9 in the 
AC/DC Module Reference Guide.
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Magne t o s t a t i c  a nd Qua s i - S t a t i c  F i e l d s

Quasi-static analysis is valid under the assumption that ∂D / ∂t = 0. This implies that 
Maxwell’s equations can be rewritten in the following manner.

Here Je is an externally generated current density and v is the velocity of the 
conductor. The crucial criterion for the quasi-static approximation to be valid is that 
the currents and the electromagnetic fields vary slowly. This means that the dimensions 
of the structure in the problem need to be small compared to the wavelength.

Using the definitions of the potentials,

and the constitutive relation B = µ0(H + M), Ampère’s law can be rewritten as

The equation of continuity, which is obtained by taking the divergence of the above 
equation, gives us the equation

These two equations give us a system of equations for the two potentials A and V.

Magnetostatics

In the static case, the magnetostatics equations are

∇ H× J σ E v B×+( ) Je
+= =

∇ E×
t∂

∂B–=

∇ B⋅ 0=

∇ D⋅ ρ=

∇ J⋅ 0=

B ∇ A×=

E ∇V–
t∂

∂A–=

σ
t∂

∂A ∇ µ0
1– ∇ A× M–( )× σv ∇ A×( ) σ V∇+×–+ Je

=

∇– σ A∂
t∂

------- σv ∇ A×( ) σ∇V Je
–+×–⎝ ⎠

⎛ ⎞⋅ 0=
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The term represents the current generated motion with a constant 
velocity in a static magnetic field, JB = σ v  ×  Be. Similarly the term  represents 
a current generated by a static electric field, JE = σ Ee. When JB = 0, including JE in 
the external current results in the equation

with . You can solve this equation independently from the other 
equation.

Gauge Transformations

The electric and magnetic potentials are not uniquely defined from the electric and 
magnetic fields through

Introducing two new potentials

gives the same electric and magnetic fields:

The variable transformation of the potentials is called a gauge transformation. To 
obtain a unique solution you need to choose the gauge, that is, put constraints on Ψ 
that make the solution unique. Another way of expressing this additional condition is 
to put a constraint on . A vector field is uniquely defined up to a constant if both 

 and  are given. This is called Helmholtz’s theorem. One particular gauge 
is the Coulomb gauge given by the constraint

∇– σv ∇ A×( ) σ∇V Je
–+×–( )⋅ 0=

∇ µ0
1– ∇ A× M–( )× σv ∇ A×( ) σ V∇+×– Je

=

σv ∇ A×( )×
σ V∇–

∇ µ0
1– ∇ A× M–( )× J̃

e
=

J̃
e

Je JE
+=

E A∂
t∂

-------– ∇V–=

B ∇ A×=

Ã A ∇Ψ+=

Ṽ V Ψ∂
t∂

-------–=

E A∂
t∂

-------– ∇V– Ã ∇Ψ–( )∂
t∂

---------------------------– ∇ Ṽ Ψ∂
t∂

-------+⎝ ⎠
⎛ ⎞– Ã∂

t∂
-------– ∇Ṽ–= = =

B ∇ A× ∇ Ã ∇Ψ–( )× ∇ Ã×= = =

∇ A⋅
∇ A⋅ ∇ A×
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When using assemblies with interface pairs, it might also be necessary to activate an 
equation fixing a gauge. This has to be done when vector elements are coupled over a 
pair and the meshes on each side are incompatible. The gauge is the Coulomb gauge 
for Magnetostatics and Quasi-statics for electric and induction currents. Quasi-statics 
for induction currents uses other equations when fixing the gauge. These equations are 
shown below, where the first equation is for time-harmonic problems and the second 
equation is for transient problems.

Time-Harmonic Quasi-Statics

In the time-harmonic case, Ampère’s equation includes the displacement current:

In the transient case the inclusion of this term would lead to a second-order equation 
in time, but in the harmonic case there are no such complications. Using the definition 
of the electric and magnetic potentials, the system of equations becomes

The constitutive relation D = ε0E + P has been used for the electric field.

You obtain a particular gauge that reduces the system of equation by choosing 
Ψ = −jV / ωin the gauge transformation. This gives

Because vanishes from the equations, you only need the second one,

Working with Ã is often the best option when it is possible to specify all source currents 
as external currents Je or as surface currents on boundaries.

∇ A⋅ 0=

∇ J⋅ 0=

∇ σA( )⋅ 0=

∇ H× J σ E v B×+( ) jωD J+
e

+= =

∇– jωσ ω2ε0–( )A σv ∇ A×( ) σ jωε0+( )∇V Je jωP+( )–+×–( )⋅ 0=

jωσ ω2ε0–( )A ∇ µ0
1– ∇ A M–×( )× σv ∇ A×( ) σ jωε0+( )∇V+×–+ Je jωP+=

Ã A j
ω
----∇V–= Ṽ 0=

Ṽ

jωσ ω2ε0–( )Ã ∇ µ0
1– ∇ Ã M–×( )× σv ∇ Ã×( )×–+ Je jωP+=
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Quasi-Statics for Electric Currents

If the skin depth in all domains is much larger than the geometry, you can make a 
further approximation by neglecting the coupling between the electric and magnetic 
fields. In other words, neglect the induced currents. In mathematical terms this 
approximation implies that

which means that you can express the electric field in terms of the electric potential 
only, . Combining the time-harmonic equation of continuity 

with the equation

yields the following equation:

For the transient case, using the transient equation of continuity

the resulting equation becomes

3D and 2D Quasi-Statics Application Modes

With the quasi-statics application modes you can handle four classes of problems:

• Magnetostatics

• Time-harmonic quasi-statics with full coupling between the electric and magnetic 
fields

• Transient quasi-statics with partial coupling between the electric and magnetic field 
when the capacitive term can be neglected.

∇ E× 0=

E ∇V–=

∇ J⋅ ∇ σE Je
+( )⋅ jωρ–= =

∇ D⋅ ρ=

∇– σ jωε0+( )∇V Je jωP+( )–( )⋅ 0=

∇ J⋅ ∇ σE Je
+( )⋅

t∂
∂ρ–= =

∇
t∂

∂ ε0∇V P+( ) ∇ σ∇V Je
–( )⋅–⋅– 0=
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• Time-harmonic quasi-statics in the case of electric currents when the coupling 
between the electric and magnetic fields can be neglected

• Transient quasi-statics for electric currents

In the 2D In-Plane Currents application modes the currents are only present in the 
plane. This implies that the magnetic field only has a component perpendicular to the 
plane. Similarly, in the Meridional Currents application mode the currents are only 
present in the rz-plane and the magnetic field only has a component.

P D E  F O R M U L A T I O N S

Magnetostatics
For magnetostatic problems there are two formulations available. In one of them, the 
system of equations

is solved. If v = 0 the equations decouple and can be solved independently. The other 
formulation is the single equation

The thickness d only appears in the 2D in-plane case and represents the thickness in 
the z direction.

Note: The conductivity cannot be zero anywhere when the electric potential is part 
of the problem, because the dependent variables then vanish from the first equation.

Induction Currents and Electric and Induction Currents
Also for quasi-static problem there are two formulations available. One formulation 
uses a system of equation for both the electric and magnetic potentials,

ϕ

∇– d σv ∇ A×( ) σ∇V Je
–+×–( )⋅ 0=

∇ d µ0
1– ∇ A× M–( )× dσv ∇ A×( ) dσ V∇+×– dJe

=

∇ d µ0
1– ∇ A× M–( )× dJe

=
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Use this formulation for electromagnetic systems where both electric and induction 
currents are relevant.

The Coulomb gauge  appears in both the static and the quasi-static 
formulations, which add this constraint as an additional equation to the system of 
equations. It is possible to disable the gauge fixing, but this is generally not 
recommended.

The second quasi-static formulation uses a single equation for the magnetic potential,

This formulation does not include the Lorentz term σ v × B, because it is not possible 
to guarantee continuity of the current otherwise. There is also a transient version of 
this formulation, which does not include the ω2ε0 term to avoid second-order time 
derivatives,

Use this formulation for magnetic systems where only the induction currents are 
relevant. Working with the single equation for A is often the best option when it is 
possible to specify all source currents as external currents Je or as surface currents on 
boundaries. The thickness d is only present in the 2D in-plane case.

This equation formulation has a fixed gauge and does not need the additional 
constraint . When the factor j ω σ − ω2 ε0 is small, however, the problem is 
numerically ill-conditioned. In the transient case σ cannot be zero, because the 
formulation then needs the additional constraint to fix the gauge in the regions where 
σ is zero.

Electric Currents
For quasi-static problems with small currents the coupling between the electric and 
magnetic field is neglected. For time-harmonic electric currents, the equation becomes

∇– d jωσ ω2ε0–( )A σv ∇ A×( )×–( ) +⋅

∇ d σ jωε0+( )∇V Je jωP+( )+( )⋅ 0=

d jωσ ω2ε0–( )A ∇ d µ0
1– ∇ A M–×( )× –+

σdv ∇ A×( ) d– σ jωε0+( )∇V× d Je jωP+( )=

∇ A⋅ 0=

d jωσ ω2ε0–( )A ∇ d µ0
1– ∇ A M–×( )×+ d Je jωP+( )=

dσ
t∂

∂A ∇ d µ0
1– ∇ A× M–( )×+ dJe

=

∇ A⋅ 0=
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and for transient electric currents the equation used is:

.

The constitutive relations that are used in the above equations are B = µ0(H + M) and 
D = ε0E + P. The application modes also handles the corresponding equations for the 
constitutive relations B = µ0µrH and B = µ0µrH + Br. The application modes that 
solve for the magnetic potential also support a nonlinear relationship between H and 
B using the following constitutive relations: H = f ( | B | ) eB and H = f ( | B | ). 

In the 2D axial symmetric case the equations are written in cylindrical coordinates and 
multiplied by r to avoid singularity at r = 0.

TABLE 4-2:  3D AND 2D QUASI-STATICS APPLICATION MODES

NAME DEPENDENT VARIABLES

Magnetostatics, electric and induction currents A, V

Magnetostatics, induction currents A

Quasi-Statics, electric and induction currents A, V

Quasi-Statics, induction currents, time-harmonic analysis A

Quasi-Statics, induction currents, transient analysis A

∇– d σ jωε0+( )∇V Je jωP+( )–( )⋅ dQj=

∇ d
t∂

∂ ε0∇V P+( ) ∇ d σ∇V Je
–( )⋅–( )⋅– dQj=

∇– d σv ∇ A×( ) σ∇V Je
–+×–( )⋅ 0=

∇ d µ0
1– ∇ A× M–( )× dσv ∇ A×( ) dσ V∇+×– dJe

=

∇ d µ0
1– ∇ A× M–( )× dJe

=

∇– d jωσ ω2ε0–( )A σv ∇ A×( )×–( ) +⋅

∇ d σ jωε0+( )∇V Je jωP+( )+( )⋅ 0=

d jωσ ω2ε0–( )A ∇ d µ0
1– ∇ A M–×( )× –+

σdv ∇ A×( ) d– σ jωε0+( )∇V× d Je jωP+( )=

d jωσ ω2ε0–( )A ∇ d µ0
1– ∇ A M–×( )×+ d Je jωP+( )=

dσ
t∂

∂A ∇ d µ0
1– ∇ A× M–( )×+ dJe

=
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A P P L I C A T I O N  M O D E  P R O P E R T I E S

The application mode properties are given in the table below.

For time-harmonic analysis there is also a Bias application mode property. This property 
is used for small-signal analysis and defines the application mode that calculates the bias 
point for the small-signal analysis. The value None for this property means that no 
automatic bias calculation is made. See section “Small-Signal Analysis” on page 76 for 
more details.

Quasi-Statics, electric currents, time-harmonic analysis V

Quasi-Statics, electric currents, transient analysis V

PROPERTY VALUES DESCRIPTION

Analysis type Static 
Time-harmonic 
Transient 
Time-harmonic, electric 
currents 
Transient, electric currents

Specifies which type of 
analysis to perform.

Potentials Electric and magnetic 
Magnetic

Specifies if a system of 
equations for the electric 
and magnetic potentials 
should be solved, or if a 
single equation for the 
magnetic potential should 
be solved.

Gauge fixing Automatic 
On 
Off

Should the gauge fixing 
condition be added or not.

TABLE 4-2:  3D AND 2D QUASI-STATICS APPLICATION MODES

NAME DEPENDENT VARIABLES

∇– d σ jωε0+( )∇V Je jωP+( )–( )⋅ dQj=

∇ d
t∂

∂ ε0∇V P+( ) ∇ d σ∇V Je
–( )⋅–( )⋅– dQj=
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A P P L I C A T I O N  S C A L A R  V A R I A B L E S

The following list contains the application scalar variables in this application mode:

All numbers are given in SI units.

B O U N D A R Y  C O N D I T I O N S

The relevant boundary conditions between two domains 1 and 2 are

where n2 is the outward normal from Domain 2 and Js is the surface current. These 
are automatically fulfilled by the natural boundary conditions when the surface current 
vanishes. The natural boundary conditions are

in the time-harmonic quasi-static case when solving for both potentials. Setting ω = 0 
gives the corresponding boundary condition for magnetostatics. When using the set of 
three equations for the A potential, the first of the two boundary conditions is not 
explicitly fulfilled but still falls out from the solution.

For time-harmonic quasi-static problems with electric currents, the natural boundary 
condition

PROPERTY NAME DEFAULT UNIT DESCRIPTION

µ0 mu0 4*pi*1e-7 H/m Permeability of vacuum

ε0 epsilon0 8.854187817e-12 F/m Permittivity of vacuum

ν nu 50 Hz Frequency

ψ0 psi0 max(mur) V | Wb | 
A/m

Scaling of gauge fixing 
variable (transient | 
harmonic | static)

n2 J1 J2–( )⋅ 0=

n2 H1 H2–( )× Js=

n jωσ ω2ε0–( )A σv ∇ A×( ) σ jωε0+( )∇V Je jωP+( )–+×–( )1[⋅

jωσ ω2ε0–( )A σv ∇ A×( ) σ jωε0+( )∇V Je jωP+( )–+×–( )2 ]–

n– J1 J2–( )⋅ 0= =

n µ 1– ∇ A× M–( )1 µ 1– ∇ A× M–( )2–[ ]×– n H1 H2–( )×– 0= =

n σ jωε0+( )∇V Je jωP+( )–( )1 σ jωε0+( )∇V Je jωP+( )–( )2–[ ]⋅

n– J1 J2–( )⋅ 0= =
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provides continuity for the electric current.

For transient electric currents the natural boundary condition is:

B O U N D A R Y  C O N D I T I O N S  F O R  T H E  M A G N E T I C  F I E L D

The boundary conditions listed below do not apply to the quasi-static formulation for 
small currents, because this formulation neglects the magnetic field.

Magnetic Field
In 3D, use the magnetic field boundary condition

to specify the tangential component of the magnetic field at an exterior boundary. In 
2D you specify the size of the scalar magnetic field.

Surface Current
The surface current boundary condition

lets you specify a surface current density at both exterior and interior boundaries. The 
current density is specified as a three-dimensional vector, but because it needs to flow 
along the boundary surface, the software projects it onto the boundary surface and 
neglects its normal component. This makes it easier to specify the current density and 
avoids unexpected results when a current density with a component normal to the 
surface is given.

Electric Insulation
The electric insulation boundary condition

is a special case of the above condition, which sets the tangential component of the 
magnetic field to zero in 3D and the magnetic field to zero in 2D.

The term electric insulation comes from the fact that this boundary condition makes 
the normal component of the electric current zero.

n
t∂

∂ ε0∇V P+( ) σ∇V Je
–( )–⎝ ⎠

⎛ ⎞
1 t∂

∂ ε0∇V P+( ) σ∇V Je
–( )–⎝ ⎠

⎛ ⎞
2

–⎝ ⎠
⎛ ⎞⋅

n J1 J2–( )⋅–= 0=

n H× n H0×=

n H×– Js= n H1 H2–( )× Js=

n H× 0=
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Magnetic Potential
Use the magnetic potential boundary condition

to specify the tangential component of the magnetic potential.

Magnetic Insulation
The magnetic insulation boundary condition 

is a special case of the condition above, which sets the tangential component of the 
magnetic potential to zero. This boundary condition is normally applied to boundaries 
confining a surrounding region of air. You can also use it at exterior symmetry 
boundaries, where the magnetic field is known to be tangential to the boundary.

Impedance Boundary Condition
The impedance boundary condition

is used at boundaries where the field is known to penetrate only a short distance 
outside the boundary. This penetration is approximated by a boundary condition to 
avoid the need to include another domain in the model. The material properties that 
appear in the equation are those for the domain outside the boundary.

The skin depth, that is, the distance where the electromagnetic field has decreased by 
a factor e−1, is for a good conductor

The impedance boundary condition is a valid approximation if the skin depth is small 
compared to the size of the conductor.

The source electric field Es can be used to specify a source current running along the 
boundary.

Transition Boundary Condition
The transition boundary condition

n A× n A0×=

n A× 0=

µ0µr
ε0εr jσ ω⁄–
------------------------------n H E n E⋅( )n–+× n Es⋅( )n Es–=

δ 2
ωµσ
-----------=

ηn H E n E⋅( )n–+× n Es⋅( )n Es–=
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is available on interior boundaries to model a thin sheet of a conducting medium. The 
surface impedance η is a function of the material properties of the sheet and the 
thickness.

Thin Low Permeability Gap
The thin low permeability gap boundary condition

is available on interior boundaries to model gaps filled with a low permeable material 
with zero conductivity such as air.

Continuity
The continuity boundary condition

is the natural boundary condition implying continuity of the tangential component of 
the magnetic field.

Axial Symmetry
In the Meridional Currents application mode, use the axial symmetry boundary 
condition on the symmetry axis, r = 0.

Periodic Boundary Condition
The periodic boundary condition sets up a periodicity between the selected 
boundaries. See “Periodic Boundary Conditions” on page 26 for more details on this 
boundary condition.

B O U N D A R Y  C O N D I T I O N  F O R  T H E  E L E C T R I C  F I E L D

These boundary conditions apply when the electric potential is one of the dependent 
variables.

Current Flow
The current flow boundary condition 

specifies the normal component of the current density flowing across the boundary.

Inward Current Flow
The inward current flow boundary condition

n H1 H2–( )× ∇t
d

µ0µr
------------∇t At××=

n H1 H2–( )× 0=

n J⋅ n J0⋅=
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is similar to the above current flow boundary condition. In this case you specify the 
normal component of the current density rather than the complete vector. When the 
normal component Jn is positive the current flows inward through the boundary.

Distributed Resistance/Impedance
The distributed resistance/impedance boundary condition

can be used to model a thin sheet of a resistive material. The sheet has a thickness d 
and is connected to the potential Vref. The two top equations apply to the static case, 
the two equations in the middle to the time-harmonic case, and the last two to the 
transient case.

Electric Insulation
The electric insulation boundary condition

specifies that the electric displacement is zero outside the boundary.

You can also use this boundary condition at symmetry boundaries where the electric 
potential is known to be symmetric with respect to the boundary.

Electric Potential
The electric potential boundary condition 

specifies the voltage at the boundary. Because you solve for the potential, it is necessary 
to define its value at some boundary or point in the geometry for the solution to be 
fully determined.

Ground
The ground boundary condition 

n J⋅– Jn=

n J⋅ σ
d
--- V Vref–( ),= n J1 J2–( )⋅ σ

d
--- V Vref–( )=

n J⋅
σ jωε0+( )

d
--------------------------- V Vref–( ),=

n J⋅ 1
d
--- σ V Vref–( ) ε0 t∂

∂V
+⎝ ⎠

⎛ ⎞ ,=

n J1 J2–( )⋅
σ jωε0+( )

d
--------------------------- V Vref–( )=

n J1 J2–( )⋅ 1
d
--- σ V Vref–( ) ε0 t∂

∂V
+⎝ ⎠

⎛ ⎞=

n J⋅ 0=

V V0=
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is a special case of the one above specifying zero potential. You can also use this 
boundary condition at symmetry boundaries, where the potential is known to be 
antisymmetric with respect to the boundary.

Port

The port condition is used on the electrodes to calculate the lumped parameters. This 
condition forces the potential or current to one or zero depending on the settings. See 
the section “Lumped Parameters” on page 61.

Electric Shielding
The electric shielding boundary condition describes a thin layer of a dielectric medium 
that shields the electric field. See “Floating Potentials and Electric Shielding” on page 
33 for an example.

The first equation apply to the time-harmonic case and the other to the transient case.

Floating Potential
To set a floating potential with an integral constraint, use this boundary condition. 

 

This sets the potential to a constant value on the boundary such that the integral is 
fulfilled. See the section “Floating Potentials and Electric Shielding” on page 33 for an 
example.

Circuit Terminal
The circuit terminal is a special version of the floating potential boundary condition 
specialized for connection to external circuits. See the section “SPICE Circuit Import” 
on page 70 for more information.

Current Source
The current source boundary condition

V 0=

n J ∇– t= d σ jωε0εr+( )d Vt∇⋅ ⋅

n J ∇–=⋅ t d σ Vt∇ ε0εr t∂
∂ Vt∇+⎝ ⎠

⎛ ⎞⋅

n J1 J2–( )⋅
Ω∂
∫ I0= n J⋅–

Ω∂
∫ I0=

n J1 J2–( )⋅ Jn=
 4 :  T H E  A P P L I C A T I O N  M O D E S



is applicable to interior boundaries that represent either a source or a sink of current.

Continuity
The continuity boundary condition

specifies that the normal component of the electric current is continuous across the 
interior boundary.

Axial Symmetry
In the Meridional Currents application mode, use the boundary condition for axial 
symmetry on the symmetry axis, r = 0.

Periodic Boundary Condition
The periodic boundary condition sets up a periodicity between the selected 
boundaries. See “Periodic Boundary Conditions” on page 26 for more details on this 
boundary condition.

C O M B I N I N G  E L E C T R I C  A N D  M A G N E T I C  B O U N D A R Y  C O N D I T I O N S

There is a close interaction between the magnetic vector potential and the electrostatic 
potential when solving for electric and induction currents. As a result, combinations of 
electric boundary conditions and magnetic Neumann boundary conditions are not 
valid, because the magnetic Neumann condition also defines the electric condition. 
When selecting a magnetic Neumann condition, the possibility to select electric 
conditions are disabled. The following table summarizes the magnetic Neumann 
conditions and also specifies the corresponding electric condition they define.

Selecting a periodic boundary condition for the magnetic boundary condition also use 
that condition for the electric boundary condition.

L I N E  S O U R C E

In 3D, you can specify that edges in the geometry carry a current I0 when solving for 
the magnetic potential. This current flows in the direction of the edges’ tangential 
vectors. The easiest way to determine this direction is to make an arrow plot on the 

MAGNETIC BOUNDARY CONDITION ELECTRIC BOUNDARY CONDITION

Electric insulation

Surface current (or Magnetic field)

Impedance boundary condition

n J1 J2–( )⋅ 0=

n J⋅ 0=

n– J⋅ ∇ Js⋅=

n– J⋅ ∇ Js⋅=
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edges of a vector with the components t1x, t1y, and t1z. When solving for the electric 
potential, you can constrain it to a fixed value on the edges.

PO I N T  S O U R C E

When solving for the electric potential it can be constrained to a value V0.

A P P L I C A T I O N  M O D E  V A R I A B L E S

See the section “3D and 2D Quasi-Statics Application Modes” on page 16 of the 
AC/DC Module Reference Guide.

Perpendicular Induction Currents, Vector Potential Application 
Mode

Use the Perpendicular Induction Currents, Vector Potential  application mode to 
model situations where the currents are perpendicular to the modeling plane. This 
implies that the magnetic field is present only in the modeling plane. Hence the 
magnetic potential only has one nonzero component, and it is possible to derive a 
second-order scalar PDE. The types of analysis that this application mode supports are:

• Magnetostatics

• Transient quasi-statics

• Time-harmonic quasi-statics

P D E  F O R M U L A T I O N

As shown in the “Magnetostatic and Quasi-Static Fields” on page 151, Ampère’s law 
can be rewritten as

using the magnetic and electric potentials. Considering the case when there are no 
variations in the z direction and the electric field is parallel to the  z-axis. Then you can 
write as −∆V/L where ∆V is the potential difference over the distance L.

The above equations then simplify to

σ
t∂

∂A ∇ µ0
1– ∇ A× M–( )× σv ∇ A×( ) σ V∇+×–+ Je

=

∇V

σ
t∂

∂Az ∇ µ0
1– Az∇

M– y

Mx

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅– σv Az∇⋅+ σ∆V
L

-------- Jz
e

+=
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This is the formulation used for transient analysis. In the magnetostatic case drop the 
first term.

For time-harmonic fields, you can keep the displacement current and start from the 
3D equation

which simplifies to

The constitutive relations used in the above equations are B = µ0 ( H + M ) and 
D = ε0 ( E + P ). The application mode also handles the corresponding equations for 
the constitutive relations B = µ0µrH, B = µ0µrH + Br, H = f( | B | ) eB, and H = f( B ) . 
The unit vector eB points in the direction of the B-field. For an example on how to 
use an interpolation function for a nonlinear relationship between H and B, see 
“Generator in 2D” on page 39 in the AC/DC Module Model Library.

A P P L I C A T I O N  M O D E  P R O P E R T I E S

The application mode properties are given in the table below.

For time-harmonic analysis there is also a Bias application mode property. This property 
is used for small-signal analysis and defines the application mode that calculates the bias 
point for the small-signal analysis. The value None for this property means that no 
automatic bias calculation is made. See “Small-Signal Analysis” on page 76 for more 
details.

A P P L I C A T I O N  S C A L A R  V A R I A B L E S

The application scalar variables in this mode are given below.

PROPERTY VALUES DESCRIPTION

Analysis type Static 
Transient 
Time-harmonic

Specifies which type of 
analysis to perform.

PROPERTY NAME DEFAULT UNIT DESCRIPTION

µ0 mu0 4*pi*1e-7 H/m Permeability of vacuum

jωσ ω2ε0–( )A ∇ µ0
1– ∇ A M–×( )× σv ∇ A×( ) σ jωε0+( )∇V+×–+ Je jωP+=

∇– µ0
1– Az∇

M– y

Mx

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ σv+ ∇Az⋅ jωσ ω2ε0–( )Az+ σ∆V
L

-------- Jz
e

+ jωPz+=
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All numbers are given in SI units. The frequency is only used in time-harmonic 
problems.

B O U N D A R Y  A N D  I N T E R F A C E  C O N D I T I O N S

The relevant interface conditions are

The latter equation is automatically fulfilled via the natural boundary condition if the 
surface current vanishes. The Neumann condition of the PDE above can be 
transformed as

The first of the above stated interface conditions is always fulfilled using a 
time-harmonic analysis, because the electric field is equal to the magnetic potential 
multiplied by a complex number jω. The continuity of the magnetic potential is in turn 
always guaranteed in this formulation. In the case of a transient analysis the above 
condition cannot be explicitly guaranteed.

Magnetic Field
The magnetic field boundary condition

specifies the tangential component of the magnetic field at the boundary.

Surface Current
The surface current boundary condition

ε0 epsilon0 8.854187817e-12 F/m Permittivity of vacuum

ν nu 50 Hz Frequency

PROPERTY NAME DEFAULT UNIT DESCRIPTION

n2 E1 E2–( )× 0=

n2 H1 H2–( )× Js=

n µ0
1– Az∇

M– y

Mx

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1

µ0
1– Az∇

M– y

Mx

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

–⋅

n µ0
1– ∇ A× M–( )1 µ0

1– ∇ A× M–( )2–[ ]×–=

n H1 H2–( )×– 0= =

n H× n H0×=

n H×– Jszez= n H1 H2–( )× Jszez=
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lets you specify a surface current flowing in the z direction.

Electric Insulation
The electric insulation boundary condition

sets the magnetic field to zero. The term electric insulation comes from the fact that 
this boundary condition makes the normal component of the electric current equal to 
zero.

Magnetic Potential
The magnetic potential boundary condition 

specifies the magnetic potential.

Magnetic Insulation
The magnetic insulation boundary condition 

sets the magnetic potential to zero at the boundary. This boundary condition can also 
be used at symmetry boundaries where the magnetic field is known to be tangential to 
the boundary.

The term magnetic insulation comes from the fact that this boundary condition 
makes the normal component of the magnetic field zero. Thus the boundary is not 
truly insulating.

Impedance Boundary Condition
The impedance boundary condition

is used at boundaries where the field is known to penetrate only a short distance 
outside the boundary. This penetration is approximated by a boundary condition to 
avoid the need to include another domain in the model. The material properties that 
appear in the equation are those for the domain outside the boundary.

The skin depth, that is, the distance where the electromagnetic field has decreased by 
a factor e−1, is for a good conductor

n H× 0=

Az A0z=

Az 0=

µ0µr

ε0εr jσ ω⁄–
------------------------------n H Ezez+× Eszez–=
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The impedance boundary condition is a valid approximation if the skin depth is small 
compared to the size of the conductor.

The source electric field Esz can be used to specify a source current running along the 
boundary.

Transition Boundary Condition
The transition boundary condition

is available on interior boundaries to model a thin sheet of a conducting medium. The 
surface impedance η is a function of the material properties of the sheet and the 
thickness.

Thin Low Permeability Gap
You can use the thin low permeability gap boundary condition

to model gaps filled with a low permeable material with zero conductivity such as air. 
This boundary condition is only applicable on interior boundaries and pair boundaries.

Continuity
The continuity boundary condition

is the natural boundary condition implying continuity of the tangential component of 
the magnetic field.

Periodic Boundary Condition
The periodic boundary condition sets up a periodicity between the selected 
boundaries. See section “Periodic Boundary Conditions” on page 26 for more details 
on this boundary condition.

Sector Symmetry and Sector Antisymmetry
Select sector symmetry at interfaces between rotating objects where sector symmetry 
is used. It is only available for assembly interfaces (see “Sector Symmetry” on page 27 
for more details on this boundary condition).

δ 2
ωµσ
-----------=

ηn H Ezez+× Eszez–=

n H1 H2–( )× ∇t
d

µ0µr
------------∇t Az××=

n H1 H2–( )× 0=
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PO I N T  S O U R C E S

You can specify that points in the geometry carry a current I0 flowing in the 
z direction.

A P P L I C A T I O N  M O D E  VA R I A B L E S

See the section “Perpendicular Induction Currents, Vector Potential Application 
Mode” on page 30 of the AC/DC Module Reference Guide.

Azimuthal Induction Currents, Vector Potential Application Mode

Use the Azimuthal Induction Currents, Vector Potential  application mode for 
axially symmetric structures with currents present only in the angular direction. The 
problem is formulated using the only nonzero component of the magnetic vector 
potential, the component. 

This application mode supports three types of analyses:

• Magnetostatic

• Transient quasi-static

• Time-harmonic quasi-static

P D E  F O R M U L A T I O N

For 2D electromagnetic modeling, with currents having only one nonzero 
component, the magnetic potential is used. The formulation uses the following 
equation, which is derived on page 151.

The term involving the gradient of the electric potential can be written 
, because the electric field is present only in the azimuthal 

direction. Vloop is the potential difference for one turn around the z-axis. The above 
equation can then, in cylindrical coordinates, be written

ϕ

σ
t∂

∂A ∇ µ0
1– ∇ A× M–( )× σv ∇ A×( ) σ V∇+×–+ Je

=

V∇ Vloop 2πr( )⁄–=

σr
t∂

∂u r∂
∂

z∂
∂

T

rµ0
1– r∂

∂u

z∂
∂u

µ0
1– 2

0
u

Mz

M– r

–+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

– rσ v r∂
∂u

z∂
∂u

⋅

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2σvru+ + σ
Vloop
2πr
------------- Jϕ

e
+=
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ru
The dependent variable u is the nonzero component of the magnetic potential divided 
by the radial coordinate r, that is,

This transformation is carried out to avoid singularities at the symmetry axis.

To obtain the equation for magnetostatics, drop the first term in the equation.

For time-harmonic fields, it is possible to retain the displacement current and start 
from the 3D equation

The corresponding axisymmetric time-harmonic formulation is

The constitutive relations used in the above equations are B = µ0 (H + M  ) and 
D = ε0 (E + P  ). The application mode also supports other constitutive relations.

A P P L I C A T I O N  M O D E  P R O P E R T I E S

See the corresponding section for Perpendicular Currents on page 167.

A P P L I C A T I O N  S C A L A R  V A R I A B L E S

See the corresponding section for Perpendicular Currents on page 167.

B O U N D A R Y  A N D  I N T E R F A C E  C O N D I T I O N S

For a thorough discussion about the different boundary conditions, see “Boundary 
and Interface Conditions” on page 168 for the perpendicular currents case. The 
following section only treats the boundary along the z-axis in detail.

Axial Symmetry
You must use the axial symmetry boundary condition along the z-axis to obtain the 
axial symmetry. The reason for this is that the conditions

u
Aϕ
r

-------=

jωσ ω2ε0–( )A ∇ µ0
1– ∇ A M–×( )× σv ∇ A×( ) σ jωε0+( )∇V+×–+ Je jωP+=

r∂
∂

z∂
∂ rµ0

1– r∂
∂u

z∂
∂u

µ0
1– 2

0
u

Mz

M– r

–+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

– rσ v r∂
∂u

z∂
∂u

⋅

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

r σjω ω2ε0–( )u 2σv+ + +

σ
Vloop
2πr
------------- Jϕ

e
+ jωPϕ+=
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must be fulfilled. If the first one is not fulfilled, the flow lines for the magnetic flux 
density begin at r  =  0, as if there were an unphysical source along the z-axis. The 
second condition, if not fulfilled, gives rise to a discontinuity along the axis.

Using the variable u, the first of the above equations is automatically fulfilled whenever 
r is zero, which is shown by the identity

The second symmetry condition must be given explicitly. Writing the expression using 
the dependent variable, u, you obtain

This is zero when r is zero if and only if

PO I N T  S O U R C E S

You can specify that points in the geometry carry a current I0 flowing in the 
direction.

A P P L I C A T I O N  M O D E  VA R I A B L E S

See the section “Azimuthal Induction Currents, Vector Potential Application Mode” 
on page 37 of the AC/DC Module Reference Guide.

Quasi-Statics, Magnetic Field Formulation

Under the assumption that it is possible to invert the conductivity tensor, you can 
rewrite Maxwell-Ampère’s law as

Br 0=

r∂
∂Bz 0=

Br z∂
∂Aϕ– r

z∂
∂u

–= =

r∂
∂Bz

r∂
∂ 1

r
---

r∂
∂ rAϕ( )⎝ ⎠

⎛ ⎞=
r∂

∂ r
r∂

∂u 2u+⎝ ⎠
⎛ ⎞ r

r

2

∂
∂ u 3

r∂
∂u

+= =

r∂
∂u 0=

ϕ

E σ 1– ∇ H× Je
–( ) v B×–=
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Replacing E in Faraday’s law by the right-hand side stated above, and using the most 
general constitutive relation B = µ0µr H + Br, the following equation is obtained

This is the general time-dependent formulation of quasi-static fields. It cannot treat 
problems including regions with zero conductivity, but µr and Br can be functions of 
the magnetic field intensity.

When the electromagnetic field is time-harmonic you can keep the displacement 
current. In this case, using Maxwell-Ampère’s equation, the equation becomes

using the constitutive relation D = ε0E + P. Faraday’s law provides the following 
equation:

Note: In the time-harmonic case µ cannot depend on the magnetic field because 
harmonic solutions are only obtained from a linear equation.

In-Plane Induction Currents, Magnetic Field Application Mode

The In-Plane Induction Currents, Magnetic Field  application mode covers the 
situation where the currents are present only in the modeling plane. The magnetic field 
then only has a component perpendicular to the plane. This means that it is possible 
to derive a second-order scalar PDE for the simulation.

P D E  F O R M U L A T I O N

The application mode solves the equation

which is derived in the section “Quasi-Statics, Magnetic Field Formulation” on page 
173. For clarity the most general constitutive relation is used in the derivation of the 
equation.

∂
t∂

----- µ0µrH Br+( ) ∇ σ 1– ∇ H× Je
–( ) v µ0µrH Br+( )×–( )×+ 0=

E σ jωε0+( ) 1– ∇ H× σv B×– Je
– jωP–( )=

jω µ0µrH Br+( ) ∇ σ jωε0+( ) 1– ∇ H× σv µ0µrH Br+( )×– Je
– jωP–( )( )×+ 0=

µ0µrH∂
t∂

--------------------
Br∂
t∂

--------- ∇ σ 1– ∇ H× Je
–( ) v µ0µrH Br+( )×–( )×+ + 0=
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When the magnetic field is transversal to the plane, the above equation is a scalar 
equation with Hz as the only dependent variable. This special case is formulated as

where d is the thickness in the z direction and

This equation is used for transient problems. Magnetostatic problems are handled by 
dropping the first term of the equation.

When the electromagnetic fields are time-harmonic, the equation which is used is

where

The constitutive relations used in the above equations are B = µ0µr H + Br and 
D = ε0 E + P.

A P P L I C A T I O N  M O D E  P R O P E R T I E S

The application mode properties are given in the table below.

PROPERTY VALUES DESCRIPTION

Analysis type Static 
Transient 
Time-harmonic

Specifies which type of 
analysis to perform

d
µ0µrHz∂

t∂
----------------------- d

Brz∂
t∂

------------ ∇ d σ̃ Hz∇ µ0µrvHz– σ̃
Jy

e
–

Jx
e

– vBrz–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅–+ 0=

σ̃ σT

det σ( )
----------------=

∇ d σ̃c Hz∇ σ̃c
Jy

e
– jωPy–

Jx
e jωPx+

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

∇ d σc
1– σ

vy

vx–
µ0µrHz Brz+( )

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+×–⋅–

djωµ0µrHz djωBrz–=

σc σ jωε0+=
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A P P L I C A T I O N  S C A L A R  V A R I A B L E S

The application scalar variables used in this mode are given in the following table.

All numbers are given in SI units. The frequency is only used in time-harmonic 
problems.

B O U N D A R Y  A N D  I N T E R F A C E  C O N D I T I O N S

As stated in “Boundary and Interface Conditions” on page 108, the interface 
conditions

need to be fulfilled at all interior boundaries.

Because the problem is formulated for the z-component of the magnetic field, it is 
continuous across all interior boundaries. This means that in this equation 
formulation, no surface currents can exist at interior boundaries.

The first interface condition is automatically fulfilled, because it corresponds directly 
to the natural boundary condition of the COMSOL Multiphysics formulation. This 
can be seen from the following identity:

Induced Electric Field
The induced electric field boundary condition

PROPERTY NAME DEFAULT UNIT DESCRIPTION

µ0 mu0 4*pi*1e-7 H/m Permeability of vacuum

ε0 epsilon0 8.854187817e-12 F/m Permittivity of vacuum

ν nu 50 Hz Frequency

n2 E1 E2–( )× 0=

n2 H1 H2–( )× Js=

n σ̃ Hz∇ µvHz– σ̃
Jy

e
–

Jx
e

– vBrz–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

n– σ 1– H∇× Je
–( ) v B×–( )×

=⋅

n E×–=

n E× n E0×=
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lets you specify the tangential component of the electric field.

Lorentz Electric Field
The Lorentz electric field boundary condition

lets you specify the tangential component of the electric field including the Lorentz 
term.

Total Electric Field
The total electric field boundary condition

lets you specify the tangential component of the total electric field.

Magnetic Insulation
The magnetic insulation boundary condition

sets the electric field to zero at the boundary.

The term magnetic insulation comes from the fact that this boundary condition 
makes the normal component of the magnetic field zero. Thus the boundary is not 
truly insulating.

Magnetic Field
The magnetic field boundary condition 

specifies the magnetic potential. Note that you cannot use this boundary condition at 
interior boundaries to specify a surface current.

Electric Insulation
The electric insulation boundary condition 

sets the magnetic potential to zero at the boundary.

The term electric insulation comes from the fact that this boundary condition makes 
the normal component of the electric current zero.

n E× n v B×( )×+ n E0×=

n E n v B×( ) n σ 1– Je×+×+× n E0×=

n E× 0=

Hz H0z=

Hz 0=
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Continuity
The continuity boundary condition

is the natural boundary condition implying continuity of the tangential component of 
the electric field.

A P P L I C A T I O N  M O D E  V A R I A B L E S

See the section “In-Plane Induction Currents, Magnetic Field Application Mode” on 
page 44 of the AC/DC Module Reference Guide.

Meridional Induction Currents, Magnetic Field Application Mode

Use the Meridional Induction Currents, Magnetic Field  application mode in the 
case of meridional currents, that is, when the currents have no angular component. A 
PDE expressed in the angular component of the magnetic field can be derived. Taking 
into account the effects of using cylindrical coordinates for the rotational field, a 
formulation that differs slightly from the corresponding in-plane case is obtained.

P D E  F O R M U L A T I O N

Start from the equation

which is derived in the section “Quasi-Statics, Magnetic Field Formulation” on page 
173.

The curl operator in cylindrical coordinates invokes divisions by the radial component 
r. This gives rise to singularities along the symmetry axis where r = 0. To avoid this, 
make a variable transformation and introduce the dependent variable u, which is the 
nonzero component of the magnetic field divided by r, that is,

Using this independent variable the time-dependent formulation is

n E1 E2–( )× 0=

µ0H
µr∂
H∂

-------- µ0µr
Br∂
H∂

---------+ +⎝ ⎠
⎛ ⎞ H∂

t∂
-------- ∇ σ 1– ∇ H× Je

–( ) v µ0µrH Br+( )×–( )×+ 0=

u
Hϕ
r

--------=
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where

Keeping the displacement current the time-harmonic formulation becomes

Note: In the time-harmonic case µ cannot depend on the magnetic field because 
harmonic solutions are only obtained from linear equations.

The constitutive relations used in the above equations are B = µ0µr H + Br and 
D = ε0E + P . The application mode also handles other constitutive relations.

A P P L I C A T I O N  M O D E  P R O P E R T I E S

See the corresponding section for In-Plane Currents on page 175.

A P P L I C A T I O N  S C A L A R  V A R I A B L E S

See the corresponding section for In-Plane Currents on page 176.

Brϕ∂
u∂

------------ rµ0u
µr∂
u∂

-------- rµ0µr+ +⎝ ⎠
⎛ ⎞ u∂

t∂
------

r∂
∂

z∂
∂

T

rσ̃ r∂
∂u

z∂
∂u

σ̃ 2
0

rµ0µrv–
⎝ ⎠
⎜ ⎟
⎛ ⎞

u σ̃
Jz

e
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e

– vBrϕ–+
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⎜ ⎟
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⎜ ⎟
⎛ ⎞

⋅– 0=

σ̃ σT
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– rσ̃c
r∂

∂u
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u σ̃c
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⎜ ⎟
⎜ ⎟
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⋅

∇ σc
1– σ

vz–

vr

µ0µrru Brϕ+( )
⎝ ⎠
⎜ ⎟
⎜ ⎟
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×– jωµ0µrru+ jωBrϕ–=
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B O U N D A R Y  A N D  I N T E R F A C E  C O N D I T I O N S

For a thorough discussion on the different boundary conditions, see “Boundary and 
Interface Conditions” on page 176 for the in-plane case. This section only covers the 
boundary along the z-axis in detail.

Axial Symmetry
You must use the axial symmetry boundary condition along the z axis to obtain the 
axial symmetry. The reason for this is that the conditions

must be fulfilled. If the first one is not fulfilled, the flow lines for the current flow begin 
at r = 0, as if there were a nonphysical source along the z-axis. If the second condition 
is not fulfilled, it gives rise to a discontinuity along the axis.

Using the variable u, the first of the above equations is automatically fulfilled whenever 
r is zero, which is shown by the identity

The second symmetry condition must be given explicitly. Writing the expression using 
the dependent variable, u, the equation for the symmetry condition becomes

This is zero when r is zero if and only if

A P P L I C A T I O N  M O D E  V A R I A B L E S

See the section “Meridional Induction Currents, Magnetic Field Application Mode” 
on page 50 of the AC/DC Module Reference Guide.

Jr 0=

r∂
∂Jz 0=

Jr z∂
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∂Jz

r∂
∂ 1
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∂ rHϕ( )⎝ ⎠
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 4 :  T H E  A P P L I C A T I O N  M O D E S



Magnetostatics Without Currents

In magnetostatic problems where no electric currents are present, the problem can be 
solved using a scalar magnetic potential. In a current-free region you have

This implies that you can define the magnetic scalar potential Vm from the relation

This is analogous to the definition of the electric potential for static electric fields.

Using the constitutive relation B = µ0 ( H + M ) the equation

becomes

Magnetostatics, No Currents Application Mode

The Magnetostatics, No Currents application mode solves the equation derived 
above. This equation assumes the constitutive relation B = µ0 ( H + M ). The 
application mode also handles the corresponding equations for the constitutive 
relations B = µ0µrH, B = µ0µrH + Br, B= f ( | H |  ) eH, and B= f ( | H |  ). The unit vector 
eH is directed in the same direction as the H-field.

A P P L I C A T I O N  S C A L A R  V A R I A B L E S

The application-specific scalar variable in this application mode is µ0:

The default value is given in SI units.

B O U N D A R Y  A N D  I N T E R F A C E  C O N D I T I O N S

In magnetostatics the relevant boundary condition between two domains 1 and 2 is

This is automatically satisfied by the natural boundary condition, which is

PROPERTY NAME DEFAULT UNIT DESCRIPTION

µ0 mu0 4*pi*1e-7 H/m Permeability of vacuum

∇ H× 0=

H ∇Vm–=

∇ B⋅ 0=

∇– µ0∇Vm µ0M–( )⋅ 0=

n2 B1 B2–( )⋅ 0=
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Magnetic Flux Density
The magnetic flux density boundary condition

lets you specify the normal component of the magnetic flux density at the boundary.

Inward Flux Density
The inward flux density boundary condition

is similar to magnetic flux density boundary condition. The inward flux density 
boundary condition lets you specify the normal component of the magnetic flux 
density as a scalar. A positive value indicates an inward flux.

Magnetic Insulation
The magnetic insulation boundary condition

sets the normal component of the magnetic flux density to zero. This boundary 
condition is useful at boundaries confining a surrounding region of air.

Magnetic Potential
The magnetic potential boundary condition

lets you specify the potential at the boundary.

Zero Potential
The zero potential boundary condition

sets the magnetic potential to zero at the boundary.

Magnetic Shielding
The magnetic shielding boundary condition describes a thin layer of a permeable 
medium which shields the magnetic field.

n µ0∇Vm M–( )1 µ0∇Vm M–( )2–[ ]⋅ n B1 B2–( )⋅– 0= =

n B⋅ n B0⋅=

n– B⋅ Bn=

n B⋅ 0=

Vm Vm0=

Vm 0=
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Thin Low Permeability Gap
You can use the thin low permeability gap boundary condition

to model a thin gap of a low permeable material such as air. The layer has the thickness 
d and the relative permeability µr. This boundary condition is only available at the 
border between the parts in an assembly.

Continuity
The continuity boundary condition

is the natural boundary condition ensuring continuity of the normal component of the 
magnetic flux density.

Periodic Boundary Condition
The periodic boundary condition sets up a periodicity between the selected 
boundaries. See “Periodic Boundary Conditions” on page 26 for more details on this 
boundary condition.

Sector Symmetry and Sector Antisymmetry
Select sector symmetry at interfaces between rotating objects where sector symmetry 
is used. It is only available for assembly interfaces (see “Sector Symmetry” on page 27 
for more details on this boundary condition).

PO I N T  C O N D I T I O N

To obtain a unique solution, you must provide the potential at (at least) one point. If 
you use the magnetic insulation boundary condition everywhere, the potential has to 
be fixed using a point condition. With the available point condition you can set 
Vm = Vm0, where Vm0 is a given constant.

A P P L I C A T I O N  M O D E  VA R I A B L E S

See the section “Magnetostatics, No Currents Application Mode” on page 56 of the 
AC/DC Module Reference Guide.

n B⋅( )1
µ
d
--- Vm1 Vm2–( )=

n B⋅( )2
µ
d
--- Vm2 Vm1–( )=

n B1 B2–( )⋅ 0=
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 5
G l o s s a r y  
This glossary contains finite element modeling terms in an electromagnetics 
context. For mathematical terms as well as geometry and CAD terms specific to the 
COMSOL Multiphysics software and documentation, please see the glossary in the 
COMSOL Multiphysics User’s Guide. For references to more information about a 
term, see the index.
 185
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anisotropy   Variation of material properties with direction.

constitutive relation   The relation between the D and E fields and between the B and 
H fields. These relations depend on the material properties.

eddy currents   Induced currents normal to a time-varying magnetic flux in a 
ferromagnetic material.

edge element   See vector element.

electric dipole   Two equal and opposite charges +q and −q separated a short distance 
d. The electric dipole moment is given by p = qd, where d is a vector going from −q 
to +q.

gauge transformation   A variable transformation of the electric and magnetic potentials 
that leaves Maxwell’s equations invariant.

magnetic dipole   A small circular loop carrying a current. The magnetic dipole 
moment is m = IAe, where I is the current carried by the loop, A its area, and e a unit 
vector along the central axis of the loop.

Nedelec’s edge element   See vector element.

phasor   A complex function of space representing a sinusoidally varying quantity.

quasi-static approximation   The electromagnetic fields are assumed to vary slowly, so 
that the retardation effects can be neglected. This approximation is valid when the 
geometry under study is considerably smaller than the wavelength.

vector element   A finite element often used for electromagnetic vector fields. The 
tangential component of the vector field at the mesh edges is used as a degree of 
freedom. Also called Nedelec’s edge element or just edge element.
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3D Conductive Media DC

application mode 134

3D Electrostatics

application mode 140

3D Electrostatics, Generalized

application mode 145

3D magnetostatics

application mode 154

3D quasi-statics

application mode 154

A AC/DC Material Properties library 133

AC/DC Module 3.4

new features in 5

admittance 122

Ampère’s law 102

in quasi-statics 107

analysis

static 131

time-harmonic 131

transient 131

analysis capabilities 129

analysis type 131

anisotropic material 107

antiperiodic boundaries 43

application mode 8, 128

Azimuthal currents quasi-statics 171

Conductive Media DC (3D) 134

Electrostatics 140

Electrostatics, Generalized 145

In-plane currents quasi-statics 174

Magnetostatics (3D) 154

Magnetostatics, no currents 181

Meridional currents quasi-statics 178

Perpendicular currents quasi-statics 

166

Quasi-statics (3D) 154

Quasi-statics, small currents 166

Shell, Conductive Media DC 139

Small in-plane currents 166

Small meridional currents 166

application mode properties 132

application mode property

analysis type 158, 167, 175

gauge fixing 158

potentials 158

application mode variable 132

application scalar variable 25, 131, 132

Application Scalar Variables dialog box 

13, 26, 131

assemblies, in electromagnetics 97

Axes/Grid Settings dialog box 23

axial symmetry 17

boundary condition 149, 172, 180

Azimuthal currents quasi-statics

application mode 171

model 22

B bias application mode 76

bipolar transistor 72

boundary condition 132

axisymmetric 149, 172, 180

distributed resistance 163

electric shielding 138, 142, 164

floating potential 137, 142

impedance 161, 169

magnetic shielding 182

transition 170

boundary conditions

for minimizing problem size 18

Boundary Settings dialog box 13, 26, 132

C capacitance 122

Cartesian coordinates 129
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Cauchy’s equation 110

characteristic impedance 122

charge

line 143

point 143

charge relaxation time 144

conductance 122

Conductive Media DC application mode 

134

conductivity 103

in Joule heating 135

temperature-dependent 135

constant charges 120

constant currents 120

constant magnetic flux 120

constant potentials 120

Constants dialog box 12, 24

constitutive relation 102

generalized 103

continuity in periodic boundaries 43

continuum mechanics 110

Coulomb gauge 152, 156

current density 102

current flow 136, 146, 162

current source 134, 137

line 139

point 139

cylindrical coordinates 129

D dependent variables 128

dielectric effect 116

dispersive materials 107

distributed resistance 136

E eddy currents 21

Edge Settings dialog box 132

elastic material 110

electric charge density 102

electric conductivity 103

electric current 155

electric dipole moment 103

electric displacement 102

electric energy 104

electric field 102

electric flux density 102

electric force 120

electric insulation 136, 160, 169, 177

electric polarization 103

electric power 105

electric scalar potential 104, 128

electric shielding 34

electric susceptibility 103

electric torque 120

electrical size 5

electromagnetic force 110

electromagnetic stress tensor 114

electromagnetic torque 113, 120

electromagnetic volume force 59

electromotive intensity 118

Electrostatics

application mode 140

electrostatics 134

Electrostatics, Generalized

application mode 145

energy density 106

energy loss

resistive and reactive 105

equation of continuity 102

quasi-static approximation 106

external current 104

F Faraday’s law 102

field variables in 2D 7

fixed current

in port boundary condition 61

fixed current density

in port boundary condition 62

floating potential 35

boundary condition 137, 142



force

distributed in a volume 59

electric 120

electromagnetic 110

Lorentz 106

magnetic 119

force computations 55

force in a pure conductor 115, 118

force variables

naming of 57

forced voltage

in port boundary condition 61

forces in moving objects 117

G Galilei invariant field 117

Galilei transformation 117

gap

boundary condition for 162

gauge fixing 152

gauge transformation 152

Gauss’ law 102

geometric multigrid 84

geometry

simplifying 16

ground potential 137, 142, 148, 163

Gummel-Poon transistor model 72

H Helmholtz’s theorem 152

hierarchy generation method 85

homogeneous coil 30

hysteresis effects 107

I impedance 122

impedance boundary condition 161, 169

inductance 122

induction current 155

infinite elements 46

inhomogeneous materials 107

In-plane currents quasi-statics

application mode 174

interface conditions 108

interior boundaries 31

J Joule heating 135

L line charge 143

line current 165

line current source 139

linear dielectric material 117

linear elastic material 110

linear magnetic material 117

Lorentz force 106

Lorentz magnetization 118

loss, resistive and reactive 105

lumped parameters 61

admittance 122

capacitance 122

conductance 122

impedance 122

inductance 122

resistance 122

M magnetic dipole moment 103

magnetic energy 104

magnetic field 102, 128

magnetic flux density 102

magnetic force 119

magnetic insulation 161, 169, 177

magnetic potential

scalar 104, 128

vector 104, 128

magnetic power 105

magnetic scalar potential 128

magnetic susceptibility 103

magnetic torque 120

magnetic vector potential 104, 128

magnetization 103

magnetization effect 116

magnetomotive intensity 118

magnetostatics 151, 154, 166, 171
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Magnetostatics, no currents

application mode 181

mapped infinite elements 46, 121

material library 133

Materials/Coefficients Library dialog box 

12

Maxwell stress tensor 55, 59, 114

Maxwell’s equations 102

quasi-static approximation 151

Maxwell-Ampère’s law 102

mechanical stress tensor 111

Meridional currents quasi-statics

application mode 178

Mesh menu 28

mesh resolution 19

method of virtual work 59, 119, 120

Model M-file 4

Model Navigator 22

moving geometry 106

multiphysics models 4

N netlist 70

new features in version 3.4 5

nonlinear magnetization 174

nonlinear material 107, 117

O Ohm’s law 134

Options menu 23

P pair boundary condition

sector antisymmetry 43

sector symmetry 43

perfect conductor 108, 115

perfectly matched layers 46

permanent magnet 59, 115

permeability

of vacuum 103

relative 103

permittivity

of vacuum 103

relative 103

perpendicular currents 166

Perpendicular currents quasi-statics

application mode 166

phasor 109

piezoelectric effect 116

piezomagnetic effect 116

plot

stream-lines 29

surface 29

Plot Parameters dialog box 14, 132

point charge 143

point current source 139

Point Settings dialog box 132

polarization 103

Poynting vector 105

Poynting’s theorem 105

preconditioner

Geometric multigrid 84

principle of virtual displacement 119

property

analysis type 158, 167, 175

gauge fixing 158

potentials 158

pure conductor 115, 118

pyroelectric effect 116

pyromagnetic effect 116

Q quasi-static approximation 106, 151

quasi-statics 5, 151

magnetic field formulation 173

time-harmonic 153, 154, 166, 171

transient 166, 171

Quasi-statics, small currents

application mode 166

R radiative energy 105

radiative loss 105

RC circuit 144

relative permeability 103



relative permittivity 103

relaxation time 144

remanent displacement 104

remanent magnetic flux density 104

resistance 122

resistive energy 105

resistive heating 135

S scalar magnetic potential 104, 128

sector antisymmetry

pair boundary condition 43

sector symmetry

pair boundary condition 43

Shell, Conductive Media DC

application mode 139

skin depth 161, 169

skin effect 30

considering when meshing 19

Small in-plane currents

application mode 166

Small meridional currents

application mode 166

Solver Parameters dialog box 14

solver settings 19

solver type 131

SPICE import 70

static analysis 131

stream-line plot 29

stress tensor

electromagnetic 114

Maxwell 59, 114

mechanical 111

Subdomain Settings dialog box 13, 27, 131

surface charge 108, 141, 147

surface current 31, 108, 160, 168

surface plot 29

susceptibility

electric 103

magnetic 103

symmetric matrices

solver setting 7

symmetric stress tensor 117

symmetry axis condition 149, 172, 180

T temperature coefficient 135

temperature-dependent conductivity 

135

thin low permeability gap 162

thin resistive layer 163

time constant 144

time-dependent analysis 7

time-dependent quasi-static fields 174

time-harmonic analysis 131

time-harmonic quasi-statics 153, 154, 

166, 171

torque

electromagnetic 113, 120

torque computations 55

total force 59

transient analysis 7, 131

transient quasi-statics 166, 171

transition boundary condition 161, 170

typographical conventions 2

U unbounded domains, modeling of 46

ungauged formulations

solver settings for 95

units 123

V variables

application mode 132

application scalar 25, 131, 132

dependent 128

vector magnetic potential 104, 128

virtual displacement 119

virtual work 119

method of 59, 120

volume force 59

W wavelength 19
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