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MOLECULAR DYNAMICS SIMULATIONS
METHODS AND APPLICATIONS

Herman J.C. Berendsen

Biophysical Chemistry, University of Groningen, the Netherlands

Groningen Institute for Biosciences and Biotechnology (GBB)

CSC, Espoo

Lecture 2, Tuesday 3 Feb, 2004

Classical dynamics allows the study of systems of 100,000 particles over time spans
in the 100 ns range. This includes much (but not all) of the biologically relevant
motion of proteins and of lipids in membranes, even including spontaneous aggre-
gation. But can we distinguish the functionally relevant motions among the messy
random fluctuations? Do simulations really help to understand and even predict
function?

In this lecture we first look at the basic equations and algorithms to solve the motion
of large molecules with atomic detail.
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CLASSICAL MECHANICS

Classical mechanics is based on Hamilton’s principle of least action:

Define generalized coordinates q1, . . . , qn. Let us have a function L(q, q̇, t)

(the Lagrangian) and define the action S as

S =
∫ t2

t1
L(q, q̇, t) dt

This is a path integral ; the outcome depends on the path between q1

and q2.

The principle of least action says that a mechanical system
follows the path of least action, given the initial and final
points.

In quantum mechanics Feynman has formulated a path integral formal-

ism that is equivalent to Schrödinger’s equation:

Ψ(q2, t2) =
∫

G(q2, t2; q1, t1) Ψ(q1, t1) dq1

with

G(q2, t2; q1, t1) =
∑

all possible paths
exp(iS/h̄)

If S/h̄ is large, the phases of different paths cancel, unless for paths close

to the path with minimum S. Classically, only the path with minimum

S survives.
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LAGRANGIAN MECHANICS

From the principle of least action follows that

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

Define the generalized momentum pi, conjugate to qi:

pi =
∂L(q, q̇)

∂q̇i

The Lagrange equation of motion follows:

ṗi =
∂L

∂qi

For conservative force fields the Lagrangian is

L = K(q, q̇)− V (q)

Equations of motion for cartesian coordinates:

qi = xi; q̇i = vi; K =
3N∑

i=1

1

2
miv

2
i

Momentum:

pi =
∂L

∂vi
= mivi

and
dpi

dt
+

∂V

∂qi
= 0
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HAMILTON FORMALISM

Define Hamiltonian

H =
∑

i
piq̇i − L(q, q̇)

dH turns out to be a total differential in dp and dq:

dH =
∑

i
pi dq̇i +

∑

i
q̇i dpi −∑

i

∂L

∂qi
dqi −∑

i

∂L

∂q̇i
dq̇i

dH =
∑

i
q̇i dpi −∑

i
ṗi dqi

Hence H is a function of p and q, and

∂H(p, q)

∂pi
= q̇i

∂H(p, q)

∂qi
= −ṗi

These are Hamilton’s equation of motion. They use the generalized

momentum, defined by the Lagrangian.

In cartesian coordinates

H = K + V =
∑

i
p2

i/2mi + V (x)

dxi

dt
=

∂H

∂pi
= pi/mi = vi

dpi

dt
= −∂V

∂xi
= force on i− th particle
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ALGORITHMS

The simplest algorithm for solving the equations of motion is the Euler

solution (Taylor series)

xn+1 = xn + vn∆t +
1

2
(Fn/m)(∆t)2

vn+1 = vn + (Fn/m)∆t

This does not work! It is unstable and inaccurate.

There are many sophisticated predictor-corrector algorithms with high

order Taylor prediction and optimal correction of derivatives, but they

are not better than the simple Verlet or leap-frog algorithm.

Leap Frog algorithm:

vn+1
2

= vn−1
2

+ (Fn/m)∆t

xn+1 = xn + vn+1
2
∆t

This algorithm is

• time-reversible

• stable

• simplectic (conserves volume in (p, q) space)

• simple
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PROPAGATOR TO DERIVE REVERSIBLE
ALGORITHMS

[Martyna, Berne, Tuckerman]

[Review: Tuckerman and Martyna, J. Phys. Chem. B 104 (2000) 159]

Use propagator in phase space to derive reversible algorithms for solving

equations of motion.

Phase point (q, p) = (q1, . . . , p3N) propagates as follows:

d

dt




q

p


 =




∂H/∂p

−∂H/∂q


 = iL




q

p







q

p


 (t) = exp(iLt)




q

p


 (0)

(L is the Liouville operator, the time propagator in phase space)

For cartesian coordinates q = x, p = v:

iL



x

v


 =




v

F (x)/m


 =




v

o


 +




o

F/m


 = iLv + iLF

Lv and LF do not commute

Use Trotter split-operator technique:

exp(iL∆t) = exp(
1

2
iLF∆t) exp(iLv∆t) exp(

1

2
iLF∆t)

= UF (
1

2
∆t)Uv(∆t)UF (

1

2
∆t)
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PROPAGATOR TO DERIVE REVERSIBLE
ALGORITHMS

Time-step propagator

UF (∆t)




x

v


 =




x

v + (F (x)/m)∆t




Uv(∆t)




x

v


 =




x + v∆t

v




Apply UF (1
2 ∆t) Uv(∆t) UF (1

2 ∆t) to x(tn), v(tn). This yields

vn+1 = vn +
1

2m
Fn∆t +

1

2m
Fn+1∆t

xn+1 = xn + (vn +
1

2m
Fn∆t)∆t

= Velocity Verlet algorithm (≡ Verlet ≡ Leap Frog algorithms)

Verlet algorithm:

xn+1 = 2xn − xn−1 + (F (xn)/m)(∆t)2

Leap Frog algorithm:

vn+1
2

= vn−1
2

+ (Fn/m)∆t

xn+1 = xn + vn+1
2
∆t
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REVERSIBLE MULTI-TIMESTEP
ALGORITHMS

’RESPA’: Tuckerman et al., J. Chem. Phys. 93 (1990) 1287;
ibid 94 (1990) 1465; 94(1991) 6811

Assume we can split force in contribution Fs good for short time step δt

and contribution Fl good for longer time step ∆t = kδt, then algorithm

can be derived from

UFl
(
1

2
∆t) UFs(

1

2
δt) Uv(δt) . . . UFs(δt) Uv(δt) UFs(

1

2
δt) UFl

(
1

2
∆t)

HOME WORK

1. Derive Velocity-Verlet algorithm from propagator

2. Prove that Verlet, Leap-Frog, and Velocity-Verlet are equivalent

3. Derive algorithm based on propagator

Uv(
1

2
∆t) UF (∆t) Uv(

1

2
∆t)
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GENERALIZED COORDINATES

Mass-metric tensor M

Write ri as function of internal coordinates q1, . . . qn.

Then kinetic energy is

K =
1

2

∑

i
mi(ṙi)

2 =
1

2

∑

kl

∑

i
mi

∂ri

∂qk
· ∂ri

∂ql
q̇kq̇l

in matrix notation:

K =
1

2
q̇TMq̇

M= symmetric mass tensor or mass-metric tensor :

Mkl =
∑

i
mi

∂ri

∂qk
· ∂ri

∂ql

Compare metric tensor g defined by length of displacement

(ds)2 =
∑

i
(dri)

2 =
∑

kl
gkl dqk dql

gkl =
∑

i

∂ri

∂qk
· ∂ri

∂ql
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GENERALIZED COORDINATES

Consider a conservative system

L(q, q̇) = K(q, q̇)− V (q).

The conjugate momenta are defined by

pk =
∂K(q, q̇)

∂qk
=

∑

l
Mklq̇l

or

p = Mq̇

and the Lagrangian equations of motion are

ṗk =
∂L
∂qk

=
1

2
q̇T∂M

∂qk
q̇− ∂V

∂qk
.

This yields a matrix equation for q̈:

∑

l
Mklq̈l = −∂V

∂qk
+

∑

α,β



1

2

∂Mαβ

∂qk
− ∂Mkα

∂qβ


 q̇αq̇β,

which has the general form

Mq̈ = T(q) + C(q, q̇),

where T is a generalized force or torque, and C is a velocity-dependent

force that comprises the Coriolis and centrifugal forces. Apart from the

fact that these forces are hard to evaluate, we are confronted with a set of

equations that require a complexity of order n3 to solve. Recently more

efficient order-n algorithms have been devised as a result of developments

in robotics.
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ALTERNATIVE: CONSTRAINTS

Holonomic constraints depend only on coordinates and can be described

by a constraint equation σ(r) = 0 that should be satisfied at all times.

For every constraint there is such an equation. Examples are (we use

the notation rij = ri − rj)

• distance constraint between two particles: |r12| − d12 = 0, or,

alternatively, (r12)
2 − d2

12 = 0.

• angle 1-2-3 constraint between two constrained bonds: r12·r32−c =

0, where c = d12d32 cos φ, or, alternatively, r2
13 − d2

13 = 0.

Holonomic constraints are introduced into the equations of motion by

minimizing the action while preserving the constraints, using Lagrange

multipliers.

d

dt



∂L′
∂q̇k


− ∂L′

∂qk
= 0 (i = 1, · · · , n),

where

L′ = L +
m∑

s=1
λsσs(q),

while for all q along the path

σs(q) = 0, s = 1, . . . , m

These equations fully determine the path, i.e. both q(t) and λ(t), on a

hypersurface determined by the constraint equations.



'

&

$

%

Espoo Feb 2004

12

CONSTRAINTS-1

Practical method: SHAKE: Ryckaert, Berendsen, Ciccotti, J. Comput.

Phys. 23 (1977) 327.

Shake is a program that resets coordinates according to the prescribed

constraints.

In Verlet algorithm:

ri(t + ∆t) = 2ri(t)− ri(t−∆t) +
(∆t)2

mi
[F u

i (t) + F c
i(t)],

where F u are the forces disregarding the constraints, and

F c
i(t) =

∑

s
λs(t)

∂σs

∂ri

is the constraint force on particle i at time t. The effect of the constraint

force is to add a second contribution to the displacement of the particles.

The algorithm first computes the new positions r′i disregarding the con-

straints:

r′i = 2ri(t)− ri(t−∆t) +
(∆t)2

mi
F u

i (t)

and then corrects the positions with ∆ri such that

σs(r
′ + ∆r) = 0, s = 1, . . . , m,

where

∆ri =
(∆t)2

mi

∑

s
λs(t)

∂σs(r(t))

∂ri
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CONSTRAINTS-2

r r

r’
r’i

j

∆
r

ri

∆

r
r

i (t + ∆ t )
j(t + ∆t)

j (i ( t ) t )

j

d

d

The set of m (generally nonlinear) coupled equations for the m λ’s

can be solved in several ways, always requiring iteration. They can be

either linearized and then solved as a set of linear equations, or the

constraints can be solved sequentially and the whole procedure iterated

to convergence (= SHAKE).

A more robust and faster method LINCS (LINear Constraint Solver)

solves a linearized matrix equation in stead

Hess, Bekker, Berendsen, Fraaije, J. Comput. Chem. 18 (1997) 1463
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CONSTRAINTS: METRIC EFFECTS-1

Question: does constraint dynamics produce correct equilib-
rium averages?

Thermodynamics derived from partition function Q:

Q ∝
∫

dp
∫

dq exp[−βH(p, q)]

H(p, q) =
1

2
q̇TMq̇ + V (q) =

1

2
pTM−1p + V (q)

Integration over p can be carried out:

∫
dp exp(−β

2
pTM−1p) = (2πkBT )3N/2

(
detM−1

)−1
2

gives

Q ∝
∫

dq (detM)
1
2 exp[−βV (q)]

(for cartesian coordinates detM is a constant:

(detM)
1
2 = ΠN

i=1m
3/2
i )



'

&

$

%

Espoo Feb 2004

15

CONSTRAINTS: METRIC EFFECTS-2

Constraint dynamics in phase space (p′, q′), with q′′ constrained:

Q ∝
∫

dp′
∫

dq′ exp[−βH(p′, q′)]

K = 1
2 q̇TMq̇ splits into 4 terms:

K =
1

2

(
q̇′ q̇′′

)



F D

DT C







q̇′

q̇′′




Fkl =
∑

i
mi

∂ri

∂q′k
· ∂ri

∂q′l

Constraint dynamics means

H =
1

2
ṗ′TF−1ṗ′ + V (q)

and hence

Q ∝
∫

dq′ (det F )1/2 exp[−βV (q′)]

in stead of ∫
dq (det M)1/2 exp[−βV (q)]
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CONSTRAINTS: METRIC EFFECTS-3

In averaging over constrained simulation extra weight factor w(q′) is

required:

w(q′) =
∫
(detM)1/2dq′′

(detF)1/2
=

(detM(q′, c))1/2

(detF(q′))1/2

which can be expressed as an extra potential

Vc(q
′) = −kBT ln w(q′)

This is the famous, generally neglected, often negligible, metric tensor

correction

Fixman’s theorem made computation possible

[M. Fixman, Proc. Natl Acad. Sci. 71 (1974) 3050]

(detM)(detZ) = detF

with

Zkl =
∑

i

1

mi

∂q′′k
∂ri

· ∂q′′l
∂ri

Hence w(q′) = (detZ)−1/2
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CONSTRAINTS: METRIC EFFECTS-4

Effect of metric tensor is often negligible

Example 1. One distance constraint:

q′′ = r12 = |r12|

detZ = Z11 =
1

m1

∂r12

∂r1
· ∂r12

∂r2
=

1

m1
+

1

m2

detZ = constant (no effect)

Example 2. One generalised distance constraint:

q′′ = R = |∑

i
αiri| (αi constant)

detZ = constant (no effect)

Example 3. Two distance constraints:

q′′1 = r12; q′′2 = r23, φ = 1− 2− 3 angle

Z =




1
m1

+ 1
m2

− 1
m2

cos φ

− 1
m2

cos φ 1
m2

+ 1
m3




detZ =


 1

m1
+

1

m2





 1

m2
+

1

m3


− 1

m2
2

cos2 φ

detZ depends on φ. Constant if φ is constant.
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FORCE FIELDS

The potential energy description V (r1, . . . , rN) contains

• bonded interactions (fixed list), as

– bond lengths (e.g. harmonic, or constraint)

– bond angles (harmonic)

– dihedral angles (periodic)

– improper dihedrals (keeping groups flat or preventing mirror im-

age)

• non-bonded interactions (dynamics list), as

– Coulomb interactions (full or partial charges, dipoles, multipoles)

– dispersion interactions (attractive, ∝ r−6)

– repulsive interactions (short-range, ∝ r−12)

With periodic boundary conditions Coulomb interaction should be com-

puted with lattice sums (Ewald, 1921). Best method is Particle mesh

Ewald by Darden, York and Pederson, J. Chem. Phys. 98 (1993) 10089.

Use of cut-off radius introduces errors and noise. Acceptable is use of

cut-off for neutral charge groups, enhanced with reaction field to account

for dielectric environment.
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POLARIZABILITY

Present-day force fields still lack polarizability : dipoles induced by elec-

tric field. This is a non-pairadditive interaction. Effects are

• no electrostatic shielding due to high-frequency dielectric constant

• small molecule models (water) have enhanced dipoles (representing

average polarization in the liquid)

• models use effective pair potentials, good for one environment only

• second virial coefficient of the gas phase is twice the experimental

value (water)

• solvation energy of ions in nonpolar environment is neglected (e.g.

Cl− in a protein)

• ligand binding energy of divalent ions is underestimated (e.g. Ca2+

in protein liganded with water or carbonyl oxygen)

• polar/nonpolar partition likely to be wrong.
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SIMULATION BOX

• Isolated cluster
advantages: simple; solvent can be limited to shell or omitted and

replaced by effective boundary potential,

disadvantages: strong boundary effects (outer layer must be dis-

carded); very wrong electrostatic interactions unless reaction field

is imposed.

• Periodic box
advantages: avoids boundary effects; mimics infinite environment;

consistent treatment of long-range interactions possible,

disadvantages: periodicity is artefact, effect must be evaluated (es-

pecially Coulombic artefacts).

Triclinic box (unit cell: (a, b, c)) is universal and can hold all shapes,

e.g. near-spherical truncated octahedron. Box shape and size can be

optimized to minimize number of solvent molecules for any macro-

molecular shape.
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TEMPERATURE AND PRESSURE CONTROL-1

• No controls
Without controls, MD should generate a microcanonical ensemble

(N, V,E constant). However, integration errors, force fluctuations,

and inconsistencies in the forces (e.g. by using a cut-off radius)

cause fluctuations and slow drifts in total energy.

Systems that are not in equilibrium will go to equilibrium while the

temperature changes. We often prefer a N, V, T , or N, p, T ensem-

ble or wish to control temperature in a prescribed, time-dependent

scheme.

• Extended system control
Extend system with extra degree(s) of freedom that allow to keep

temperature and/or pressure near a prescribed value (Nosé-Hoover

thermostat).

Advantage: the system retains a Boltzmann equilibrium distribution,

Disadvantage: the extra degrees of freedom have an artificial ’mass’;

the response of the system to temperature or pressure changes is

oscillatory; the ergodicity has been questioned.
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TEMPERATURE AND PRESSURE CONTROL-2

• Weak coupling to a bath
Modify equations of motion such that system temperature or pres-

sure approaches the required (’bath’) temperature or pressure with

a given time constant.

Advantages: the response of the system is first-order exponential;

coupling is flexible, from strong (fast response) to weak (negligible

influence on system behaviour),

Disadvantages: no known ensemble is generated with intermediate

coupling constants; overall fluctuations cannot be used.

• Constraining to specified T and p
Change velocities and volume at each step to set temperature and

pressure exactly at prescribed values.

Advantages: immediate response; known ensemble,

Disadvantages: dynamics influenced in unknown manner.
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