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Simulations yield mechanical observables: quantities that are immediately mea-
surable in each configuration, like atomic distances, energies, velocities, pressure,
dipoles, etc. By averaging over a representative ensemble of configurations, certain
thermodynamic properties are obtained, like radial distribution functions, energies,
temperature, pressure, dielectric constant, are found. Observing the time depen-
dence of equilibrium fluctuations or the response to external disturbances, also
transport properties as diffusion constant, viscosity, dielectric relaxation, can be
’measured’.

But thermodynamic quantities that involve entropy, as free energies, binding con-
stants, thermodynamic potentials, partition coefficients, solubilities, pK’s, phase
diagrams, etc. cannot be derive from one simulation. How can we determine such
quantities?

Can we distinguish the functionally relevant motions among the messy random
fluctuations in proteins? Do simulations really help to understand and even predict
function?
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FREE ENERGY: BASIC RELATIONS-1

The Helmholtz free energy A is given by

A = −kBT ln Q

where Q is the NVT or canonical partition function:

Q =
1

N !h3N

∫
exp[−βH(p, q)]dp dq

β =
1

kBT
This is an integral over phase space, which cannot be evaluated in sim-

ulations.

The Gibbs free energy G is given by

G = −kBT ln ∆

where ∆ is the NPT partition function:

∆ =
1

N !h3N

∫
dV

∫
dp dq exp[−β{H(p, q) + pV }]

This is also an integral over phase space (and over volume), which cannot

be evaluated in simulations.

Relation between A and G:

G = A + pV

All thermodynamic quantities follow from the T , V , and composition

dependence of A, or from the T , p, and composition dependence of G.
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FREE ENERGY: BASIC RELATIONS-2

entropy S, enthalpy H, and thermodynamic potential µi:

G = H − TS

dG = V dp− S dT +
∑

i
µi dni


∂G

∂p




ni,T

= V


∂G

∂T




ni,p
= −S


∂G

∂ni




nj 6=i,p,T

= µi

Additional relations:


∂G/T

∂1/T




ni,p

= H (Gibbs− Helmholtz)

G =
∑

i
niµ; (dG)p,T =

∑

i
µi dni

∑

i
ni (dµi)p,T = 0 (Gibbs− Duhem)

Similar relations, with internal energy U (H = U + pV ),

for G → A, H → U , p → V , V → −p.
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FREE ENERGIES FROM SIMULATIONS

It is not possible to evaluate integrals over space such as

Q = c
∫

V
exp(−βV )dr

because the full, very multidimensional, space is never sampled.

Free energy perturbation
It is possible to find ratios Q1/Q2 and hence differences in free energy

A1 − A2 for two systems with slightly different potentials V1 and V2:

A1 − A2 = −kBT ln
Q1

Q2
= −kBT ln

∫
exp(−βV1) dr

∫
exp(−βV2) dr

The latter ratio equals the ensemble average of exp[−β(V1 − V2)] over

an equilibrium ensemble generated with potential V2:

A1 − A2 = −kBT ln
∫
exp[−β(V1 − V2)] exp(−βV2) dr

∫
exp(−βV2) dr

=

= −kBT ln〈exp[−β(V1 − V2)]〉V2

One can also take the inverse of the ensemble average of exp[−β(V2 −
V1)] over an equilibrium ensemble generated with potential V1:

A1 − A2 = −kBT ln
∫
exp(−βV1) dr

∫
exp[−β(V2 − V1)] exp(−βV1) dr

=

= +kBT ln〈exp[−β(V2 − V1)]〉V1

This works only if V1 ≈ V2, i.e., if the two ensembles overlap in config-

uration space.
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THERMODYNAMIC INTEGRATION

If the potential is a function of an external parameter V = V (λ), then

the derivative of the free energy with respect to λ can be found:

dA

dλ
= −kBT

Q

dQ

dλ
=

=
∫
(∂V/∂λ) exp(−βV ) dr

∫
exp(−βV ) dr

= 〈∂V

∂λ
〉V

In this way the free energy of a state (potential V1) can be found by

integration from a reference state (potential V0). Choose V (λ) such

that

V (λ = 1) = V1; V (λ = 0) = V0

Then:

A1 = A0 +
∫ 1

0
〈∂V

∂λ
〉λ dλ

This can be done by numerically integrating the derivatives measured

in a number of well-equilibrated intermediate points, or the λ can be

slowly increased in a slow-growth method. Make sure that the growth is

slow enough to proceed through equilibrium states: one check is to grow

backwards from λ = 1 to λ = 0 as well; the two curves G(λ) should be

the same.
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APPLICATIONS

Free energy of liquid
Take ideal gas as a reference state (V0 = 0), for which the free energy

is trivial, and integrate to full potential.

Free energy of solid
Take Einstein solid as a reference state (each atom bound to a lattice

site as a harmonic oscillator), for which the free energy is simple, and

integrate to full potential.

Free energy of binding ligand to macromolecule
’Remove’ ligand from bound site by letting interactions disappear; do

the same for ligand free in solution, and subtract the results (hard to get

good statistics).

Relative binding constants of two ligands to protein
’Mutate’ L1 into L2 while bound to the protein. Do the same for the

ligands free in solution; subtract the results (complete the thermody-

namic cycle). Gives differences in free energy of binding, and thus ratio

of binding constants.

Relative binding constants of a ligand to two protein mutants
’Mutate’ protein both in the presence and absence of the ligand. Sub-

tract the results.



'

&

$

%

Espoo Feb 2004

7

THERMODYNAMIC CYCLE

Example of a thermodynamic cycle:
Relative binding strength of two ligands L1 and L2 to a protein
P

P + L1 ↔ PL1 ∆G0
1 = −RT ln K1

∆GL ↓ ↓ ∆GPL

P + L2 ↔ PL2 ∆G0
2 = −RT ln K2

We require

∆G0
1 −∆G0

2 = −RT ln
K1

K2

We compute ∆GL and ∆GPL. Note that both quantities have no mean-

ing in the real world, as they refer to free energy differences between

two different molecules! Also note that the computed quantities are

differences, independent of the concentration used, so they can also be

denoted by ∆G0
L and ∆G0

PL.

The thermodynamic cycle looks like:

+∆G0
1

L1 → PL1

−∆G0
L ↑ ↓ +∆G0

PL

L2 ← PL2

−∆G0
2

∆G0
1+∆G0

PL−∆G0
2−∆G0

L = 0

or

∆G0
1−∆G0

2 = ∆G0
L−∆G0

PL
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PARTICLE INSERTION

The thermodynamic potential of a particle can be determined by the

particle insertion method of Widom (B. Widom, J. Chem. Phys. 39
(1963), 2808–2812). Works only in dilute systems.

µi =


∂A

∂ni




V,T

µi = A(ni+1, nj, V, T )− A(ni, nj, V, T ) = −kBT ln
Q(ni+1)

Q(ni)

= −kBT ln
1

(ni + 1)


2πmkBT

h2




3/2 ∫
e−βV dr1, . . . , rni+1
∫
e−βV dr1, . . . , rni

Now the total potential V can be split up into the interaction Vn between

all particles without particle ni + 1 and the interaction Vint between the

extra (n + 1)-th particle and the rest:

V = Vn + Vint

µi = −kBT ln
V

(ni + 1)


2πmkBT

h2




3/2 ∫ (
1
V

∫
e−βVint drn+1

)
e−βVn dr

∫
e−βVn dr

(dr = dr1, . . . , rn) The first terms are those of a free particle (ideal

gas), and the second is an ensemble average:

µi = µid.gas
i − kBT ln〈e−βVint〉

The ensemble is generated without the extra particle, which is called the

ghost particle, as its presence is not felt by the other particles.


