Continuum electrostatics

André H. Juffer
Biocenter Oulu, Department of Biochemistry
University of Oulu
www.biochem.oulu.fi/Biocomputing/

Topics

- Polarization in electrostatics
- Continuum electrostatics:
 - Finite difference method, Generalized Born equation, boundary element method
 - Combination with molecular dynamics
- Some special topics:
 - pK_a calculations from Monte Carlo simulation and continuum electrostatics
 - 2D Lekner summation technique in membrane affinity calculations

Energy and forces of a collection of charges

Amount of work required to assemble a charge distribution (from infinity)

$$\varphi_i(\mathbf{r}_i) = \sum_j \frac{q_j}{4\pi\epsilon_0 |\mathbf{r}_i - \mathbf{r}_j|}$$

$$W_{N}(\boldsymbol{r_{1}, r_{2}, ..., r_{N}}) = \sum_{i < j} \frac{q_{j}q_{i}}{4\pi\epsilon_{0}|\boldsymbol{r_{i}} - \boldsymbol{r_{j}}|} = \frac{1}{2}\sum_{i} q_{i}\varphi(\boldsymbol{r_{i}})$$

$$F_{i}(\boldsymbol{r_{i}}) = q_{i}\sum_{j} \frac{q_{j}(\boldsymbol{r_{i}} - \boldsymbol{r_{j}})}{4\pi\epsilon_{0}|\boldsymbol{r_{i}} - \boldsymbol{r_{j}}|^{3}}$$
Total electrostatic potential at $\boldsymbol{r_{i}}$

Computation of electrostatic interactions

- Problem: interactions are long-ranged
- Standard cutoff approaches will not work
- Requires special techniques:
 - Summation techniques: Ewald, Particle Mesh, Lekner, etc.
 - Continuum electrostatics

Protein charge distribution

- Charged groups:
 - Lys (+), Arg (+), Glu (-), Asp (-), ...
 - Cterm (-), Nterm (+)
- Polar groups:
 - Ser (OH), Tyr (OH), peptide-bond, ...
 - His (imodazol group), Cys (SH), ...
- Titrating sites may change their protonation state (charge distribution) as a function of the p*H*.
- Asymmetric molecular charge distribution

Protein in solvent

pH effects

Polarization

- Response of material to external possibly time-dependent electric fields
- Solvent polarization:
 - Solvent reorientation (orientation polarization)
 - Ion redistribution (added ionic strength, 0.15 M)
 - Electronic polarization (redistribution of electron density in atoms and molecules):
 - Induced dipoles, quadrupoles, etc.
- Solute polarization:
 - Electronic polarization
 - Reorientation of groups.

Molecular dynamics and polarization

- Includes contributions to polarization to some degree, except for:
 - Electronic polarization
 - Ion redistribution:
 - Time scale issue ↔ statistics

Electronic polarization

 $\overline{\mathbf{E}_0}$: 'External' field due to external sources (external with respect to particle)

p: Induced dipole moment: measure for distortion of electron cloud

 α : polarizability: tensorial quantity, frequently assumed to be a scalar

Collection of polarizable particles

Electric field of dipole

$$\boldsymbol{E}_{j}(\boldsymbol{r}_{i}) = -\boldsymbol{T}_{ij} \boldsymbol{p}_{j}$$

$$\boldsymbol{T}_{ij} = \nabla_{i} \nabla_{i} \frac{1}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|}$$

Collection of polarizable waters

- External field is due to sources (permanent charges, dipoles, etc) on other molecules
- Dipole dipole interactions within and between molecules

$$\boldsymbol{p}_{i} = \alpha_{i} \boldsymbol{E}(\boldsymbol{r}_{i}) = \alpha_{i} (\boldsymbol{E}_{0} + \sum_{i \neq j} \boldsymbol{E}_{j}(\boldsymbol{r}_{i}))$$

Numerical calculation

$$p_i = \alpha_i E(r_i) = \alpha_i (E_0 - \sum_{i \neq j} T_{ij} p_j) \rightarrow \alpha^{-1} (1 + \alpha T) p = E_0$$

- Vector matrix equation: $\mathbf{Ap} = \mathbf{E}_0 \Leftrightarrow \mathbf{p} = \mathbf{A}^{-1} \mathbf{E}_{0}$
 - Dimension A is $3N \times 3N$, if N number of polarizabilities
- Self consistent solution to be obtained by direct methods (e.g. LU decomposition) or iterative procedures.
- Energy *W*:
 - $\varphi(\mathbf{r}_i)$: Total potential: sum of external potentials and potentials due to induced dipoles

$$W = \frac{1}{2} \sum_{i} q_{i} \varphi(\mathbf{r}_{i}) \qquad \varphi(\mathbf{r}_{0}) = \frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{|\mathbf{r}_{0} - \mathbf{r}_{i}|} + \frac{1}{4 \pi \epsilon_{0}} \sum_{j} \frac{\mathbf{p}_{j}(\mathbf{r}) \cdot \mathbf{r}}{|\mathbf{r}_{0} - \mathbf{r}_{j}|^{3}}$$

Potential of a macroscopic polarizable object

Collection of induced dipoles → Dipole density or Polarization P

P generally includes all types of polarization

$$\varphi(\mathbf{r_0}) = \frac{1}{4\pi\epsilon_0} \int_{V} \frac{\mathbf{P}(\mathbf{r}) \cdot \mathbf{r}}{|\mathbf{r_0} - \mathbf{r}|^3} d\tau = \frac{1}{4\pi\epsilon_0} \int_{\Sigma} \frac{\mathbf{P}(\mathbf{r}) \cdot \mathbf{n}}{|\mathbf{r_0} - \mathbf{r}|} d\sigma + \frac{1}{4\pi\epsilon_0} \int_{V} \frac{\nabla \cdot \mathbf{P}(\mathbf{r})}{|\mathbf{r_0} - \mathbf{r}|} d\sigma$$

$$\varphi(\mathbf{r_0}) = \frac{1}{4\pi\epsilon_0} \int_{\Sigma} \frac{\sigma_b(\mathbf{r})}{|\mathbf{r_0} - \mathbf{r}|} d\sigma + \frac{1}{4\pi\epsilon_0} \int_{V} \frac{\rho_b(\mathbf{r})}{|\mathbf{r_0} - \mathbf{r}|} d\sigma$$

Bound charges:
$$\sigma_b(r) = P(r) \cdot n$$
 $\rho_b(r) = \nabla \cdot P(r)$

Interpretation of bound charges

Bound / polarization / induced charge density:

- "difference" density: reflects change in charge density
- volume and surface charge density

Gauss' Law in polarizable media

No external field: $\epsilon_0 \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \rho_f(\boldsymbol{r})$

With external field: $\epsilon_0 \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \rho_f(\boldsymbol{r}) + \rho_b(\boldsymbol{r}) = \rho_f(\boldsymbol{r}) - \nabla \cdot P(\boldsymbol{r})$

Define: $D = \epsilon_0 E + P$

 $\nabla \cdot \boldsymbol{D}(\boldsymbol{r}) = \rho_f$

Linear dielectric media

Linear response, if total field is weak and fairly constant in space and time:

$$P(r) = \epsilon_0 \chi_e E(r)$$

$$D(r) = \epsilon_0 E(r) + P(r) = \epsilon_0 (1 + \chi_e) E(r) = \epsilon_0 \epsilon E(r)$$

 $X_{\rm e}$: Electric susceptibility of the medium (no units, usually positive): describes macroscopic response of medium.

 ϵ : Dielectric constant / relative permittivity.

$$\rho_b = -\nabla \cdot \boldsymbol{P} = -\frac{\epsilon - 1}{\epsilon} \rho_f$$

Linear dielectric media

$$\nabla \cdot \boldsymbol{D}(\boldsymbol{r}) = \boldsymbol{\epsilon}_0 \boldsymbol{\epsilon} \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{\rho}_f(\boldsymbol{r})$$

$$E(r) = -\nabla \varphi(r)$$

Poisson equation:
$$\nabla^2 \varphi(\mathbf{r}) = -\frac{\rho_f(\mathbf{r})}{\epsilon \epsilon_0}$$

Starting equation for continuum electrostatics

Polarizable protein in polarizable electrolyte solution

Poisson-Boltzmann equation κ : Inverse Debye Length $\kappa(\epsilon_s, I)$

Electrostatic energy and forces:

$$W(\{\boldsymbol{r}_i\}) = \frac{1}{2} \sum_{i} q_i \varphi(\boldsymbol{r}_i)$$

$$F_{el,i}(\boldsymbol{r}_i) = -\nabla_i W(\{\boldsymbol{r}_i\})$$

Dielectric constant of a protein

- Between 4 to 30, according to
 - Molecular dynamics simulations
 - pK_a calculations
- Describes polarization of protein due to the presence of a polarizable solvent:
 - Charge distribution itself already contains in an average way polarization effects of bringing atoms together

Numerical solutions

- Finite difference method
- Generalized Born equation
- Boundary element method
- Finite element method

•

Finite Difference Method

$$\varphi_{j} = \frac{\sum_{i=1}^{6} \epsilon_{i} \varphi_{i} + \frac{Q_{i}}{\epsilon_{0} h}}{\sum_{i=1}^{6} \epsilon_{i} + \bar{\kappa}_{j}^{2} h^{2}} \qquad \bar{\kappa} = \epsilon^{\frac{1}{2}} \kappa$$

- Charges have to be mapped onto the grid
- Regularity conditions are not exactly satisfied
- Forces / fields more difficult to compute

Boundary element method

$$E(\mathbf{r}_{i}) = -\nabla_{i}\varphi(\mathbf{r}_{i})$$

$$\varphi(\mathbf{r}_{i}) = \int_{\Sigma} (L_{1}(\mathbf{r}, \mathbf{r}_{i})\varphi(\mathbf{r}) + L_{2}(\mathbf{r}, \mathbf{r}_{i}) \frac{\partial \varphi(\mathbf{r})}{\partial n}) d\sigma + \sum_{j \neq i} \frac{q_{j}}{\epsilon_{0} \epsilon_{p}} \frac{1}{4\pi |\mathbf{r}_{i} - \mathbf{r}_{i}|} \qquad \qquad \blacktriangleright \qquad \qquad \mathbf{\varphi} = \mathbf{R} \, \mathbf{x} + \mathbf{D}$$

$$\frac{1}{2}(1+\frac{\epsilon_{s}}{\epsilon_{p}})\varphi(\mathbf{r_{0}}) = \int_{\Sigma} (L_{1}(\mathbf{r},\mathbf{r_{0}})\varphi(\mathbf{r}) + L_{2}(\mathbf{r},\mathbf{r_{0}})\frac{\partial\varphi(\mathbf{r})}{\partial n})d\sigma + \sum_{i} \frac{q_{i}}{\epsilon_{0}\epsilon_{p}} \frac{1}{4\pi|\mathbf{r_{i}}-\mathbf{r_{0}}|}$$

$$\frac{1}{2}(1-\frac{\epsilon_{p}}{\epsilon_{s}})\frac{\partial\varphi(\mathbf{r_{0}})}{\partial n_{0}} = \int_{\Sigma} (L_{3}(\mathbf{r},\mathbf{r_{0}})\varphi(\mathbf{r}) + L_{4}(\mathbf{r},\mathbf{r_{0}})\frac{\partial\varphi(\mathbf{r})}{\partial n})d\sigma + \sum_{i} \frac{q_{i}}{\epsilon_{0}\epsilon_{p}} \frac{(\mathbf{r_{i}}-\mathbf{r_{0}})\cdot n_{0}}{4\pi|\mathbf{r_{i}}-\mathbf{r_{0}}|^{3}}$$

$$A \mathbf{x} = \mathbf{b}$$

Generalized Born equation

$$W = \frac{1}{2} \sum_{i} q_{i} \varphi(\mathbf{r}) = \frac{1}{2} \sum_{i,j} \frac{q_{i} q_{j}}{\epsilon_{0}} g(\mathbf{r}_{i}, \mathbf{r}_{j}) \qquad g(\mathbf{r}_{i}, \mathbf{r}_{j}) : \text{'Green Function'}$$

$$g(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{4\pi r_{ij}} + \Delta g(\mathbf{r}_i, \mathbf{r}_j) \rightarrow \frac{1}{4\pi \epsilon r_{ij}}$$
 (in homogeneous system)

Generalized Born attempts to construct simple analytical approximations to Δg

$$\Delta g_{GB}(\mathbf{r}_{i}, \mathbf{r}_{j}) = \left(\frac{1}{\epsilon_{w}} - 1\right) \left(r_{ij}^{2} + R_{ij}^{2} \exp\left(-\frac{1}{A R_{ij}^{2}}\right)\right)^{-\frac{1}{2}}$$

 A, R_{ii} : parameters of the model

Continuum electrostatic and MD

- Combination with MD is 'easy'
- Attractive: considerable reduction of number of degrees of freedom:
 - Long time simulation possible
- Usually is mixing two extreme levels of descriptions:
 - Protein: full detail
 - Solvent : no detail at all (full continuum)