Summary of Day 1




Plane wave basis set

Summary

e ONE parametre defines the basis set (for a given unit cell), and the
convergence is variational with respect to it



Cutoff: Finite basis set
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Basis set size depends on volume of box and cutoff only
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Energy of oxygen atom
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Plane wave basis set

Summary

ONE parametre defines the basis set (for a given unit cell), and the
convergence is variational with respect to it

Cut-off energy depends on the atomic species in the system, and it is typical
for a given pseudo potential; approx 20 Ry for “easy’” ones, 70...100 for the
difficult ones (using Troullier-Martins PP)

3D-FFT used intensively to switch between real and reciprocal space

Independent of atomic positions (and number of atoms; no BSSE), complete,
naturally periodic

MANY functions needed
LLocalised functions are difficult to represent (not chemically intuitive)
Exchange-correlation on the real-space grid causes discontinuities

The resulting formulas easy to evaluate



Plane wave expansion: Examples
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Poisson’s equation for periodic boundary conditions
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Kleinman—Bylander form
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Pseudo potentials

Summary
They replace the action of core electrons on the valence electrons

Replace the equation for the (valence) electrons with an equivalent one for
the pseudo valence electrons only

Frozen core approximation / pseudisation
15t successful generation of pseudo potentials was norm-conserving

Nowadays also Vanderbilt (ultra-soft) pseudo potentials and projected
augmented waves (PAW)

For CPMD one usually employs Troullier-Martins or Vanderbilt pp’s
The pseudo potential is different for different L = {l,m}
Kleinman-Bylander form is numerically efficient

Once created, a pseudo potential must be tested, tested, tested!!!
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Summary
One can simulate a system in real time
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Velocity Verlet

Derivation

e Taylor expansion for ionic positions R;(t)

(At)?
2
(At)?
2M;

R/(t+ At) = R(t) + At Ri(t) + Ri(t) + ...

= Ry(t) + At vi(t) + Fr(t)+...

e Backward Taylor expansion for ionic positions R;(t)

(At)

2
ST Fi(t+ At + ...

R;(t+ At) = Ri(t) — At vi(t + At) +

e Add up:

(At)

2
M, [Fr(t) + Fi(t + At)]

R;(t+At)+R;(t) = Ri(t+AD)+R () +AL [vi(t) — vi(t + At)]+

e Yields velocities
At

vi(t+ At) = v (t) + oM,

[Fr(t) + Fr(t + At)]



Molecular Dynamics

Summary
One can simulate a system in real time
Reactions, thermodynamic averages, ...
Simulation time: Classical MD 1 ns...1 us, ab initio MD 10 ps... 100 ps
Number of atoms: Classical MD 104...107, ab initio MD 102...103
(velocity) Verlet algorithm is efficient
At =~ 0.5 fs (BO-MD) and 0.1 fs (CP-MD)

Simulated annealing is an efficient tools to relax large, complex geometries
(choose artificial masses on ions)



Car-Parrinello Molecular Dynamics

Summary
e Fictitious dynamics for the electrons

e Simultaneous dynamics for the ions and electrons



Car-Parrinello method

Equations of motion

e Euler-Lagrange equations
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Car-Parrinello Molecular Dynamics

Summary
Fictitious dynamics for the electrons
Simultaneous dynamics for the ions and electrons

Works best for insulating/semi-conducting materials; metals with care
(thermostat on the electrons)

Relies on the adiabatic separation between the dynamics of electrons and ions



Adiabatic separation

e T hus there’s no efficient mechanism for exchange of energies: The two
subsystems are adiabatically decoupled
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Summary
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Constant of motion

Conservation of energy

e Physical and conserved energy:

N
1 .
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I= 1

e The difference, Ekinfict = Y 1o 51 (1 [¢0;), must thus correlate with the
changes in the physical energy



Car-Parrinello Molecular Dynamics

Summary
Fictitious dynamics for the electrons
Simultaneous dynamics for the ions and electrons

Works best for insulating/semi-conducting materials; metals with care
(thermostat on the electrons)

Relies on the adiabatic separation between the dynamics of electrons and ions
New constant of motion

Control of adiabacity via u, fictitious electron mass



Control of adiabacity

e Lowest frequency has to be well above ionic frequencies

FEigap
o

e
Wmin X

e Highest frequency limits the maximum possible time step

Ecut 7
- (D) max X
M Ecut

e
Wmax X

o If At fixed and u chosen
— too small: Electrons too light and adiabacity will be lost

— too large: Time step eventually large and electronic degrees of freedom
evolve too fast for the Verlet algorithm



Car-Parrinello Molecular Dynamics
What is possible/typical?

One needs parallel computers with fast inter-connect; depending on the size
of system 8...2048+ processors can be employed efficiently

Still the simulations take weeks/months (if one wants/needs 10-20 ps to get
statistical averages)

Example: Wall-clock time 30 s/molecular step, typical time step 0.12 fs:
14.4 fs/hour, 340 fs/day = two months for 20 ps (running 24/7!)

The size of system (elements from 2p row):

— 8 processors: 30-60 atoms

— 32 processors: 50-100..150 atoms



Car-Parrinello & Born-Oppenheimer Molecular
Dynamics

Which one to choose?
e It depends

e For metallic systems usually BO-MD



Questions?




