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Abstract: Classical molecular dynamics simulations of a 14-mer UUCG RNA hairpin are

performed to study its conformational dynamics and corresponding NMR relaxation parameters.

The direct calculation of the relaxation rates from the trajectory yields good agreement with

experiment, indicating the validity of the theoretical model. Various ways to provide a link between

theory and experiment are considered, including the “model-free approach” of Lipari and Szabo

and Gaussian axial fluctuation model of Brüschweilwer. It is studied if the underlying assumptions

of these approaches are satisfied in the case of a flexible RNA hairpin. Being consistent with

the analysis of the NMR experiments, Lipari-Szabo fits of the first 100 or 1000 ps of the internal

correlation functions lead to a nice agreement between calculated and experimental order

parameters and internal correlation times. Finally, the relation between NMR order parameters

and the underlying internal motion of the RNA hairpin is discussed in detail. A principal component

analysis reveals that the principal motions of the molecule account only partially for the measured

NMR order parameters, because the latter are insensitive to internal dynamics occurring on a

nanosecond time scale due to molecular tumbling.

1. Introduction
Conformational dynamics may play a key role in the function
of biomolecules such as proteins, DNA, and RNA. The
flexible parts of a protein or ribonucleic acid, such as loop
regions, are often involved in mediating specific interactions,
for example, between protein and RNA during a binding
process.1-3 In the case of RNA, the flexibility of the loop
may directly affect both the specificity and the affinity of
the binding.4 To account for the function of RNA systems,
a site-specific dynamic description is therefore an important
complement to static structural information.5,6

Internal motions in biomolecules occur on a wide range
of time scales, from femtoseconds to seconds. Molecular
dynamics (MD) simulations and nuclear magnetic resonance
(NMR) spin relaxation measurements are valuable tools to
gain access to fast (i.e., subnanosecond) internal motions.

MD simulations7 provide directly information at the atomistic
level on inter- and intramolecular motions using an empirical
force field as molecular model. NMR relaxation measure-
ments8 yield the dipolar correlation function, from which
dynamical quantities such as generalized order parameters
S2 and effective correlation timesτe can be extracted.9-12 In
particular, the combination of NMR and MD investigations
has been shown to provide a comprehensive description of
fast conformational dynamics of proteins.13-20 On one hand,
we may use experimental NMR results as benchmark data
to study the accuracy of the MD description; on the other
hand, we may employ the MD trajectory to provide a
microscopic interpretation of the NMR experiments. While
the description of structure and dynamics of proteins is well
established, RNA systems have been comparatively little
studied using NMR relaxation21-25 or MD simulation. (For
general reviews on RNA simulations see refs 26-33.)* Corresponding author phone:+49-69-79829711; fax:+49-69-

79829709; e-mail: villa@theochem.uni-frankfurt.de.
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In this work we present an MD study of the fast dynamics
of the RNA hairpin ggcacUUCGgugcc (Figure 1). This
hairpin belongs to one of the most stable tetraloop families34

and is therefore a popular model system for theoretical35-38

and experimental39-41 investigations. The present study has
also been motivated by recent work on UUCG loops by
Duchardt and Schwalbe,24 who performed detailed NMR13C
relaxation measurements for the carbon atoms C1′ in the
ribose moiety and for the carbon atoms C6 and C8 in the
pyrimidine and purine residues. Previously,15N relaxation
measurements have been used by Akke et al.21 to characterize
the base dynamics of the UUCG loop.

First, the MD results are compared to the structures of
available NMR39,41and crystallographic40 studies on similar
UUCG loops. Second, the MD trajectory is used to directly
calculate the NMR relaxation rates,18 in order to avoid most

of the assumptions usually employed in the experimental
analysis. Then we consider various ways to provide a link
between theory and experiment, including the so-called
model-free approach developed by Lipari and Szabo9 and
the Gaussian axial fluctuation model.42 In particular, we study
if the underlying assumptions of these approaches (such as
the separation of overall and internal motion and the use of
monoexponential Lipari-Szabo fits of the internal correlation
function) are satisfied in the case of an RNA hairpin. Finally,
the relation between NMR order parameters and the underly-
ing internal motion of the RNA hairpin is discussed in detail.

2. Theory and Methods
2.1. Molecular Dynamics Simulations.The MD simulations
were performed using the GROMACS suite of programs
(version 3.2).43,44The AMBER force field (parm98)45,46was
employed to describe the 14-mer UUCG RNA loop. The
loop was placed in a rhombic dodecahedron box (edge length
approximately 5 nm), which was subsequently filled with
2713 TIP3P water molecules.47 To neutralize the system, 13
sodium ions were placed randomly in the simulation box.

A twin range cutoff was used for the Lennard-Jones
interactions, that is, interactions between atoms within 1.0
nm were evaluated every step, while interactions between
atoms within 1.4 nm were evaluated every 5 steps. The
particle mesh Ewald method48 was employed to treat
Coulomb interactions, using a switching distance of 1.0 nm,
a grid of 0.12 nm, and a beta value of 3.1 nm-1. Constant
pressurep and temperatureT were maintained by weakly
coupling the system to an external bath at 1 bar and 298 K,
using the Berendsen barostat and thermostat, respectively.49

The RNA, the ions, and the solvent were independently
coupled to the temperature bath with a coupling time of 0.1
ps. The pressure coupling time was 0.5 ps, and the isothermal
compressibility was 4.5‚10-5 bar-1. The bond distances and
the bond angle of the solvent water were constrained using
the SETTLE algorithm.50 All other bond distances were
constrained using the LINCS algorithm.51 A leapfrog integra-
tor with an integration time step of 2 fs was used.

To obtain the starting structure of the UUCG hairpin, the
loop was modeled based on the crystallographic structure
of Ennifar et al.,40 while the stem structure was built using
tools of the AMBER6 software.52 Following 20 ns of
equilibration, the system was simulated for 50 ns. Analysis
of the trajectories was performed with tools from the
GROMACS package and with modified versions of them.
To define the presence of a hydrogen bond, an acceptor-
donor distance smaller than 0.35 nm was requested.

2.2. NMR Relaxation Parameters.We have focused on
the relaxation of the13C nuclear spin through dipolar
interaction with the attached1H. According to the relaxation
theory of Bloch, Wangness, and Redfield8, the spin-lattice
(R1), the spin-spin (R2) relaxation rates, and the nuclear
Overhauser enhancement (NOE) are given by

Figure 1. The 14-mer RNA loop. Top: representative MD
snapshot at 50 ns. Center: secondary structure including
base-pair hydrogen bonds and residue numbering. Bottom:
backbone atoms and residues U7 and C8, describing the main
hairpin motion along the first three principal components of
the trajectory. Shown are snapshots at 10 ns (blue), 30 ns
(green), and 50 ns (red). The pictures were performed using
the graphical package VMD.59

R1 ) d
4
[J(ωH - ωC) + 3J(ωC) + 6J(ωC + ωH)] + cJ(ωC)

(1)
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whered ) (µ0
2/4π2)(p2γC

2γH
2/rCH

6), c ) ωC
2∆σC

2/3, andJ(ω)
represents the spectra density defined in eq 5. Here,µ0 is
the vacuum permeability,p is Planck’s constant, andγX is
the gyromagnetic ratio of nucleus X.rCH is the intermolecular
distance between the two nuclei; for the bond C1′-H1′ a
distance of 0.109 nm and for C6-H6 and C8-H8 a distance
of 0.108 nm was used.∆σC is the 13C chemical shift
anisotropy; for C1′ a value of 45 ppm, for C6 a value of-179
ppm, and for C8 a value of-134 ppm were used. A value
of 600.13 MHz was used forωH and 150.90 MHz forωC.
All these values have been chosen in line with the NMR
relaxation experiments of Duchardt and Schwalbe.24

2.3. Correlation Functions.The NMR relaxation due to
the dipole-dipole interaction between two nuclei (i.e., carbon
and hydrogen) can be described by the correlation function8

whereµb is a unit vector pointing along the C-H bond,P2(x)
) (1/2)(3x2 - 1) is the second Legendre polynomial, and
〈..〉 denotes an equilibrium average. The spectral density

which determines the relaxation parameters in eqs 1-3, is
given by the Fourier transform of the correlation function.

Assuming that overall and internal motions of the molecule
are independent, the total correlation functionC(t) can be
factorized in the correlation functions for overall motion,
CO(t), and for internal motion,CI(t), respectively:

The total correlation functions were calculated for the C1′-
H1′, C6-H6, and C8-H8 dipoles of all residues according to
eq 4. To obtain the internal correlation functions, each
conformation was translated and rotated to give the best fit
to a reference structure. Since no large conformational
arrangement took place during the 50 ns simulation, the
molecule-fixed frame is unambiguously defined by this
approach. Subsequently, the correlation functions for overall
motion were calculated using eq 6. Assuming that the overall
motion of the molecule is isotropic, this correlation function
is given by

where the rotational correlation timeτc is proportional to
the inverse of the rotation diffusion constant.

In the model-free approach of Lipari-Szabo,9 the internal
and overall motions are assumed to be independent, and the
internal correlation function is given by the following relation

whereS2 is the order parameter andτe is the effective (or
internal) correlation timeτe for the C-H dipole. Insertion
of eq 8 in eqs 5-7 yields the spectral density

with τ-1 ) τc
-1 + τe

-1.
2.4. Order Parameters.We have employed three different

approaches to calculate the order parameters.
Lipari-Szabo Fit.Employing the Lipari-Szabo form of

the internal correlation function (eq 8),S2 was fitted using
the first 100 ps or the first 1 ns of the MD internal correlation.

Equilibrium AVerage. Using the general property of
correlation functions that limtf∞〈A(0)B(t)〉 ) 〈A〉〈B〉, the order
parameter can be determined by8

whereY2m is the spherical harmonic function of rank 2,θ(t)
andæ(t) are the polar angles defining the orientation of the
dipole C-H at each snapshot of the trajectory, and〈‚‚‚〉
denotes the average over all snapshots. This corresponds to
a Lipari-Szabo fit using the full time range of the internal
correlation function. It should be stressed that eq 10 avoids
the cumbersome calculation of time-dependent correlation
functions. In particular, this allows us to use highly efficient
Monte Carlo schemes (e.g., like the popular replica exchange
MD53) to calculate the equilibrium average in eq 10.

GAF Model. Assuming that the nucleobase flexibility
monitored by the order parameters of C6/C8 is exclusively
caused by base motions along the glycosidic torsional angle
ø, the order parameter can be related to motions around the
C1′-N1 or C1′-N9 bonds. Assuming furthermore a Gaussian
distribution for the dihedral angleø, the Gaussian axial
fluctuation (GAF) model42 leads to the following expression
for the order parameter:

Here the dihedral angleø is defined by O4′-C1′-N1-C2 in
the pyrimidine and by O4′-C1′-N9-C4 in the purine, and
σø is its standard deviation.

2.5. Principal Component Analysis.Principal component
analysis is an efficient method to represent the motion of a
3N-dimensional system in terms of a few “principal”
components.54-56 The basic idea is that the correlations of
the motions are represented by the covariance matrix

whereq1, ...,q3N are the mass-weighted Cartesian coordinates
of the solute molecule, and〈‚‚‚〉 denotes the average over
all sampled conformations. By diagonalizingσ, we obtain
3N eigenvectorsVn and eigenvaluesλn, which are rank-

R2 ) d
8
[4J(0) + J(ωH - ωC) + 3J(ωC) + 6J(ωH) +

6J(ωC + ωH)] + c
6
[4J(0) + 3J(ωC)] (2)

NOE ) 1 + d
4R1

γC

γH
[6J(ωC + ωH) - J(ωH - ωC)] (3)

C(t) ) 〈P2(µb(0)‚µb(t))〉 (4)

J(ω) ) 2∫0

∞
C(t) cos(ωt) dt (5)

C(t) ) CO(t)CI(t) (6)

CO(t) ) 1
5
e-t/τc (7)

CI(t) ) S2 + (1 - S2)e-t/τe (8)

J(ω) ) 2
5( S2τc

1 + τc
2ω2

+
(1 - S2)τ

1 + τ2ω2) (9)

Seq
2 ) lim

tf∞
CI(t) )

4π

5
∑

m)-2

m)2

|〈Y2m(θ, æ)〉|2 (10)

Sgaf
2 )

1 - 3 sin2ø{cos2ø(1 - e-σø
2
) + 1

4
sin 2ø(1 - e-4σø

2
)} (11)

σij ) 〈(qi - 〈qi〉)(qj - 〈qj〉)〉 (12)
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ordered in descending order, i.e.,λ1 is the largest eigenvalue.
We may expand the MD trajectoryq(t) ) {qi(t)} on the basis
of the eigenvectorsVn according to

While for n ) 3N the expansion becomes exact [x(3N)(t) )
q(t)], for smalln (in practice,n ) 1-5) x(n)(t) approximates
the motion of the system in terms of a few principal
components representing the “essential” dynamics of the
system.56 The projection of the MD trajectory on the firstn
eigenvectors is used in the calculation of the order param-
eters.

3. Results and Discussion
3.1. Structural Features of the UUCG Loop.The 14-mer
tetraloop was simulated for 50 ns in explicit water at 298 K.
The root-mean-square deviation for all atom coordinates,
after fitting to a reference structure, had an average value of
0.19 ((0.03) nm. As an illustration, Figure 1 shows a
representative snapshot of the hairpin at the end of the
trajectory. The residues forming the stem are all involved in
Watson-Crick base-pairs and stacking interactions. The
UUCG loop is mainly stabilized by hydrogen bonds between
the residues U6 and G9. The residue U7 is looped out, and
the residue C8 is unpaired. All bases are in an anti
conformation, except for G9 which shows a syn conformation
and for U7 which is in an equilibrium between syn and anti
conformations.

The structures sampled by the MD simulation are in overall
agreement with previous investigations on similar UUCG
loops, including MD studies35-38 as well as NMR39,41 and
crystallographic40 experiments. In particular, experiments and
simulation largely agree on the interactions that stabilize the
secondary structure of the hairpin. The loop residues U6 and
G9 are involved in base-base and base-sugar hydrogen
bonds, and there is a hydrogen bond between the C8 base
and the U7 phosphate oxygen as observed in the experimental
structures. Moreover, a weak interaction is observed between
the 2′-OH group of U7 and the base G9. In the crystal-
lographic structure, the U7 sugar oxygen is hydrogen bonded
to the G9 base oxygen, while this is not the case in the NMR
structures. The analysis of the calculated backbone dihedral
angles of the loop residues U6-G9 indicates the presence
of at least two conformational states (see section 3.4). Two
clusters of structures are also obtained by the NMR refine-
ment, while only one structure is reported in the X-ray study.
One of the two MD conformers shows a better agreement
with the crystal structure and with one of the NMR clusters
as shown in Tables 4 and 5 in the Supporting Information.
In the simulation, dihedral angle transitions are observed for
the residues U6-U7, while the two groups of NMR
structures differ in residues C8-G9.

3.2. NMR Relaxation Parameters.The internal and total
correlation functions of all C1′-H1′ sugar bonds and C6-H6

and C8-H8 base bonds have been calculated according to
eq 4, using the 50 ns trajectory with and without subtracting
the overall motion, respectively (see Methods). The total

correlation functions decay on average within a nanosecond
(see Figure 2), while the internal correlation functions
generally show a decay on a time scale of 10 ps (see Figure
3 for some representative examples). Monoexponential fits
of the internal correlation function are seen to be appropriate
in most cases, except for the loop residues U6-G9. In the
latter cases, the internal correlation functions exhibit a
multiexponential decay on pico- and nanosecond time scales.

Let us first study the validity of the assumption that overall
and internal motions are separable, which leads to the
factorization of the total correlation functionC(t) into
componentsCO(t) andCI(t) describing overall and internal
motion, respectively. As a representative example, Figure 2
shows the three correlation functions for the sugar and base
dipole motions of the relatively rigid stem residue C3 and
the most flexible loop residue U7. The overall and internal
correlation functions of the stem residue exhibit an obvious
separation of time scales (1 ns vs 10 ps) and are therefore
clearly separable. In the case of the loop residue U7, on the

x(n)(t) ) ∑
i)1

n

[Vi‚q(t)]Vi (13)

Figure 2. Total (top), overall-motion (middle), and internal
(bottom) correlation functions of the dipoles C1′-H1′ (black and
green line) and C6-H6 (red and blue line) for the residues C3
and U7, respectively.

Figure 3. Internal correlation functions (black lines) of the
dipoles C1′-H1′ (left side) and C6-H6 and C8-H8 (right side)
for the residues G2, C3, U7, and G9 (from top to bottom).
Exponential fits using the first 100 ps and the first 1 ns of the
correlation function are shown in red and green, respectively.
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other hand, both correlation functions decay on a nanosecond
time scale, and one may expect a coupling of overall and
internal motions. However, for the relatively short times
(0.1-1 ns) that are relevant in the analysis of the experi-
mental NMR data, the internal correlation functionCI(t) may
be approximated by a 24 ps decay time (see Figure 3) and
CO(t) decays just as the other overall-motion correlation
functions. That is, for short times the factorization ap-
proximation is not expected to change the results of the
calculation of NMR data.

The correlation timesτc were obtained by fitting the
overall-motion correlation function of each dipole to the
monoexponential functione-t/τc. The fittedτc has an average
value of 0.7 ns, which is clearly shorter than values obtained
by using a hydrodynamics model24 for the whole hairpin
(2.35 ns for C1′ and 2.17 ns for C6/C8). The main reason for
this deviation appears to be the different viscosity of the
solvent in experiment and simulation. The diffusion constant
for TIP3P water is around 5.56-5.70 10-5 cm2 s-1,57,58 that
is, about two times larger than the corresponding experi-
mental value. To quantitatively calculate NMR observables,
we therefore cannot directly take the MD correlation func-
tions. Instead, we assume that the correlation function can
be factorized (eq 6) and use the correlation timeτc obtained
from the NMR analysis.24

Using the experimental correlation timeτc and the
calculated internal correlation functions, we have employed
eqs 1-7 to compute the relaxation parametersR1, R2, and
NOE for all investigated dipoles. As shown by black circles
in Figure 4, the calculated values are in good agreement with
the experimental results.24 The relative error∑i|xi

MD -
xi

exp|/∑ixi
exp is 0.04 forR1, 0.14 for R2, and 0.03 for NOE,

respectively. Employing an axially symmetric diffusion
model of overall rotation (withτc ) 2.44 and 2.18 ns and a
diffusion anisotropy of 1.32 and 1.37 for C1′ and C6/C8,
respectively),21,24the relative errors are almost identical with
respect to the isotropic diffusion model (0.04 forR1, 0.13
for R2, and 0.03 for NOE). The relatively large discrepancy
obtained for the spin-spin relaxation rateR2 may be related
to the fact that in numerous cases the experimentalR2 values
have been corrected for conformational exchange contribu-
tions during the experimental analysis.24 To assess the
validity of the Lipari-Szabo approach, the relaxation
constants have also been obtained by fitting the first 100
and 1000 ps ofCI(t) to the Lipari-Szabo spectral density
(red squares in Figure 4). Here, the relative errors for the
100 ps and 1 ns fit are 0.05 and 0.06 forR1, 0.12 and 0.13
for R2, and 0.02 and 0.03 for NOE, respectively. The relative
errors of both fits are virtually identical and do not differ
from the errors obtained in the direct MD evaluation ofCI(t).

The qualitative agreement between the directly calculated
MD data and the NMR relaxation parameters indicates that
the force field and the simulation time scale used in this study
are appropriate to describe the relaxation of the C-H bonds
monitored in the NMR experiment. Thus, the MD simulation
may be employed to reveal the dynamic information included
in the experimental NMR data. Furthermore, we may use
the MD data to compare and validate various methods to
calculate the order parameters of the RNA hairpin.

3.3. Order Parameters.Experimental and calculated order
parameters for the C1′-H1′, C6-H6, and C8-H8 dipoles of
all residues are compared in Figure 5 and in Tables 1 and 2.
In the experimental study,24 two models have been used to
analyze the relaxation data, assuming either isotropic or
axially symmetric diffusion. Both models are seen to give
quite similar results for the order parameters and show that
the loop residues, in particular U7, exhibit enhanced con-
formational fluctuations. The experimental effective correla-
tion timesτe listed in Tables 1 and 2 are mostly below 10
ps, with the exception of the residues C5, U7, and C14.

As detailed in the methods section, three different ap-
proaches have been used to calculate NMR order parameter
from the MD trajectory. In the first approach, the order
parametersS2 and the internal correlation timesτe were
obtained by fitting the first 100 ps and the first 1 ns of the
MD internal correlation to eq 8. Both Lipari-Szabo fits yield
a good agreement with the experimental order parameters.
In Figure 5 the results for the 100 ps fit are reported together
with the experimental values. Tables 1 and 2 show that the

Figure 4. Experimental24 vs calculated values of spin-lattice
(top) and spin-spin (middle) relaxation rates (s-1) and NOE
(bottom) for all C-H dipoles. The black circles and red
squares correspond to calculations using the spectral densities
obtained directly from the correlation function and from a 100
ps Lipari-Szabo fit, respectively.
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100 ps fit is more appropriate to be compared to the
experimental data, since it better reproduces the experimental
effective correlation times.

In the second approach, we have used the equilibrium
average in eq 10 to calculate the order parameters. This
corresponds to a Lipari-Szabo fit using the full time range
of the internal correlation function. Figure 5 demonstrates
that the resulting order parameters only agree for the
relatively rigid stem residues but not for the flexible loop
residues. The reason for this discrepancy is that, by using
the entire internal correlation function, the order parameters
contain information also on internal motions occurring on a
nanosecond time scale. For example, the loop conformational
rearrangement and the anti-syn transitions of the U7 base
represent internal motions on a time scale longer than 5 ns.
The experimental analysis is limited by the decay of the
overall-motion correlation function due to molecular tum-

bling (≈2 ns). As a consequence, possibly existing internal
motions on a nanosecond time scale are not reflected in the
experimental data. AlthoughSeq

2 correctly reflects the
fluctuations of the system, it may therefore not be suited for
the comparison to NMR order parameter.

Finally, we have applied the GAF model (eq 11), which
assumes that the nucleobase flexibility monitored by the order
parameters of C6/C8 is exclusively caused by base motions
along the glycosidic torsional angleø. To this end, we have
calculated the distribution function ofø, which exhibits a
single peak for all residues except U7. In the latter case, the
base adopts both anti and syn conformations during the
simulation, and the GAF model is not applicable (see
Methods). Table 5 in the Supporting Information lists the
mean and the variance ofø for all residues as calculated
from the MD trajectory. All results are found to be in good
agreement with the experimental data.39,24The order param-
eters obtained from the GAF model are reported in Table 2.
Except for the residue G9, the values forSgaf

2 are significantly
larger (from 0.928 to 0.998) than the ones obtained from
experiment and the Lipari-Szabo fit. The failure of the GAF
model to correctly reproduce the order parameters of the
UUCG hairpin clearly demonstrates that the motion of the
base C-H dipole is not only caused by fluctuations of the
base but is also due to the flexibility of the sugar ring and
the backbone. For the UUCG hairpin under consideration,
the GAF model on average accounts for about 20% of the
fluctuations contributing to the order parameter.

Experimentally, the order parameters depend on the
reorientation of the dipole and on the reorientation of the
chemical shift anisotropy tensor. The latter contribution may
affect the data on the aromatic carbon more than the dipole
relaxation and is not easy to discriminate in practice. To
support our analysis above, we have also calculated the order
parameters and the internal correlation times of the N-H
dipoles, by fitting the first 100 ps of the MD internal
correlation function to eq 8. In Table 3, the calculated values

Figure 5. Order parameter S2 for C1′ (top) and C6/C8 (bottom)
as a function of the residue number. The experimental
values24 are shown in black (using the isotropic diffusion
model) and in red (using the axially symmetric diffusion
model). Calculated values are shown in green (100 ps fit) and
in blue (using eq 10).

Table 1: Internal Correlation Times τe and Order
Parameters of C1′ for the 14 Residues of the Hairpina

MD (100 ps fit) MD (1 ns fit) experiment

τe (ps) S2 τe (ps) S2
MD (eq 10)

Seq
2 τe (ps) S2

G1 6.3 0.859 9.1 0.847 0.830 <10 0.835
G2 5.2 0.909 8.1 0.900 0.871 <10 0.896
C3 3.6 0.926 4.4 0.922 0.908 <10 0.963
A4 2.7 0.925 3.2 0.923 0.914 <10 0.939
C5 3.2 0.928 4.4 0.924 0.908 <10 0.946
U6 5.4 0.913 14.6 0.897 0.861 <10 0.936
U7 9.7 0.818 20.6 0.786 0.374 15.74 0.848
C8 9.9 0.858 23.8 0.829 0.741 <10 0.850
G9 6.6 0.869 19.1 0.841 0.742 <10 0.877
G10 3.2 0.931 4.3 0.926 0.917 <10 0.888
U11 2.5 0.927 2.9 0.925 0.919 <10 0.920
G12 3.1 0.926 3.6 0.924 0.918 <10 0.928
C13 3.8 0.914 4.7 0.910 0.906 <10 0.946
C14 8.3 0.849 52.9 0.782 0.767 412.14 0.902

a Reported values are derived from the MD simulation (by 100 ps
fitting, 1 ns fitting, and by using eq 10) and from the NMR experiment24

(isotropic model).

Table 2: Internal Correlation Times τe and Order
Parameters of C6/C8 for the 14 Residues of the Hairpina

MD
(100 ps fit)

MD
(1 ns fit) experiment

τe (ps) S2 τe (ps) S2
MD (eq 10)

Seq
2 τe (ps) S2

GAF
Sgaf

2

G1 4.4 0.886 6.4 0.877 0.864 <10 0.886 0.998
G2 3.5 0.916 4.9 0.910 0.894 <10 0.878 0.995
C3 2.5 0.914 3.2 0.909 0.900 <10 0.961 0.993
A4 2.3 0.921 2.8 0.918 0.913 <10 0.912 0.987
C5 2.6 0.909 3.5 0.904 0.880 121.59 0.933 0.977
U6 4.1 0.887 19.1 0.858 0.727 <10 0.953 0.928
U7 8.3 0.571 24.3 0.469 0.153 13.38 0.706
C8 7.3 0.816 18.7 0.780 0.696 <10 0.845 0.938
G9 4.9 0.886 10.5 0.869 0.838 <10 0.830 0.770
G10 2.4 0.917 3.3 0.911 0.897 <10 0.909 0.991
U11 2.3 0.914 2.7 0.911 0.901 <10 0.984 0.986
G12 1.9 0.931 2.2 0.929 0.923 <10 0.866 0.998
C13 2.9 0.909 3.7 0.904 0.898 <10 0.960 0.993
C14 3.6 0.899 4.6 0.894 0.889 38.08 0.919 0.959

a Reported values are derived from the MD simulation (by 100 ps
fitting, 1 ns fitting, and by using eq 10), from the NMR experiment24

(isotropic model), and from the GAF model.
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for N1-H1 and N3-H3 dipoles of guanine and uracil bases
are reported together with the available experimental data.21,24

The N-H values fully agree with the values calculated for
C-H dipole of the same base. Hence it may be expected
that they characterize the identical base dynamics. Moreover,
the calculatedS2 for N-H dipoles show a similar trend as
in the experimental data, but they quantitatively agree only
with one of the two available experimental sets.

3.4. Internal Dynamics of the UUCG Loop.In practice,
the above studied GAF model is not used to calculate the
order parameter but to rationalize the internal motions
described by the experimental order parameter. Having
validated our theoretical model in section 3.2, we are now
in a position to use the 50 ns all-atom trajectory for this
purpose. In what follows, we first characterize the main
motions of the RNA hairpin. Then we analyze to what extent
these motions are reflected in the calculated order parameter.

Principal component analysis (PCA) represents a standard
method to identify the “principal” motions of a molecular
system.54-56 The approach represents the motion in terms of
an orthogonal basis, the principal components (PCs), which
are ordered according to their content of root-mean-square
fluctuations (see Methods). For the 50 ns simulation of the
UUCG loop, the first three PCs already contain 60% of the
overall fluctuations of the hairpin, and to cover 80, 90, and
95% of the fluctuations, only 10, 25, and 50 out of 1442
PCs are required, respectively. In this sense, the first few
PCs represent the main motions of the system. As an
illustration, Figure 1 shows the motion along the first three
PCs, which mainly consists of a conformational rearrange-
ment involving the loop region. The presence of (at least)
two conformational states is also confirmed by the analysis
of the backbone dihedral angles of the loop residues U6-
G9, see Table 4 in the Supporting Information. To assess
the influence of this conformational rearrangement on the
NMR order parameters, we have recalculatedS2 for the first
and second half of the trajectory. Both 100 and 1000 ps
Lipari-Szabo fits yield virtually identical results forS2. The
highest discrepancy is shown by the U7 base in the 1 ns fit
(0.43 vs 0.50). This finding indicates that a simulation time
of 50 ns is enough to investigate the C-H relaxation of the
RNA loop and that its backbone rearrangement at 30 ns does
not affect the order parameter values.

Let us now study to what extent the principal motions of
the system account for the order parameters. To this end,
we have expanded the MD trajectory in its firstn PCs (see
Methods) and calculatedS2 from this approximated trajectory,
using a 100 ps Lipari-Szabo fit. Figure 6 in the Supporting
Information shows the resulting order parameters as a
function of the number of included PCs. As may be expected,
the first PCs in general make the largest contribution to the
decay of S2. Compared to the rapid convergence of the
overall fluctuations, however, the order parameters converge
relatively slowly to their value obtained for the complete
trajectory. Focusing on the loop residues U6-G9, Table 4
compares the results of 1- S2 obtained for the complete
trajectory (all), for the first three PCs (PCA3), and for the
first ten PCs (PCA10). On average, the first three and 10
PCs yield about 20 and 40% of the value of 1- S2 for the
complete trajectory, respectively. Recalling that the first three
and ten PCs contain 60 and 80% of the overall fluctuations,
respectively, the order parameter apparently accounts only
partially for the principal motions of the system. This is
because the motion along the first few PCs may (i) be only
weakly correlated with the orientation of the C-H dipoles
and (ii) contains slow motion which is not seen by the
Lipari-Szabo fit.

The latter issue can be studied by recalculating 1- Seq
2

via an equilibrium average that covers all time scales of the
trajectory. As shown in Table 4, in this case the first three
and ten PCs on average yield about 40 and 70% of the value
of 1 - Seq

2 for the complete trajectory, respectively, that is,
quite similar to the values obtained for the overall fluctua-
tions. In particular, we find that theSeq

2 for the sugars U7,
C8, and G9 to a large extent (80 and 55%) are caused by
the motion along the first three PCs shown in Figure 1.
Hence, if all time scales of the trajectory are taken into
account,Seq

2 are well described by the principal motions of
the system.

4. Conclusions
A 50 ns MD simulation has been used to study the fast
dynamics of the 14-mer UUCG hairpin. The comparison of

Table 3: Internal Correlation Times τe and Order
Parameters of N1/N3 for the Guanine and Uracil Bases of
the Hairpina

MD (100 ps fit) experiment21 experiment24

τe (ps) S2 τe (ps) S2 τe (ps) S2

G1 3.7 0.890 0.74
G2 2.5 0.907 0.787 0.938
U6 3.5 0.851 9.0 0.773
U7 7.2 0.544
G9 3.2 0.885 4.0 0.807 0.955
G10 2.0 0.917 0.776 0.907
U11 1.7 0.902 0.760 0.905
G12 1.7 0.918 0.780 0.905

a Reported values are derived from the MD simulation (by 100 ps
fitting) and from the NMR experiment21,24 (axially symmetric diffusion
model except for G1).

Table 4: Results of 1 - S2 Obtained for the Complete
Trajectory (all) and by Including the First Three (PCA3)
and the First Ten (PCA10) Principal Components,
Respectivelya

1 - S2 (100 ps fit) 1 - Seq
2 (eq 10)

sugar all PCA3 PCA10 all PCA3 PCA10

U6 0.087 0.006 0.024 0.139 0.022 0.065
U7 0.182 0.053 0.089 0.626 0.511 0.578
C8 0.142 0.043 0.073 0.259 0.144 0.200
G9 0.131 0.033 0.056 0.258 0.140 0.186

base all PCA3 PCA10 all PCA3 PCA10

U6 0.113 0.018 0.047 0.273 0.063 0.191
U7 0.429 0.082 0.232 0.847 0.195 0.680
C8 0.184 0.035 0.070 0.304 0.121 0.192
G9 0.114 0.013 0.035 0.162 0.033 0.074

a The order parameter are calculated either from a 100 ps Lipari-
Szabo fit or from an equilibrium average (eq 10).
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the simulation with the NMR relaxation data allows us to
achieve several interesting results. First, the force field and
the 50 ns simulation time used in this study appear appropri-
ate to describe the fast relaxation of the C-H bonds
monitored in the NMR experiment. Although we find slow
conformation rearrangements of the RNA loop which may
not be sampled appropriately, these motions do not influence
the calculated NMR parameters. Internal motions on a time
scale longer than 1 ns have been shown not to affect the
calculated NMR relaxation rates and, as a consequence, will
not be reflected in the order parameters.

Second, the overall and internal motions of the hairpin
are found to be virtually independent, and the factorization
approximation of the correlation function holds. Even in the
case of the flexible U7, the approximation is not expected
to change the calculated NMR data, since only the dynamics
at short times (e1 ns) affect the relaxation parameters.
Moreover, the internal correlation function can be replaced
by a monoexponential function, fitted on its first 100 or 1000
ps, with no change of the relaxation parameters. The latter
two observations demonstrate the validity of the Lipari-
Szabo approach for the RNA hairpin.

Different ways to calculate the NMR order parameter have
been compared. The best approach was found to be Lipari-
Szabo fits of the first 100 ps (or 1 ns) of the MD internal
correlation functions. The resulting order parametersS2 and
internal correlation timesτe nicely agree with the experi-
mental values. The calculation of order parameters via an
equilibrium average was shown to deteriorate for residues
undergoing slow internal dynamics, since the latter cannot
be seen in NMR relaxation experiment limited by molecular
tumbling. Although the equilibrium-average calculation of
order parameters correctly reflects the fluctuations of the
system, it may therefore not be suited for the comparison to
experimental results. Finally the GAF model only yielded
about 20% of the correct value for 1- S2. This indicates
that the motion of the base C-H dipoles not only maybe
caused by fluctuations of the base but also are due to the
flexibility of the sugar ring and the backbone, in particular
for the loop residue C8.

The principal component analysis of the 50 ns trajectory
has confirmed that a conformational rearrangement involving
the loop region represents the main motion of the system.
This principal motion, however, accounts only partially for
the measured NMR order parametersS2, because the latter
are not sensitive to internal dynamics on a nanosecond time
scale. Calculating the order parameter via an equilibrium
average that covers all time scales of the trajectory, we obtain
a direct correspondence between calculatedSeq

2 and principal
motions. In particular, we find that the order parametersSeq

2

for the sugars of residues U7, C8, and G9 are to a large
extent caused by the motion along the first three principal
components shown in Figure 1.
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