

Analysis of MD trajectories in GROMACS

David van der Spoel

What does MD produce?

Energy terms E(t)
 Coordinates x(t)
 Velocities v(t)

Forces f(t)

Managing your files

- tricat merging trajectories
- concatenating
 demultiplexing REMD
- trjconv converting trajectories
 - scaling, translating, rotating
 - periodic boundary conditions
 - least squares superposition
 - eneconv merging and converting energy files

Viewing your trajectory

ngmx - part of GROMACS

VMD - <u>http://www.ks.uiuc.edu</u>

gOpenMol - <u>http://www.csc.fi/gopenmol</u>

pymol - <u>http://pymol.sf.net</u>

Dynamics = Movies

Quantifying Dynamics

[Einstein relation: $6Dt = \lim_{t \to \infty} (\mathbf{r} - \mathbf{r}_0)^2$ [g_msd - Mean Square Displacement and diffusion constants[Green-Kubo relation: $3D = \int_0^\infty \mathbf{v}(t) \cdot \mathbf{v}(0) dt$ [g_velacc - Velocity Autocorrelation Function

Liquid Structure

g_rdf - Radial Distribution Function gives the local density of species B around species A relative to the average density

$$g_{AB}(r) = \frac{\rho_B(r)}{\langle \rho_B \rangle} = \frac{1}{N_A \langle \rho_B \rangle} \sum_{i \in A}^{N_A} \sum_{j \in B}^{N_B} \frac{\delta(r_{ij} - r)}{4\pi r^2}$$

Forces between "particles"

Using forces ctd.

- Using the forces directly from MD is not very accurate due to large fluctuations
- Other methods to compute potential of mean force (PMF) are implemented in GROMACS:
 - Atomic Force Microscopy (AFM) Pulling, where you gently pull on a molecule
 - Umbrella sampling

Hydrogen Bonds

- Can be defined using either geometrical or energetic criterion
- g_hbond geometric criterion only
 - r < r_{HB} (typically 0.35 nm)
 - alpha < alpha_{HB} (typically 30 degrees)

HB Kinetics Define a binary function H_i(t) $H_i(0) = 1$ $H_i(t) = 1$ when hydrogen bond i exists $H_i(t) = 0$ when hydrogen bond i does not exist Compute the autocorrelation function $C_i(t) = \langle H_i(0)H_i(t) \rangle$

HB Kinetics

[Define rate equation: dC(t)/dt = kC(t) - k'N(t)
[Compute C(t), N(t) from simulation
[Numerically differentiate C(t)
[Numerically solve for k and k'
[Hydrogen bond life time τ_{HB} = 1/k

HB Thermodynamics

Surface Area

A number of algorithms have been published

- Connolly surface
- MSMS (Scripps)
- Double Cube Lattice Method (NSC, EMBL-Heidelberg)
 - more...

g_sas uses NSC

Solvent Accessible Surface Area (SASA) often used as descriptor for e.g. computing ΔG_{solv}

Double Cube Lattice Method

Map triangles on the surface of an atom (sphere)
Connect the triangles between different atoms
Compute surface area by summing triangle areas
Eisenhaber et al. JCC 16, p. 273 (1995)

Surface Representations

Radius of Gyration

A measure of the size of a molecule

- Can in principle be determined experimentally, but not very accurately
- [g_gyrate can align the molecule along its primary axes before computing the radius of gyration

$$R_g = \left(\frac{\sum_i m_i \left(\mathbf{r}_i - \mathbf{r}_{cm}\right)^2}{\sum_i m_i}\right)^{1/2}$$

Root Mean Square Deviation

Measure of how related structures are

RMSD: requires LSQ superposition of molecules

LSQ Superposition

 $\begin{cases} \text{Minimize} & \chi^2 = \sum_i (\mathbf{r}_i^{ref} - \mathbf{Mr}_i)^2 \\ & \text{Where M is a six-dimensional matrix describing rotation and} \\ & \text{translation} \end{cases} \end{cases}$

Problematic when molecules are very different

Advantage is that this is a well-known quantity

RMSD

$$RMSD = \left(\frac{\sum_{i} m_{i} (\mathbf{r}_{i}^{ref} - \mathbf{M}\mathbf{r}_{i})^{2}}{\sum_{i} m_{i}}\right)^{1/2}$$

Alternative: distance based RMSD

$$RMSD = \frac{1}{N} \left(\sum_{i}^{N} \sum_{j}^{N} (\mathbf{r}_{ij}^{ref} - \mathbf{r}_{ij})^2 \right)^{1/2}$$

Clustering

- How many different conformations are there in a simulation trajectory?
- **Clustering algorithms can give an answer**
- [g_cluster implements a number of popular algorithms, all of which have their own issues
 - **Compare RMSD between pairs of structures**
 - Group structures that have relatively low RMSD w.r.t. each other

Secondary Structure

Very important indicator of protein structure

DSSP: dictionary of secondary structure in proteins (Kabsch & Sander, Biopolymers 22, p. 2577 (1983)), based on backbone torsion angles and hydrogen bonds

do_dssp computes SS from trajectories by executing an external DSSP program (<u>http://swift.cmbi.ru.nl/</u><u>gv/dssp/</u>)

Secondary structure

Ramachandran plot

Shows correlation of backbone angles Phi & Psi

Certain areas are energetically unfavorable ("disallowed")

Secondary structure (Alpha helix, Beta sheet) have common backbone angles

g_rama computes them

Example Ramachandran

Protein Dynamics

- Consider a protein in solution
- The protein has an overall rigid motion: rotation+translation
- Within the protein secondary structure elements will be relatively rigid, but may fluctuate collectively
 - Within secondary structure elements atoms will fluctuate mainly about their average positions

NMR Relaxation

NMR can be used to probe the intramolecular dynamics in e.g. proteins

Result is an average over long time and many molecules

— Q: how long is long and how many is many?

Observables from NMR experiments can often be derived from MD simulations

NH Bond-Vector Relaxation

If we disregard the overall motion of the protein we can write the motion of a distance vectors as:

$$C(t) = \left\langle \frac{P_2 \left(\mathbf{r}_{ij}(0) \cdot \mathbf{r}_{ij}(t) \right)}{r_{ij}^3(0) r_{ij}^3(t)} \right\rangle$$

Bond vectors in MD are usually rigid

It is relatively easy to study NH bond vectors in NMR using ¹⁵N labeled protein

Summary I

- [Many different tools available
- Protein analysis
- Liquid analysis
- **Dynamics**
- Electrostatic properties

Acknowledgements

- Alexandra Patriksson, Erik Marklund for Ubiquitin simulations and analyses
- Csaba Hetenyi for Ramachandran plots and the idea for this lecture
 - The GROMACS team for writing and correcting the GROMACS manual

