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Abstract: Classical molecular dynamics simulations of a 14-mer UUCG RNA hairpin are
performed to study its conformational dynamics and corresponding NMR relaxation parameters.
The direct calculation of the relaxation rates from the trajectory yields good agreement with
experiment, indicating the validity of the theoretical model. Various ways to provide a link between
theory and experiment are considered, including the “model-free approach” of Lipari and Szabo
and Gaussian axial fluctuation model of Briischweilwer. It is studied if the underlying assumptions
of these approaches are satisfied in the case of a flexible RNA hairpin. Being consistent with
the analysis of the NMR experiments, Lipari—Szabo fits of the first 100 or 1000 ps of the internal
correlation functions lead to a nice agreement between calculated and experimental order
parameters and internal correlation times. Finally, the relation between NMR order parameters
and the underlying internal motion of the RNA hairpin is discussed in detail. A principal component
analysis reveals that the principal motions of the molecule account only partially for the measured
NMR order parameters, because the latter are insensitive to internal dynamics occurring on a
nanosecond time scale due to molecular tumbling.

1. Introduction MD simulations provide directly information at the atomistic
Conformational dynamics may play a key role in the function level on inter- and intramolecular motions using an empirical
of biomolecules such as proteins, DNA, and RNA. The force field as molecular model. NMR relaxation measure-
flexible parts of a protein or ribonucleic acid, such as loop ments$ yield the dipolar correlation function, from which
regions, are often involved in mediating specific interactions, dynamical quantities such as generalized order parameters
for example, between protein and RNA during a binding 2 and effective correlation times can be extracte®:*? In

process: In the case of RNA, the flexibility of the loop  particular, the combination of NMR and MD investigations
may directly affect both the specificity and the affinity of ,,< peen shown to provide a comprehensive description of
the binding® To account for the function of RNA systems, fast conformational dynamics of proteitis?® On one hand

a site-specific dynamic description is therefore an important we may use experimental NMR results as benchmark 'data

complement to static structural informatief. e
. L . to study the accuracy of the MD description; on the other
Internal motions in biomolecules occur on a wide range . i
hand, we may employ the MD trajectory to provide a

of time scales, from femtoseconds to seconds. Molecular ™ o ) ) )
dynamics (MD) simulations and nuclear magnetic resonance MCroscopic interpretation of the NMR experiments. While

(NMR) spin relaxation measurements are valuable tools to the description of structure and dynamics of proteins is well
gain access to fast (i.e., subnanosecond) internal motionsestablished, RNA systems have been comparatively little
studied using NMR relaxatiéh 2° or MD simulation. (For
general reviews on RNA simulations see refs-28.)

* Corresponding author phonet-49-69-79829711; fax:+49-69-
79829709; e-mail: villa@theochem.uni-frankfurt.de.

10.1021/ct600160z CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/22/2006



Internal Motion of an RNA Hairpin

cs U7
G9 us
G10=C5
U1l1 = A4
G12=C3

C14=G1

Figure 1. The 14-mer RNA loop. Top: representative MD
snapshot at 50 ns. Center: secondary structure including
base-pair hydrogen bonds and residue numbering. Bottom:
backbone atoms and residues U7 and C8, describing the main
hairpin motion along the first three principal components of
the trajectory. Shown are snapshots at 10 ns (blue), 30 ns
(green), and 50 ns (red). The pictures were performed using
the graphical package VMD.5®

In this work we present an MD study of the fast dynamics
of the RNA hairpin ggcacUUCGgugcc (Figure 1). This
hairpin belongs to one of the most stable tetraloop faniilies
and is therefore a popular model system for theoreficsl
and experiment&t! investigations. The present study has
also been motivated by recent work on UUCG loops by
Duchardt and Schwallzéwho performed detailed NMRC
relaxation measurements for the carbon atomsirCthe
ribose moiety and for the carbon atoms &d G in the
pyrimidine and purine residues. PreviousBN relaxation
measurements have been used by Akke #ttalcharacterize
the base dynamics of the UUCG loop.

First, the MD results are compared to the structures of
available NMR®4and crystallographf€ studies on similar
UUCG loops. Second, the MD trajectory is used to directly
calculate the NMR relaxation raté%in order to avoid most
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of the assumptions usually employed in the experimental
analysis. Then we consider various ways to provide a link
between theory and experiment, including the so-called
model-free approach developed by Lipari and S2abwl

the Gaussian axial fluctuation modéln particular, we study

if the underlying assumptions of these approaches (such as
the separation of overall and internal motion and the use of
monoexponential LipariSzabo fits of the internal correlation
function) are satisfied in the case of an RNA hairpin. Finally,
the relation between NMR order parameters and the underly-
ing internal motion of the RNA hairpin is discussed in detail.

2. Theory and Methods

2.1. Molecular Dynamics SimulationsThe MD simulations
were performed using the GROMACS suite of programs
(version 3.2)344The AMBER force field (parm98y*¢was
employed to describe the 14-mer UUCG RNA loop. The
loop was placed in a rhombic dodecahedron box (edge length
approximately 5 nm), which was subsequently filled with
2713 TIP3P water moleculé$To neutralize the system, 13
sodium ions were placed randomly in the simulation box.

A twin range cutoff was used for the Lennard-Jones
interactions, that is, interactions between atoms within 1.0
nm were evaluated every step, while interactions between
atoms within 1.4 nm were evaluated every 5 steps. The
particle mesh Ewald methéd was employed to treat
Coulomb interactions, using a switching distance of 1.0 nm,
a grid of 0.12 nm, and a beta value of 3.1 HmConstant
pressurep and temperaturd were maintained by weakly
coupling the system to an external bath at 1 bar and 298 K,
using the Berendsen barostat and thermostat, respectively.
The RNA, the ions, and the solvent were independently
coupled to the temperature bath with a coupling time of 0.1
ps. The pressure coupling time was 0.5 ps, and the isothermal
compressibility was 4:40°5 bar . The bond distances and
the bond angle of the solvent water were constrained using
the SETTLE algorithn¥® All other bond distances were
constrained using the LINCS algoriththA leapfrog integra-
tor with an integration time step of 2 fs was used.

To obtain the starting structure of the UUCG hairpin, the
loop was modeled based on the crystallographic structure
of Ennifar et al%° while the stem structure was built using
tools of the AMBERG6 softwaré Following 20 ns of
equilibration, the system was simulated for 50 ns. Analysis
of the trajectories was performed with tools from the
GROMACS package and with modified versions of them.
To define the presence of a hydrogen bond, an acceptor
donor distance smaller than 0.35 nm was requested.

2.2. NMR Relaxation ParametersWe have focused on
the relaxation of the'®C nuclear spin through dipolar
interaction with the attachéltH. According to the relaxation
theory of Bloch, Wangness, and Redfi¢lthe spin-lattice
(Ry), the spin-spin R, relaxation rates, and the nuclear
Overhauser enhancement (NOE) are given by

R, = Yooy — w0) + 3wg) + 6w + 0] + cXog)

1)
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R, = g[4J(0) + Iy — o) + 3w + 63w, +

8)(wc + @] + (43(0) + 33w (2)

NOE= 1+ -3 Y63 + ) — I, — 0] 3)
4R, vy

whered = (‘1402/4.7[2)(h2’)/(;2)/H2/I'CH6), c= (,UCZAOCZ/3, andJ(w)
represents the spectra density defined in eq 5. Herés
the vacuum permeabilityh is Planck’s constant, angl is
the gyromagnetic ratio of nucleus ks is the intermolecular
distance between the two nuclei; for the bong-Cl; a
distance of 0.109 nm and fors€Hs and G—Hg a distance
of 0.108 nm was usedAoc is the ¥C chemical shift
anisotropy; for @ a value of 45 ppm, for £a value of—179

ppm, and for @ a value of—134 ppm were used. A value

of 600.13 MHz was used fapy and 150.90 MHz forwc.

All these values have been chosen in line with the NMR

relaxation experiments of Duchardt and Schwatbe.
2.3. Correlation Functions. The NMR relaxation due to

the dipole-dipole interaction between two nuclei (i.e., carbon
and hydrogen) can be described by the correlation funfttion

C(t) = Po(u(0)a () (4)

whereu is a unit vector pointing along the-€H bond,P,(X)

= (1/2)(3¢ — 1) is the second Legendre polynomial, and
[l.0Odenotes an equilibrium average. The spectral density

Jw) = 2"C(t) cospt) dt (5)

which determines the relaxation parameters in eg8,1is

Villa and Stock
CH=S+@1—-SHe " (8)

where & is the order parameter and is the effective (or
internal) correlation time, for the C—H dipole. Insertion
of eq 8 in eqs 57 yields the spectral density

SZTC + (1-9S)

1+ tcza)2 1+ f0?

W) = é )

with =714+ L

2.4. Order Parameters.We have employed three different
approaches to calculate the order parameters.

Lipari—Szabo FitEmploying the Lipari-Szabo form of
the internal correlation function (eq 8% was fitted using
the first 100 ps or the first 1 ns of the MD internal correlation.

Equilibrium Average. Using the general property of
correlation functions that lim..[A(0)B(t) = [AIBL] the order
parameter can be determinecfby

A m=2
Sq =MCO =" 3 ¥n0.)F (10
e m=—2

whereYzq is the spherical harmonic function of rank &)
andg(t) are the polar angles defining the orientation of the
dipole C-H at each snapshot of the trajectory, aRe[
denotes the average over all snapshots. This corresponds to
a Lipari—Szabo fit using the full time range of the internal
correlation function. It should be stressed that eq 10 avoids
the cumbersome calculation of time-dependent correlation
functions. In particular, this allows us to use highly efficient
Monte Carlo schemes (e.qg., like the popular replica exchange
MD?%3) to calculate the equilibrium average in eq 10.

given by the Fourier transform of the correlation function. ~ GAF Model. Assuming that the nucleobase flexibility
Assuming that overall and internal motions of the molecule Monitored by the order parameters of G is exclusively
are independent, the total correlation functidt) can be ~ caused by base motions along the glycosidic torsional angle
factorized in the correlation functions for overall motion, . the order parameter can be related to motions around the
Cof(t), and for internal motionC(t), respectively: Cr—Nj or Cy—Ng bonds. Assuming furthermore a Gaussian
distribution for the dihedral anglg, the Gaussian axial
fluctuation (GAF) modéeP leads to the following expression
for the order parameter:

Sgaf2 =

1-3 sir?x{ cos(1— e ) + %sinzx(l - e*““xz)} (11)

C() = Co(OCi(1) (6)

The total correlation functions were calculated for the-C

Hy, Cs—Hs, and G—Hg dipoles of all residues according to
eq 4. To obtain the internal correlation functions, each
conformation was translated and rotated to give the best fit
to a reference structure. Since no large conformational
arrangement took place during the 50 ns simulation, the Here the dihedral anglgis defined by @—Cy—N:—Cz in
molecule-fixed frame is unambiguously defined by this the pyrimidine and by ©-Cy—No—C, in the purine, and
approach. Subsequently, the correlation functions for overall 9 is its standard deviation.

motion were calculated using eq 6. Assuming that the overall ~ 2.5. Principal Component Analysis Principal component

motion of the molecule is isotropic, this correlation function analysis is an efficient method to represent the motion of a
is given by 3N-dimensional system in terms of a few “principal”

component8* 56 The basic idea is that the correlations of
@ the motions are represented by the covariance matrix

oy = Wa, — [G;0(q — G000

Cot) = %e vre

12)

where the rotational correlation timg is proportional to

the inverse of the rotation diffusion constant. whereqs, ..., sy are the mass-weighted Cartesian coordinates
In the model-free approach of LiparSzabo’ the internal of the solute molecule, and--[Jdenotes the average over

and overall motions are assumed to be independent, and thall sampled conformations. By diagonaliziog we obtain

internal correlation function is given by the following relation 3N eigenvectorsy, and eigenvalued.,, which are rank-
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ordered in descending order, i.&,is the largest eigenvalue.
We may expand the MD trajectogyt) = {qi(t)} on the basis
of the eigenvectors, according to

c(t)
& ocooo
NMOMNBEDD o

X0t = n [vi-a(®)]; (13)

While for n = 3N the expansion becomes exax®P(t) =
q(t)], for smalln (in practice,n = 1—-5) x("(t) approximates
the motion of the system in terms of a few principal
components representing the “essential” dynamics of the
systen®® The projection of the MD trajectory on the first
eigenvectors is used in the calculation of the order param-
eters.

Co(t
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3. Results and Discussion Figure 2. Total (top), overall-motion (middle), and internal
3.1. Structural Features of the UU_CG Lo_o_p.The 14-mer (bottom) correlation functions of the dipoles C;—H;- (black and
tetraloop was simulated for 50_ns in explicit water at 298 K. green line) and Cs—H (red and blue line) for the residues C3
The root-mean-square deviation for all atom coordinates, 5ng U7, respectively.

after fitting to a reference structure, had an average value of

0.19 @0.03) nm. As an illustration, Figure 1 shows a 4 cr-Hr . CoHEICEHS
representative snapshot of the hairpin at the end of the o \¥ ] i ]

trajectory. The residues forming the stem are all involved in & "°[ L oo ]

Lotate] gglotutot oottt ity

Watson-Crick base-pairs and stacking interactions. The  %851520'3030'50°60 70-30-00 700 *$0"10°20°30°20 5060 70 8 90 100
UUCG loop is mainly stabilized by hydrogen bonds between | 1\_ ]
the residues U6 and G9. The residue U7 is looped out, and & %2 7 °°r 7
the residue C8 is unpaired. All bases are in an anti  osllilililililalolily) gglulalalalalalalally

1IJ 10 20 30 40 50 60 70 80 90 100 10 10 20 30 40 50 60 70 80 90100

conformation, except for G9 which shows a syn conformation 1
and for U7 which is in an equilibrium between syn and anti g'z._ B :‘:._
conformations. |J:-,'.|.|.|.|.|.|.|.|.|.' D;'.l.l.l.lTﬁTTTTrﬁT‘
The structures sampled by the MD simulation are in overall 4 10 20 30 30 50 60 70 80 90100 ~,0 10 20 30 40 50 60 70 €0 90 100
agreement with previous investigations on similar UUCG Mk 1 ool h
loops, including MD studie’§—38 as well as NMR®#*! and : c : E
crystallographi® experiments. In particular, experiments and ~ %67620°30'30"50'60-70 80-90 700 ®®0"1020"30 30'50 60-70 80-90 100
simulation largely agree on the interactions that stabilize the Time (ps) Time (ps)
secondary structure of the hairpin. The loop residues U6 andFigure 3. Internal correlation functions (black lines) of the
G9 are involved in basebase and basesugar hydrogen dipoles Cy—Hy (left side) and Cs—Hg and Cg—Hg (right side)
bonds, and there is a hydrogen bond between the C8 baséor the residues G2, C3, U7, and G9 (from top to bottom).
and the U7 phosphate oxygen as observed in the experimentaExponential fits using the first 100 ps and the first 1 ns of the
structures. Moreover, a weak interaction is observed betweencorrelation function are shown in red and green, respectively.
the 2-OH group of U7 and the base G9. In the crystal- correlation functions decay on average within a nanosecond
lographic structure, the U7 sugar oxygen is hydrogen bonded(see Figure 2), while the internal correlation functions
to the G9 base oxygen, while this is not the case in the NMR generally show a decay on a time scale of 10 ps (see Figure
structures. The analysis of the calculated backbone dihedral3 for some representative examples). Monoexponential fits
angles of the loop residues B&9 indicates the presence of the internal correlation function are seen to be appropriate
of at least two conformational states (see section 3.4). Twoin most cases, except for the loop residues-G®. In the
clusters of structures are also obtained by the NMR refine- latter cases, the internal correlation functions exhibit a
ment, while only one structure is reported in the X-ray study. multiexponential decay on pico- and nanosecond time scales.
One of the two MD conformers shows a better agreement Let us first study the validity of the assumption that overall
with the crystal structure and with one of the NMR clusters and internal motions are separable, which leads to the
as shown in Tables 4 and 5 in the Supporting Information. factorization of the total correlation functio(t) into
In the simulation, dihedral angle transitions are observed for componentsCo(t) and C(t) describing overall and internal
the residues UBU7, while the two groups of NMR  motion, respectively. As a representative example, Figure 2

c

C(t)

structures differ in residues C&9. shows the three correlation functions for the sugar and base
3.2. NMR Relaxation ParametersThe internal and total  dipole motions of the relatively rigid stem residue C3 and
correlation functions of all €-Hy sugar bonds and¢SHs the most flexible loop residue U7. The overall and internal

and G—Hg base bonds have been calculated according to correlation functions of the stem residue exhibit an obvious
eq 4, using the 50 ns trajectory with and without subtracting separation of time scales (1 ns vs 10 ps) and are therefore
the overall motion, respectively (see Methods). The total clearly separable. In the case of the loop residue U7, on the



1232 J. Chem. Theory Comput., Vol. 2, No. 5, 2006 Villa and Stock

other hand, both correlation functions decay on a nanosecond
time scale, and one may expect a coupling of overall and
internal motions. However, for the relatively short times
(0.1—-1 ns) that are relevant in the analysis of the experi-
mental NMR data, the internal correlation functiGrt) may
be approximated by a 24 ps decay time (see Figure 3) and
Co(t) decays just as the other overall-motion correlation
functions. That is, for short times the factorization ap-
proximation is not expected to change the results of the [
calculation of NMR data. . S— r
The correlation timesr. were obtained by fitting the experimental
overall-motion correlation function of each dipole to the a5 T
monoexponential functioa ¥%. The fittedr, has an average
value of 0.7 ns, which is clearly shorter than values obtained
by using a hydrodynamics modeifor the whole hairpin
(2.35 ns for @ and 2.17 ns for €Csg). The main reason for
this deviation appears to be the different viscosity of the
solvent in experiment and simulation. The diffusion constant
for TIP3P water is around 5.565.70 10°° cn? s71,5758that
is, about two times larger than the corresponding experi-
mental value. To quantitatively calculate NMR observables,
we therefore cannot directly take the MD correlation func-
tions. Instead, we assume that the correlation function can
be factorized (eq 6) and use the correlation tipebtained .
from the NMR analysig? I 0
Using the experimental correlation time; and the
calculated internal correlation functions, we have employed
egs -7 to compute the relaxation paramet&s R,, and x]
NOE for all investigated dipoles. As shown by black circles : 8
in Figure 4, the calculated values are in good agreement with
the experimental resul®é. The relative errorzim!\"D - B AT T
XA/ 3ix"P is 0.04 forRy, 0.14 for Ry, and 0.03 for NOE, o5 "experimental .
respectively. Employing an axially symmetric diffusion
model of overall rotation (with, = 2.44 and 2.18 nsand a  Figure 4. Experimental?* vs calculated values of spin—lattice
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diffusion anisotropy of 1.32 and 1.37 foryCand G/Cs, (top) and spin—spin (middle) relaxation rates '(S‘l) and NOE
respectivelyfl-24the relative errors are almost identical with ~ (bottom) for all C—H dipoles. The black circles and red
respect to the isotropic diffusion model (0.04 Ry, 0.13 squares correspond to calculations using the spectral densities

for R, and 0.03 for NOE). The relatively large discrepancy obtaﬁneo! directly frpm the co_rrelation function and from a 100
obtained for the spinspin relaxation rat&, may be related ~ PS Lipari—Szabo fit, respectively.
to the fact that in numerous cases the experimétaalues 3.3. Order Parameters Experimental and calculated order
have been corrected for conformational exchange contribu-parameters for the {£-Hy, Cs—Hs, and G—Hs dipoles of
tions during the experimental analy$fsTo assess the  all residues are compared in Figure 5 and in Tables 1 and 2.
validity of the Lipari-Szabo approach, the relaxation |n the experimental stud,two models have been used to
constants have also been obtained by fitting the first 100 analyze the relaxation data, assuming either isotropic or
and 1000 ps of5(t) to the Lipari-Szabo spectral density  axially symmetric diffusion. Both models are seen to give
(red squares in Figure 4). Here, the relative errors for the quite similar results for the order parameters and show that
100 ps and 1 ns fit are 0.05 and 0.06 Ry 0.12 and 0.13  the loop residues, in particular U7, exhibit enhanced con-
for R, and 0.02 and 0.03 for NOE, respectively. The relative formational fluctuations. The experimental effective correla-
errors of both fits are virtually identical and do not differ tjon timesz, listed in Tables 1 and 2 are mostly below 10
from the errors obtained in the direct MD evaluatiorGat). ps, with the exception of the residues C5, U7, and C14.
The qualitative agreement between the directly calculated As detailed in the methods section, three different ap-
MD data and the NMR relaxation parameters indicates that proaches have been used to calculate NMR order parameter
the force field and the simulation time scale used in this study from the MD trajectory. In the first approach, the order
are appropriate to describe the relaxation of theHbonds parameters and the internal correlation times were
monitored in the NMR experiment. Thus, the MD simulation obtained by fitting the first 100 ps and the first 1 ns of the
may be employed to reveal the dynamic information included MD internal correlation to eq 8. Both LipafiSzabo fits yield
in the experimental NMR data. Furthermore, we may use a good agreement with the experimental order parameters.
the MD data to compare and validate various methods to In Figure 5 the results for the 100 ps fit are reported together
calculate the order parameters of the RNA hairpin. with the experimental values. Tables 1 and 2 show that the
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1

i ] Table 2: Internal Correlation Times 7. and Order
0.8 — Parameters of C¢/Cg for the 14 Residues of the Hairpind
o 06 - MD MD
b i ) ) )
04 5 (100psfi)  (AnSfi) 5 oq10) _SXPEMIMENt  pp
02 - Te(ps) S° 7e(ps) S Se®  Te(pS) S*  Sgaf®
[ P T I IR I IR I I T I S T S R ]
L T T E S T PR TR VR Gl 44 088 6.4 0877 0864 <10 0.886 0.998
G2 35 0916 4.9 0.910 0.894 <10 0.878 0.995
1. ) i C3 25 0914 3.2 0.909 0.900 <10 0.961 0.993
u'a__ 7] Ad 2.3 0921 2.8 0.918 0.913 <10 0.912 0.987
% “-5_‘ B C5 2.6 0.909 35 0.904 0.880 121.59 0.933 0.977
0.4 — U6 4.1 0.887 19.1 0.858 0.727 <10 0.953 0.928
02 _' U7 83 0571 243 0469 0.153 13.38 0.706
D'.|.|.|.|.|.|.|.|.|.|.|.|.|.|.' C8 7.3 0.816 18.7 0.780 0.696 <10 0.845 0.938
0 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15
Residue number G9 4.9 0.886 10.5 0.869 0.838 <10 0.830 0.770
] G10 2.4 00917 3.3 0.911 0.897 <10 0.909 0.991
Flgure 5. Order parameter S2 for C]_' (tOp) and Ce/Cs (bOttom) Ull 2.3 0914 27 00911 0.901 <10 0.984 0.986
as a function of the residue number. The experimental G12 19 0931 22 0929 0923 <10 0.866 0.998
values?* are shown in black (using the isotropic diffusion C13 29 0909 37 0904 0898 <10 0960 0.993
model) and in red (using the axially symmetric diffusion Cl4 36 0899 4.6 0.894 0.889 38.08 0.919 0.959
model). Ca]culated values are shown in green (100 ps fit) and 2 Reported values are derived from the MD simulation (by 100 ps
in blue (using eq 10). fitting, 1 ns fitting, and by using eq 10), from the NMR experiment?4

. . (isotropic model), and from the GAF model.
Table 1: Internal Correlation Times 7, and Order

Parameters of Cy for the 14 Residues of the Hairpin® bling (=2 ns). As a consequence, possibly existing internal

MD (100psfit)  MD (Ansfit) \r oq1g) _&XPEriment motions on a nanosecond time scale are not reflected in the
Te(ps) S te(ps) S Seq? T (ps) 2 experimental data. Althougt&{ correctly reflects the
G1 63 0859 91 0847 0830 <10 0835 ﬂuctuations_of the system, it may therefore not be suited for
G2 52 0909 81 0900 0871 <10  0.896 the comparison to NMR order parameter.
C3 36 0926 44 0922 0908 <10  0.963 Finally, we have applied the GAF model (eq 11), which
A4 27 0925 32 0923 0914 <10  0.939 assumes that the nucleobase flexibility monitored by the order
C5 32 0928 44 0924 0908 <10  0.946 parameters of gCg is exclusively caused by base motions
U6 54 0913 146 0897 0861 <10  0.936 along the glycosidic torsional angje To this end, we have
uz 97 0818 206 078  0.374 15.74 0.848 calculated the distribution function ¢f, which exhibits a
cs 99 0858 238 0829 0741 <10 0850 single peak for all residues except U7. In the latter case, the
Go 66 0869 191 0841 0742 <10  0.877 base adopts both anti and syn conformations during the
G100 S.2° - 0.9315 4.8 0.9260.917 = =10 0.888 simulation, and the GAF model is not applicable (see

uilr 25 0.927 29 0.925 0.919 <10 0.920
Gl12 31 0.926 3.6 0924 0.918 <10 0.928
C13 338 0.914 4.7 0.910 0.906 <10 0.946
Ci14 83 0.849 529 0.782 0.767 412.14 0.902

Methods). Table 5 in the Supporting Information lists the
mean and the variance gffor all residues as calculated
from the MD trajectory. All results are found to be in good
2 Reported values are derived from the MD simulation (by 100 ps agreemenf[ with the experimental d&té The order _param-
fitting, 1 ns fitting, and by using eq 10) and from the NMR experiment?* eters obtained fro_m the GAF model are repor?ed_ I,n Table 2.
(isotropic model). Except for the residue G9, the values 7 are significantly
larger (from 0.928 to 0.998) than the ones obtained from
100 ps fit is more appropriate to be compared to the experimentand the LipatiSzabo fit. The failure of the GAF
experimental data, since it better reproduces the experimentamodel to correctly reproduce the order parameters of the
effective correlation times. UUCG hairpin clearly demonstrates that the motion of the
In the second approach, we have used the equilibrium base C-H dipole is not only caused by fluctuations of the

average in eq 10 to calculate the order parameters. Thisbase but is also due to the flexibility of the sugar ring and
corresponds to a LipafiSzabo fit using the full time range  the backbone. For the UUCG hairpin under consideration,

of the internal correlation function. Figure 5 demonstrates the GAF model on average accounts for about 20% of the
that the resulting order parameters only agree for the fluctuations contributing to the order parameter.

relatively rigid stem residues but not for the flexible loop Experimentally, the order parameters depend on the
residues. The reason for this discrepancy is that, by usingreorientation of the dipole and on the reorientation of the
the entire internal correlation function, the order parameters chemical shift anisotropy tensor. The latter contribution may
contain information also on internal motions occurring on a affect the data on the aromatic carbon more than the dipole
nanosecond time scale. For example, the loop conformationalrelaxation and is not easy to discriminate in practice. To
rearrangement and the angiyn transitions of the U7 base support our analysis above, we have also calculated the order
represent internal motions on a time scale longer than 5 ns.parameters and the internal correlation times of theHN
The experimental analysis is limited by the decay of the dipoles, by fitting the first 100 ps of the MD internal
overall-motion correlation function due to molecular tum- correlation function to eq 8. In Table 3, the calculated values
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Table 3: Internal Correlation Times 7, and Order Table 4: Results of 1 — S? Obtained for the Complete
Parameters of N1/N3 for the Guanine and Uracil Bases of Trajectory (all) and by Including the First Three (PCA3)
the Hairpina and the First Ten (PCA10) Principal Components,
MD (100 ps fit) experiment?! experiment?* Respectively?
- Q2 T — 2
7o (PS) 2 7o (PS) 2 7o (0S) 2 1 — S? (100 ps fit) 1 — Seq? (eq 10)
c1 37 0.890 0.74 sugar all PCA3 PCA10 all PCA3 PCA10
G2 2.5 0.907 0.787 0.938 U6 0.087 0.006 0.024 0.139 0.022 0.065
U6 35 0.851 9.0 0.773 u7 0.182 0.053 0.089 0.626 0.511 0.578
u7 7.2 0.544 C8 0.142 0.043 0.073 0.259 0.144 0.200
G9 3.2 0.885 4.0 0.807 0.955 G9 0.131 0.033 0.056 0.258 0.140 0.186
G10 2.0 0.917 0.776 0.907
U1l 1.7 0.902 0.760 0.905 base all PCA3 PCA10 all PCA3 PCA10
G12 17 0.918 0.780 0.905 u6 0.113 0.018  0.047 0273 0.063  0.191
2 Reported values are derived from the MD simulation (by 100 ps u7 0.429 0.082 0.232 0.847 0.195 0.680
fitting) and from the NMR experiment?1-24 (axially symmetric diffusion cs 0.184 0.035 0.070 0304 0.121 0.192
model except for G1). G9 0114 0013 0035 0162 0033 0.074

for N;—H; and Ny—Hs dipoles of guanine and uracil bases a The_order parameter_are_ calculated either from a 100 ps Lipari—
are reported together with the available experimentaldéta. ~ Szabo fit or from an equilibrium average (eq 10).
The N—H values fully agree with the values calculated for
C—H dipole of the same base. Hence it may be expected
that they characterize the identical base dynamics. Moreover
the calculated® for N—H dipoles show a similar trend as
in the experimental data, but they quantitatively agree only
with one of the two available experimental sets.

3.4. Internal Dynamics of the UUCG Loop.In practice,
the above studied GAF model is not used to calculate the
order parameter but to rationalize the internal motions
described by the experimental order parameter. Having
validated our theoretical model in section 3.2, we are now
in a position to use the 50 ns all-atom trajectory for this
purpose. In what follows, we first characterize the main

motions Of. the RNA hairpin. _Then we analyze to what extent trajectory (all), for the first three PCs (PCA3), and for the
these motions are reflected in the calculated order parameter,. !
oo . first ten PCs (PCA10). On average, the first three and 10
Principal component analysis (PCA) represents a standard :
. : T . PCs yield about 20 and 40% of the value of-1% for the
method to identify the “principal” motions of a molecular . . : ,
156 o complete trajectory, respectively. Recalling that the first three
systen®*~%6 The approach represents the motion in terms of . !
. T .~ and ten PCs contain 60 and 80% of the overall fluctuations,
an orthogonal basis, the principal components (PCs), which .
. ; respectively, the order parameter apparently accounts only
are ordered according to their content of root-mean-square ™. T ) -
partially for the principal motions of the system. This is

fluctuations (see Methods). For the 50 ns simulation of the because the motion along the first few PCs may (i) be only

! : 0
UUCG loop, th_e first three P.CS. already contain 60% of the weakly correlated with the orientation of the-E&l dipoles
overall fluctuations of the hairpin, and to cover 80, 90, and 2 . : L

and (ii) contains slow motion which is not seen by the

0 .
95% of the fluctuations, only 10, 25, and 50 out of 1442 Lipari—Szabo fit

PCs are required, respectively. In this sense, the first few The | ) b died b lculati 5
PCs represent the main motions of the system. As an . € atte.r. ISSue can be studied by recaicu ating K
via an equilibrium average that covers all time scales of the

illustration, Figure 1 shows the motion along the first three "' As sh i Table 4. in thi he firet th
PCs, which mainly consists of a conformational rearrange- F/8Ctory. As shown in Table 4, in this case the first three
and ten PCs on average yield about 40 and 70% of the value

ment involving the loop region. The presence of (at least) £1— < 2for th | ; velv. that i
two conformational states is also confirmed by the analysis 0 S for the complete trajectory, respectively, that is,

of the backbone dihedral angles of the loop residues U6 quite similar to the values obtained for the overall fluctua-
G9, see Table 4 in the Supporting Information. To assesstions' In particular, we find that th& for the sugars U7,

0,
the influence of this conformational rearrangement on the C8, and_ G9 1o a large _extent (80 and 55%) are C‘?‘“SE“’ by
NMR order parameters, we have recalcula®étbr the first the mot|_on alqng the first three PC.S shown in F|gur(_a L.
and second half of the trajectory. Both 100 and 1000 ps Hence, if 2” time scales .Of the trajectgry_ are tak_en Into
Lipari—Szabo fits yield virtually identical results f&. The ahccount,&q are well described by the principal motions of
highest discrepancy is shown by the U7 base in the 1 ns fi (e system.
(0.43 vs 0.50). This finding indicates that a simulation time _
of 50 ns is enough to investigate the-8 relaxation of the 4. Conclusions
RNA loop and that its backbone rearrangement at 30 ns doesA 50 ns MD simulation has been used to study the fast
not affect the order parameter values. dynamics of the 14-mer UUCG hairpin. The comparison of

Let us now study to what extent the principal motions of
the system account for the order parameters. To this end,
‘we have expanded the MD trajectory in its firsPCs (see
Methods) and calculate® from this approximated trajectory,
using a 100 ps LipariSzabo fit. Figure 6 in the Supporting
Information shows the resulting order parameters as a
function of the number of included PCs. As may be expected,
the first PCs in general make the largest contribution to the
decay of &. Compared to the rapid convergence of the
overall fluctuations, however, the order parameters converge
relatively slowly to their value obtained for the complete
trajectory. Focusing on the loop residues-89, Table 4
compares the results of 4 & obtained for the complete
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the simulation with the NMR relaxation data allows us to Center for Scientific Computing, the Fonds der Chemischen
achieve several interesting results. First, the force field and Industrie, and the Deutsche Forschungsgemeinschaft (SFB
the 50 ns simulation time used in this study appear appropri-579 “RNA-ligand interactions”).

ate to describe the fast relaxation of the-i& bonds

monitored in the NMR experiment. Although we find slow ~ Supporting Information Available:  Tables presenting
conformation rearrangements of the RNA loop which may the calculated and experimental mean values of the main
not be sampled appropriately, these motions do not influencedihedral angles of the 14-mer RNA hairpin and a figure
the calculated NMR parameters. Internal motions on a time feporting the order parameters foy @d G/Cs as a function
scale longer than 1 ns have been shown not to affect theOf the number of included principal components. This
calculated NMR relaxation rates and, as a consequence, willmaterial is available free of charge via the Internet at http://

not be reflected in the order parameters. pubs.acs.org.

Second, the overall and internal motions of the hairpin
are found to be virtually independent, and the factorization
approximation of the correlation function holds. Even in the
case of the flexible U7, the approximation is not expected
to change the calculated NMR data, since only the dynamics
at short times £1 ns) affect the relaxation parameters.
Moreover, the internal correlation function can be replaced
by a monoexponential function, fitted on its first 100 or 1000
ps, with no change of the relaxation parameters. The latter
two observations demonstrate the validity of the Lipari
Szabo approach for the RNA hairpin.

Different ways to calculate the NMR order parameter have
been compared. The best approach was found to be Hpari
Szabo fits of the first 100 ps (or 1 ns) of the MD internal
correlation functions. The resulting order paramegrand
internal correlation times. nicely agree with the experi-
mental values. The calculation of order parameters via an
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