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Topics
e Polarization in electrostatics

e (Continuum electrostatics:

— Finite difference method, Generalized Born equation, boundary element
method

— Combination with molecular dynamics
* Some special topics:

- pK calculations from Monte Carlo simulation and continuum

electrostatics

— 2D Lekner summation technique in membrane affinity calculations



Energy and forces of a collection of charges

Amount of work required to assemble a charge distribution (from infinity)
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Computation of electrostatic interactions

* Problem: interactions are long-ranged

e Standard cutoff approaches will not work

* Requires special techniques:

— Summation techniques: Ewald, Particle Mesh, Lekner,
etc.

— Continuum electrostatics



Protein charge distribution

Charged groups:
- Lys (+), Arg (+), Glu (-), Asp (-), ...
— Cterm (-), Nterm (+)

Polar groups:
— Ser (OH), Tyr (OH), peptide-bond, ...
— His (imodazol group), Cys (SH), ...

Titrating sites may change their protonation state (charge
distribution) as a function of the pH.

Asymmetric molecular charge distribution



Protein 1n solvent
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Polarization

* Solvent polarization:

— Solvent reorientation (orientation polarization)
— Jon redistribution (added 10nic strength, 0.15 M)

— Electronic polarization (redistribution of electron density in
atoms and molecules):

* Induced dipoles, quadrupoles, etc.

* Solute polarization:

— Electronic polarization

— Reorientation of groups.



Molecular dynamics and polarization

* Includes contributions to polarization to some
degree, except for:

— Electronic polarization

— Jon redistribution:

e Time scale 1ssue < statistics



Electronic polarization

E
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particle

E :'External’ field due to external sources (external with respect to particle)

P : Induced dipole moment : measure for distortion of electron cloud
« : polarizability : tensorial quantity, frequently assumed to be a scalar



Collection of polarizable particles
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Collection of polarizable waters

H ™~
~_
~
~
~
~_
~
~
~
~_
~
~
~
~_
~
~ )
| ~
- ~_
) ~
: ~
B ~_
- ~
- ~
N ~
~
~
~
~
~
~

» External field 1s due to sources (permanent charges, dipoles, etc) on molecules
* Dipole — dipole interactions molecules

pi=o<l.E(rl.)=o<i(E0+Z Ej(ri))
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Numerical calculation
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e Vector — matrix equation: Ap=EO = p:A‘lEO:

— Dimension A is 3N X3N, if N number of polarizabilities

. solution to be obtained by direct methods (e.g. LU
decomposition) or iterative procedures.
* Energy W:
- @(r): potential: sum of external potentials potentials due to induced dipoles
1 1 q, 1 p,(r)r
W==> q.olr, @(r,)=
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Potential of a macroscopic polarizable object

Collection of induced dipoles =

Polarizable
object

P generally includes all types of polarization
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Interpretation of bound charges

P

p(r)=p (r)+p,(r)
A A A

Polarizable
object

Total charge density / distribution

Free charge density

Bound / polarization / induced charge density:
* “difference” density: reflects change in charge density
* volume and surface charge density



Gauss' Law 1n polarizable media

‘vn e, JsE(r)n=0, e, V-E(r)=p(r)

No external field: EOV-E(r)=pf(r)

Polarizable
object

With external field: EOV‘E(")=Pf<")+0b(")=l?f(’”)—v‘P(”)
Detine: D=¢ E+P

V-D(r)=p,



[Linear dielectric media

Linear response, if total field 1s weak and fairly constant in space and time:
P(r)=€¢ X E(r)

D(r)=¢,E(r)+P(r)=¢,(1+X )E(r)=€,e E(r)

X : Electric susceptibility of the medium (no units, usually positive):

describes response of medium.
e: Dielectric constant / relative permittivity.




[Linear dielectric media

Starting equation for continuum electrostatics



Polarizable protein in polarizable
electrolyte solution

Electrolyte /Dielectric boundary
=y(r)

Protein lr)=
op(r) €, 0y(r)
on €. On

S

Viu(r)=k’y(r)

Poisson-Bolizmann equation Electrostatic energy and forces:

k : Inverse Debye Length (e, I) W({,.i})zéz q.¢(r,)

(r)==V,W({r})
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Dielectric constant of a protein

* Between 4 to 30, according to
— Molecular dynamics simulations

- pK calculations

* Describes polarization of protein

— Charge distribution itself already contains in an
average way polarization effects of bringing atoms
together



Numerical solutions

e Finite difference method

* Generalized Born equation
* Boundary element method

e Finite element method



Finite Difference Method
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Boundary element method

Collocation point
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Generalized Born equation

W:lz q.(p(r)zlz qiqjg(r., r) g (r, r) : 'Green Function'
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Generalized Born attempts to construct simple analytical approximations to Ag
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A, Rij : parameters of the model



Continuum electrostatic and MD

 Combination with MD i1s 'easy'

e Attractive: considerable reduction of number of
degrees of freedom:

— Long time simulation possible

e Usually 1s mixing two extreme levels of
descriptions:

— Protein : full detail

— Solvent : no detail at all (full continuum)



