
Plane Wave Basis Sets



Kohn–Sham method

E = min
{Φ}

EKS[{Φi(r)}]

∫
Φ?
i (r)Φj(r)dr = δij

n(r) =
N∑
i=1

fi|Φi(r)|2

Kohn-Sham equations{
−

1

2
∇2 + VKS [n] (r)

}
ψi (r) = εiψi (r)

VKS [n] (r) = Vext (r) + VH [n] (r) + Vxc [n] (r)

n (r) =
∑
i

fi |ψi (r)|2



Basis set methods

Arbitrary basis set {ϕα(r)}Mα=1

Linear expansion of Kohn–Sham orbitals

Φi(r) =
M∑
α=1

cαiϕα(r)



Atomic orbital basis sets

Philosophy : Molecules are assemblies of slightly distorted atoms

ϕα(r) = ϕα(r)Ylm(Θ, φ)

ϕα(r) =

exp[−αr2] Gaussian

exp[−αr] Slater

ϕα(r;RI) : basis functions are attached to nuclear positions

Advantages/disadvantages of AO basis sets

+ according to chemical insight

+ small basis sets give already good results

– non-orthogonal

– depend on atomic position

– basis set superposition errors (BSSE)



Plane waves

Philosophy : Assemblies of atoms are slight distortions to free electrons

ϕα(r) =
1√
Ω

exp[iGα · r]

+ orthonormal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

– localised functions difficult to represent



Computational box

In plane wave calculations one always has to define a computational
box, even for isolated, molecular systems

In real space

• Box matrix: h = [a1, a2, a3]

• Box volume: Ω = det h



Lattice vectors

• Direct lattice h = [a1, a2, a3]

• Direct lattice vectors : L = i · a1 + j · a2 + k · a3

• Reciprocal lattice 2π(ht)−1 = [b1,b2,b3]

bi · aj = 2πδij

• Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3



Properties of plane waves

ϕG(r) =
1√
Ω

exp[iG · r]

• Plane waves are periodic wrt. box h

• Plane waves are orthonormal

〈ϕG′|ϕG〉 = δG′,G

• Plane waves are complete

ψ(r) = ψ(r + L) =
1√
Ω

∑
G

ψ(G) exp[iG · r]



Local (radial) functions

A function depending on the angles only via spherical harmonics

φ(r) = φ(r)Ylm(Θ,Φ)

=
∑
G

φ(G) exp[iGr] Ylm(Θ̃, Φ̃)

Θ̃, Φ̃ angles of G

Bessel transform

φ(G) = 4π(−i)l
∫ ∞
0

dr r2φ(r) jl(Gr)

jl : Spherical Bessel functions of the first kind



Position dependence

Translation

φ(r) −→ φ(r−RI)

φ(r−RI) =
∑
G

φ(G) exp[iG · (r−RI)]

=
∑
G

φ(G) exp[iG · r] exp[−iG ·RI]

Structure Factor

SI(G) = exp[−iG ·RI]

Derivatives

∂φ(r;RI)

∂RI,s
= −i

∑
G

Gsφ(G) exp[iG · r]SI(G)



Example of operators

Kinetic energy operator is diagonal in the plane wave basis

−
1

2
∇2ϕG(r) = −

1

2
(iG)2

1√
Ω

exp[iG · r] =
1

2
G2ϕG(r)

Ekin(G) =
1

2
G2



Cutoff: Finite basis set

1

2
G2 ≤ Ecut

NPW ≈
1

2π2
ΩE

3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only !



Real space grid
Sampling Theorem

• Sampling interval ∆ = L
N (L = length, N number of points)

• Nyquist critical frequency fc = 1
2∆

For a given plane wave cutoff (frequency) there is a minimum

number of equidistant real space grid points needed for the same

accuracy: N = L
πE

1/2
cut

Real space grid: Ri = (i− 1)∆



Fast Fourier Transform (FFT)

ψ(G)←→ ψ(R)

The information contained in ψ(G) and ψ(R) are equivalent

Transform from ψ(G) to ψ(R) and back is done using Fourier

methods. If the number of grid points can be decomposed into

small prime numbers fast Fourier transform techniques can be used

Fourier transform N2 operations
fast Fourier transform N log[N ] operations



Integrals

I =
∫
Ω
A?(r)B(r)dr

=
∑
GG′

A?(G)B(G)
∫

exp[−iG · r] exp[iG′ · r]dr

=
∑
GG′

A?(G)B(G) Ω δGG′

= Ω
∑
G

A?(G)B(G)

Parseval’s theorem

Ω
∑
G

A?(G)B(G) =
Ω

N

∑
i

A?(Ri)B(Ri)



Electron density

n(r) =
∑
i

fi|Φi(r)|2 =
1

Ω

∑
i

fi
∑

G,G′
c?i (G)ci(G

′) exp[i(G−G′) · r]

n(r) =
2Gmax∑

G=−2Gmax

n(G) exp[iG · r]

The electron density can be expanded exactly in a plane wave basis

with a cutoff four times the basis set cutoff :

NPW(4Ecut) = 8NPW(Ecut)



Comparison to AO Basis Set

Plane Waves :

1

2
G2 < Ecut

1

2
G′2 < Ecut

1

2

(
G+G′

)2
<

(√
Ecut +

√
Ecut

)2
= 4Ecut

Atomic orbitals : every product results in a new function

ϕα(r−A)ϕβ(r−B) = ϕγ(r−C)

Linear dependence for plane waves vs. quadratic depen-

dence for AO basis sets.



Operators

Matrix representation of operators in Kohn–Sham theory:

O(G,G′) = 〈G|O|G′〉

Example: Kinetic energy operator

TG,G′ = 〈G| −
1

2
∇2|G′〉 =

1

2
G2δG,G′



Local operators

〈G′|O(r)|G”〉 =
1

Ω

∑
G

O(G)
∫
e[−iG

′·r]e[iG·r]e[iG”·r]dr

=
1

Ω

∑
G

O(G)
∫
e[i(G−G′+G”)·r]dr

=
1

Ω
O(G′ −G”)

Local operators can be expanded in plane waves with a

cutoff four times the basis set cutoff.



Applying operators
In reciprocal space

B(G) =
∑
G′

O(G,G′)A(G′)

Local Operators: Convolution

B(G) =
∑
G′

1

Ω
O(G−G′)A(G′) = (O ∗A)(G)

Convolution in frequency space transforms to product in real space

B(Ri) = O(Ri)A(Ri)

Thus local operators — e. g. VKS(r) — are better applied in real space



Kohn–Sham orbitals

• KS–orbitals (for periodic system)
Bloch theorem

Φi(r,k) = exp[ik · r] ui(r,k)

ui(r,k) = ui(r + L,k)

• Γ - point approximation:
k = 0 only point considered in the Brillouin zone.

• Γ - point KS–orbitals

Φi(r) = ui(r)

=
1√
Ω

∑
G

ci(G) exp[iG · r]

Valid approximation in large or disordered systems



Kohn–Sham energy

EKS = Ekin + EPP + EES + Exc

Ekin Kinetic energy

EPP Pseudopotential energy

EES Electrostatic energy ( sum of electron-electron interaction +

nuclear core-electron interaction + ion-ion interaction)

Exc Exchange–correlation energy



Kinetic energy

Ekin =
∑
i

fi〈Φi|−
1

2
∇2|Φi〉

=
∑
i

∑
GG′

c∗i (G)ci(G
′)〈G|−

1

2
∇2|G′〉

=
∑
i

∑
GG′

c∗i (G)ci(G
′) Ω

1

2
G2δG,G′

=
Ω

2

∑
i

∑
G

G2|ci(G)|2



Electrostatic energy

EES =
1

2

∫ ∫
dr dr′

n(r)n(r′)

|r− r′|
+
∑
I

∫
drV Icore(r)n(r) +

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

Problem: Divergencies in individual terms

Gaussian charge distributions

nIc(r) = −
ZI(
Rc
I

)3π−3/2 exp

−(r−RI

Rc
I

)2


Electrostatic potential of nIc

V Icore(r) =
∫
dr′

nIc(r
′)

|r− r′|
= −

ZI
|r−RI |

erf

[
|r−RI |

Rc
I

]



Electrostatic energy

EES =
1

2

∫ ∫
dr dr′

n(r)n(r′)

|r− r′|
+

1

2

∫ ∫
dr dr′

nc(r)nc(r′)

|r− r′|

+
∫ ∫

dr dr′
nc(r)n(r′)

|r− r′|

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

−
1

2

∫ ∫
dr dr′

nc(r)nc(r′)

|r− r′|
,

where nc(r) =
∑
I n

I
c(r)

The first three terms can be combined to the electrostatic energy of

a total charge distribution

ntot(r) = n(r) + nc(r)

and the other two terms calculated analytically



Electrostatic energy

EES =
1

2

∫ ∫
dr dr′

ntot(r)ntot(r
′)

|r− r′|

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

erfc

 |RI −RJ |√
Rc
I
2 + Rc

J
2


−
∑
I

1√
2π

Z2
I

Rc
I

• 1. Term: Long-ranged forces (reciprocal space)

• 2. Term: Short-ranged two-center terms (direct space)

• 3. Term: One-center term



Periodic systems

Plane wave expansion of ntot

ntot(G) = n(G) +
∑
I

nIc(G)SI(G)

= n(G)−
1

Ω

∑
I

ZI√
4π

exp
[
−

1

2
G2Rc

I
2
]
SI(G)

Criteria for parameter Rc
I : PW expansion of nIc has to be converged

with density cutoff

• The smaller the Rc
I , the higher the cutoff

• The larger the Rc
I , the heavier the terms in direct space



Poisson’s equation
Periodic systems

∇2VH(r) = −4πntot(r)

For periodic boundary conditions

VH(G) = 4π
ntot(G)

G2

VH(G) is a local operator with same cutoff as ntot

The solution in plane waves is very much easier than

e. g. in local basis set, offering a huge advantage



Periodic systems

EES = 2πΩ
∑

G 6=0

|ntot(G)|2

G2
+ Eovrl − Eself

where

Eovrl =
∑′
I,J

∑
L

ZIZJ
|RI −RJ − L|

erfc

|RI −RJ − L|√
Rc
I
2 + Rc

J
2


and

Eself =
∑
I

1√
2π

Z2
I

Rc
I

Sums expand over all atoms in the simulation cell, all direct lattice

vectors L, and the prime in the first sum indicates that I < J is

imposed for L = 0



Exchange and correlation energy

Exc =
∫
dr εxc(r)n(r) = Ω

∑
G

εxc(G)n?(G)

εxc(G) is not local in G space. Calculation in real space requires

very accurate integration scheme

New definition of Exc

Exc =
Ω

NxNyNz

∑
R

εxc(R)n(R) = Ω
∑
G

ε̃xc(G)n(G)

where ε̃xc(G) is the finite Fourier transform of εxc(R)

Only translations by a multiple of the grid spacing do not change

the total energy. This introduces a small modulation of the energy

hyper surface, known as ”ripples”



Energy and force of helium atom

The energy should be a constant, the force zero



Energy of oxygen atom

Oxygen atom

PW’91: 40 / 3.2 Ry • PW’91: 50 / 3.85 Ry ×
PW’91: 70 / 4.0 Ry + PBE: 50 / 3.85 ◦



Plane waves: Summary

• Plane waves are delocalised, periodic basis functions

• Plenty of them are needed, however the operations are simple

• The quality of basis set adjusted using a single parametre, the

cut-off energy

• Fast Fourier-transform used to efficiently switch between real

and reciprocal space

• The size of basis set is independent of number of atoms (for a

given volume), NG ∝ Ω, NG ∝ E
3/2
cut



Pseudo potentials



Why use pseudo potentials?

• Reduction of basis set size

effective speedup of calculation

• Reduction of number of electrons

reduces the number of degrees of freedom

For example in Pt: 10 instead of 78

• Unnecessary

“Why bother? They are inert anyway...”

• Inclusion of relativistic effects

relativistic effects can be included ”partially” into effective

potentials



Why use pseudo potentials?
Estimate for number of plane waves

plane wave cutoff
l

most localized function

1s Slater type function ≈ exp[−Zr]
Z: effective nuclear charge

φ1s(G) ≈
16πZ5/2

G2 + Z2

Cutoff Plane waves
H 1 1
Li 4 8
C 9 27
Si 27 140
Ge 76 663



Pseudo potential
What is it?

• Replacement of the all-electron, −Z/r problem with a
Hamiltonian containing an effective potential

• It should reproduce the necessary physical properties of the full
problem in the reference state

• The potential should be transferable, i. e. also be accurate in
different environments

The construction consists of two steps of approximations

• Frozen core approximation

• Pseudisation



Frozen core approximation

• Core electrons are chemically inert

• Core/valence separation is often not clear

in plane wave calculations: core = all filled shells

• Core wavefunctions are transfered from atomic reference

calculation

• Core electrons of different atoms do not overlap



Remaining problems

• Valence wavefunctions have to be orthogonalized to core states
→ nodal structures → high plane wave cutoff

• Pseudo potential should produce node-less functions and include
Pauli repulsion

• Pseudo potential replaces Hartree and XC potential due to the
core electrons

• XC functionals are not linear: approximation

EXC(nc + nv) = EXC(nc) + EXC(nv)

This assumes that core and valence electrons do not overlap.
This restriction can be overcome with the ”non–linear core
correction” (NLCC) discussed later.



Atomic pseudo potentials

n(r) = nc(r) + nv(r)

Valence Kohn–Sham Equations

(
T + V (r, r′) + VH(nv) + VXC(nv)

)
Φv
i (r) = εiΦ

v
i (r)

Pseudo potential V (r, r′) has to be chosen such that the main

properties of the atom (reference state) are reproduced. Several

values of l (angular quantum number) have to be used for good

accuracy



Pseudisation of valence wave functions



General recipe

1. Atomic all–electron calculation (reference state)

⇒ Φv
i (r) and εi

2. Pseudise Φv
i ⇒ ΦPS

i (node-less!)

3. Calculate potential from

(T + Vi(r))ΦPS
i (r) = εiΦ

PS
i (r)

4. Calculate pseudo potential by unscreening of Vi(r)

V PS
i (r) = Vi(r)− VH(nPS)− VXC(nPS)

V PS
i is state dependent!



Hamann-Schlüter-Chiang-recipe (HSC)
DR Hamann, M Schlüter and C Chiang, Phys. Rev. Lett. 43, 1494 (1979)

1. Real and pseudo valence eigenvalues agree for a chosen prototype atomic
configuration: εl = ε̂l

2. Real and pseudo atomic wave functions agree beyond a chosen core radius rc:

Ψl(r) = Φl(r) for r ≥ rc

3. The integrals from 0 to R of the real and pseudo charge densities agree for R
≥ rc for each valence state (norm conservation):

〈Φl|Φl〉R = 〈Ψl|Ψl〉R for R ≥ rc
where

〈Φ|Φ〉R =

∫ R

0
r2|φ(r)|2dr

4. The logarithmic derivatives of the real and pseudo wave function and their
first energy derivatives agree for r ≥ rc.

Property 3) and 4) are related through

−
1

2

[
(rΦ)2 d

dε

d

dr
lnΦ

]
R

=

∫ R

0
r2|Φ|2dr



Recipes to construct norm-conserving
pseudo potentials

• Bachelet-Hamann-Schüter (BHS) Form

G.B. Bachelet et al., Phys. Rev. B, 26, 4199 (1982)

Recipe and analytic form of V PS
l

• Kerker Recipe G.P. Kerker, J. Phys. C 13, L189 (1980)

analytic pseudisation function

• D. Vanderbilt, Phys. Rev. B, 32, 8412 (1985)

• Kinetic energy optimized pseudo potentials
A.M. Rappe et al., Phys. Rev. B, 41, 1227 (1990)

J.S. Lin et al., Phys. Rev. B, 47, 4174 (1993)

• Troullier–Martins recipe



Troullier–Martins recipe
N Troullier and J L Martins, Phys. Rev. B, 43, 1993 (1991)

ΦPS
l (r) = rl+1ep(r) r ≤ rc

p(r) = c0 + c2r
2 + c4r

4 + c6r
6 + c8r

8 + c10r
10 + c12r

12

Determine cn from

• norm–conservation

• smoothness at rc (for m = 0 . . .4)
dmΦ
drm

∣∣∣
r=rc−

= dmΦ
drm

∣∣∣
r=rc+

• dΦ
dr

∣∣∣
r=0

= 0

Optimised for smoothness i. e. small basis set



Separation of local and nonlocal parts

V PS(r, r′) =
∞∑
L=0

V PS
L (r)|YL〉〈YL| , L = {l,m}

V PS(r, r′) =
∞∑
L=0

V PS
L (r)|YL〉〈YL| −

∞∑
L=0

V PS
loc (r)|YL〉〈YL|+ V PS

loc (r)

=
∞∑
L=0

(
V PS
L (r)− V PS

loc (r)
)
|YL〉〈YL|+ V PS

loc (r)

Approximation: all potentials with L > Lmax are equal to V PS
loc

(or 〈YL |ψ〉 becomes negligible)

V PS(r, r′) =
Lmax∑
L=0

[
V PS
L (r)− V PS

loc (r)
]
|YL〉〈YL|+ V PS

loc (r)



Final semi-local form

V PS(r, r′) = V PS
loc (r) +

Lmax∑
L=0

∆V PS
L (r)|YL〉〈YL|

• Local pseudo potential V PS
loc

• Radially local pseudo potential ∆V PS
L (r) ; vanishes beyond core

radii

• Any L quantum number can have a non-local part









Non-local PP in PW calculations

EPS =
∑
L

∑
i

fi

∫
r
〈Φi | YL〉r ∆V PS

L (r) 〈YL | Φi〉r dr

〈Φi | YL〉r =
∫

Φi(r)YL(̂r)dr̂

Integral depends on r



Gauss–Hermite Integration

Enl
PS =

∑
L

∑
i

fi
∑
k

wk∆V PS
L (rk)

[
〈Φi | YL〉r (rk)

]2

Accurate integration requires ≈ 15 - 25 points.

For an atom with s and p non-local potential this requires the

calculation of 60 - 100 times number of states integrals 〈Φi | YL〉r.



Basis set expansion

Resolution of identity 1 =
∑
n|ϕn〉〈ϕn| for a complete orthonormal

basis set {ϕn}:

EPS =
∑
L

∑
i

fi
∑
nm
〈Φi | ϕn〉

∫
〈ϕn | YL〉r V

PS
L (r) 〈YL | ϕm〉r dr 〈ϕm | Φi〉

Using 〈ϕn | YL〉r = ϕn(r) we can calculate the basis set expansion of

the pseudo potential

V PS
L,nm =

∫
ϕn(r)V

PS
L (r)ϕm(r)dr

and get

EPS =
∑
L

∑
i

fi
∑
nm
〈Φi | ϕn〉V PS

L,nm〈ϕm | Φi〉

Typical basis set expansions contain only a few functions.



Kleinman–Bylander form

Basis set expansion with the following approximation for the identity:

1 =
∑
L

| ϕL〉〈∆VLϕL |
〈ϕL∆VLϕL〉

where ϕL is the pseudo–atomic wavefunction from the reference

calculation.

|∆VLϕL〉 is localized within rc.



Kleinman–Bylander form

EPS =
∑
L

∑
i

fi〈Φi |∆VLϕL〉ωL〈∆VLϕL | Φi〉

where

ωL = 〈ϕL |∆VL | ϕL〉

For an atom with s and p non-local potential this requires the

calculation of 4 times number of states integrals 〈∆VLϕL | Φi〉
Generalization of the Kleinman–Bylander form to more than 1

reference function by Blöchl (1990) and Vanderbilt (1990).



Ghost States

Problem: in Kleinman–Bylander form, the node-less wfn is no

longer the solution with the lowest energy

Solution: carefully tune the local part of the pseudo potential until

the ghost states disappear

How to find host states: Look for following properties

• Deviations of the logarithmic derivatives of the energy of the KB–pseudo
potential from those of the respective semi-local pseudo potential or
all–electron potential.

• Comparison of the atomic bound state spectra for the semi-local and
KB–pseudo potentials.

• Ghost states below the valence states are identified by a rigorous criteria by
Gonze et al.



Dual Space Pseudo potentials
S. Goedecker et al., Phys. Rev. B, 54 1703 (1996)

C. Hartwigsen et al., Phys. Rev. B, 58 3641 (1998)

• Functional form of pseudo potential: local part + fully separable

non–local part

• All functions are expanded in Gaussians

• All free parameters are globally optimized



Ultra–soft Pseudo potentials and PAW method
• Many elements require high cutoff for plane wave calculations

– First row elements: O, F

– Transition metals: Cu, Zn

– f elements: Ce

• Relax norm-conservation condition∫
nPS(r)dr +

∫
Q(r)dr = 1

• Augmentation functions Q(r) depend on environment

• No full un-screening possible, Q(r) has to be recalculated for
each atom and atomic position

• Complicated orthogonalization and force calculations

• Allows for larger rc, reduces cutoff for all elements to about
20. . . 30 Rydberg



Non-Linear Core Correction (NLCC)

For many atoms (e.g. alkali atoms, transition metals) core states

overlap with valence states. Linearization assumption for XC energy

breaks down.

• Add additional states to valence

– adds more electrons

– needs higher cutoff

• Add core charge to valence charge in XC energy ⇒ non–linear

core correction (NLCC)

S.G. Louie et al., Phys. Rev. B, 26 1738 (1982)



Non-Linear Core Correction (NLCC)

Exc = Exc(n+ ñcore) where ñcore(r) = ncore(r) if r > r0



Non-Linear Core Correction (NLCC)

The total core charge of the system depends on the atomic

positions.

ñcore(G) =
∑
I

ñIcore(G)SI(G)

This leads to additional terms in the derivatives wrt to nuclear

positions and the box matrix (for the pressure).

∂Exc

∂RI,s
= −Ω

∑
G

iGsV
?
xc(G)ñIcore(G)SI(G)



Specification of Pseudo potentials

• The pseudo potential recipe used and for each l value rc and the

atomic reference state

• The definition of the local potential and which angular

momentum state have a non–local part

• For Gauss–Hermit integration: the number of integration points

• Was the Kleinman–Bylander scheme used ?

• NLCC: definition of smooth core charge and rloc



Testing of Pseudo potentials

• calculation of other atomic states

• calculation of transferability functions, logarithmic derivatives,

hardness

• calculation of small molecules, compare to all electron

calculations (geometry, harmonic frequencies, dipole moments)

• check of basis set convergence (cutoff requirements)

• calculation of test systems



Example : Oxygen dimer



Pseudo potentials: Summary

• Pseudo potential are necessary when using plane wave basis sets

in order to keep the number of the basis function manageable

• Pseudo potentials are generated at the reference state;

transferability is the quantity describing the accuracy of the

properties at other conditions

• The mostly used scheme in plane wave calculations is the

Troullier-Martins pseudo potentials in the fully non-local,

Kleinman-Bylander form

• Non-linear core correction is need if the core and valence

electron densities overlap excessively

• Once created, a pseudo potential must be tested, tested,

tested!!!


