Speeding up Simulations: Algorithms & Applications

David van der Spoel Dept. of Cell & Molecular Biology

Uppsala Universitet, Sweden

The Need for Speed

SoftwareHardware

Constraint Simulations

At limited by fast motions - 1fs Remove bond vibrations

• SHAKE (iterative, slow) - 2fs

O Problematic in parallel

O Compromise: constrain h-bonds only - 1.4fs

UINCS in GROMACS:

LINear Constraint Solver
Approximate matrix inversion expansion
Fast & stable Non-iterative
Enables 2-3fs timesteps
Works in parallel

Going Further: Virtual Sites

Next fastest motions is hydrogen angle vibrations and rotations of CH₃/NH₂ groups

Try to remove them:

- Construct (ideal) H position from heavy atoms. CH₃/NH₂ groups are made rigid
- Calculate forces, and then project then back on the heavy atoms
- Integrate only heavy atom positions, reconstruct hydrogens next step
- Our normal simulation setup is to use 4-5fs timesteps with NS every 5 steps, vsite hydrogens and LINCS

Coarse-Graining & Vsites

Coarse-Grained force fields are getting more popular
Problem how to interface it with detailed regions
Virtual interaction sites could be quite effective:
Alt 1: Construct all other atoms from CG sites
Alt 2: Construct CG sites from other atoms
Framework for future multiscale modeling simulations!

The Need for Speed

Cray XT-4

IBM Blue Gene

Why is GROMACS fast?

Algorithmic optimization:

- No virial in nonbonded kernels
- Single precision by default
- Tuning to avoid expensive statements such as PBC checks
- Triclinic cells everywhere: saves 15-20% for a given system radius
- Optimized 1/sqrt(x)
 - Used ~75,000,000 times/sec
 - Assembly innerloops for x86, x86-64, ia64, Altivec, VMX,

Cell Processor

Cell Broadband Engine Processor

• 64 bit Power CPU

512 kb Cache

Synergistic Processing Units

Protein Folding Properties from MD Simulations

The Protein Folding Problem

"... everything living things do can be understood in term of the wiggling and jiggling of their atoms."

> "folding is simply a function of the the order of the amino acids."

Francis Crick

Richard Feynman

Christian Anfinsen

"...the conformation that a protein assumes [...] is the one that is thermodynamically the most stable."

DNA Genetic Code Dictates Amino Acid Identity and Order

Image: U.S. Department of Energy Human Genome Program, http://www.ornl.gov/hgmis

Y-GA 98-648

Molecular dynamics simulations

- Calculate energies and forces using a classical force field
- Solve Newton's equations of motion (F = m a)
- Can in principle describe processes such as protein folding
- Efficient software: GROMACS (http://www.gromacs.org)

$$U = \sum_{AII Bonds} \frac{1}{(b-b_0)^2} + \sum_{AII Angles} \frac{1}{(b-b_0)^2} = \sum_{AII Angles} \frac{1}{(b-b_0)^2} + \sum_{AII Angles} \frac{1}{(b-b_0)^2} = \sum_{AII Angles} \frac{1}{(b-b_0)^$$

Fig. 1 The total potential energy of any molecule is the sum of terms allowing for bond stretching, bond angle bending, bond twisting, van der Waals interactions and electrostatics. Many properties of a biomolecules can be simulated with such an empirical energy function.

M.Levitt, Nat. Struct. Biol. 8, 392-393 (2001)

Replica exchange MD simulations

- Run multiple copies of a simulation at different temperatures, e.g. 280 K, 285 K, 290 K, etc.
- Exchange coordinates between adjacent temperatures every N time steps, based on a Metropolis criterion.
- Enhanced sampling at many temperatures

Chignolin

- The world's smallest Protein?
- 10 amino acids long
- Forms a stable β-hairpin in solution

NMR solution structure derived from 174 NOE interatomic distance restraints

18 NMR Structures of Chignolin

MD Simulations of Chignolin

Long classical MD trajectories

- •1.8 and 2.0 µs @ 300 K, 0.5 ns @ 277 K, 367 K.
- •Explicit solvent (TIP4P)
- •Particle mesh-Ewald treatment of Coulomb interactions
- •OPLS force field

REMD trajectories

- •16 different T from 275 to 420 K
- •510 ns

Analysis of simulations

- •Distance violations <V> from experimental data
- •Gibbs energy landscape

A Folding Event from Classical MD

Energy landscape analysis @ 300 K

- Determine a suitable space (in this case in 3 dimensions)
- Make a histogram of the space and compute relative probabilities P(x,y,z) of finding a protein conformation in the bin
- Find most probable bin ==> P_{min}
- $\Delta G = -k_B T \ln P(x,y,z)/P_{min}$
- $\Delta G_{min} = 0$
- g_sham program

Thermodynamic hypothesis (Anfinsen)

Amyloid A > B Conversion REMD with 32 replicas 280 - 404 K peptides + 3690 Water molecules 50 ns OPLS/AA + TIP4P Different starting structures

Folding kinetics from MD

- Using (RE)MD we obtain many trajectories in which proteins fold and unfold repeatedly
- Decide whether a protein is folded based on e.g. RMSD to the native state
- Compute the change in fraction folded F(t) for simulation m:

$$\frac{dF_m(t)}{dt} = k_f U_m(t) - k_u F_m(t)$$

Folding kinetics from MD

The rate constants are defined by:

$$k_u = A_u e^{-\beta E_A^u}, \quad k_f = A_f e^{-\beta E_A^f}$$

Now make $\beta = 1/k_{B}T$ time dependent:

$$\frac{dF_m(t)}{dt} = A_f e^{-\beta_m(t)E_A^f} U_m(t) - A_u e^{-\beta_m(t)E_A^u} F_m(t)$$

Folding kinetics from MD

- Given a population of proteins in different states we predict the change in fraction folded by numerically integrating dF/dt averaged over many trajectories.
- From a numerical fit $\Phi(t)$ of the computed integral to F(t) we can compute the four constants governing the kinetics: E_f , E_u , A_f , A_u
- The four constants do not depend on temperature

Folding kinetics from MD @ 300 K			
	Fold	Unfold	
A	9.3e-5(0.1)	0.094(0.01)	(1/ps)
E_A	11.2(1)	30.7(1)	(kJ/mole)
	Simulation	Exper.	
$ au_f$	1.0(0.3)		(μs)
$ au_u$	2.6(0.4)		(μs)
ΔG	2.4(0.7)	1.1(0.7)	(kJ/mole)
ΔH	19.6(2)	27.1(1)	(kJ/mole)
$T\Delta S$	17.1(1)	26.0(1)	(kJ/mole)
T_m	340(9)	312(2)	(K)

Folding kinetics from MD

Based on the parameters E_f, E_u, A_f, A_u we can predict the folding equilibrium as a function of temperature

$$F(t = \infty) = \frac{k_u}{k_u + k_f}$$

Chignolin Summary

- Chignolin's native state can be predicted to an accuracy of < 1.9 Å (all-atom) RMSD by *ab initio* molecular dynamics simulations.
- The native state can be identified on a Gibbs free energy landscape without direct reference to experimental data.
- Kinetics of folding can be predicted based on a heterogeneous ensemble of (RE)MD trajectories, giving information on longer time scales than what was actually simulated
- The temperature dependence of the folding/ unfolding equilibrium is reproduced quite well

Reduce Simulation Coupling to Improve Performance

- Collect thermodynamic data instead of waiting for rare events (scales 100%)
- Weakly coupled simulations (I0Mbit ethernet)
 - Replica-Exchange Works great in GROMACS
- Non-Coupled simulations:
 - Distributed computing (dial-up/ADSL)

Distributed Computing

Distributed Computing Protein Folding

- Folding is approximately a 1st order transition
- BBA5: Folding time is ~10 μs
- Probability of folding in short simulation is small, but >0
- Perform 10,000 independent 10ns simulations instead of a single 100 µs one
- Run GROMACS as screensaver in Folding@Home

Protein BBA5: 400 atoms 4000 Vaters: 12000 atoms Total: 12400 atoms

Fold Fraction over time

Summary - Speed

- Many time-saving techniques implemented in GROMACS 3.3
- Very good parallel scaling will be available in GROMACS 4.0
- REMD or other high level algorithms may be used to speed up convergence
- Algorithms exist that allow to make predictions on time scales (way) beyond the simulated ones

Outlook

 REMD calculations can be speeded up easily by running each replica on multiple nodes allowing longer trajectories and/or larger proteins. Implemented in GROMACS 4.0b

 Better force fields necessary to get the higher temperatures correct.

 Investigation of more complex folding events (with intermediates, pathway dependencies)

Acknowledgements

Protein Folding Properties from MD Simulations

Contraction of the second secon

STOCKHOLM: Erik Lindahl MAINZ: Berk Hess

GRO

THE