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The real world consists of nuclei, electrons and photons, interacting through electro-
magnetic and sometimes gravitational forces. They obey Diracs and Schrödingerss
equations. At this level our knowledge is complete, but useless if we wish to study
the folding of a protein or the binding of a ligand to a protein. The basic approx-
imation that allows the study of realistic many-particle systems is the assumption
that nuclei behave classically. How valid is this approximation?

But even when classical mechanics is correct, we need to make simplifications in
order to treat large systems and long time scales. This is done by averaging over
less important degrees of freedom, resulting in stochastic dynamics.

A survey of the whole hierarchy of simulation methods from quantum mechanics
to macroscopic dynamics will be given first, Next we shall consider the classical
approximation. Where does it go wrong? A fundamental discrepancy between
quantum mechanics and classical mechanics that poses still unsolved problems is
that the classical notion of a trajectory of particle positions evolving in time, does
not exist in quantum mechanics.
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WHY QUANTUM MECHANICS?-1

Particles are described by a complex wave function Ψ(r, t) that obeys

the Schrödinger equation:

ih̄
∂Ψ

∂t
= ĤΨ = − h̄2

2m
∇2Ψ + V (r, t)Ψ

The value of Ψ∗ (r, t)Ψ(r, t) gives the probability of finding the particle

at position r at time t.

For every observable A an operator Â exists. Operators are formed by

replacing the momentum p = mv by −ih̄∇. The expectation value of

an observable A is

〈A〉 =
∫

Ψ ∗ ÂΨ dr

A free particle that starts out at t = 0 with a Gaussian distribution with

standard deviation σ0, broadens in time with increasing width

σ(t) = σ0

√√√√√√1 +
h̄2t2

4m2σ4
0

The narrower it starts, the faster it spreads. A particle does not remain

localized, unless it is subjected to a restraining potential, in which case

it will evolve into a stationary bound state.
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WHY QUANTUM MECHANICS?-2

How broad are particles, compared to the distance to neighboring parti-

cles?

Consider a (nearly) classical particle with mass m in an equilibrium sys-

tem at temperature T , where it will have a Maxwellian velocity dis-

tribution (in each direction) with 〈p2〉 = mkBT . This uncertainty in

momentum implies that the particle’s width σx, i.e., the standard devi-

ation of its wave function distribution, will exceed the value prescribed

by Heisenberg’s uncertainty principle ∆x∆p > h̄/2:

σx ≥ h̄

2
√

mkBT
.

There will be quantum effects if the forces acting on the particle vary

appreciably over the width of the particle. A critical quantum width

would be 0.1 Å.

m(u) 10 K 30 K 100 K 300 K 1000 K

e 0.000545 47 27 15 8.6 4.7
H 1 1.1 0.64 0.35 0.20 0.11
D 2 0.78 0.45 0.25 0.14 0.078

C 12 0.32 0.18 0.10 0.058 0.032

O 16 0.28 0.16 0.087 0.050 0.028

I 127 0.098 0.056 0.031 0.018 0.010
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WHY QUANTUM MECHANICS?-3

Conclusions

Electrons are fully quantum-mechanical in all cases.

Hydrogen and deuterium atoms are suspect at 300 K. Hydrogen

transfer (e.g. over hydrogen bond) may well be determined by quan-

tum effects (tunneling).

Heavier atoms will be largely classical, at least at normal temperatures.

Their quantum effects can be treated by quantumcorrections.

For steep intermolecular potentials even heavy atoms at room temper-

ature show essential quantum effects: bond vibrations in molecules.

The criterium for classical behaviour is here that vibrational frequen-

cies should not exceed kBT/h, which at T = 300 K amounts to about

6 THz, or a wave number of about 200 cm−1. Quantum corrections are

possible in the harmonic approximation.
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MACROSCOPIC QUANTUM EFFECTS-1

Sure signs of quantum effects: dependence of thermodynamic quantities

on atomic mass:

Critical point characteristics

Tc(K) pc(bar) Vc (cm3 mol−1)
4He 5.20 2.26 57.76
3He 3.34 1.15 72.0

H2 33.18 12.98 66.95

HD 35.9 14.6 62.8

D2 38.3 16.3 60.3

H2O 647.14 220.64 56.03

D2O 643.89 216.71 56.28
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MACROSCOPIC QUANTUM EFFECTS-2

Various properties of normal and heavy water

H2O D2O

melting point (◦C) 0 3.82

boiling point (◦C) 100 101.4

temperature of max. density (◦C) 3.98 11.19

vaporization enthalpy at 3.8 ◦C (kJ/mol) 44.8 46.5

molar volume at 25 ◦C (cm3/mol) 18.07 18.13

molar heat capacity at 25 ◦C (J K−1 mol−1) 74.5 83.7

ionization constant − log[Kw/(mol2 kg−1] at 25◦C 13.995 14.951

Effects are small but not negligible. In simulations force fields are used

that are adjusted to measured properties, and thus include average quan-

tum corrections.
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FROM QUANTUM TO CLASSICAL-1

Can we derive classical equations of motion from the Schrödinger equa-

tion?

Ehrenfest (1927):
Consider one-dimensional case of a particle of mass m with position x

and momentum p = mẍ. The classical equations of Newton are

dx

dt
=

p

m

dp

dt
= −dV (x)

dx
Position and momentum of a quantum particle must be interpreted as

the expectation of x and p. The classical force would then be the value

of the gradient of V taken at the expectation value of x. So we ask

whether
d〈x〉
dt

? =?
〈p〉
m

d〈p〉
dt

? =?−

dV

dx



〈x〉

.

Ehrenfest showed that indeed

d〈x〉
dt

=
〈p〉
m

but that
d〈p〉
dt

= −〈dV

dx
〉.
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FROM QUANTUM TO CLASSICAL-2

The momentum change is the expectation value of the force, not the

force at the expectation value of x! When the force is constant, the

motion of x and p is classical. Expanding the potential in a Taylor series,

we see that the leading correction term on the force is proportional to

the second derivative of the force times the variance of the wave packet:

〈dV

dx
〉 =


dV

dx



〈x〉

+
1

2!



d3V

dx3



〈x〉
〈(x− 〈x〉)2〉 + . . .

The motion is classical if the gradient of the force does not vary much

over the quantum width of the particle. This is true even for electrons

in macroscopic fields, as they occur in accelerators and in dilute or hot

plasmas; this is the reason that hot plasmas can be treated with classical

equations of motion, as long as the electromagnetic interactions are

properly incorporated. For electrons near point charges the force varies

enormously over the quantum width and the classical approximation fails

completely.
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THE BORN-OPPENHEIMER
APPROXIMATION

The Born-Oppenheimer approximation assumes that electrons are in-

finitely fast with respect to the nuclei, so that they immediately follow

the change in nuclear positions. This means that the nuclear coordinates

are parameters in the Schrödinger equation for the electrons:

ih̄
∂Ψ

∂t
= ĤΨ

with

Ψ = Ψ(r, t; R)

and

Ĥ = − h̄2

2m
∇2

rΨ + V (r; R)Ψ

For every configuration of nuclei there are a number of steady-state

solutions for the electronic Schrödinger equation:

Ψn(r, t) = Φn(r) exp(iEn/h̄)

ĤΦn = En(R)Φn

Generally only the ground state with energy E0(R) is of interest.

Quantum chemistry: Solutions by Hartree-Fock methods: molecular

orbitals by linear combination of atomic orbitals, or by Density Functional

Theory (for the ground state only).
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ELECTRONIC MOTION IN THE FIELD OF
MOVING NUCLEI

We wish to consider electrons as quantum particles and nuclei as classical

particles. Is this possible?

Approaches:

1. Separate quantum and classical degrees of freedom,

2. Solve quantum dynamics in time-dependent field - by numerical in-

tegration of wave function on grid - by evolution of wave function,

3. Solve simultaneously classical equations of motion

Major question: What is the back-reaction from quantum system on

classical d.o.f.?

Back-reaction = force due to quantum d.o.f. on classical d.o.f.

This determines the classical dynamics and thus the time-dependence of

the field in which the quantum system evolves.
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BACK REACTION

Cases:

a. B-O approximation is valid. Quantum system is in ground state;

energy gap with excited states is high. System remains in ground

state. Back reaction force is average over ground state.

b. B-O approximation violated. System may bifurcate into differ-

ent quantum branches. Solution requires consideration of quantum

character of nuclear motion. Approximations:

• nuclear motion is considered in quantum approximation (e.g. in

reactive collision theory) [restricted to a few nuclei]

• classical system moves on potential energy surface of average

quantum evolution [sometimes correct]

• classical system chooses stochastically between potential energy

surfaces of different quantum branches (surface hopping) [misses

quantum coherence of different branches]

• multistate evolution: simultaneous evolution of several classical

trajectories [field is in progress]
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MOTION IN NON-STATIONARY FIELDS-1

The time-dependent Schrodinger equation

∂Ψ

∂t
= − i

h̄
ĤΨ = − i

h̄
(K̂ + V̂ )Ψ

can formally be solved as

Ψ(t) = exp


− i

h̄

∫ t

0
[K̂ + V̂ (t′)] dt′


 Ψ(r, 0)

For small time step:

Ψ(t + ∆t) = exp


− i

h̄

∫ t+∆t

t
[K̂ + V̂ (t′)] dt′


 Ψ(r, t)

≈ exp


− i

h̄


K̂ + V̂ (t +

1

2
∆t)


 ∆t


 Ψ(r, t)

≈ exp


−iK̂∆t

2h̄


 exp


−iV̂ (t + 1

2 ∆t)∆t

h̄


 exp


−iK̂∆t

2h̄


 Ψ(r, t)

(Trotter-expansion)

V-part is easy in real space; K-part is easy in reciprocal space. Ap-

plication: (solvated electron) Selloni et al., Phys.Rev.Lett. 59 (1987)

823.
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MOTION IN NON-STATIONARY FIELDS-2

If the nuclei move, the Schrödinger equation gets an extra term:

∂Ψ

∂t
= − i

h̄
ĤΨ +

dR

dt
· ∂Ψ

∂R

The operator ∂/∂R is called the non-adiabatic coupling vector operator.

In the limit dR/dt → 0 the time-independent solution is correct, but

for finite dR/dt excited states, selected by the non-adiabatic coupling

vector operator, will mix in with a rate proportional to dR/dt.

Method to solve the adiabatic ground state by DFT, given positions of

nuclei, on the fly is the ab initio molecular dynamics of Car and Parrinello:

R. Car and M. Parrinello, Phys.Rev.Lett. 55 (1985) 2471.
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MOTION IN NON-STATIONARY FIELDS-3

Methods to include excited states (non-adiabatic dynamics) involve the

mixing-in of other states. When two states cross, or are near to each

other, the system will continue in one of the states. Full solution would

require quantum character of nuclei.

Example: Fate of excited state

Rhodopsin photo-isomerisation

retinal 11-cis → trans conversion via excited state, within 200 fs.

[B. Hahn and G. Stock, J. Phys. Chem. B 104 (2000) 1146-1149]

model: quantum wave packet described on basis set product wave func-

tions of

150 rotor states in dihedral angle φ

× 24 harmonic oscillator states ⊥ φ

× 3 electronic states

fitted to spectroscopic data
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MOTION IN NON-STATIONARY FIELDS-4

Example: Fate of excited state

Photo-active Yellow Protein photo-isomerisation

coumaric acid chromophore trans → cis conversion via excited state,

within 250 fs.


