Force fields, thermo- and barostats

Berk Hess

What is a force field?

A force field usually consists of three parts:

- a set of functional forms
- parameters for the functional forms that, usually, depend on the atom types
- a set of building blocks, e.g. for amino acid residues

Gromacs interaction function support

Often one can split a force field into two main contributions:

Bonded interactions work only within molecules:

$$egin{aligned} V_b(m{r}_i,\ldots,m{r}_N) &= \sum_{m\in molecules} & igg(& \sum_{i,j\in bonds/pairs(m)} V_{ij}(m{r}_i,m{r}_j) + \ & \sum_{i,j,k\in angles(m)} V_{ijk}(m{r}_i,m{r}_j,m{r}_k) + \ & \sum_{i,j,k,l\in dihedrals(m)} V_{ijkl}(m{r}_i,m{r}_j,m{r}_k,m{r}_l) igg) \end{aligned}$$

Non-bonded interactions work between and within molecules:

$$V_{nb}(\boldsymbol{r}_i,\ldots,\boldsymbol{r}_N) = \sum_{i < j} V_{ij}(\parallel \boldsymbol{r}_i - \boldsymbol{r}_j \parallel) = \sum_{i < j} V_{ij}(r_{ij})$$

GROMACS workshop 2007

Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

Electrostatic interactions

• Coulomb
$$V_{ij} = \frac{q_i q_j}{4\pi\epsilon_0\epsilon} \frac{1}{r_{ij}}$$

• tabulated
$$V_{ij} = \frac{q_i q_j}{4\pi\epsilon_0\epsilon} f_C(r_{ij})$$

Van der Waals interactions

- Lennard Jones $V_{ij} = C_{ij}^{(12)} \frac{1}{r_{ij}^{12}} C_{ij}^{(6)} \frac{1}{r_{ij}^6}$
- tabulated $V_{ij} = C_{ij}^{(12)} f_R(r_{ij}) C_{ij}^{(6)} f_D(r_{ij})$
- Buckingham $V_{ij} = A_{ij} \exp(-B_{ij}r_{ij}) rac{C_{ij}}{r_{ij}^6}$

Bonded interactions

Bonds (two-body):

- harmonic bond stretching: V_b $(r_{ij}) = \frac{1}{2}k^b_{ij}(r_{ij} b_{ij})^2$
- 4th power bond bond stretching: $V_b(r_{ij}) = \frac{1}{4}k_{ij}^b(r_{ij}^2 b_{ij}^2)^2$

Angles (three-body):

- harmonic angle potential: $V_a(\theta_{ijk}) = \frac{1}{2}k^{\theta}_{ijk}(\theta_{ijk} \theta^0_{ijk})^2$
- cosine based potential: $V_a(\theta_{ijk}) = \frac{1}{2}k_{ijk}^{\theta} \left(\cos(\theta_{ijk}) \cos(\theta_{ijk}^0)\right)^2$

Constraints

In GROMACS bonds are usually replaced by constraints, i.e. the distances between bonded atoms are fixed to their equilibrium values

Constraints are actually a more faithful representation of reality, since the dynamics of bonds is of quantum nature

Removing the bond vibrations with constraints allows one to increase

the timestep from 0.5 or 1 fs to 2 or 4 fs

Bonded interactions (continued)

Improper dihedrals (four-body), for planarity or stereochemistry:

harmonic

Improper dihedrals (four-body):

- single cosine: $V_d(\phi_{ijkl}) = k_\phi(1 + \cos(n\phi \phi_s))$
- Ryckaert-Bellemans: $V_{rb}(\phi_{ijkl}) = \sum_{n=0}^{5} C_n(\cos(\psi))^n$
- 1-4 interactions (two-body):
 - (scaled) Lennard-Jones interactions
 - (scaled) Coulomb interactions

1-4 interactions go together with dihedrals, more on that later

Dihedrals

Proper dihedral

Also 1-4 interactions between atoms *i* and *j* contribute to the torsional potential around ϕ !

GROMACS workshop 2007

The choice of force field

The choice of force field is one of the most important factors in an MD study

A good force field requires years of work by many people All parameters for all molecules should be consistent!

The first question is which of the force field have parameters for the molecules present in your system

When some parameters are missing:

- search the literature
- if no success, you need to do force field parametrization :-(

Biomolecular force fields in GROMACS

GROMOS (6 versions)	OPLS-AA	AMBER (7 versions)
(1 1 1 1 1 1 1 1 1)		(**************************************
united atom aliphatic CH_n	all-atom	all-atom
proteins hydrocarbons	proteins hydrocarbons many liquids	proteins DNA/RNA

An AMBER port for Gromacs is available at: http://folding.stanford.edu/ffamber/

Force field parametrization

Charges and Lennard-Jones parameters:

Very tricky! Try to do it the same way as the force field has been parametrized

Bonded terms:

Relatively easy, from quantum calculations But beware of the 1-4 terms for dihedrals!

Torsional potential setup

dihedrals:

- 9: C_1 - C_2 - C_3 - C_4 , H_{21} - C_2 - C_3 - C_4 , H_{22} - C_2 - C_3 - C_4 , ...
- 1 (GROMOS96): only C_1 - C_2 - C_3 - C_4

1-4 LJ/Coulomb pair interactions:

• 9: C_1 - C_2 - C_3 - C_4 , H_{21} - C_2 - C_3 - C_4 , H_{22} - C_2 - C_3 - C_4 , ...

The original idea behind this is: the dihedral potentials give the 2-3 dependencies only

the 1-4 pair potentials give the 1-4 dependencies only

Torsional potential parametrization

What to do when parameters for a certain dihedral are not present in the force field?

1) Scan the dihedral in steps of e.g. 15 degrees and optimize the structures using quantum calculations (e.g. Gaussian)

2) Determine the force-field energies for the optimized quantum structures using mdrun -rerun, including all interations, except for the dihedral to parametrize

3) Determine the difference between the quantum and force-field potential energies and fit one of the dihedral functional forms to this

GROMACS topology file setup

Your topology is contained in the .top file

The .top file "includes" the force field .itp files, which are stored in the directory \$GMXDIR/shared/top

For proteins your molecular topology, i.e. the set of bonded interactions for your molecule, can be generated from the force field builing blocks with the program pdb2gmx

Topology file

; Include forcefield parameters
#include "ffG53a6.itp"

[moleculetype]
; Name nrexcl

Methanol 3

... molecule definition stuff, next slide ...

; Include water topology
#include "spc.itp"

[system]

; Name

Methanol in water

[molecules]	
;	Compound		#mols
Me	ethanol		1
S	JL		640

Molecule definition

[molecu	lety	/pe]						
;	Name			nrexcl					
Me	ethano	1		3					
[atoms]							
;	nr		type	resnr r	esidue	atom	cgnr	charge	mass
	1		CH3	1	SER	CB	1	0.266	15.035
	2		OA	1	SER	OG	1	-0.674	15.9994
	3		Н	1	SER	HG	1	0.408	1.008
[bonds]							
;	ai	aj	funct	c0		cl			
	1	2	2	gb_18	gb_	_18			
	2	3	2	gb_1	gb_	_1			
[angles	5]							
;	ai	aj	ak	funct	с0		c1		
	1	2	3	2	ga_12	ga_	_12		

Force field files

ffG53a6.itp:

#define _FF_GROMOS96
#define _FF_GROMOS53A6

[defaults]

;	nbfunc	comb-rule	gen-pairs	fudgeLJ	fudgeQQ
	1	1	no	1.0	1.0

```
#include "ffG53a6nb.itp"
#include "ffG53a6bon.itp"
```

ffoplsaa.itp:

#define _FF_OPLS
#define _FF_OPLSAA

[defaults]

; nbfunc	comb-rule	gen-pairs	fudgeLJ	fudgeQQ
1	3	yes	0.5	0.5

```
#include "ffoplsaanb.itp"
#include "ffoplsaabon.itp"
```

GROMACS workshop 2007

OPLS-AA files

ffoplsaanb.itp:

- [atomtypes]
- ; full atom descriptions are available in ffoplsaa.atp

; name	bond	_typ	е	mass	charge	ptype	e sigma	epsilon		
opls_0	01	С	6	12.01100	0.500	А	3.75000e-01	4.39320e-01	;	2
opls_0	02	0	8	15.99940	-0.500	А	2.96000e-01	8.78640e-01	;	S
opls_0	03	N	7	14.00670	-0.570	А	3.25000e-01	7.11280e-01	;	22
•••										

ffoplsaabon.itp:

[bondt	ypes]							
;	i	j fu	nc		b0	kb				
	OW	HW		1	0.09572	502080	0.0	; Foi	r TIP4F Water - w	lj 1/98
	OW	LP		1	0.01750	753120).0	;	-idem-	
	C*	HC		1	0.10800	284512	2.0	;		
•	••									
г	anala		1							
L	angre	erybes	J							
;	i	j	k	func	th	0	cth			
	HW	OW		HW	1 1	09.500	627	7.600	; For TLP4F Wa	t workshop 2007
	цω	$\cap M$		T.D	1	5/ 750	115	2 100	· For TTD/F Wa	tor - wit

GROMOS96 files

ffG53a6nb.itp:

[atomtypes]

. . .

;name	at.n	um mass	charge	р	type	сб		c12
0	8	0.000	0.000	А	0.002	22619536		1e-06
OM	8	0.000	0.000	А	0.002	22619536	7.414	9321e-07
OA	8	0.000	0.000		A (0.00226195	536 1	.505529e-06
• • •								

[nonbond_para	ims]			
;	i j func			сб	c12
	OM	0	1	0.0022619536	8.611e-07
	OA	0	1	0.0022619536	1.38651e-06
	OA	OM	1	0.0022619536	2.258907e-06
•					
[pairtypes]				
;	i j func			сб	c12
	Ο	0	1	0.0022619536	7.4149321e-07
	OM	0	1	0.0022619536	7.4149321e-07

GROMOS96 files

```
ffG53a6bon.itp:
; ICB(H)[N] CB[N] B0[N]
;
#define gb_1 0.1000 1.5700e+07
; H – OA 750
;
#define gb_2 0.1000 1.8700e+07
; H - N (all) 895
. . .
; ICT(H)[N] CT[N] (T0[N])
;
#define ga_1 90.00 380.00
; NR(heme) - FE - C
                      90
;
#define ga_2 90.00 420.00
; NR(heme) - FE - NR(heme) 100
. . .
```

Making topologies

Proteins:

• USE pdb2gmx

Small molecules:

 write a topology by hand, but be very careful about the details of the force field used

(hetero-)polymers:

- write building blocks (an .rtp file)
- then use pdb2gmx

Thermostats and barostats

Ensembles

"Plain" molecular dynamics is Hamiltonian dynamics and this conserves energy, leading to an constant NVE or microcanonical ensemble.

However, in most cases a constant NVT (canonical) or NPT ensemble will be a more suitable representation of the real system.

To achieve this, the equation of motions need to be modified to include a thermostat and/or barostat.

There are two types of thermostats:

- global thermostats
- local thermostats

The Berendsen thermostat

A global thermostat, weak coupling to a bath:

$$\frac{\mathsf{d}T}{\mathsf{d}t} = \frac{T_0 - T}{\tau}$$

To achieve this first order decay of temperature deviations, all velocities are scaled with the factor:

$$\lambda = \left[1 + \frac{\Delta t}{\tau_T} \left\{\frac{T_0}{T(t - \frac{\Delta t}{2})} - 1\right\}\right]^{1/2}$$

 τ_T is set with the parameter taut in the mdp file

Different T_0 and τ_T can be used for subgroups of the system.

The Nosé-Hoover thermostat

A global thermostat, using the extended-ensemble approach.

An additional degree of freedom ξ is added to the Hamiltonian:

$$\frac{\mathsf{d}^2 \boldsymbol{r}_i}{\mathsf{d}t^2} = \frac{\boldsymbol{F}_i}{m_i} - \xi \frac{\mathsf{d}\boldsymbol{r}_i}{\mathsf{d}t} \quad , \qquad \frac{\mathsf{d}\xi}{\mathsf{d}t} = \frac{1}{Q} \left(T - T_0\right)$$

The dynamics for the extended Hamiltonian is canonical, but leads to an NVT ensemble for the original system.

In the mdp file not the mass Q is set, but the period of the oscillations.

Global thermostats

Berendsen thermostat advantage: little influence on kinetics disadvantage: does not generate an ensemble (but error is small)

Nosé-Hoover thermostat advantage: produces an NVT ensemble disadvantage: can induce oscillations in the dynamics

Ergodicity

Global thermostats only work well when all degrees of freedom in the system are coupled strong enough to one another.

Consider the following system:

Here the octane and water slabs are very weakly coupled. Using one global thermostat can lead to a temperature difference between the octane and water slabs.

A solution is: using separate thermostats for octane and water But what about the 3 degrees of freedom coupling the octane and water slabs? GROMACS removes the center of mass motion for octane and water.

Local thermostats

One can also use Stochastic Dynamics (SD):

$$m_i \frac{\mathrm{d}^2 \boldsymbol{r}_i}{\mathrm{d}t^2} = -m_i \xi \frac{\mathrm{d} \boldsymbol{r}_i}{\mathrm{d}t} + \boldsymbol{F}_i(\boldsymbol{r}) + \overset{\circ}{\boldsymbol{\eta}}_i$$

advantages: NVT ensemble, always ergodic, no oscillations disadvantage: all velocity correlations decay with $\exp(\xi t)$

In the overdamped limit SD reduces to Brownian Dynamics:

$$\frac{\mathrm{d}\boldsymbol{r}_i}{\mathrm{d}t} = \frac{1}{\gamma_i}\boldsymbol{F}_i(\boldsymbol{r}) + \overset{\circ}{\boldsymbol{\eta}}_i$$

BD is not useful for dynamics,

but can be very useful for equilibrating bad starting structures.

Barostats

Berendsen barostat, or weak coupling:

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \frac{\mathbf{P}_0 - \mathbf{P}}{\tau_p}$$

The box/coordinate scaling matrix μ is given by

$$\mu_{ij} = \delta_{ij} - \frac{\Delta t}{3\tau_p} \beta_{ij} \{ P_{0ij} - P_{ij}(t) \}$$

Parrinello-Rahman barostat:

$$\frac{\mathsf{d}\boldsymbol{b}^2}{\mathsf{d}t^2} = V\boldsymbol{W}^{-1}\boldsymbol{b}'^{-1}\left(\boldsymbol{P} - \boldsymbol{P}_0\right)$$

$$\frac{\mathsf{d}^2 \boldsymbol{r}_i}{\mathsf{d}t^2} = \frac{\boldsymbol{F}_i}{m_i} - \boldsymbol{M} \frac{\mathsf{d}\boldsymbol{r}_i}{\mathsf{d}t} \quad , \qquad \boldsymbol{M} = \boldsymbol{b}^{-1} \left[\boldsymbol{b} \frac{\mathsf{d}\boldsymbol{b}'}{\mathsf{d}t} + \frac{\mathsf{d}\boldsymbol{b}}{\mathsf{d}t} \boldsymbol{b}' \right] \boldsymbol{b}'^{-1}$$

GROMACS workshop 2007

Calculating non-bonded interactions

Neighbor searching

In principle for a periodic system of N atoms we would need to determine N(N+1)/2 pair interactions, plus the interactions will all periodic images.

When interactions are shorted ranged we can use cut-off's.

For efficiency we used a fixed neighbor list for n_s steps:

- construct neighbor list for all charge groups pairs within r_c
- n_s times:
 - evaluate V and F for all pairs in the list
 - integrate the equations of motion
- construct neighbor list for all charge groups pairs within r_c

• .

Charge groups

We use charge groups because of two reasons:

- Neighbor searching efficiency Example: For a pair of 3-site water molecules we need 9 atom pair distances, but only 1 charge group distance
- Avoiding electrostatic artifacts due to cut-off's Example: For water without charge groups partial charges enter the cut-off, with charge groups dipoles enter the cut-off

Cut-off, charge groups and diffusion

Cut-off, charge groups and diffusion

Electrostatics with cut-off

Cutting off interactions abruptly causes artefacts:

- In water: over-orientation of dipoles: anti-parallel before the cut-off, parallel beyond the cut-off
- Like charged ions will accumulate just beyond the cut-off

Some artefacts get worse with increasing cut-off distance!!!

This is because Coulomb goes as 1/r, but the surface of the cut-off

sphere goes as r^2

Reaction-field electrostatics

Advantage: much less cut-off artefacts

Disadvantage: V = 0 beyond r_c

Particle Mesh Ewald (PME) electrostatics

Split the electrostatics into a short- and long-range part Do the short-range part with particle-particle interactions Solve the long-range part on a grid using FFT's

Advantages: no cut-off artefacts, infinite interaction range Disadvantages: computationally more expensive, periodicity (but this is due to the boundary conditions)

Can be used with systems with net charge: a uniform background charge is applied

Lennard-Jones potential

LJ decays fast: $-r^{-6}$

but the dispersion contributes up to relatively long distances:

$$V_{disp} = \int_{r_c}^{\infty} \rho_n \langle C^{(6)} \rangle \, 4\pi \, r^2 \, r^{-6} \mathsf{d}r = -\rho_n \langle C^{(6)} \rangle \frac{4\pi}{3} \, r_c^{-3}$$

Some useful box shapes

box type	image	box	box vectors			box vector angles		
	distance	volume	а	b	С	∠bc	∠ac	∠ab
			d	0	0			
cubic	d	d^3	0	d	0	90°	90°	90°
			0	0	d			
rhombic			d	0	$rac{1}{2} d$			
dodecahedron	d	$\frac{1}{2}\sqrt{2} d^3$	0	d	$rac{1}{2} d$	60°	60°	90°
		$0.707 d^3$	0	0	$\frac{1}{2}\sqrt{2}d$			
truncated			d	$rac{1}{3} d$	$-\frac{1}{3}d$			
octahedron	d	$\frac{4}{9}\sqrt{3}d^{3}$	0	$\frac{2}{3}\sqrt{2} d$	$\frac{1}{3}\sqrt{2}d$	71.53°	109.47°	71.53°
		$0.770 d^3$	0	0	$\frac{1}{3}\sqrt{6} d$			

Neighbor search with a grid

grid search in two dimensions, the arrows are the box vectors

Neighbor search/interaction setting

Neighbor search is C-code \Rightarrow slow Force loops are SSE/Altivec/... assembly \Rightarrow fast

For efficiency you want to use nstlist = 10

To avoid electrostatic articfacts use PME

force	neighb.	Elec.	PME	VdW	VdW	disp.
field	list	cut-off	grid	type	cut-off	corr.
GROMOS united atom	1.0	1.0	0.135	shift cut-off	0.9 1.4	yes no
OPLS-AA all atom	0.9	0.9	0.125	shift cut-off	0.8 1.4	yes no

GROMACS workshop 2007