g_hbond

Main Table of Contents

VERSION 3.2.0
Sun 25 Jan 2004


Description

g_hbond computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cutoffs for the angle Donor - Hydrogen - Acceptor (zero is extended) and the distance Hydrogen - Acceptor. OH and NH groups are regarded as donors, O is an acceptor always, N is an acceptor by default, but this can be switched using -nitacc. Dummy hydrogen atoms are assumed to be connected to the first preceding non-hydrogen atom.

You need to specify two groups for analysis, which must be either identical or non-overlapping. All hydrogen bonds between the two groups are analyzed.

If you set -shell, you will be asked for an additional index group which should contain exactly one atom. In this case, only hydrogen bonds between atoms within the shell distance from the one atom are considered.

It is also possible to analyse specific hydrogen bonds with -sel. This index file must contain a group of atom triplets Donor Hydrogen Acceptor, in the following way:

[ selected ]
20 21 24
25 26 29
1 3 6

Note that the triplets need not be on separate lines. Each atom triplet specifies a hydrogen bond to be analyzed, note also that no check is made for the types of atoms.

-ins turns on computing solvent insertion into hydrogen bonds. In this case an additional group must be selected, specifying the solvent molecules.

Output:
-num: number of hydrogen bonds as a function of time.
-ac: average over all autocorrelations of the existence functions (either 0 or 1) of all hydrogen bonds.
-dist: distance distribution of all hydrogen bonds.
-ang: angle distribution of all hydrogen bonds.
-hx: the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue numbers and i ranges from 0 to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds associated with helices in proteins.
-hbn: all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded atoms from all groups and all solvent atoms involved in insertion.
-hbm: existence matrix for all hydrogen bonds over all frames, this also contains information on solvent insertion into hydrogen bonds. Ordering is identical to that in -hbn index file.
-dan: write out the number of donors and acceptors analyzed for each timeframe. This is especially usefull when using -shell.

Files

optionfilenametypedescription
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-g hbond.log Output, Opt. Log file
-sel select.ndx Input, Opt. Index file
-num hbnum.xvg Output xvgr/xmgr file
-ac hbac.xvg Output, Opt. xvgr/xmgr file
-dist hbdist.xvg Output, Opt. xvgr/xmgr file
-ang hbang.xvg Output, Opt. xvgr/xmgr file
-hx hbhelix.xvg Output, Opt. xvgr/xmgr file
-hbn hbond.ndx Output, Opt. Index file
-hbm hbmap.xpm Output, Opt. X PixMap compatible matrix file
-dan danum.xvg Output, Opt. xvgr/xmgr file

Other options

optiontypedefaultdescription
-[no]h bool no Print help info and quit
-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory
-dt time -1 Only use frame when t MOD dt = first time (ps)
-[no]ins bool no Analyze solvent insertion
-a real 30 Cutoff angle (degrees, Donor - Hydrogen - Acceptor)
-r real 0.35 Cutoff radius (nm, X - Acceptor, see next option)
-[no]da bool yes Use distance Donor-Acceptor (if TRUE) or Hydrogen-Acceptor (FALSE)
-abin real 1 Binwidth angle distribution (degrees)
-rbin real 0.005 Binwidth distance distribution (nm)
-[no]nitacc bool yes Regard nitrogen atoms as acceptors
-[no]contact bool no Do not look for hydrogen bonds, but merely for contacts within the cut-off distance
-shell real -1 when > 0, only calculate hydrogen bonds within # nm shell around one particle
-[no]dump bool no Dump all hydrogen bond ACFs (maximum 1000) in a single xvg file for debugging
-max_hb real 0 Theoretical maximum number of hydrogen bonds used for normalizing HB autocorrelation function. Can be useful in case the program estimates it wrongly
-[no]merge bool yes H-bonds between the same donor and accepter, but with different hydrogen are treated as a single H-bond. Mainly important for the ACF.


http://www.gromacs.org
gromacs@gromacs.org