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Energy of oxygen atom

Oxygen atom

PW’91: 40 / 3.2 Ry • PW’91: 50 / 3.85 Ry ×
PW’91: 70 / 4.0 Ry + PBE: 50 / 3.85 ◦



Plane wave basis set
Summary

• ONE parametre defines the basis set (for a given unit cell), and the
convergence is variational with respect to it

• Cut-off energy depends on the atomic species in the system, and it is typical
for a given pseudo potential; approx 20 Ry for “easy” ones, 70. . . 100 for the
difficult ones (using Troullier-Martins PP)

• 3D-FFT used intensively to switch between real and reciprocal space

• Independent of atomic positions (and number of atoms; no BSSE), complete,
naturally periodic

• MANY functions needed

• Localised functions are difficult to represent (not chemically intuitive)

• Exchange-correlation on the real-space grid causes discontinuities

• The resulting formulas easy to evaluate



Plane wave expansion: Examples
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Poisson’s equation for periodic boundary conditions
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Kleinman–Bylander form
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∆VL = VL − Vloc



Pseudo potentials
Summary

• They replace the action of core electrons on the valence electrons

• Replace the equation for the (valence) electrons with an equivalent one for
the pseudo valence electrons only

• Frozen core approximation / pseudisation

• 1st successful generation of pseudo potentials was norm-conserving
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• Kleinman-Bylander form is numerically efficient

• Once created, a pseudo potential must be tested, tested, tested!!!
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Velocity Verlet
Derivation

• Taylor expansion for ionic positions RI(t)

RI(t+ ∆t) = RI(t) + ∆t ṘI(t) +
(∆t)2

2
R̈I(t) + . . .

= RI(t) + ∆t vI(t) +
(∆t)2

2MI
FI(t) + . . .

• Backward Taylor expansion for ionic positions RI(t)

RI(t+ ∆t) = RI(t)−∆t vI(t+ ∆t) +
(∆t)2

2MI
FI(t+ ∆t) + . . .

• Add up:

RI(t+∆t)+RI(t) = RI(t+∆t)+RI(t)+∆t [vI(t)− vI(t+ ∆t)]+
(∆t)2

2MI
[FI(t) + FI(t+ ∆t)]

• Yields velocities

vI(t+ ∆t) = vI(t) +
∆t

2MI
[FI(t) + FI(t+ ∆t)]



Molecular Dynamics
Summary

• One can simulate a system in real time

• Reactions, thermodynamic averages, . . .

• Simulation time: Classical MD 1 ns. . . 1 µs, ab initio MD 10 ps. . . 100 ps

• Number of atoms: Classical MD 104. . . 107, ab initio MD 102. . . 103

• (velocity) Verlet algorithm is efficient

• ∆t ≈ 0.5 fs (BO-MD) and 0.1 fs (CP-MD)

• Simulated annealing is an efficient tools to relax large, complex geometries
(choose artificial masses on ions)
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Car-Parrinello method
Equations of motion

• Euler-Lagrange equations
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Car-Parrinello Molecular Dynamics
Summary

• Fictitious dynamics for the electrons

• Simultaneous dynamics for the ions and electrons

• Works best for insulating/semi-conducting materials; metals with care
(thermostat on the electrons)

• Relies on the adiabatic separation between the dynamics of electrons and ions



Adiabatic separation

• Thus there’s no efficient mechanism for exchange of energies: The two
subsystems are adiabatically decoupled

Triangle = highest ionic frequency
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Constant of motion
Conservation of energy

• Physical and conserved energy:

Ephysical = EKS
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changes in the physical energy



Car-Parrinello Molecular Dynamics
Summary

• Fictitious dynamics for the electrons

• Simultaneous dynamics for the ions and electrons

• Works best for insulating/semi-conducting materials; metals with care
(thermostat on the electrons)

• Relies on the adiabatic separation between the dynamics of electrons and ions

• New constant of motion

• Control of adiabacity via µ, fictitious electron mass



Control of adiabacity

• Lowest frequency has to be well above ionic frequencies

ωemin ∝

√
Egap

µ

• Highest frequency limits the maximum possible time step

ωemax ∝

√
Ecut

µ
(∆te)max ∝

√
µ

Ecut

• If ∆t fixed and µ chosen

– too small: Electrons too light and adiabacity will be lost

– too large: Time step eventually large and electronic degrees of freedom
evolve too fast for the Verlet algorithm



Car-Parrinello Molecular Dynamics
What is possible/typical?

• One needs parallel computers with fast inter-connect; depending on the size
of system 8. . . 2048+ processors can be employed efficiently

• Still the simulations take weeks/months (if one wants/needs 10-20 ps to get
statistical averages)

• Example: Wall-clock time 30 s/molecular step, typical time step 0.12 fs:
14.4 fs/hour, 340 fs/day ⇒ two months for 20 ps (running 24/7!)

• The size of system (elements from 2p row):

– 8 processors: 30-60 atoms

– 32 processors: 50-100..150 atoms



Car-Parrinello & Born-Oppenheimer Molecular
Dynamics

Which one to choose?

• It depends

• For metallic systems usually BO-MD



Questions?


