Ab initio molecular dynamics

Molecular dynamics Why?

- allows realistic simulation of equilibrium and transport properties in Nature
- ensemble averages can be used for statistical mechanics
- time evolution of chemical reactions, phase transitions, . . . can be followed
- search for reaction paths, exploration of phase space

Realistic MD simulations

$$M_I \ddot{\mathbf{R}}_I = -\nabla_{\mathbf{R}} E\left(\{\mathbf{R}_J\}\right)$$

- ullet Classical molecular dynamics: $E\left(\{\mathbf{R}_J\}\right)$ given e.~g. by pair potentials
- How about estimating $E(\{\mathbf{R}_J\})$ directly from electronic structure method?
- What is needed is $-\nabla_{\mathbf{R}}E\left(\{\mathbf{R}_{J}\}\right)=-\frac{dE}{d\mathbf{R}_{I}}$

Potentials

- Empirical classical potentials
 - pair potentials, three-body potentials
 - polarisable force fields
 - effective medium theory, embedded atom method
- Empirical quantum mechanical potentials
 - tight binding Hamiltonian
 - semi-empirical quantum chemistry methods
- Ab initio potentials
 - quantum chemistry, methods based on wave function
 - density functional theory

Classical vs MD simulations

- When is electronic structure needed explicitly, when is classical treatment sufficient?
 - Chemical reactions: Breaking and creation of chemical bonds
 - Changing coordination
 - Changing type of interaction
 - Difficult chemistry of elements
- Combination of both: QM/MM

Born-Oppenheimer molecular dynamics

Born-Oppenheimer *Ansatz*

 Separate the total wave function to quickly varying electronic and slowly varying ionic wave function:

$$\Phi_{\mathsf{BO}}\left(\left\{\mathbf{r}_{i}\right\},\left\{\mathbf{R}_{I}\right\};t\right)=\sum_{k=0}^{N_{\mathsf{BO}}}\tilde{\Psi}_{k}\left(\left\{\mathbf{r}_{i}\right\},\left\{\mathbf{R}_{I}\right\}\right)\tilde{\chi}\left(\left\{\mathbf{R}_{I}\right\};t\right)$$

• Leads to a Schrödinger-like equation for the electrons and a Newton-like equation for the ions (after some assumptions for the ionic wave function):

$$\mathcal{H}^{e}\tilde{\Psi}_{k}\left(\left\{\mathbf{r}_{i}\right\},\left\{\mathbf{R}_{I}\right\}\right) = E_{\left\{\mathbf{R}_{I}\right\}}^{e}\tilde{\Psi}_{k}\left(\left\{\mathbf{r}_{i}\right\},\left\{\mathbf{R}_{I}\right\}\right)$$

$$M_{I}\ddot{\mathbf{R}}_{I} = \mathbf{F}_{I}$$

- Electrons always at the ground state when observed by the ions
- Usually valid, however there are several cases when this Ansatz fails

Born-Oppenheimer MD

Lagrangean

$$\mathcal{L}_{\mathsf{BO}}\left(\mathbf{R},\dot{\mathbf{R}}\right) = \sum_{I=1}^{N} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} - \min_{\left\{\psi_{i}\right\}} E\left(\left\{\psi_{i}\right\}, \mathbf{R}^{N}\right)$$

• equations of motion:

$$M_{I}\ddot{\mathbf{R}}_{I}=-
abla_{\mathbf{R}}\left[E\left(\mathbf{\Psi},\mathbf{R}^{N}
ight)
ight]=-rac{d}{d\mathbf{R}_{I}}\left[\min_{\left\{\psi_{i}
ight\}}E\left(\left\{\psi_{i}
ight\},\mathbf{R}^{N}
ight)
ight]$$

 if the right-hand side can be evaluated analytically it can be plugged directly to the Verlet algorithm

Molecular dynamics

 propagation of Newton's equation of motion (with discrete equations of motion)

$$\mathbf{F}_I = M_I \mathbf{a} = M_I \ddot{\mathbf{R}}_I$$

• alternative derivation from the Lagrange formalism:

$$\mathcal{L}\left(\mathbf{R}^{N}, \dot{\mathbf{R}}^{N}\right) = \sum_{I=1}^{N} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} - U\left(\mathbf{R}^{N}\right) ,$$

 ${\cal U}$ is the interaction potential between the particles. The Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{R}}_I} = \frac{\partial \mathcal{L}}{\partial \mathbf{R}_I}$$

most common algorithm: Verlet algorithm (in a few variations)

Verlet algorithm

Velocity Verlet

• discretisation of Newton's equation of motion

$$M_I\ddot{\mathbf{R}}_I = \mathbf{F}_I$$

i) Propagate ionic positions $\mathbf{R}_I(t)$ according to

$$\mathbf{R}_{I}(t + \Delta t) = \mathbf{R}_{I}(t) + \Delta t \ \mathbf{v}_{I}(t) + \frac{(\Delta t)^{2}}{2M_{I}} \mathbf{F}_{I}(t)$$

- ii) Evaluate forces $F_I(t + \Delta t)$ at $R_I(t + \Delta t)$
- iii) Update velocities

$$\mathbf{v}_I(t + \Delta t) = \mathbf{v}_I(t) + \frac{\Delta t}{2M_I} \left[\mathbf{F}_I(t) + \mathbf{F}_I(t + \Delta t) \right]$$

Velocity Verlet

Derivation

ullet Taylor expansion for ionic positions ${
m R}_I(t)$

$$R_{I}(t + \Delta t) = R_{I}(t) + \Delta t \dot{R}_{I}(t) + \frac{(\Delta t)^{2}}{2} \ddot{R}_{I}(t) + \dots$$
$$= R_{I}(t) + \Delta t v_{I}(t) + \frac{(\Delta t)^{2}}{2M_{I}} F_{I}(t) + \dots$$

ullet Backward Taylor expansion for ionic positions ${f R}_I(t)$

$$\mathbf{R}_{I}(t+\Delta t) = \mathbf{R}_{I}(t) - \Delta t \ \mathbf{v}_{I}(t+\Delta t) + \frac{(\Delta t)^{2}}{2M_{I}} \mathbf{F}_{I}(t+\Delta t) + \dots$$

• Add up:

$$R_I(t+\Delta t) + R_I(t) = R_I(t+\Delta t) + R_I(t) + \Delta t \left[\mathbf{v}_I(t) - \mathbf{v}_I(t+\Delta t) \right] + \frac{(\Delta t)^2}{2M_I} \left[\mathbf{F}_I(t) + \mathbf{F}_I(t+\Delta t) \right]$$

Yields velocities

$$\mathbf{v}_I(t + \Delta t) = \mathbf{v}_I(t) + \frac{\Delta t}{2M_I} \left[\mathbf{F}_I(t) + \mathbf{F}_I(t + \Delta t) \right]$$

Velocity Verlet Advantages

Other algorithms provides can have better short time stability and allow larger time steps, but . . .

- simple and efficient; needs only forces, no higher energy derivatives
- still correct up to and including third order, $(\Delta t)^3$
- explicitly time reversible
- sympletic: conserves volume in phase space
- superior long time stability (energy conservation) of the Verlet algorithm

Velocity Verlet Choice of time step

- time step is in general chosen as large as possible . . .
- ... "possible" = stable dynamics = energy conserved; or, drift in energy acceptable
- rule of thumb: 6-10 times smaller than the fastest period in the system; otherwise sampling of that mode is impossible
- time step can be changed during simulation(!)

Velocity Verlet: Choice of time step

Example of a good/bad choice of time step

- Highest vibrational frequency 595 cm⁻¹ \Rightarrow period T = 56 fs
- Divergence between $\delta t = 400..500$ atu = 9.6-12.0 fs $\approx 1/5$ T

Equations of motion: Alternative derivation

Propagation methods

• Define phase space vector $\Gamma = (x, p)$ and commutator

$$\{A, H\} = \frac{\partial A}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial A}{\partial p} \frac{\partial H}{\partial x}$$

• Hamilton's equations of motion:

$$\frac{d\Gamma}{dt} = \{\Gamma, H\}$$

• Define $\widehat{\mathcal{L}}$ so that

$$i\widehat{\mathcal{L}}\Gamma = \{\Gamma, H\}$$

• $\dot{\Gamma} = i\hat{\mathcal{L}}\Gamma \Rightarrow$

$$\Gamma(t) = e^{i\hat{\mathcal{L}}t}\Gamma(0)$$

 Such formalism has been used by Mark Tuckerman et al to derive new integrators

Ensembles

- micro-canonical ensemble NVE
- canonical ensemble NVT
- isothermal-isobaric NPT
- ullet grand-canonical μVT
- isobaric-isoenthalpic NPH
- non-equilibrium

Ab initio Born-Oppenheimer MD

Lagrangean

$$\mathcal{L}_{\mathsf{BO}}\left(\mathbf{R},\dot{\mathbf{R}}\right) = \sum_{I=1}^{N} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} - \min_{\left\{\psi_{i}\right\}} E_{\mathsf{KS}}\left(\left\{\psi_{i}\right\},\mathbf{R}^{N}\right)$$

• equations of motion:

$$M_{I}\ddot{\mathbf{R}}_{I} = -\nabla_{\mathbf{R}}\left[E_{\mathsf{KS}}\left(\mathbf{\Psi},\mathbf{R}^{N}\right)\right] = -\frac{d}{d\mathbf{R}_{I}}\left[\min_{\{\psi_{i}\}}E_{\mathsf{KS}}\left(\left\{\psi_{i}\right\},\mathbf{R}^{N}\right)\right]$$

 if the right-hand side can be evaluated analytically it can be plugged directly to the Verlet algorithm

Forces in BOMD

what is needed is

$$-rac{d}{d\mathbf{R}_{I}}\left[\min_{\left\{ \psi_{i}
ight\} }E_{\mathsf{KS}}\left(\left\{ \psi_{i}
ight\} ,\mathbf{R}^{N}
ight)
ight]$$

with the constraint that the orbitals remains orthonormal; this is achieved using Lagrange multipliers in the Lagrangean

$$\mathcal{E}_{KS} = E_{KS} + \sum_{ij} \Lambda_{ij} (\langle \psi_i | \psi_j \rangle - \delta_{ij})$$

forces

$$\frac{d\mathcal{E}_{\mathsf{KS}}}{d\mathbf{R}_{I}} = \frac{\partial E_{\mathsf{KS}}}{\partial \mathbf{R}_{I}} + \sum_{ij} \Lambda_{ij} \frac{\partial}{\partial \mathbf{R}_{I}} \langle \psi_{i} | \psi_{j} \rangle + \sum_{ij} \frac{\partial \langle \psi_{i} |}{\partial \mathbf{R}_{I}} \left[\frac{\partial E_{\mathsf{KS}}}{\partial \langle \psi_{i} |} + \sum_{j} \Lambda_{ij} | \psi_{j} \rangle \right]$$

ullet when $|\psi_i
angle$ optimal

$$F_{KS}(\mathbf{R}_{I}) = -\frac{\partial E_{KS}}{\partial \mathbf{R}_{I}} + \sum_{ij} \Lambda_{ij} \frac{\partial}{\partial \mathbf{R}_{I}} \langle \psi_{i} | \psi_{j} \rangle$$

- the energy needs to be minimal in order to estimate the forces
- the accuracy of the forces depends on the level of self-consistency
- thus a competition between accuracy and computational cost

Roberto Car & Michele Parrinello, Physical Review Letters 55, 2471 (1985)

• they postulated Langangean

$$\mathcal{L}_{\mathsf{CP}}\left(\left\{\psi_{i}\right\},\left\{\dot{\psi}_{i}\right\};\mathbf{R},\dot{\mathbf{R}}\right)=\sum_{i=1}^{M}\frac{1}{2}\mu\left\langle\dot{\psi}_{i}\left|\dot{\psi}_{i}\right\rangle-\min_{\left\{\psi_{i}\right\}}\mathcal{E}_{\mathsf{KS}}\left(\left\{\psi_{i}\right\},\mathbf{R}^{N}\right)+\sum_{I=1}^{N}\frac{1}{2}M_{I}\dot{\mathbf{R}}_{I}^{2}$$

reminder: \mathcal{E}_{KS} contains the Lagrange multipliers for orthonormality of orbitals

- fictitious or fake dynamics of electrons
- $\mu = fictitious mass or inertia parametre$
- simultaneous dynamics of ions and electrons

Equations of motion

Euler-Lagrange equations

$$\frac{d}{dt} \frac{\partial \mathcal{L}_{CP}}{\partial \langle \dot{\psi}_i |} = \frac{\partial \mathcal{L}_{CP}}{\partial \langle \psi_i |}$$

$$\frac{d}{dt} \frac{\partial \mathcal{L}_{CP}}{\partial \langle \dot{\mathbf{R}}_I |} = \frac{\partial \mathcal{L}_{CP}}{\partial \langle \mathbf{R}_I |}$$

• equations of motion

$$\mu \ddot{\psi}_{i} = -\frac{\partial E_{KS}}{\partial \langle \psi_{i} |} + \sum_{j} \Lambda_{ij} | \psi_{j} \rangle$$

$$M_{I} \ddot{\mathbf{R}}_{I} = -\frac{\partial E_{KS}}{\partial \mathbf{R}_{I}} + \sum_{ij} \Lambda_{ij} \frac{\partial}{\partial \mathbf{R}_{I}} \langle \psi_{i} | \psi_{j} \rangle$$

Simultaneous dynamics

- Unified Approach for Molecular Dynamics and Density-Functional Theory
- Electronic and ionic structure evolve *simultaneously*
- Whereas in BOMD first the electronic structure is optimised, *then* the ions are moved

Constant of motion

constant of motion

$$E_{\text{conserved}} = \sum_{i=1}^{M} \frac{1}{2} \mu \left\langle \dot{\psi}_i \left| \dot{\psi}_i \right\rangle + E_{\text{KS}} \left(\left\{ \psi_i \right\}, \mathbf{R}^N \right) + \sum_{I=1}^{N} \frac{1}{2} M_I \dot{\mathbf{R}}_I^2$$

- ullet note: instantaneous value of $E_{\mathsf{KS}}\left(\left\{\psi_{i}\right\},\mathbf{R}^{N}\right)$, not minimum
- thus no need to optimise the orbitals at each step

Magic Car-Parrinello method

- Does the Car-Parrinello method yield physical results even if the orbitals are not at the Born-Oppenheimer surface?
 - Yes provided that the electronic and ionic degrees of freedom remain adiabatically separated and the electrons close to the Born-Oppenheimer surface
 - Why? dynamics of the electrons is artificial, or unphysical and thus has to average out during the time scale of ionic movement
- Another way of viewing: The electrons are slightly above the BO surface but remain there and average out the effects on the ions (to be considered with care)

Adiabatic separation

Pastore, Smargiassi & Buda, PRA 1991

• Vibrational spectra of electrons and ions do not overlap:

Triangle = highest ionic frequency

$$f^{e}(\omega) = \int_{t=0}^{\infty} \cos(\omega t) \sum_{i} \langle \dot{\psi}_{i}(t) | \dot{\psi}_{i}(0) \rangle dt$$

Adiabatic separation

 Thus there's no efficient mechanism for exchange of energies: The two subsystems are adiabatically decoupled

Triangle = highest ionic frequency

$$f^{e}(\omega) = \int_{t=0}^{\infty} \cos(\omega t) \sum_{i} \langle \dot{\psi}_{i}(t) | \dot{\psi}_{i}(0) \rangle dt$$

Constant of motion

Conservation of energy

Physical and conserved energy:

$$\begin{split} E_{\text{physical}} &= E_{\text{KS}}\left(\left\{\psi_{i}\right\}, \mathbf{R}^{N}\right) + \sum_{I=1}^{N} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} \\ E_{\text{conserved}} &= \sum_{i=1}^{M} \frac{1}{2} \mu \left\langle \dot{\psi}_{i} \left| \dot{\psi}_{i} \right\rangle + E_{\text{KS}}\left(\left\{\psi_{i}\right\}, \mathbf{R}^{N}\right) + \sum_{I=1}^{N} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} = E_{\text{kin,fict}} + E_{\text{physical}} \end{split}$$

• The difference, $E_{\rm kin,fict} = \sum_{i=1}^{M} \frac{1}{2} \mu \left\langle \dot{\psi}_i \middle| \dot{\psi}_i \right\rangle$, must thus correlate with the changes in the physical energy

Constant of motion

Conservation of energy

Model system: Two-atom Si-fcc

Deviation from Born-Oppenheimer surface

Are the forces accurate?

Deviation of forces in CP dynamics from the true BO forces small and/but oscillating

Control of adiabacity

• Harmonic analysis:

$$\omega_{ij}^{e} = \sqrt{\frac{2\left(arepsilon_{i} - arepsilon_{j}
ight)}{\mu}}$$

 ε_i occupied, ε_j unoccupied (virtual) orbitals

Lowest frequency

$$\omega_{
m min}^e \propto \sqrt{rac{E_{
m gap}}{\mu}}$$

Highest frequency

$$\omega_{
m max}^e \propto \sqrt{rac{E_{
m cut}}{\mu}}$$

Thus maximum possible time step

$$(\Delta t^e)_{\sf max} \propto \sqrt{rac{\mu}{E_{\sf cut}}}$$

Control of adiabacity

Lowest frequency has to be well above ionic frequencies

$$\omega_{
m min}^e \propto \sqrt{rac{E_{
m gap}}{\mu}}$$

• Highest frequency limits the maximum possible time step

$$\omega_{ ext{max}}^e \propto \sqrt{rac{E_{ ext{cut}}}{\mu}} \qquad \qquad (\Delta t^e)_{ ext{max}} \propto \sqrt{rac{\mu}{E_{ ext{cut}}}}$$

- If Δt fixed and μ chosen
 - too small: Electrons too light and adiabacity will be lost
 - too large: Time step eventually large and electronic degrees of freedom evolve too fast for the Verlet algorithm

Loss of adiabacity

Bad cases

• Vacancy in hot 64-atom Si cell

Loss of adiabacity

Bad cases

• Sn₂: Degeneracy of HOMO and LUMO at short distances

Analysis of adiabacity

Simplified model

Two-level, two-electron model

Wave function

$$\psi = \left(\cos\frac{\theta}{2}\right)\Phi_1 + \left(\sin\frac{\theta}{2}\right)\Phi_2$$

 θ is the electronic degree of freedom

Zero or small electronic gaps

Thermostatted electrons

- One way to (try to) overcome the problem in coupling of electronic and ionic dynamics is to thermostat also the electrons [Blöchl & Parrinello, PRB 1992]
- Thus electrons cannot heat up; if they try to, thermostat will adsorb the excess heat
- Target fictitious kinetic energy $E_{kin,0}$ instead of temperature
- "Mass" of thermostat to be selected appropriately:
 - Too light: Adiabacity violated (electrons may heat up)
 - Too heavy: Ions dragged excessively
- Please remember: The conserved quantity changed

Thermostat on electrons

• Example: Aluminium

ullet Dependence of the heat transfer on the choice of $E_{\rm kin,0}$ in solid Al

Thermostat on electrons

Does it help?

- 64 atoms of molten aluminium
- (a): Without thermostat
- (b): With thermostat

Thermostat on electrons

Does it work?

• Check: Radial pair correlation function

Solid line: CP-MD with thermostat

Dashed line: Calculations by Jacucci et al

Rescaling of ionic masses

• The fictitious electronic mass exerts an extra "mass" on the ions and thereby modifies the equations of motion:

$$M_I \ddot{\mathbf{R}}_I = \mathbf{F}_I + \mu \sum_{i \in I} \ddot{\mathbf{R}}_I \frac{\partial \phi_i}{\partial r} \frac{\partial \phi_i}{\partial r}$$

• The new equations of motion:

$$(M_I + dM_I) \ddot{\mathbf{R}}_I = \mathbf{F}_I$$

where

$$dM_I = \frac{2}{3}\mu E_{\rm kin}^I$$

is an unphysical "mass", or drag, due to the fictitious kinetics of the electrons

Example: Vibrations in water molecule

		μ					
mode	harmonic	BOMD	50	100	200	400	dM/M [%]
bend	1548	1543					$0.95 \times 10^{-3} \mu$
sym.	3515	3508	3494	3478	3449	3388	$1.81{ imes}10^{-3}\mu$
asym.	3621	3616	3600	3585	3556	3498	$1.71{ imes}10^{-3}\mu$

Choice of μ : Recent discussion $_{\rm Liquid\ water}$

Orthonormality constraints

Equations of motion

$$\mu \ddot{\psi}_i = -\frac{\partial E_{KS}}{\partial \langle \psi_i |} + \sum_j \Lambda_{ij} |\psi_j\rangle$$

- In principle differential equations, however after discretisation difference equations (Verlet algorithm)
- ullet Therefore the algorithm for the constraints $oldsymbol{\Lambda}_{ij}$ depends on the integration method

Orthonormality constraints

Define

$$\mathbf{X}_{ij} = \frac{\Delta t^2}{2\mu} \Lambda^p_{ij}$$
 $\mathbf{Y}_{ij} = \frac{\Delta t^2}{2\mu} \Lambda^v_{ij}$ C wf coefficients

Equations of type

$$\mathbf{X}\mathbf{X}^\dagger + \mathbf{X}\mathbf{B} + \mathbf{B}^\dagger\mathbf{X}^\dagger = \mathbf{I} - \mathbf{A} \qquad \mathbf{Y} = \frac{1}{2}\left(\mathbf{Q} + \mathbf{Q}^\dagger\right)$$

A, B, Q of type $A_{ij} = \sum_{G} c_{Gi}^* c_{Gj}$

• Solve iteratively:

$$X^{(n+1)} = \frac{1}{2} \left[I - A + X^{(n)} (I - B) + (I - B) X^{(n)} - X^{(n)} X^{(n)} \right]$$

CP tricks

Car-Parrinello method for structural optimisation

Simulated annealing

- In larger molecules or crystals the structural optimisation might be difficult, especially the closer to the minimum one is
- CPMD can be used to perform the optimisation by simulated annealing: Rescaling the (atomic and possibly also electronic) velocities:

$$\dot{\mathbf{R}}_I' = \alpha \dot{\mathbf{R}}_I$$

Easy to incorporate into the velocity Verlet algorithm

- ullet Optimised structure when all velocities (temperature) are pprox 0
 - Check by calculating the ionic forces
- The ionic masses are "unphysical": Select to "flatten" the vibrational spectrum (e. g. high mass on hydrogens)
- Faster convergence due to the "global" optimisation

Basis set dependent mass

 \bullet μ can be chosen to be dependent on the basis set:

$$\mu(\mathbf{G}) = \begin{cases} \mu_0 &, \mathbf{H}(\mathbf{G}, \mathbf{G}) \leq \alpha \\ (\mu/\alpha) \left[\frac{1}{2}G^2 + \mathbf{V}(\mathbf{G}, \mathbf{G})\right] &, \mathbf{H}(\mathbf{G}, \mathbf{G}) < \alpha \end{cases}$$

- Kind of "pre-conditioning" of the equation of motion
- Allows for larger time step
- However, leads to much larger corrections on the ionic frequencies and no analytical formula can be used

CP & BO

Car-Parrinello vs Born-Oppenheimer dynamics

Born-Oppenheimer MD	Car-Parrinello MD		
Exactly on BO surface	Always slightly off BO surface		
$\Delta t pprox$ ionic time scales,	$\Delta t \ll$ ionic time scales,		
maximum time step possible	(much) shorter time step necessary		
Expensive minimisation	Orthogonalisation only,		
at each MD step	less expensive per MD step		
Not stable against deviations	Stable against deviations		
from BO surface	from BO surface		
⇒ Energy/temperature drift, thermostatting of ions necessary			
thermostatting or ions necessary			
Same machinery in zero-gap systems	Thermostatting of electrons		
	to prevent energy exchange		
Most applications in solids	Superior for liquids		

CP vs BO

STABILITY OF BO AND CP MD COMPARED

CPMD results for the 8 Si atom model system

Timings in cpu seconds and energy conservation in a.u. / ps for CP and BO Molecular dynamics simulations for 1 ps of trajectory on an IBM RS6000 / model 390 (Power2) workstation

Method	Time step	Convergence	Conservation (au/ps)	Time (s)
CP	5	-	6×10 ⁻⁸	3230
CP	7	_	1×10 7	2310
CP	10	_	3×10 ⁻⁷	1610
ВО	10	10^{-6}	1×10^{-6}	16590
во	50	10^{-6}	1×10 ⁻⁶	4130
во	100	10^{-6}	6×10 ⁻⁶	2250
во	100	10^{-5}	1×10^{-5}	1660
ВО	100	10^{-4}	1×10 ⁻³	1060

CP vs BO Stability

STABILITY OF BO AND CP MD COMPARED (cont'ed)

 Δt , convergence

Top:

solid line : CP, 5 a.u.; open circ. : CP, 10 a.u.;

filled squar. : BO, 10 a.u., 10^{-6} .

Middle:

open circl. : CP, 10 a.u.;

filled squar. : BO, 10 a.u., 10^{-6} ; filled trian. : BO, 100 a.u., 10^{-6} ; open diam. : BO, 100 a.u., 10^{-5} .

Bottom:

open circ. : CP, 10 a.u.;

open diam. : BO, 100 a.u., 10^{-5} ; dashed line : BO, 100 a.u., 10^{-4}

BO: Error in forces

The error in the forces depends on the convergence criterion set for the electronic structure in BOMD:

Largest element of electronic gradient

CP vs BO: Liquid water Stability

- ullet Effect of μ : Too large value leads to loss of adiabacity
- Thermostatting the electrons recovers the correct behaviour

CP vs BO: Liquid water

Results

• The radial distribution functions are correct and independent of the method used

Ehrenfest vs Car-Parrinello dynamics

Ehrenfest dynamics	Car-Parrinello MD		
Based on quantum (real)	Based on classical (fictitious)		
adiabatic separation	adiabatic separation		
Not exactly on BO surface	Always slightly off BO surface		
Deviations from BO surface	Stable against deviations		
accumulate, electrons must be	from BO surface		
quenched back onto BO surface			
At a clastropic time scales	$\Delta t \sim \text{oloctropic time scales}$		
$\Delta t pprox$ electronic time scales, very small time step need	$\Delta t \gg$ electronic time scales, larger time step possible		
very siman time step need			
Orthonormality rigorously preserved	Orthonormality must be imposed		
at no extra cost	using constraints		

Car-Parrinello method: Summary

- Molecular dynamics can be used to perform real-time dynamics in atomistic systems
- Verlet algorithm yields stable dynamics (in CPMD implemented algorithm velocity Verlet)
- Born-Oppenheimer dynamics: Maximum time step $\Delta t \approx 1$ fs (highest ionic frequency 2000 3000 cm⁻¹)
- Car-Parrinello method can yield very stable dynamical trajectories, provided the electrons and ions are adiabatically decoupled
- The method is best suited for *e. g.* liquids and large molecules with a wide electronic gap
- ullet Car-Parrinello dynamics: Maximum time step $\Delta t pprox 0.1$ fs
- The speed of the method is comparable or faster than using Born-Oppenheimer dynamics — and still more accurate (i. e. stable)
- ullet One has to be careful with the choice of $\mu!$