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1
INTRODUCTION

1.1 What is this book about?
1.1.1 Simulation of real systems

Computer simulations of real systems require a model of that reality. A
model consists of both a representation of the system and a set of rules
that describe the behaviour of the system. For dynamical descriptions one
needs in addition a specification of the initial state of the system, and if
the response to external influences is required, a specification of the external
influences.

Both the model and the method of solution depend on the purpose of
the simulation: they should be accurate and efficient. The model should be
chosen accordingly. For example: an accurate quantum-mechanical descrip-
tion of the behaviour of a many-particle system is not efficient for studying
the flow of air around a moving wing; on the other hand, the Navier-Stokes
equations — efficient for fluid motion — cannot give an accurate description of
the chemical reaction in an explosion motor. Accurate means that the sim-
ulation will reliably (within a required accuracy) predict the real behaviour
of the real system, and efficient means ‘feasible with the available technical
means’. This combination of requirements rules out a number of questions;
whether a question is answerable by simulation depends on

the state of theoretical development (models and methods of solution),

the computational capabilities,

the possibilities to implement the methods of solution in algorithms,

the possibilities to validate the model.

Validation means the assessment of the accuracy of the model (compared to
physical reality) by critical experimental tests. Validation is a crucial part
of modelling.
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1.1.2 System limitation

We limit ourselves to models for the real world around us. This is the realm
of chemistry, biology and material sciences, and includes all industrial and
practical applications. We do not include the formation of stars and galax-
ies (stellar dynamics) or the physical processes in hot plasma on the sun’s
surface (astrophysics); neither do we include the properties and interactions
of elementary particles (quantum chromodynamics) or processes in atomic
nuclei or neutron stars. And, except for the purposes of validation and
demonstration, we shall not consider unrealistic models that are only meant
to test a theory. Summarizing: we shall look at literally ‘down-to-earth’
systems consisting of atoms and molecules under non-extreme conditions of
pressure and temperature.

This limits our discussion in practice to systems that are made up of
interacting atomic nuclei which are specified by their mass, charge and spin,
electrons, and photons that carry the electromagnetic interactions between
the nuclei and electrons. Occasionally we may wish to add gravitational
interactions to the electromagnetic ones. The internal structure of atomic
nuclei is of no consequence for the behaviour of atoms and molecules, (if we
disregard radioactive decay): nuclei are so small with respect to the spatial
spread of electrons that only their monopole properties as total charge and
total mass are important. Nuclear excited states are so high in energy
that they are not populated at reasonable temperatures. Only the spin
degeneracy of the nuclear ground state plays a role when nuclear magnetic
resonance is considered; in that case the nuclear magnetic dipole and electric
quadrupole moment are important as well.

In the normal range of temperatures this limitation implies a practical
division between electrons on the one hand and nuclei on the other: while
all particles obey the rules of quantum mechanics, the quantum character
of electrons is essential but the behaviour of nuclei approaches the classical
limit. This distinction has far-reaching consequences, but it is rough and
inaccurate. For example, protons are light enough to violate the classical
rules. The validity of the classical limit will be discussed in detail in this
book.

1.1.3 Sophistication versus brute force

Our interest in real systems rather than simplified model systems is con-
sequential for the kind of methods that can be used. Most real systems
concern some kind of condensed phase: they (almost) never consist of iso-
lated molecules and can (almost) never be simplified because of inherent
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symmetry. Interactions between particles can (almost) never be described
by mathematically simple forms and often require numerical or tabulated
descriptions. Realistic systems usually consist of a very large number of in-
teracting particles, embedded in some kind of environment. Their behaviour
is (almost) always determined by statistical averages over ensembles con-
sisting of elements with random character, as the random distribution of
thermal kinetic energy over the available degrees of freedom. That is why
statistical mechanics plays a crucial role in this book.

The complexity of real systems prescribes the use of methods that are
easily extendable to large systems with many degrees of freedom. Physical
theories that apply to simple models only, will (almost) always be useless.
Good examples are the very sophisticated statistical-mechanical theories for
atomic and molecular fluids, relating fluid structural and dynamic behaviour
to interatomic interactions. Such theories work for atomic fluids with sim-
plified interactions, but become inaccurate and intractable for fluids of poly-
atomic molecules or for interactions that have a complex form. While such
theories thrived in the 1950’s to 1970’s, they have been superseded by accu-
rate simulation methods, which are faster and easier to understand, while
they predict liquid properties from interatomic interactions much more ac-
curately. Thus sophistication has been superseded by brute force, much to
the dismay of the sincere basic scientist.

Many mathematical tricks that employ the simplicity of a toy model sys-
tem cannot be used for large systems with realistic properties. In the box
below an example is given of the brute-force approach to a problem that
has a simple and elegant solution. To apply such a brute-force method to a
simple problem seems outrageous and intellectually very dissatisfying. Nev-
ertheless, the elegant solution cannot be readily extended to many particles
or complicated interactions, while the brute-force method can. Thus not
only sophistication in physics, but also in mathematics, is often replaced
by brute force methods. There is an understandable resistance against this
trend among well-trained mathematicians and physicists, while scientists
with a less elaborate training in mathematics and physics welcome the op-
portunity to study complex systems in their field of application. The field of
simulation has made theory much more widely applicable and has become
accessible to a much wider range of scientists than before the ’computer
age’. Simulation has become a ’third way’ of doing science, not in stead of,
but in addition to theory and experimentation.

There is a danger, however, that applied scientists use ’standard’ simu-
lation methods, even worse use 'black-box’ software, without realizing on
what assumptions the methods rest and what approximations are implied.
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V(r)=D (1 — e::iﬂr(r—b))?

Fig. 1.1. Morse curve with a = 2/b (drawn line). Dotted curve: parabola with
same curvature as Morse curve at r = b: V = Da*(r — b)%.

This book is meant to provide the necessary scientific background and to
promote awareness for the limitations and inaccuracies of simulating the
‘real world’.

Example 1.1 An oscillating bond

In this example we consider the classical bond length oscillation of a simple
diatomic molecule, using the molecule hydrogen fluoride (HF) as an example. In
the simplest approximation the potential function is a parabola:

V(r) = 5hr— b2, (L1)

with r the H-F distance, k the force constant and b the equilibrium distance. A
better description of the potential function is the Morse function (see fig. 1.1)

V(r)=D (1 - e*a<’“*b>)2 , (1.2)

where D is the dissociation energy and a is a constant related to the steepness of
the potential. The Morse curve is approximated near the minimum at » = b by a
parabola with force constant k = 2Da?.

The Morse curve is only a convenient analytical expression that has some essential
features of a diatomic potential, but there is no theoretical justification for this
particular form. In many occasions we may not even have an analytical form for the
potential, but know the potential at a number of discrete points, e.g. from quantum-
chemical calculations. In that case the best way to proceed is to construct the
potential function from cubic spline interpolation of the computed points. Because
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Fig. 1.2. Oscillation of the HF bond length, simulated with (a) the harmonic oscil-
lator, (b) the Morse curve with initial deviation from the equilibrium bond length of
-0.01 nm, (c) idem with initial deviation of 0.05 nm, showing increased anharmonic
behaviour.

cubic splines (see TOPIC ?7?) have continuous second derivatives, the forces will
behave smoothly as they will have continuous first derivatives everywhere.

A little elementary mechanics shows that we can split off the translational motion
of the molecule as a whole, and that - in the absence of rotational motion - the
bond will vibrate according to the equation of motion:

av
dr
where p = mymp/(mg + mp) is the reduced mass of the two particles. When we

start at time ¢t = 0 with a displacement Ar and zero velocity, the solution for the
harmonic oscillator is

pit = (1.3)

r(t) = b+ Arcoswt, (1.4)

with w = \/k/p. So the analytical solution is simple, and we do not need any nu-
merical simulation to derive the frequency of the oscillator. For the Morse oscillator
the solution is not as straightforward, although we can predict that it should look
much like the harmonic oscillator with & = 2Da? for small-amplitude vibrations.
But we may expect anharmonic behaviour for larger amplitudes. Now numerical
simulation is the easiest way to derive the dynamics of the oscillator. For a spline-
fitted potential we must resort to numerical solutions. The extension to more
complex problems, like the vibrations of a molecule consisting of several intercon-
nected harmonic oscillators, is quite straightforward in a simulation program, while
analytical solutions require sophisticated mathematical techniques.

The reader is invited to write a simple molecular dynamics program that uses the
following routine mdstep to perform one MD step with the velocity- Verlet algorithm
(see 77), define a function force that provides an array of forces F, given the
coordinates 7, both for the harmonic and the Morse potential, and try out a few
initial conditions and time steps. As a rule of thumb: start with a time step such
that the fastest oscillation period contains 50 steps. You may generate curves like
those in fig. 1.2. See what happens if you give the molecule a rotational velocity!
Keep to 'molecular units’: mass: u, length: nm, time: ps, energy: kJ/mol. Use the
following data for hydrogen fluoride:

mass H my 1.0079 u

mass F mg 18.9984 u

dissoc. const. D 569.87 kJ/mol

equil. bond length b 0.09169 nm

force constant k 5.82 x 10° kJmol ! nm—?2

The following function performs one velocity-Verlet time step of MD on a 3-
dimensional molecule. Given masses m (as list), initial positions r, velocities v
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and forces F (as n*3 arrays), it returns r, v and F one timestep later. A function
force(r) must be provided that returns F, given r. A workspace Ftemp (n*3) must
be globally defined. The function will modify r,v,F in place.

def mdstep(m,r,v,F,force,timestep):
n=len(m)
for i in range(n): update r
temp=0.5*timestep/m[i]
for j in range(3):
Fij=F[i] [j]
r[il [j1=r[i]1 [j1+(v[i] [j]+temp*Fij)*timestep

Ftemp[i] [j1=Fij store old force
F=force(r) compute force at new r
for i in range(n): update v

temp=0.5*timestep/m[i]
for j in range(3):
v[i] [j1=v[i] [j]+temp*(F[i] [j1+F1[i]l[j])

return r,v,F

1.2 A modelling hierarchy

The behaviour of a system of particles is in principle described by the rules of
relativistic quantum mechanics. This is — within the limitation of our system
choices — the highest level of description. We shall call this level 1. All other
levels of description, such as considering atoms and molecules in stead of
nuclei and electrons, classical dynamics in stead of quantum dynamics, or
continuous media in stead of systems of particles, represent approximations
to level 1. These approximations can be ordered in a hierarchical sense from
fine atomic detail to course macroscopic behaviour. Every lower level looses
detail and looses applicability or accuracy for a certain class of systems and
questions, but gains applicability or efficiency for another class of systems
and questions. The following scheme lists several levels in this hierarchy.
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LEVEL 1 RELATIVISTIC QUANTUM DYNAMICS

System Rules
Atomic nuclei (mass, charge, spin), Relativistic time-dependent quan-
electrons (mass, charge, spin), pho- tum mechanics; Dirac’s equation;
tons (frequency) (quantum) electrodynamics
A imati
pproximation No Go

particle  velocities small

lect 1 to h
compared to velocity of gleetrons Cose 1o Heavy

nuclei; hot plasma’s

light
LEVEL 2 QUANTUM DYNAMICS
System Rules
Atomic nuclei, electrons, photons Non-relativistic  time-dependent
Schrodinger eqn (TDSE); time-
independent  Schrodinger eqn;
Maxwell eqns
No Go
Approximation electron dynamics (e.g. in
Born-Oppenheimer approx.: semiconductors); fast elec-
electrons much faster than tron transfer processes; dy-
nuclei namic behaviour of excited
states
LEVEL 3 ATOMIC QUANTUM DYNAMICS
System Rules
atoms, ions, molecules, (photons) atoms move in effective potential
due to electrons; atoms may be-
have according to TDSE
No Go
- - proton transfer; hydrogen
Approximation

and helium at low temper-

atomic motion is classical

atures; fast reactions and

high-frequency motions
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LEVEL 4 MOLECULAR DYNAMICS

System
condensed matter: (macro)molec-
ules, fluids, solutions, liquid crys-
tals, fast reactions

Rules
Classical mechanics (Newton’s
eqns); statistical mechanics;
MOLECULAR DYNAMICS

Approximation
reduce nr of degrees of free-

dom

No Go
details of fast dynamics,
transport properties

LEVEL 5 GENERALISED LANGEVIN DYNAMICS ON REDUCED SYSTEM

System
condensed matter: large molecu-
lar aggregates, polymers, defects in
solids, slow reactions

Rules
superatoms, reaction coordinates;
averaging over local equilibrium,
constraint dynamics, free energies
and potentials of mean force; pro-
jection operator formalism.

Approximation
neglect
and/or spatial correlation
in fluctuations

time correlation

No Go
correlations in motion,

short-time accuracy

LEVEL 6 SIMPLE LANGEVIN DYNAMICS

System
‘slow” dynamic (non-equilibrium)
processes and reactions

Rules
accelerations given by systematic
force, friction, and noise; FOKKER-
PLANCK equations

Approximation

neglect  inertial  terms:

course-graining in time

No Go
dynamic details
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LEVEL 7 BROWNIAN DYNAMICS

System Rules
coarse-grained non-equilibrium  velocities given by force and fric-
processes; colloidal  systems; tion, plus noise; Brownian (diffu-
polymer systems sive) dynamics; Onsager flux/force

relations
Approximation
reduce description to contin- No Go
uous densities of constituent details of particles
species
LEVEL 8 MESOSCOPIC DYNAMICS

System Rules
as for level 7; self-organizing sys-  density description: mass conser-
tems; reactive nonequilibrium sys-  vation plus dynamic flux equation,
tems with noise.

Approximation Ne E2

spontaneous structure for-
mation driven by fluctua-
tions

average over ‘infinite’ num-

ber of particles

LEVEL 9 REACTIVE FLUID DYNAMICS

System Rules
non-equilibrium macroscopic mix- energy, momentum and mass con-
ture of different species (as the at-  servation; reactive fluxes
mosphere for weather forecasting

Approximation No Go
reduce to one species with reactive processes; non-
Newtonian viscosity Newtonian behaviour
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LEVEL 10 FLUID DYNAMICS

System Rules
non-equilibrium macroscopic flu- energy, momentum and mass con-
ids: gases and liquids servation; NAVIER-STOKES equa-

tions
Approximation
No Go

low fluid velocities (low

Reynolds number) turbulence

LEVEL 11 STEADY-FLOW FLUID DYNAMICS
System Rules
non-equilibrium fluids with lami-  simplified Navier-Stokes equation

nar flow

From level 5 onward, not all atomic details are included in the system
description: one speaks of coarse-graining in space. From level 6 onward
dynamic details on a short time scale are disregarded by coarse-graining in
time.

In the last stages of this hierarchy (levels 8 to 11), the systems are not
modelled by a set of particles, but rather by properties of a continuum.
Equations describe the time evolution of the continuum properties. Usually
such equations are solved on a spatial grid using finite difference or finite
elements methods for discretizing the continuum equations. A different ap-
proach is the use of particles to represent the continuum equations, called
dissipative particle dynamics (DPD). The particles are given the proper
interactions representing the correct physical properties that figure as pa-
rameters in the continuum equations.

Note that we have considered dynamical properties at all levels. Not all
questions we endeavor to answer involve dynamic aspects, such as the pre-
diction of static equilibrium properties (e.g. the binding constant of a ligand
to a macromolecule or a solid surface). For such static questions the answers
may be found by sampling methods, such as Monte Carlo simulations, that
generate a representative statistical ensemble of system configurations rather
than a trajectory in time.
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1.3 Trajectories and distributions

Dynamic simulations of many-particle systems contain fluctuations or stoch-
astic elements, either due to the irrelevant particular choice of initial condi-
tions (as the exact initial positions and velocities of particles in a classical
simulation or the specification of the initial wave function in a quantum-
dynamical simulation), or due to the ‘noise’ added in the method of solution
(as in Langevin dynamics where a stochastic force is added to replace forces
due to degrees of freedom that are not explicitly represented). Fluctuations
are implicit in the dynamic models up to and including LEVEL 8.

The precise details of a particular trajectory of the particles have no rele-
vance for the problem we wish to solve. What we need is always an average
over many trajectories, or at least an average property, such as the average
or the variance of a single observable or a correlation function, over one long
trajectory. In fact, an individual trajectory may even have chaotic proper-
ties: two trajectories with slightly different initial conditions may deviate
drastically after a sufficiently long time. However, the average behaviour is
deterministic for most physical systems of interest.

In stead of generating distribution functions and correlation functions
from trajectories, we can also try to define equations, such as the Fokker-
Planck equation, for the distribution functions (probability densities) or
correlation functions themselves. Often the latter is very much more difficult
than generating the distribution functions from particular trajectories. An
exception is the generation of equilibrium distributions, for which Monte
Carlo methods are available that circumvent the necessity to solve specific
equations for the distribution functions. Thus the simulation of trajectories
is often the most efficient — if not the only possible — way to generate the
desired average properties.

While the notion of a trajectory as the time evolution of positions and
velocities of all particles in the system, is quite valid and clear in classical
mechanics, there is no such notion in quantum mechanics. The description
of a system in terms of a wave function W is by itself a description in terms of
a probability density: V*WU(ry,...,ry,t) is the probability density that the
particles 1, ..., n are at positions r1, ..., r, at time t. Even if the initial state
is precisely defined by a sharp wave function, the wave function evolves under
the quantum-dynamical equations to yield a probability distribution rather
than a precise trajectory. From the wave function evolution expectation
values (i.e., average properties over a probability distribution) of physical
observables can be obtained by the laws of quantum mechanics, but the
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wave function cannot be interpreted as the (unmeasurable) property of a
single particle.

Such a description fits in well with equations for the evolution of prob-
ability distributions in classical systems, but it is not compatible with de-
scriptions in terms of classical trajectories. This fundamental difference in
interpretation lies at the basis of the difficulties we encounter if we attempt to
use a hybrid quantum/classical description of a complex system. If we insist
on a trajectory description, the quantum-dynamical description should be
reformulated by some kind of contraction and sampling to yield trajectories
that have the same statistical properties as prescribed by the quantum evo-
lution. It is for the same reason of incompatibility of quantum descriptions
and trajectories that quantum corrections to classical trajectories cannot be
unequivocally defined, while quantum corrections to equilibrium probability
distributions can be systematically derived.

1.4 Books along the way

1 S. Gasiorowicz, Quantum Physics (1974) is a readable text book on
quantum physics with a discussion of the limits of classical physics.

2 L.I. Schiff, Quantum Mechanics (1968), a compact classic text book,
slightly above the level of Gasiorowicz.

3 E. Merzbacher, Quantum Mechanics (1970) is another classic text
book with a complete coverage of the main topics.

4 L.D. Landau ands E.M. Lifshitz, Quantum Mechanics (Non-relativistic
Theory) (1987): This is one volume in the excellent series “Course of
Theoretical Physics”. Its level is advanced and sophisticated.

5 P.A.M. Dirac, The Principles of Quantum Mechanics (1958) by one
of the founders of quantum mechanics: advisable reading only for the
dedicated student.

6 F.S. Levin, An Introduction to Quantum Theory (2002) introduces
principles and methods of basic quantum physics at great length. It
has a part on ’complex systems’ that does not go far beyond two-
electron atoms.

7 A. Szabo and N.S. Ostlund, Modern Quantum Chemistry (1982) is
a rather complete and reasonably modern text book on quantum
chemistry, entirely devoted to the solution of the time-independent
Schrodinger equation for molecules.

8 R. McWeeny, Methods of Molecular Quantum Mechanics (1992) is
the classical text on quantum chemistry.
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R.G. Parr and W. Yang Density Functional Theory (1989). An early,
and one of the few books on the still-developing DFT.

F. Jensen, Introduction to Computational Chemistry (1999). A mod-
ern comprehensive survey of methods in computational chemistry
including a range of ab initio and semi-empirical quantum chemistry
methods, but also molecular mechanics and dynamics.

H. Goldstein, Classical Mechanics (1980) is the classical text and
reference book on mechanics. The revised third edition (Goldstein
et al., 2002) has an additional chapter on chaos, as well as other
extensions, at the expense of details that were present in the first
two editions.

L.D. Landau and E.M. Lifshitz, Mechanics (1976). Not as complete
as Goldstein, but superb in its development of the theory.

L.D. Landau and E.M. Lifshitz, Statistical Physics (1976). Basic text
for statistical mechanics.

K. Huang, Statistical Mechanics (1963). Statistical mechanics text
book from a physical point of view, written before the age of computer
simulation.

T.L. Hill, Statistical Mechanics (1956): A classic and complete, but
now somewhat outdated, statistical mechanics text book with due at-
tention to chemical applications. Written before the age of computer
simulation.

D.A. McQuarrie, Statistical Mechanics (1973) is a high quality text
book, covering both physical and chemical applications.

M. Toda, R. Kubo and N. Saito, Statistical Physics. 1. Equilibrium
statistical mechanics (1983) and R. Kubo, M. Toda and N. Hashit-
sume Statistical Physics. II. Nonequilibrium statistical mechanics
(19835) emphasize physical principles and applications. These texts
were originally published in Japanese in 1978. Especially vol. II is a
good reference for linear response theory, both quantum-mechanical
and classical, to which Kubo has contributed significantly. Not rec-
ommended for chemists.

D. Chandler, Introduction to Modern Statistical Mechanics (1987):
A basic statistical mechanics text book emphasizing fluids, phase
transitions and reactions, written in the age of computer simulations.
B. Widom, Statistical Mechanics, A concise introduction for chemists
(2002) is what it says: an introduction for chemists. It is well-written,
but does not reach the level to treat the wonderful inventions in
computer simulations, such as particle insertion methods, for which
the author is famous.
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M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (1987).
A practical guide to molecular dynamics simulations with emphasis
on the methods of solution rather than the basic underlying theory.
D. Frenkel and B. Smit, Understanding Molecular Simulation (1996).
A modern, instructive, and readable book on the principles and prac-
tise of Monte Carlo and Molecular Dynamics simulations. The scope
is somewhat limited because the authors insist on precision.

A.R. Leach, Molecular Modelling, Principles and Applications (1996)
aims at the simulation of molecular systems leading up to drug dis-
covery. Starting with quantum chemistry, the book decribes energy
minimization, molecular dynamics and Monte Carlo methods in de-
tail.

N.G. van Kampen Stochastic Processes in Physics and Chemistry
(1981) gives a very precise and critical account of the use of stochastic
and Fokker-Planck type equations in (mostly) physics and (a bit)
chemistry.

R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II: Nonequi-
librium Statistical Mechanics (1985) by one of the pioneers (Kubo) of
the statistical-mechanical linear response theory. Describes the con-
nection between correlation functions and macroscopic relaxation.
H. Risken The Fokker-Planck equation (1989) treats the evolution of
probability densities.

C.W. Gardiner Handbook of Stochastic Methods for Physics, Chem-
istry and the Natural Sciences (1985) is a reference book for modern
developments in stochastic dynamics. It treats the relations between
stochastic equations and Fokker-Planck equations.

M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (1986) is
the already classic introduction to mesoscopic treatment of polymers.
L.D. Landau and E.M. Lifshitz, Fluid Mechanics (1987) is an excel-
lent account of the physics behind the equations of fluid dynamics.
T. Pang Computational Physics (1997). A modern and versatile trea-
tise on methods in computational physics, covering a wide range of
applications. The emphasis is on the computational aspects of the
methods of solution, not on the physics behind the models.

F.J. Vesely, Computational Physics, An Introduction (2nd ed., 2001)
is an easily digestable treatment of computational problems in phys-
ics, with emphasis on mathematical and computational methods rather
than on the physics behind the equations.

M. Griebel, S. Knapek, G. Zumbusch and A. Caglar, Numerische
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Simulation in der Molekildynamik (2003) gives many advanced de-
tails on methods and algorithms for dynamic simulation with par-
ticles. The emphasis is on computational methods including paral-
lelization techniques; programs in C are included. Sorry for some
readers: the text is in German.



