
Gromacs Workshop 2007
CSC, Espoo/Helsinki, Finland

Pre-Workshop Hands-On Tutorial

Introduction to Molecular Dynamics:

Simulation of Lysozyme in Water

Background
!e purpose of this tutorial is not to master all parts of Gromacs’ simulation and analysis tools in detail, but rather
to give an overview and “feeling” for the typical steps used in practical simulations. Since the time available for this
exercise is rather limited we can only perform a very short sample simulation, but you will also have access to a
slightly longer pre-calculated trajectory for analysis.

In principle, the most basic system we could simulate would be water or even a gas like Argon, but to show some of
the capabilities of the analysis tools we will work with a protein: Lysozyme. Lysozyme is a fascinating enzyme that
has ability to kill bacteria (kind of the body’s own antibiotic), and is present e.g. in tears, saliva, and egg white. It
was discovered by Alexander Fleming in 1922, and one of the first protein X-ray structures to be determined (David
Phillips, 1965). !e two sidechains Glu35 and Asp52 are crucial for the enzyme functionality. It is fairly small by
protein standards (although large by simulation standards :-) with 164 residues and a molecular weight of 14.4 kdal-
ton - including hydrogens it consists of 2890 atoms (see illustration on front page), although these are not present
in the PDB structure since they only scatter X-rays weakly (few electrons).

In the tutorial, we are first going to set up your Gromacs environments, have a look at the structure, prepare the in-
put files necessary for simulation, solvate the structure in water, minimize & equilibrate it, and finally perform a
short production simulation. After this we’ll test some simple analysis programs that are part of Gromacs.

Setting up Gromacs & other programs
Before starting the actual work, we need a couple of programs that might already be installed on your system. Since
the actual installation can depend on your system we will do this part interactively at the tutorial, although you can
find more detailed instructions at http://www.gromacs.org.

1. You will need a Unix-type system with an X11 window environment (look at the install disks if you have a mac).
You can use CygWin under windows, although this is a bit more cumbersome, and you will also need to install a
separate X11 server.

2. Gromacs uses FFTs (fast fourier transforms) for some interactions, in particular PME. While Gromacs comes
with the slower FFTPACK libraries built-in, it is a very good idea to install the free and faster FFTW libraries from
http://www.fftw.org. If you have an Intel mac you’re in luck, since the Gromacs package comes with this included.
You can also find finished RPMs for x86 Linux on the Gromacs or FFTW sites. If you need to install this from
source, unpack the distribution tarball with “tar -xzvf fftw-3.1.2.tar.gz”, go into the directory and issue “./configure
--enable-float” (since Gromacs uses single precision by default) followed by “make” and finally become root and is-
sue “make install”. If you do not have root access you can install it under your home directory, using the switch “--
prefix=/path/to/somewhere” when you run the configure script.

3. Install Gromacs from a package, or compile it the same way as FFTW.

4. Install PyMol from http://www.pymol.org, or alternatively VMD.

5. Install the 2D plotting program Grace/xmgrace. Depending on your platform you might have to install the
Lesstif libraries first (www.lesstif.org), and then get Grace from http://plasma-gate.weizmann.ac.il/Grace/.

6. To create beautiful secondary structure analysis plots, you can use the program “DSSP” from
http://swift.cmbi.ru.nl/gv/dssp/. !is is freely available for academic use but requires a license, so we will use the
Gromacs built-in alternative “my_dssp” for this tutorial.

We will go through the necessary steps, depending on your hardware, at the intro tutorial!

http://www.gromacs.org
http://www.gromacs.org
http://www.fftw.org
http://www.fftw.org
http://www.pymol.org
http://www.pymol.org
http://www.lesstif.org
http://www.lesstif.org
http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/
http://swift.cmbi.ru.nl/gv/dssp/
http://swift.cmbi.ru.nl/gv/dssp/

The PDB Structure - think before you simulate!
!e first thing you need is a structure of the protein you want to simulate. Go to the Protein Data Bank at
http://www.pdb.org, and search for “Lysozyme”. You should get lots of hits, many of which were determined with
bound ligands, mutations, etc. We’ll use the structure 1LYD.pdb here; you can either search for it, or download it
from http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1/ (backup in case PDB site is down/unreachable).

It is always a good idea to look carefully at the structure before you start any simulations. Is the resolution high
enough? Are there any missing residues? Are there any strange ligands? Check both the PDB web page and the
header in the actual file. Finally, try to open it in a viewer like PyMOL/VMD and see what it looks like. In PyMOL
you have some menus on the right where you can show (“S”) e.g. cartoon representations of the backbone!

Creating a Gromacs topology from the PDB file
When you believe you have a good starting structure the next step is to prepare it for simulation. As mentioned in
the talks, we need to create a topology for this. Gromacs can do this automatically for you with the tool “pdb2gmx”.
You can get some help on the available options with “pdb2gmx -h”. In this case, we will use a command like

pdb2gmx -f 1LYD.pdb -water tip3p

!e program will ask you for a force field - for this tutorial I suggest that you use “OPLS-AA/L”, and then write out
lots of information. !e important thing to look for is if there were any errors or warnings (it will say at the end).
Otherwise you are probably fine. Read the help text of pdb2gmx (-h) and try to find out what the different files it
created do, and what options are available for pdb2gmx! !e important output files are

conf.gro topol.top posre.itp

If you issue the command several times, Gromacs will back up old files so their names start with a hash mark (#) -
you can safely ignore (or erase) these for now.

Adding solvent water around the protein
If you started a simulation now it would be in vacuo. !is was actually the norm 25-30 years ago, since it is much
faster, but since we want this simulation to be accurate we want to add solvent.

However, before adding solvent we have to determine how big the simulation box should be, and what shape to use
for it. !ere should be at least half a cutoff between the molecule and the box side, and preferably more. Due to the
restricted time we’ll be cheap here and only use 0.5nm. To further reduce the volume of the box we’ll use a rhombic
dodecahedron box:

editconf –f conf.gro –bt dodecahedron –d 0.5 –o box.gro

As an exercise, try a couple of different box sizes (the volume is written on the output!) and also other box shapes
like “cubic” or “octahedron”. What effect does it have on the volume?
!e last step before the simulation is to add water in the box to solvate the protein. !is is done by using a small
pre-equilibrated system of water coordinates that is repeated over the box, and overlapping water molecules re-
moved. !e Lysozyme system will require roughly 6000 water molecules, which increases the number of atoms sig-
nificantly (from 2900 to over 20,000). GROMACS does not use a special pre-equilibrated system for TIP3P water
since water coordinates can be used with any model – the actual parameters are stored in the topology and force
field. In GROMACS, a suitable command to solvate the new box would be

genbox –cp box.gro –cs spc216.gro –p topol.top –o solvated.gro

http://ww.pdb.org
http://ww.pdb.org
http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1/
http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1/

Solvent coordinates are taken from an SPC water system here, and the –p flag adds the new water to the topology.
Before you continue it is a good idea to look at this system in PyMOL. However, PyMOL cannot read the Gromacs
gro file directly. !ere are two simple ways to create a PDB file for PyMOL:

1. Use the ability of all Gromacs programs to write output in alternative formats, e.g.:
genbox –cp box.gro –cs spc216.gro –p topol.top –o solvated.pdb

2. Use the Gromacs trjconv program to convert it (use -h to get help on the options):
trjconv -s solvated.gro -f solvated.gro -o solvated.pdb

If you just use the commands like this, the resulting structure might look a bit strange, with water in a rectangular
box even if the system is triclinic/octahedron/dodecahedron. !is is actually fine, and depends on the algorithms
used to add the water combined with periodic boundary conditions. However, to get a better-looking unit cell you
can try the commands (backslash means the entire command should be on a single line):

trjconv -s solvated.gro -f solvated.gro -o solvated_triclinic.pdb \
 -pbc inbox -ur tric
trjconv -s solvated.gro -f solvated.gro -o solvated_compact.pdb \
 -pbc inbox -ur compact

We’re not going to tell you what they do - play around and use the -h option to learn more :-)

Running energy minimization
!e added hydrogens and broken hydrogen bond network in water would lead to quite large forces and structure
distortion if molecular dynamics was started immediately. To remove these forces it is necessary to first run a short
energy minimization. !e aim is not to reach any local energy minimum, so e.g. 200 to 500 steps of steepest descent
works very well as a stable rather than maximally efficient minimization. Nonbonded interactions and other settings
are specified in a parameter file (em.mdp); it is only necessary to specify parameters where we deviate from the de-
fault value, for example (also available on the web site http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1):
------em.mdp------
integrator = steep
nsteps = 200
nstlist = 10
rlist = 1.0
coulombtype = pme
rcoulomb = 1.0
vdw-type = cut-off
rvdw = 1.0
nstenergy = 10

Comments on the parameters used:
We choose a standard cut-off of 1.0 nm, both for the neighborlist generation and the coulomb and Lennard-Jones in-
teractions. nstlist=10 means it is updated at least every 10 steps, but for energy minimization it will usually be every
step. Energies and other statistical data are stored every 10 steps (nstenergy), and we have chosen the more expensive
Particle-Mesh-Ewald summation for electrostatic interactions. "e treatment of nonbonded interactions is frequently
bordering to religion. One camp advocates standard cutoffs are fine, another swears by switched-off interactions, while
the third wouldn’t even consider anything but PME. One argument in this context is that ‘true’ interactions should

http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1
http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1

conserve energy, which is violated by sharp cut-offs since the force is no longer the exact derivative of the potential. On
the other hand, just because an interaction conserves energy doesn’t mean it describes nature accurately. In practice, the
difference is most pronounced for systems that are very small or with large charges, but the key lesson is really that it is a
trade-off. PME is great, but also clearly slower than cut-offs. Longer cut-offs are always better than short ones (but
slower), and while switched interactions improve energy conservation they introduce artificially large forces. Using
PME is the safe option, but if that’s not fast enough it is worth investigating reaction-field or cut-off interactions. It is
also a good idea to check and follow the recommended settings for the force field used.

GROMACS uses a separate preprocessing program grompp to collect parameters, topology, and coordinates into a
single run input file (em.tpr) from which the simulation is then started (makes it easier to move it to a separate su-
percomputer). !ese two commands are

grompp –f em.mdp –p topol.top –c solvated.gro –o em.tpr
mdrun –v –deffnm em

!e –deffnm is a smart shortcut that uses “em” as the base filename for all options, but with different extensions.
!e minimization should finish in a couple of minutes.

Carefully equilibrating the water around the protein
To avoid unnecessary distortion of the protein when the molecular dynamics simulation is started, we first perform
an equilibration run where all heavy protein atoms are restrained to their starting positions (using the file posre.itp
generated earlier) while the water is relaxing around the structure. !is should really be 50-100ps, but due to the
time constraints we’ll make do with 5ps (2500 steps) here. Bonds will be constrained to enable 2 fs time steps.
Other settings are identical to energy minimization, but for molecular dynamics we also control the temperature
and pressure with the Berendsen weak coupling algorithm. !e settings used are:

------pr.mdp------
integrator = md
nsteps = 2500
dt = 0.002
nstlist = 10
rlist = 1.0
coulombtype = pme
rcoulomb = 1.0
vdw-type = cut-off
rvdw = 1.0
tcoupl = Berendsen
tc-grps = protein non-protein
tau-t = 0.1 0.1
ref-t = 298 298
Pcoupl = Berendsen
tau-p = 1.0
compressibility = 5e-5 5e-5 5e-5 0 0 0
ref-p = 1.0
nstenergy = 100
define = -DPOSRES

For a small protein like Lysozyme it should be more than enough with 100 ps (50,000 steps) for the water to fully
equilibrate around it, but in a large membrane system the slow lipid motions can require several nanoseconds of re-
laxation. !e only way to know for certain is to watch the potential energy, and extend the equilibration until it has
converged. To run this equilibration in GROMACS you execute

grompp –f pr.mdp –p topol.top –c em.gro –o pr.tpr
mdrun –v –deffnm pr

Running the production simulation
!e difference between equilibration and production run is minimal: the position restraints and pressure coupling
are turned off, we decide how often to write output coordinates to analyze (say, every 100 steps), and start a signifi-
cantly longer simulation. How long depends on what you are studying, and that should be decided before starting
any simulations! For decent sampling the simulation should be at least 10 times longer than the phenomena you are
studying, which unfortunately sometimes conflicts with reality and available computer resources. Start a simulation
with a couple of thousand steps just to see what happens, but don’t want for it to finish. Instead, go to the website
http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1/ and download the trajectory run.xtc, which contains
output data from a 10 ns simulation of this system (5 million steps, which took about a week on my 4-CPU work-
station).

------run.mdp------
integrator = md
nsteps = 5000
dt = 0.002
nstlist = 10
rlist = 1.0
coulombtype = pme
rcoulomb = 1.0
vdw-type = cut-off
rvdw = 1.0
tcoupl = Berendsen
tc-grps = protein non-protein
tau-t = 0.1 0.1
ref-t = 298 298
nstxout = 1000
nstvout = 1000
nstxtcout = 100
nstenergy = 100

Storing full precision coordinates/velocities every 1,000 steps enables restart if runs crash (power outage, full disk,
etc.). !e analysis normally only uses the compressed coordinates. Perform the production run as

grompp –f run.mdp –p topol.top –c pr.gro –o run.tpr
mdrun –v –deffnm run

http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1/
http://lindahl.sbc.su.se/outgoing/workshop2007/tutorial1/

Analysis of the simulation
You will likely not have time to perform all these analyses, but pick one or a couple of them that sound interesting!
At least for the longer ones you will get better results if you use the long trajectory from the web site, and there you
can also find some plots that illustrate the results if you don’t have time to perform the analysis yourself.

Deviation from X-ray structure
One of the most important fundamental properties to analyze is whether the protein is stable and close to the ex-
perimental structure. !e standard way to measure this is the root-mean-square displacement (RMSD) of all heavy
atoms with respect to the X-ray structure. GROMACS has a finished program to do this, as

g_rms –s em.tpr –f run.xtc

Note that the reference structure here is taken from the input before energy minimization. !e program will prompt
both for a fit group, and the group to calculate RMSD for – choose “Protein-H” (protein except hydrogens) for
both. !e output will be written to rmsd.xvg, and if you installed the Grace program you will directly get a finished
graph with

xmgrace rmsd.xvg

!e RMSD increases pretty rapidly in the first part of the simulation, but stabilizes around 0.l9 nm, roughly the
resolution of the X-ray structure. !e difference is partly caused by limitations in the force field, but also because
atoms in the simulation are moving and vibrating around an equilibrium structure. A better measure can be ob-
tained by first creating a running average structure from the simulation and comparing the running average to the
X-ray structure, which would give a more realistic RMSD around 0.16 nm.

Comparing fluctuations with temperature factors
Vibrations around the equilibrium are not random, but depend on local structure flexibility. !e root-mean-square-
fluctuation (RMSF) of each residue is straightforward to calculate over the trajectory, but more important they can
be converted to temperature factors that are also present for each atom in a PDB file. Once again there is a program
that will do the entire job:

g_rmsf –s run.tpr –f run.xtc –o rmsf.xvg –oq bfac.pdb

You can use the group “C-alpha” to get one value per residue. !e overall agreement should be quite good (check
the temperature factor field in this and the input PDB file, or cheat and open the file rmsf.pdf), which lends further
credibility to the accuracy and stability of the simulation.

Secondary structure (Requires DSSP)
Another measure of stability is the protein secondary structure. !is can be calculated for each frame with a pro-
gram such as DSSP. If the DSSP program is installed and the environment variable DSSP points to the binary
(do_dssp -h will give you help on that), the GROMACS program do_dssp can create time-resolved secondary struc-
ture plots. Since the program writes output in a special xpm (X pixmap) format you probably also need the
GROMACS program xpm2ps to convert it to postscript:

do_dssp –s run.tpr –f run.xtc
xpm2ps –f ss.xpm –o ss.eps

Use the group “protein” for the calculation. !e DSSP secondary structure definition is pretty tight, so it is quite
normal for residues to fluctuate around the well-defined state, in particular at the ends of helices or sheets. For a

(long) protein folding simulation, a DSSP plot would show how the secondary structures form during the simula-
tion. If you do not have DSSP installed, you can compile the Gromacs built-in replacement “my_dssp” from the
src/contrib directory.

Distance and hydrogen bonds
With basic properties accurately reproduced, we can use the simulation to analyze more specific details. As an exam-
ple, Lysozyme appears to be stabilized by hydrogen bonds between the residues GLU22 and ARG137, so how much
does this fluctuate in the simulation, and are the hydrogen bonds intact? To determine this, first create an index file
with these groups as

make_ndx –f run.gro

At the prompt, create a group for GLU22 with “r 22”, ARG137 with “r 137”, and then “q” to save an index file as
index.ndx. !e distance and number of hydrogen bonds can now be calculated with the commands

g_dist –s run.tpr –f run.xtc –n index.ndx –o dist.xvg
g_hbond –s run.tpr –f run.xtc –n index.ndx –num hbnum.xvg

In both cases you should select the two groups you just created. Two hydrogen bonds should be present almost
throughout the simulation.

Making a movie
A normal movie uses roughly 30 frames/second, so a 10-second movie requires 300 simulation trajectory frames. To
make a smooth movie the frames should not be more 1-2 ps apart, or it will just appear to shake nervously. Export a
short trajectory from the first 2.5 ns in PDB format (readable by PyMOL) as

trjconv –s run.gro –f run.xtc –e 2500.0 –o movie.pdb

Choose the protein group for output rather than the entire system. If you open this trajectory in PyMOL you can
immediately play it using the VCR-style controls on the bottom right, adjust visual settings in the menus, and even
use photorealistic ray-tracing for all images in the movie. With MacPyMOL you can directly save the movie as a
quicktime file, and on Linux you can save it as a sequence of PNG images for assembly in another program. Render-
ing a movie only takes a few minutes, and the final product lysozyme.mov is also available in the same location you
found the other files.

Conclusions
Well, the main point of this exercise was to get your feet wet, and at least an idea of how to use Gromacs in practice.
!ere are much more advanced analysis tools available, not to mention a wealth of simulation options. We’ll go
through some of those during the rest of the workshop, but we’d also like to recommend the Gromacs manual
which is available from our website: It goes quite a bit beyond just being a program manual, and explains many of
the algorithms and equations in detail!

