pK_a calculations

Methods and Applications

A.H. Juffer

The University of Oulu

Finland-Suomi

Definition of pK_a (1)

- The pK_a of a titrating site is defined as the pH for which the site is 50% occupied, that is
 - ◆ The pH for which the occupancy
 q is 0.5.

$$HA + H_2O \Leftrightarrow A^- + H_3O^+$$

Deprotonation reaction

Definition of $pK_a(2)$

$$HA + H_2O \Leftrightarrow A^- + H_3O^+$$

$$K_a = \frac{a_{\text{A}} a_{\text{H}_3\text{O}^+}}{a_{\text{HA}}} = \frac{a_{\text{A}}}{a_{\text{HA}}} a_{\text{H}_3\text{O}^+} = \frac{1 - \boldsymbol{q}}{\boldsymbol{q}} a_{\text{H}_3\text{O}^+}$$

q is degree of protonation or occupancy: Number of bound protons as a function of pH

Titration curve:
$$q(pH) = \frac{1}{1 + e^{-\ln 10(pK_a - pH)}}$$

$$pH = -10 \log a_{H_3O^+}$$

$$pK_a = -^{10} \log K_a$$

$$pH = -\frac{10}{100} \log a_{H_3O^+} \qquad pK_a = -\frac{10}{100} \log K_a \qquad \Delta G^{\Theta} = -RT \ln K$$

Definition of $pK_a(3)$

$$\boldsymbol{q}(pH) = \frac{1}{1 + e^{-\ln 10(pK_a - pH)}}$$

One state transition

Computer simulation: Calculation of $\boldsymbol{\theta}$ as a function of pH

Method of calculation: Shift in pK_a

- Intrinsic pK_a : Transfer of site from model compound into protein location:
 - Self-term
 - Background charges
 - No site-site interaction
- Site-site interaction:
 - Sampling of accessible of protonation states
 as a function of pH => Titration curve q(pH)

$$pK_a^{\text{intr}} = \frac{\Delta \Delta G^{\Theta} + 2.30RTpK_a^{\text{m}}}{2.30RT}$$

Method of calculation: pK_a^{intr}

 $HA + H_2O \Leftrightarrow A^- + H_3O^+$

Model compound in solvent

HA, A

Vacuum

Difference in solvation affects distribution between AH and A-

$$HA + H_2O \Leftrightarrow A^- + H_3O^+$$

In protein location

$$\Delta \Delta G^{\Theta} = \Delta \Delta G_{solv,A/AH}^{v \to s} - \Delta \Delta G_{solv,A/AH}^{v - p}$$

$$pK_a^{\text{intr}} = \frac{\Delta \Delta G^{\Theta} + 2.30RTpK_a^{\text{m}}}{2.30RT}$$

Solvation free energy

- Continuum electrostatics
- Nonpolar contribution: SAS
 - Cancels for difference between A- and AH

J. Comput. Chem. 25, 393-411, 2004

Continuum electrostatics

Total electrostatic energy:

$$W_{el} = \frac{1}{2} \sum_i q_i \boldsymbol{f}(\mathbf{r}_i)$$

Solvent region

$$\nabla^2 \mathbf{f}(\mathbf{r}) = \mathbf{k}^2 \mathbf{f}(\mathbf{r})$$

Inverse Debye Length

$$\boldsymbol{e}_{s}, I$$

 $\nabla^2 \mathbf{f}(\mathbf{r}) = -\sum_{i=1}^N \frac{q_i}{\mathbf{e}_p \mathbf{e}_0}$

Protein

Partial charges

J. Comput. Phys. 97, 144, 1991

Site-site interactions

$$\langle \boldsymbol{q} \rangle = \sum_{\boldsymbol{s}} p_{\boldsymbol{s}} s_{\boldsymbol{s}}$$

Titrating curve: AVERAGE occupancy

 s_s : Number of bound protons for protonation state s_s

 p_s : Probability of observing protonation state σ

$$p_s \propto e^{-W(pK_a^{\text{intr}}, pH, W_{el}(s_s))/kT}$$

Boltzmann factor

Changes in protonation state modifies molecular charge distribution

Monte Carlo

Monte Carlo simulation

Outcome of computation

Prediction

Biochem. Cell. Biol., 76,198-209 (1998).

NMR experiment

Predictions are useful

- Molecule level explanation of titration curves
- Details on electrostatic network: protein structure
- Statements about enzyme activity: protein function (J. Biol. Chem., 275, 25633-25640, 2000)

Problems

- Correlation between protein dynamics and protonation state is commonly ignored.
- At low or high pH, proteins become unstable or denaturate.
- New models properly should sample both conformation and protonation states simultaneously:
 - ◆ Coarse grained model.

Apo form of Calbindin

Calbindin

Titration curves of ion ligating groups.

No structure relaxation upon ion release.

Xray holo structure with Ca2+ removed

Apo form of Calbindin

Calbindin

Titration curves of ion ligating groups.

With structure relaxation upon ion release.

NMR apo structure

The Arg in the a-domain of PDI

Structure	Cys53	Cys56
NMR Model 1	8.1	12.8
NMR Model 1 Neutral Arg 120	8.0	12.4
NMR model 19	3.8	3.5
NMR model 19 Neutral Arg 120	4.6	7.6
Native, MD simulation 15,834 ps	8.8	6.1
Native, MD simulation 15.834 ps	9.3	8.4