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Day 1



Welcome and introductions



Learning aims

To learn R
Syntax
Data types
Graphics
Basic programming (loops and stuff)

To learn basic statistics
Exploratory data analysis
Statistical testing
Liner modeling (regression, ANOVA)



Schedule

Day 1 
10-16 Basic R usage

Day 2
10-16 Descriptive statistics and graphics

Day 3
10-16 Statistical testing

Day 4
10-16 More advanced features of R 



Installing R

http://www.r-project.org



On Windows, in general



Downloading R I/V



Downloading R II/V



Downloading R III/V



Downloading R IV/V



Downloading R V/V



Installing



Exercise I



Installing on this course

On this course we using an easier setup, where we copy the 
already created R installation to each persons computer.
This is a version where certain settings have been slightly 
modified.
Go to http://www.csc.fi/english/csc/courses/archive/R2008s, and 
click on the link Download R 2.7.0. Save the file on Desktop.
Extract the zip-file to desktop (right-click on the file, and select 
Winzip -> Extract to here).
Go to folder R-2.7.0c/bin and right-click on file Rgui.exe. Select 
Create Shortcut.
Copy and paste the shortcut to Desktop.



Packages



What are packages?

R is built around packages.
R consist of a core (that already includes a number of packages)
and contributed packages programmed by user around the world.
Contributed packages add new functions that are not available in
the core (e.g., genomic analyses).
Contributed packages are distributed among several projects

CRAN (central R network)
Bioconductor (support for genomics)
OmegaHat (access to other software)

In computer terms, packages are ZIP-files that contain all that is 
needed for using the new functions.



How to get new packages?

The easiest way is to:
1. Packages -> Select repository
2. Packages -> Install packages

Select the closest mirror (Sweden probably)
You can also download the packages as ZIP-files.

Save the ZIP-file(s) into a convenient location, and without extracting them, 
select Packages -> Install from a local ZIP file.



How to access the functions in packages?

Before using any functions in the packages, you need to load the
packages in memory.
On the previous step packages were just installed on the 
computer, but they are not automatically taken into use.
To load a pcakage into memory

Packages -> Load Packages
Or as a command: library(rpart)

If you haven’s loaded a package before trying to access the 
functions contained in it, you’ll get an error message:

Error: could not find function "rpart"



Help facilities



HTML help

To invoke a built-in help browser, select Help->HTML help.
Command: help.start()

This should open a browser window with help topics:



A basic book



List of installed packages



Help for packages



Anatomy of a help file 1/2

Function {package}

General description

Command and it’s 
argument

Detailed description 
of arguments



Anatomy of a help file 2/2

Description of how 
function actually 
works

What function 
returns

Related functions

Examples, can be 
run from R by: 
example(mas5)



Search help



Search results



Other search possibilities I/II

Help -> search.r-project.org



Other search possibilities II/II

http://www.r-seek.org



Exercise II



Install packages and use help

1. Install the following package(s):
car (can be found from CRAN)

2. Load the library into memory

3. Consult the help files for the car package.
What does States contain?
What does function scatterplot do?

4. What packages are available for data analysis in epidemiology? 



Basic use and data import I



Interface

Normal text: 
black
User text: 
blue
Prompt: 
that where 
type the 
commands



R as a calculator

R can be used as a calculator.
You can just type the calculations on the prompt. After typing 
these, you should press Return to execute the calculation.

2+1 # add

2-1 # subtract

2*1 # multiply

2/1 # divide

2^2 # potency

Note: # is a comment mark, nothing after it on the same line is not 
executed
Normal rules of calculation apply:

2+2*3 # =8

(2+2)*3 # =12



Anatomy of functions or commands

To use a function in a package, the package needs to be loaded in 
memory. 
Command for this is library( ), for example: 

library(affy)

There are three parts in a command: 
The command - library
Brackets – ( )
Arguments inside brackets (these are not always present) - affy

Arguments modify or specify the commands
Command library() loads a library, but unless it is given an argument (name of 
the library) it doesn’t know what to load.

R is case sensitive!
library(affy) # works!

Library (affy) # fails

^



Mathematical functions

R contains many mathematical function, also.
log(10) # natural logarithm, 2.3

log2(8) # 3

exp(2.3) # 9.97

sin(10) # -0.54

sqrt(9) # squre root, 3

sum(v)

diff(v)



Comparisons

Is equal
==

Is larger than
>

Is larger than or equal to
>=

Smaller than or equal to
<=

Isnot equal to
!=

Examples
3==3 # TRUE
2!=3 # TRUE
2<=3 # TRUE



Logical operators

Basic operators are
& # and
| # or (press Alt Gr and < simultaneously)

Examples
2==3 | 3==3 # TRUE (if either is true then print TRUE)
2==3 & 3==3 # FALSE (another statement is FALSE, so ->FALSE)



Creating vectors I/III

So far, we’ve been applying the function on only one number at a 
time. 
Typically we would like to do the same operation for several 
number at the same time.

Taking a log2 of several numbers, for instance
First, we need to create a vector that holds those several 
numbers:

v<-c(1,2,3,4,5)
• Everything in R is an object
• Here, v is an object used for storing these 5 numbers
• <- is the operator that stores something
• c( ) is a command for creating a vector by typing values to be stored.



Naming objects
Never use command names as object names!
If you are unsure whether something is a command name, type it to 
the comman line first. If it gives an error message, you’re safe to use 
it.

data # not good
dat # good

Object names can’t start with a number
1a # not good
a1 # good

Never use special characters, such as å, ä, or ö in object names.
Object names are case sensitive, just like commands

A1 # object nro 1
a1 # object nro 2



Creating vectors II/III

Vectors can also be created using : notation, if the values are 
continous:

v <- c(1:5)
For creating a vector of three 1s, four 2s, and five 3s, there are 
several options:

v <- c(1,1,1,2,2,2,2,3,3,3,3,3)
Using rep( )

• v1<-rep(1,3) # Creates a vector of three ones
• v2<-rep(2,4)
• v3<-rep(3,5)
• v<-c(v1,v2,v3)

Putting the command together:
• v<-c(rep(1,2), rep(2,4), rep(3,5))



Creating vectors III/III

Let’s take a closer look at the last command:

v<-c(rep(1,2), rep(2,4), rep(3,5))

So you can nest commands, and that is very commonly done!
But nothing prevents you from breaking these nested commands 
down, and running them one by one

That’s what we did on the last slide

Creating individual vectors

Putting the three vector together



Applying functions to vectors

If you apply any of the previously mentioned functions to a vector, 
it will be applied seperately for every observation in that vector:

> log2(v)
[1] 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000
[7] 1.000000 1.584963 1.584963 1.584963 1.584963 1.584963

When applied to a vector, the lenght of the result is as long as the 
starting vector.
When a function is applied to a vector this way, the calculation is 
said to be vectorized.



Exercise III



Import Data + some calculations

A certain American car was followed through seven fill ups. The 
mileage was:

65311, 65624, 65908, 66219, 66499, 66821, 67145, 67447
1. Enter the data in R.
2. How many observations there are in the data (what is the R 

command)?
3. What is total distance driven during the follow up?
4. What are the fill up distances in kilometers (1 mile = 1.6 km)?
5. Use function diff() on the data. What does it tell you?
6. What is the longest distance between two fill ups (search for a 

appropriate command from the help)?



Basic use and data import II



Factors

In vectors you have a list of values. Those can be numbers or 
strings.
Factors are a different data type. They are used for handling 
categorical variable, e.g., the ones that are nominal or ordered
categorical variables.

Instead of simply having values, these contain levels (for that categorical 
variable)

Examples:
Male,female
Featus, baby, toddler, kid, teenager, young adult, middle-aged, senior, aged



Creating factors I/III

Factors can be created from vectors, or from a scratch.
Here I present only the route from vectors.
So, let’s create a vector of numerical values (1=male, 2=female):

v<-c(1,2,1,1,1,2,2,2,1,2,1)
To convert the vector to factor, you need to type:

f<-as.factor(v)
Check what R did:

> f
[1] 1 2 1 1 1 2 2 2 1 2 1
Levels: 1 2

f is now a vector with two levels (1 and 2).



Creating factors II/III

Levels of factors can also be labeled. This makes using them in 
statistical testing much easier.

f<-factor(v, labels=c(”male”, ”female”))

> f
[1] male   female male   male   male   female female female male   female 

male  
Levels: male female

Which order do you give the levels then?
Check how the values are printed in

• unique(sort(v)) # 1 2

A string vector!



Creating factors III/III

Levels of a factor can also be ordered.
These are similar to the unordered factors, but statistical tests treat them 
quite differently.

To create an ordered factor, add argument ordered=T:
f<-factor(v, labels=c(”male”, ”female”), ordered=T)

> f
[1] male   female male   male   male   female female female male   female 

male  
Levels: male < female

• Note the < sign! That identifies the factor as ordered.



Applying functions to factors

You can’t calculate, for example, log2 of every observation is a 
factor.

> log2(f)
Error in Math.factor(f) : log2 not meaningful for factors

There are separate function for manipulating factors, such as:
> table(f)
f

male female 
6      5 



Data frames

Data frames are, well, tables (like in any spreadsheet program).
In data frames variables are typically in the columns, and cases in 
the rows.
Columns can have mixed types of data; some can contain 
numeric, yet others text

If all columns would contain only character or numerica data, then the data 
can also be saved in a matrix (those are faster to operate on).

V1   V2   V3

C1 1    0    one

C2 2    1    two

C3 3    0    three



Data frames

From previous slides we have two variable, v and f.
To make a data frame that contains both of these variables, one 
can use command:

d<-data.frame(v, f)

To bind the two variables into a table, one could also use
d2<-cbind(v, f)

The difference between these methods is that the first creates a
data frame and the second one a matrix.



Data frames and data import

Usually when you import a data set in R, you read it in a data 
frame.
This is assuming your data is in a table format.
One can input the data in a table with some spreadsheet, but it 
should be saved as tab-delimited text file to make importing easy.
This text file should not contain are (unmatched) quotation marks 
(’ or ”).
It is best to fill in all empty fields with some value (not leave them 
blank in the spreadsheet).

Missing values (no measument): NA
Small values: 0?



Starting the work with R (browse to a folder)



Importing a tabular file

Simply type:
dat<-read.table(”filename”, header=T, sep=”\t”, row.names=1)

dat is the name of tyhe object the data is saved in R
<- is the assignment operator
read.table( ) is the command that read in tabular files
It needs to get a filename, complete with the extension (Windows
hidesthose by default)
If every column contains a title, then argument should be header=TRUE
(or header=T), otherwise header=F.
If the file is tab-delimited (there is a tab between every column), then 
sep=”\t”. Other options are, e.g., sep=”,” and sep=” ”.
If every case (row) has it’s own unambiquous (non-repeating) title, and 
the first column of the file contains these row names, then 
row.names=1, otherwise the argument should be deleted.



Importing data from web

Code can be downloaded and executed from the web with the 
command source( )

source("http://koti.mbnet.fi/tuimala/tiedostot/Rcourse_data.txt")

Files can be downloaded by download.file( )
download.file("http://koti.mbnet.fi/tuimala/tiedostot/rairuoho.txt", 
destfile=“rairuoho.txt”)



Checking the objects and memory

To see what objects are in memory:
ls( )

Length of a vector or factor
length(v)

Dimentions of a data frame or matrix:
dim(d)

Column and row names of a data frame or matrix
col.names(d)

row.names(d)



Exercise IV



Import tabular data

Download the file from the Internet:
http://koti.mbnet.fi/tuimala/tiedostot/rairuoho.txt

Put the file on desktop.
See how the data looks like (use Excel and Wordpad):

Are there columns headers?
What is the separator between the columns (space, tab, etc)?
Are there row names in the data?

Now you should know what arguments to specify in the 
read.table() command, so use it for reading in the data.



Import the rest of the data

I have prepared several datasets for this course.
These can be downloaded from the web:

source("http://koti.mbnet.fi/tuimala/tiedostot/Rcourse_data.txt")

The datasets are written as R commands, so the command above 
downloads and runs this command file.
Check what object were created in R memory?
Run the command showMetaData().

This should show some information about the datasets.
Note that the command is written for this course only (by me), and can’t be 
used in R in general.



Object type conversions



Converting from a data type to another

Certain data types can easily be converted to other data types.
Vector <-> factor
Data frame <-> matrix
Data frame <-> vector / factor
Matrix <-> vector / factor

Typical need for converting a vector to a factor is when 
performing some statistical tests.
Data frame might need to be converted into a matrix (or vice 
versa) when running some statistical tests or when plotting the 
data.
Several vectors can be cleaved from a data frame or a matrix.
Several vectors can be combined to a data frame or a matrix.



Converting from a vector to a factor

To convert a vector to factor, do 
v2<-as.factor(v, labels=c(”Jan”, ”Feb”))

• Unordered factor
v2<-factor(v, ordered=T, labels=c(”Jan”, ”Feb”))

• Ordered factor
Difference between ordered and unorder factors lies in the detail 
that if the factor is unordered, the values are automatically 
ordered in plots and statistical test according to lexical scoping 
(alphabetically).
If the factor is ordered, then the levels have an explicit meaning in 
the specified order, for example, January becomes before 
February. 



Extracting a vector from a data frame I/III

As individual variables are stored 
in the columns of a data frame, it 
is typically of interest to be able 
to extract these column from a 
data frame.
Columns can be addressed using 
their names or their position 
(calculated from left to right)
Rows can be accessed similarly 
to columns.
Remember how to check the 
names?

row.names()

col.names()

115Max

84Vidal

373Panu

122Dario

311Jarno

FebJan



Extracting a vector from a data frame II/III

This data frame is stored in an 
object called dat.
The first column is named Jan, so 
we can get the values in it by 
notation:

dat$Jan
Name of the data frame + $ + Name 
of the column
There are no brackets, so there is 
”no” command: we are accessing a 
data frame.

115Max

84Vidal

373Panu

122Dario

311Jarno

FebJan



Extracting a vector from a data frame III/III

This data frame is stored in an object 
called dat.
To get the first column, one can also 
point to it with the notation:

dat[,1] # 1, 2, 3, 4, 5
This is called a subscript.
Subscript consists of square brackets.
Inside the bracket there are at least 
one number.
The number before a comma points 
rows, the number after the comma to 
columns
The first row would be extracted by:

dat[1,] # 1, 31
And the value on the first row of the 
first column:

Dat[1,1] # 1
Again, no brackets -> no commands, 
so we are accessing an object

115Max

84Vidal

373Panu

122Dario

311Jarno

FebJan



Extracting several columns of rows

One can want to extract several 
columns or rows from a table.
This can be accomplished using 
a vector instead of a single 
number.
For example, to get the rows 1 
and 3 from the previous table:

dat[c(1,3),]
Or create the vector first, and 
extract after that:

v<-c(1,3) 
dat[v,]

These should give you:

373Panu

311Jarno

FebJan



Deleting a column or a row

One can delete a row or a column 
(or several of them using a vecter 
in the place of number) from a 
data frame by using a negative 
subscript:

dat[-1,]
dat[-c(1,3),] 115Max

84Vidal

373Panu

122Dario

FebJan

115Max
84Vidal
122Dario
FebJan



Selecting a subset by some variable

How to get those rowsfor whoch 
the value for February is below 
20?
Function which gives on index of 
the rows:

which(dat$Feb<=20)

[1] 2 4 5

To get the rows, use then index 
as a subscript:

i<-which(dat$Feb<=20)

dat[i,]

115Max

84Vidal

373Panu

122Dario

311Jarno

FebJan



Writing data to disk



Using sink

Sink prints everything you would normally see on the screen to a
file.

Usage:
sink(”output.txt”) # Opens a file

print(”Just testing!”) # Commands

sink() # Closes the file



Using write.table

Writing a data frame or a matrix to disk is rather straight-forward.
Command write.table()

Usage:
write.table(dat, ”dat.txt”, sep=”\t”, quote=F, 
row.names=T, col.names=T)

• dat name of the table in R
• ”dat.txt” name of the file on disk
• sep=”\t” use tabs to separate columns
• quote=F don’t quote anything, not even text
• row.names=T write out row names (or F if there are no row names)
• col.names=T write out column names



Quitting R



Quitting R

Command
q()

Asks whether to save workspace image or not. 
Answering yes would save all objects on disk in a file .RData.
Simultaneously all the commands given in this session are saved in a file 
.RHistory.

These workspace files can be later-on loaded back into memory 
from the File-menu (Load workspace and Load history).



Exercise V



Extracting columns and rows I/II

What is the size of the Students dataset (number or rows and 
columns)?
What are column names for the Students dataset?
Extract the column containing data for population. How many 
students are from Tampere?
Extract the tenth row of the dataset. What is the shoesize of this 
person?
Extract the rows 25-29. What is the gender of these persons?
Extract from the data only those females who from Helsinki. How 
many observations (rows) are you left?
How many males are from Kuopio and Tampere?



Extracting columns and rows II/II

Examine Hygrometer dataset. Notice that the measuments were 
taken on two different dates (day1 and day2 – each hygrometer 
was read before and after a few rainy days).
Modify the dataset so that the order of the measurements is 
retained, but the measurements for the day1 and day2 are in two 
separate column in the same data frame.
We will later on use this data frame for running certain statistical 
tests (e.g., paired t-test) that require the data in this format.



Recoding variables



Making new variables I/

There are several ways to recode variables in R.
One way to recode values is to use command ifelse().

ifelse(Students$shoesize<=40, ”small”, ”large”)

1. Comparison: is shoesize smaller than 40
2. If comparison is true, return ”small”
3. If comparison is false, return ”large”

• You can combine several comparisons with logical operators
• ifelse((Students$shoesize<=37 & 

Students$gender=="female"), "small", "large")



Making new variables II/

If the coding needs to be done in several steps (e.g. we want to
assign shoesizes to four classes), a better approach could be the 
following.

s<-Students$shoesize

s[Students$shoesize<=37]<-"minuscule"

s[Students$shoesize>37 & Students$shoesize<=39]<-"small"

s[Students$shoesize>39 & Students$shoesize<=43]<-"medium"

s[Students$shoesize>43]<-"large”

At each step we select the only the observations that fulfill the 
comparsion. 

At the first step, all students who have a shoesize less than or equal to 37 are 
coded as minuscule.
At the second step, all students having shoesize larger than 37 but smaller than 
or equal to 39 are coded as small.
And so forth.



Exercise VI



Making new variables

Make a new vector of the shoesize measurements (extract that 
column from the data).
Code the shoesize as it was done on the previous slides (in the 
range minuscule…large).
Turn this character vector into a factor. Make the factor ordered so 
that the order of the factor levels is according to the size 
(minuscule, small, medium, large).
Add this new factor to the Students dataset (make a new data 
frame).



Day 2



Topics

Data exploration
Graphics in R
Wrap-up of the first half of the course



Exploration



Exploration – first step of analysis

Usually the first step of a data analysis is graphical data 
exploration
The most important aim is to get an overview of the 
dataset

• Where is data centered?
• How is the data spread (symmetric, skewed…)?
• Any outliers?
• Are the variables normally distributed?
• How are the relationships between variables:

• Between dependent and independents
• Between independents

Graphical exploration complements descriptive 
statistics



Variable types

Continuous (vectors in R)
• Height
• Age
• Degrees in centigrade

Categorical (factors in R)
• Make of a car
• Gender
• Color of the eyes



Exploration – methods I/II

Single continuous variable
• Plots: boxplot, histogram (density plot, stem-and-leaf), normal 

probability plot, stripchart
• Descriptives: mean, median, standard deviation, fivenum 

summary
Single categorical variable

• Plots: contingency table, stripchart, barplot
• Descriptives: mode, contingency table

Two continuous variables
• Plots: scatterplot
• Descriptives: individually, same as for a single variable

Two categorical variables
• Plots: contingency table, mosaic plot
• Descriptives: individually, same as for a single variable



Exploration – methods II/II

One continous, one categorical variable
• Plot: boxplot, histogram, but for each category separately
• Descriptives: mean, median, sd…, for each category 

separately
Several continous and / or categorical variables

• Plots: pairwise scatterplot, mosaic plot
• Descriptives: as for continuous or categorical variables



Descriptive statistics



Mean

Mean = sum of all values / the number of values



Standard deviation and variance

SD = each observation’s squared difference from the 
mean divided by the number of observation minus one. 

• Has the same unit as the original variable

Var = SD*SD = SD^2



Normal distribution I/III
Some measurements 
are normally 
distributed in the real-
world

• Heigth
• Weight

Means of observations 
taken from otherwise 
distributed data are 
also normally 
distributed
Hence, many 
desciptives, and 
statistical tests have 
been deviced on the 
assumption of 
normality



Normal distribution II/III

Normal distribution are described by two statistics:
• Mean
• Standard deviation

These two are enough to tell:
• Where is the peak (center) of the distribution located
• How the data are spread around this peak



Normal distribution III/III



Quartiles

1st quartile(25%), Median (50%), and 3rd quartile (75%)
1  2  3  4  5  6  7  8  9 

Fivenum summary:
• Minimum (1), 1st Quartile (3), Medium (5), 3rd Quartile (7), 

maximum (9)

Median 75% Qu75% Qu

Interquartile range (IQR)



What if distribution is skewed or there are 
outliers/deviant observation?

Use nonparametric alternatives to descriptives
• Median instead of mean
• Inter-quartile range instead of standard deviation



Summary of a continuous variable I/II

summary( )
• x<-rnorm(100)
• summary(x)

Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.005561 0.079430 0.202900 0.310300 0.401000 1.677000 

median(x)
mean(x)
min(x)
max(x)
quantile(x, probs=c(0.25, 0.75))

• 1st and 3rd quartiles



Summary of a continuous variable II/II

IQR(x) # inter-quartile range
mad(x) # robust alternative to IQR
sd(x) # standard deviation
var(x) # variance

• sd(x)^2
table( ) # Makes a table (categ. var.)



Outliers and missing values



What are these outliers then?

Outliers
• Technical errors

• The measurement is too high, because the machinery 
failed

• Coding errors
• Male = 0, Female=1
• Data has some values coded with 2

Deviant observations
• Measurements that are somehow largely different from others, 

but can’t be treated as outliers
• If the observation is not definitely an outlier, better treat it as a 

deviant observation, and keep it in the data



Outliers

gender

0  1  2 

11  8  1 

What are those with gender coded as 2?
Probably a typing error

• What if they are missign values (gender is unknown)?
If a typing error, should be checked from the original 
data
If a missing value, should be coded as missing value

• We will come to this shortly



Deviant observations



Missing values

Missing values are observation that really are missing a 
value

• Some samples were not measured during the experiment
• Some students did not answer to certain questions on the 

feedback from
If the sample was measured, but the results was very 
low or not detectable, it should be coded with a small 
value (half the detection limit, or zero, or something)
So, no measurement and measurement, but a small 
result, should be coded separately



Missing values in R I/II

In R missing values are coded with NA
• NA = not available

Although it is worth treating missing measurements as 
missing values, they tend to interfera with the analysis

• Many graphical, descriptive, and testing procedure fail, if there 
are missing values in the data

An example
• x<-c(NA, rnorm(10))
• mean(x)
• [1] NA



Missing values in R II/II

The most simple way to treat missing values is to delete 
all cases (rows) that contain at least one missing value.
For vector this means just removing the missing 
values:

• x2<-na.omit(x)
• mean(x2)
• [1] -0.1692371

There are other ways to treat missing values, such as 
imputation, where the missing values are recoded with, 
e.g., the mean of the continuous variable, or with the 
most common observation, if the variable is 
categorical.

• x2[is.na(x2)]<-mean(na.omit(x))



Graphical methods



Continuous variables



Boxplot
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0
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Link between quartiles and boxplot



Histogram I/II
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Histogram II/II
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Link between histogram and boxplot



Stem-and-leaf plot

The decimal point is at the |

-2 | 90
-1 | 88876664322221000
-0 | 998886665555544444333322222211110
0 | 001111111112222334445667778888899
1 | 00112334455569
2 | 3



Scatterplot



QQ-plot

QQ-plot is a plot that can be used for graphically testing 
whether a variable is normally distributed.

• Normal distribution is an assumption made by many statistical 
procedures.



Pairwise scatterplot



Categorical variables



Stripchart



Barchart



Mosaicplot



Contingency table

January February March April

Friday          4        5     3     4

Monday          4        4     4     5

Thursday        4        4     4     4

Tuesday         5        4     4     4

Wednesday       5        4     4     4



Exercise VII



Checking distributions

Are these data normally distributed?



Checking distributions

Are these data normally distributed?



Checking distributions

Are these data normally distributed?



UCB admissions

Claim: UCB discriminates against females.
• I.e., More females than males are rejected, and don’t get 

admitted to the university. 
• Does UCB discriminate?



Claim: UCB discriminates against females.
• Does it?
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Graphics in R



Basic idea

All graphs in R are displayed 
on a graphical device.
If no device is open when the 
plotting command is called, a 
new one is opened, and the 
image is displayed in it.
Graphics device is simply a 
new window that displayes the 
graphic.
Graphic device can also be a 
file where the plot is written.

• Open it
• Make the plot
• Close it



Traditional graphics commands is R

High level graphical commands create the plot
• plot( ) # Scatter plot, and general plotting
• hist( ) # Histogram
• stem( ) # Stem-and-leaf
• boxplot( ) # Boxplot
• qqnorm( ) # Normal probability plot
• mosaicplot( ) # Mosaic plot

Low level graphical commands add to the plot
• points( ) # Add points
• lines( ) # Add lines
• text( ) # Add text
• abline( ) # Add lines
• legend( ) # Add legend

Most command accept also additional graphical 
parameters

• par( ) # Set parameters for plotting



Graphical parameters in R

par( )
• cex # font size
• col # color of plotting symbols
• lty # line type
• lwd # line width
• mar # inner margins
• mfrow # splits plotting area (mult. figs. per page)
• oma # outer margins
• pch # plotting symbol
• xlim # min and max of X axis range
• ylim # min and max of Y axis range



A few worked examples



Drawing a scatterplot in R I/V

Let’s generate some data
• x<-rnorm(100)
• y<-rpois(100, 10)
• g<-c(rep(”horse”, 50), rep(”hound”,50))

Simple scatter plot
• plot(x, y)



Adding a title and axis labels II/V

plot(x, y, main=”Horses and hounds”, 
xlab=”Performance”, ylab=”Races”)



Drawing a scatterplot in R III/V

Coloring spots according to the group (horse or hound) 
they belong to

• cols<-ifelse(g==”horse”, ”Black”, ”Red”)
• plot(x, y, main=”Horses and hounds”, xlab=”Performance”, 

ylab=”Races”, col=cols)



Drawing a scatterplot in R IV/V

Changing the plotting symbol
• plot(x, y, main=”Horses and hounds”, xlab=”Performance”, 

ylab=”Races”, col=cols, pch=20)
• plot(x, y, main=”Horses and hounds”, xlab=”Performance”, 

ylab=”Races”, col=cols, pch=”+”)



Drawing a scatterplot in R V/V

Saving the image
• Menu: File -> Save As -> JPEG / BMP / PDF / postscript

Directing the plotting to a file
• pdf(”hnh.pdf”)
• plot(x, y, main=”Horses and hounds”, xlab=”Performance”, 

ylab=”Races”, col=cols, pch=20)
• dev.off()

Setting the size of the image in inches
• pdf(”hnh.pdf”, width=7, height=7)
• plot(x, y, main=”Horses and hounds”, xlab=”Performance”, 

ylab=”Races”, col=cols, pch=20)
• dev.off()



Drawing a box plot I/III

x<-rnorm(100) # x is a vector
boxplot(x) # makes a boxplot



Drawing a boxplot II/III

# x is a matrix
x<-matrix(ncol=4, nrow=100, data=rnorm(400))
boxplot(x) # makes a boxplot



Drawing a boxplot III/III

# x is a matrix
x<-matrix(ncol=4, nrow=100, data=rnorm(400))
# x is converted a data frame first
x<-as.data.frame(x)
# makes a boxplot
boxplot(as.data.frame(x))



Drawing a mosaic plot I/II

Two or more categorical variables
First make a contingency table using table( ).
Then plot the table using mosaicplot( ).

• For example:
> tab<-table(s$gender, s$population)

helsinki kuopio tampere

male          4      4       0

female        1      1       0

> mosaicplot(tab)



Drawing a mosaic plot II/II

Adding title
> mosaicplot(tab, main=”Sample of Students data”)

Coloring by residuals
> mosaicplot(tab, main=”Sample of Students data”, 

shade=T)



Putting several graphs on the same page I/II

# 2*2 figures on the same page
# Setting graphical parameters
par(mfrow=c(2,2), xlim=c(-3,3))
# plotting
# Every box plot has a title
boxplot(x[,1], main="1. column")
boxplot(x[,2], main="2. column")
boxplot(x[,3], main="3. column")
boxplot(x[,4], main="4. column")



Putting several graphs on the same page II/II

# 2*2 figures on the same page
# Setting graphical parameters
par(mfrow=c(2,2), xlim=c(-3,3))
# plotting
# Every box plot has a title and a same range
boxplot(x[,1], main="1. column", ylim=c(-3,3))
boxplot(x[,2], main="2. column", ylim=c(-3,3))
boxplot(x[,3], main="3. column", ylim=c(-3,3))
boxplot(x[,4], main="4. column", ylim=c(-3,3))



Trellis graphics



Trellis graphics

Multipanel functions for displaying data



Trellis graphics commands

High level commands:
• bwplot( ) # boxplot
• densityplot( ) # ”smoothed histogram”
• histogram( ) # histogram
• xyplot( ) # scatter plot

Traditional graphics take arguments as
• plot(x, y) # scatter plot

Treelis graphics take arguments as a formula
• plot(y~x) # scatter plot
• In formula the y (what is predicted) is on the left, then comed 

tilde, and then the predictors



Trellis scatter plot

Let’s generate some data
• y<-rnorm(100)
• x<-rgamma(100, 1, 3)
• g<-c(rep(1,50), rep(2,50))

A simple scatter plot
• library(lattice)
• xyplot(y~x)

Split according to g
• xyplot(y~x | g)



Graphics systems in R

Traditional graphics
• Package graphics

Grid graphics
• Package grid

Other systems (built on grid)
• Package lattice (Trellis graphics)
• Package ggplot2



Exercise VII



Descriptive statistics

Examine the variable height in the Students dataset
• What is the mean of height?
• What is standard deviation of height?
• What are minimum, maximum and range for height?
• What is the difference of mean heights between males and 

females?
• What is median of height?
• What is inter-quartile range of height?

Examine gender and population
• How many females are there from helsinki?
• Many many times more females there are from Helsinki than 

males from Helsinki? 



Graphical exploration
Examine the variable height in the Students dataset

• Make a boxplot for all data
• Check the help file for boxplot to figure out how to split it into several distinct boxplots

• Make a boxplot to compare males and females
• Make a boxplot to compare different population

• In your opinion, is the height normally distributed?
• You can also use qqnorm( ) or hist( ) to get more insight to this.

Plot a scatterplot of height against shoesize
• Are there any obviously deviant values?
• Code all males with ”o”, and all females with ”+” (hint: create a new vector using 

command ifelse())
• Make a scatterplot of height against shoesize using o/+ (the vector you just 

created) as the plotting symbol
• Is there a clear distinction between males and females?

• Create the same plot again, but additionally coding populations with different colors.
• Start with cols<-as.vector(Students$population)
• Assign a different color to every population in this cols vector

• Why there are no females from Kuopio visible in the plot?
• Are there any females from Kuopio in the dataset?



Exercise VIII



Wrap-up

Go through the lecture slides, exercises and your own 
notes.
Discuss the things that were left unclear with your pair.
Write the possible questions or requirements for further 
clarifications on a piece paper. A stack of paper is 
circulating in the class.



Day 3



Today’s topics

Philosophy of statistical testing
Tests

One-group
• T-test (one-sample t-test)
• Chi square

Two-groups
• T-test (two-sample t-test, paired t-test)
• F-test
• Chi square

More than two groups
• Analysis of variance (ANOVA)

Correlation
Bivariate linear regression



Philosophy of statistical testing



Basic questions

Assume that we have collected sample from two groups, say, 
cancer patients and their healthy controls.
Statistical testing tries answer the question

Can the observed difference (in certain variable) between the groups be 
explained by chance alone?
How significant is this difference?

Statistical testing can also be viewed as hypothesis testing, where 
two different hypothesis are compared

Hypothesis 0: There is no difference between the groups
Hypothesis 1: There is a difference between the groups



Statistical significance v. practical 
significance

Comparing two groups of workers exposed to styrene, we found a 
mean difference of 0.000001 grams.

The result is statistically significant.
Is it of practical significance? No. The difference is too small to have effect 
on the workers health.

Is an epidemiological case-control study those who drank tap 
water from Helsinki area were 1.01X more prone to get cancers 
than their control from the metropolitan area.

The result is not statistically significant.
Is the result of practical significance? Yes. There are 500000 individuals 
living in Helsinki. As a quick estimate 1.01*500000-500000 would mean 
5000 new cases of cancer per year.
Had the effect also been statistically significant, it would have strenghtened 
it, but changed the conclusions.



Phases of testing

Select an appropriate statistical test
Compare means of groups?
Compare variances of groups?
Compare the distributions
Model the relationship between two variables?

Calculate the test statistic and p-value
These are automated by the computer

Draw conclusions
This is not automated by the computer!



How to select the test?

There are two types of test
Parameteric

• Assume that the variable is normally distributed 
Non-parametric

• Does not assume that the variable is normally distributed
• But, can make other restricting assumptions!

Only parametric ones are used on this course
What kind of hypothesis you want to test?

Is the prime interest in the difference in means?
• Are men taller than women

Can the difference in variance be of interest?
• Is the height of men more variable than the height of women?

Do you want to predict the variable with another variable
• Can a persons height be predicted from shoesize?



Mean and variance, an example 
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Different tests

Compare the means of groups
T-test
ANOVA

Compare the variability of groups
F-test

Compare the distribution of categorical variables
Chi Square

Predict a variable with another variable
(Linear) Regression



Tests to compare group means



One-sample t-test I/XI

Comparison of the mean of the data againts some known value of 
group mean.

Is the mean of height of the sampled students different from the population 
mean (we known the population mean to be 167 cm)?

This simple test will act a primer to all other tests, since deep 
down they have the same principles:

Calculate a test statistic (here, T)
Calculate the degrees of freedom
Compare the test statistic to a distribution (here, T)
Get the p-value



Normal distribution I/III



One-sample t-test II/XI

The idea behind the t-test is the 
following

Transform the variable of interest to 
follow a t-distribution.

• T-distribution is very similar to a 
normal distribution, but with a small 
degrees of freedom it’s tails are 
fatter.

• Degrees of freedom is the 
parameter that defines the shape 
of the t-distribution.

Compare the calculated t statistic to 
standard t distribution with the certain 
degrees of freedom.
If the test statistic falls in the area 
where less than 5% of the values in the 
standard distribution are, the result is 
significant with p-value of 0.05.



One-sample t-test III/XI

What are degrees of freedom?
Assume we know three values (1,2,3) and the mean of the values (2). 
To calculate the degrees of freedom, we have to think how many of those 
values can we erase, and still be able to say what it was. Note that we have 
the mean to help as here.
In this case, one can erase one of the values, and still be able to say what it 
was. 

• If we erase number 1, we have to values (2,3) left. Since we know the 
mean (2), we can say with confidence that the one value that was
removed was 1.

• The same goes for all other values as well.
Since one value could be erased, we say that the degrees of freedom is 2 
(equal to the number of observations left).



One-sample t-test IV/XI

So, how do we get the test statistic then?
Say we have five observations of height (160, 170, 172, 174, 181) 
The mean height of popultion is 167
We first calculate a mean of the orservations, that’s 171.4
Then we calculate the standard deviation, that’s 7.6
Last, we plug these into the formula:

Using the numbers we just calculated that becomes:
• T = (171.4 – 167) / (7.6 / 2.24) = 1.30

Last, the value of T is compared to a table of critical values, where we can 
see, that T = 1.30 with df = 5-1 = 4 is not statistically significant

• We don’t use a table here, but R (see the next slide)



One-sample t-test V/XI

> height<-c(160, 170, 172, 174, 180)

> t.test(height, mu=167)

One Sample t-test

data:  s 

t = 1.2941, df = 4, p-value = 0.2653

alternative hypothesis: true mean is not equal to 167 

95 percent confidence interval:

161.9601 180.8399 

sample estimates:

mean of x 

171.4 



One-sample t-test VI/XI

What is that p-value anyway?
P-value is a risk of saying that there is a difference between the groups 
means when there actually isn’t.
So, if there is a difference in heights, the p-value should be small, and there 
is not any difference, then it should be high.
Traditionally p-values were coded with three stars:

• 0.05 *
• 0.01 **
• 0.001 ***

Nowadays it’s more customary to report the p-value as such.
How to interpret the p-value?

If the p-value is less than 0.05 then the test usually said to be statistically 
significant.

• This cut-off is made from the top of one’s head, but it is often used, 
purely on traditional basis.



One-sample t-test VII/XI

What happens, if the difference remains at the same level, but we 
add more observations?

With 10 observations:
• t = 3.6565, df = 9, p-value = 0.005264

With 20 observations:
• t = 2.474, df = 19, p-value = 0.02296

With 100 observations:
• t = 6.6407, df = 99, p-value = 1.696e-09



One-sample t-test VIII/XI

Pay attention to the degrees of freedom!

One Sample t-test

data:  s 

t = 1.2941, df = 4, p-value = 0.2653

alternative hypothesis: true mean is not equal to 167 

95 percent confidence interval:

161.9601 180.8399 

sample estimates:

mean of x 

171.4 

Here we had 5 observations, so the degrees of freedom should be 
4, as they are.

If they weren’t, then something went wrong, and you should check your 
procedures.



One-sample t-test IX/XI

What about the confidence interval?
One Sample t-test

data:  s 

t = 1.2941, df = 4, p-value = 0.2653

alternative hypothesis: true mean is not equal to 167 

95 percent confidence interval:

161.9601 180.8399 

sample estimates:

mean of x 

171.4 

Confidence intervals gives a range of values. The true mean 
estimated from the sample is in this range with 95% probability.

If you sample the same population again 100 times, the true mean should 
fall into this range about 95% of the time.



One-sample t-test X/XI

How do you calculate a confidence interval?
We use normal distribution (or t-distribution) for calculations.
Using the normal distribution, 95% of the values are in the range of +/- 1.96 
standard deviations from the mean. 
Since we want the estimate of the mean to be in this range, we use that 
1.96 for calculations.
First calculate a standard error (standard deviation of the estimated mean)

• SE = SD / sqrt(n) =  7.6 / 3.4 = 2.235
The positive confidence interval is then

• mean + 1.96*SE = 171.4 + 1.96 * 2.235 = 177.61
And the negative confidence interval is

• mean - 1.96*SE = 171.4 - 1.96 * 2.235 = 167.01
These values are not equal to the ones given in the t-test output 
from R. The reason is that these were calculated in a slightly 
different way (using normal distribution instead of t distribution)



One-sample t-test XI/XI
Calculating the correct confidence interval by hand in R using the 
t distribution

First check the correct quantile from the t-distribution
• Two-tailed test, so should 0.975
• qt(0.975, df=4) # 2.776445

The calculate the standard error
• sd(height) / sqrt(5) # 3.4

Calculate the positive confidence interval
• 171.4 + 2.776445 * 3.4 # 180.8399

Calculate the negative confidence interval
• 171.4 - 2.776445 * 3.4 # 161.9601

Now these are the same values as output by t.test( ) in R.
Note that the confidence intervals calculated on the basis of t-
distribution are slightly wider than those based on the normal 
distribution.

That’s how it should be.



Normal or t distribution
Two-tailed test:

Both ends taken into 
account (5% of the 
values are in both 
ends)
In the two-tailed test, 
the cut-off point for 
quantile from the 
distribution is 0.975

One-tailed test:
Only one end taken 
into account
The quantile is 0.95.



Exercise IX



T-test and height

Compare the mean height of the students to the known mean 
height of Finnish population (167 cm) using the one-sample t-test.

Is there a significant difference?
Are the bioinformatics student in average longer than the Finnish population

• What might explain the situation?



Tests to compare group variances



F-test I/IV

F-test is used for comparing variances of two groups.
More generally F-test is any test that uses F distribution.

Hypothesis are usually:
H0: Var1 = Var2
H1: Var1 > Var2

Test statistic is the larger of
Var1 / Var2
Var2 / Var1

The stronger the ratio deviates from 1, the stronger the evidence 
for unequal variances is.
Degrees of freedom are calculated as for two-sample t-test.



F-test II/IV

F-distribution is 
defined by two 
degrees of 
freedom.



F-test III/IV

> x<-rnorm(10, mean=0, sd=1)

> y<-rnorm(10, mean=3, sd=1)

F test to compare two variances

data:  x and y 

F = 0.7891, num df = 9, denom df = 9, p-value = 0.73

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval:

0.1960066 3.1769977 

sample estimates:

ratio of variances 

0.7891213 



F-test IV/IV

F-test can be used prior to t-test to check whether the variances of 
the groups are equal, and then to adjust the test accordingly. 
It is safe to use setting unequal variance in every situation, but the 
test is more powerful (finds statistically significant difference 
more often) if the correct setting is used.



Exercise X



F-test

Compare variance of heights and shoesizes between
Males and females
Kuopio and Helsinki



Tests to compare group means



Two-sample t-test

Two-sample t-test compares means of two groups.
The idea is the same as in the one-sample t-test.

First we calculate the difference in group means.
Then we divide it by the standard error.

• There are different ways to estimate the standard error depending on 
whether the variances in the groups can be assumed to be equal or 
unequal.

Thus, we get the test statistic, and we conclude testing as with one-sample 
t-test.



Two-sample t-test in R

> x<-rnorm(10, mean=0, sd=1)
> y<-rnorm(10, mean=3, sd=1)
> t.test(x, y)

Welch Two Sample t-test

data:  x and y 
t = -10.7387, df = 17.753, p-value = 3.416e-09
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
-4.217709 -2.836288 
sample estimates:
mean of x  mean of y 
-0.3181124  3.2088861 
> t.test(x, y, var.equal=T)

Two Sample t-test

data:  x and y 
t = -10.7387, df = 18, p-value = 2.95e-09
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
-4.217021 -2.836976 
sample estimates:
mean of x  mean of y 
-0.3181124  3.2088861 



Note on degreed of freedom

Note that in the two-sample test assuming equal variances, the 
degrees of freedom are calculated as a sum of

Number of observation in group A -1
Number of observation in group B -1

So the df should always two less than the number of observations
in the whole data set.



Exercise XI



Two-sample t-test

Compare mean heights and shoesizes between
Males and females
Kuopio and helsinki

When running the t-test, taken into account the results from the 
Exercise X (F-test), apply a suitable form of t-test.



Paired t-test

Paired t-test is applied in situations where there is a paired 
setting.

The samples were measured before and after some treatment.
The demodata Hygrometer contains paired data

There are two observations per every hygrometer.
Each one of them was read before and after a longer rainy period.
Note that after preprocessing done on the first day, the data are now in two 
different columns is R. The order of the hygrometers is exactly the same in 
both columns, otherwise the pairing would be meaningless.

Paired t-test equal running a one-sample t-test on the differences 
between the two observations.

Subtract the observation for hygrometer 1 on day 1 from the observation for 
hygrometer 1 on day 2.
Do this for all hygrometer, and run a one-sample t-test on these differences.



Paired t-test in R

> x<-rnorm(10, mean=10, sd=1)

> y<-x+rnorm(10, mean=0, sd=1)

> t.test(x, y, paired=T)

Paired t-test

data:  x and y 

t = 0.5283, df = 9, p-value = 0.6101

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval:

-0.5609109  0.9026993 

sample estimates:

mean of the differences 

0.1708942 



Running the paired t-test by hand

> dif<-x-y

> t.test(dif, mu=0)

One Sample t-test

data:  dif 

t = 0.5283, df = 9, p-value = 0.6101

alternative hypothesis: true mean is not equal to 0 

95 percent confidence interval:

-0.5609109  0.9026993 

sample estimates:

mean of x 

0.1708942 



Exercise XII



Paired t-test

Use Hygrometer dataset for this exercise.
Is there a difference in mean humidity between before the rain and 
after the rain measurements? 



Analysis of variance



ANOVA I/

ANOVA compares the means of three or more groups.
It tells us whether there is a statistically significant difference 
between any of the groups, but it does not tell the groups that are 
different.

After running ANOVA, there are ways to find the groups that differ. Those 
are called post-hoc tests.

ANOVA can be thought of as a generalization of a two-sample t-
test.
Only one-way ANOVA will be presented here.

In one-way ANOVA, there is one dependent variable (e.g. height) and a 
categorical variable (e.g. population) giving grouping of observations of the 
dependent variables.



ANOVA II/

The variance in the dependent variable can be partitioned into two 
parts:

Variance within groups
• Individual differences
• Measurement error

Variance between groups
• Effect of the grouping variable
• Individual differences
• Measurement error

The actual test is based on comparing the magnitudes of these 
variances using the F-test.

If the between groups variance is large enough compared to the variance 
within groups (”error variance”), the test will come up as significant.



ANOVA III/

Calculations
Variance within groups

• Calculate an individual estimate of variance inside every group using 
group specific means.

• Variance in every group has n-1 degrees of freedom.
• Thus, in total this variance estimate has n-k (k=number of groups) 

degrees of freedom.
Variance between groups

• This means the variance between group-wise means and the grand 
mean of the whole dataset (weighted using the group sizes).

• The degrees of freedom are k-1.
These two variances are two different estimates of population 
variance. 



Calculation of ANOVA by hand



Calculation of ANOVA by hand



Calculation of ANOVA by hand



ANOVA IV/

ANOVA in R
> x1<-rnorm(10, mean=0, sd=1)
> x2<-rnorm(10, mean=0, sd=1.5)
> x3<-rnorm(10, mean=2, sd=1)
> x<-c(x1,x2,x3)
> group<-c(rep(1, 10), rep(2, 10), rep(3, 10))
> group<-as.factor(group)
> a1<-aov(x~group)
> a1
Call:

aov(formula = x ~ group)

Terms:
group Residuals

Sum of Squares  15.88236  44.95124
Deg. of Freedom        2        27

Residual standard error: 1.290295 
Estimated effects may be unbalanced



ANOVA V/

ANOVA in R
> summary(a1)

Df Sum Sq Mean Sq F value  Pr(>F)  

group        2 15.882   7.941  4.7699 0.01683 *

Residuals   27 44.951   1.665                  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

What are those Sum of Squares?

Where do the degrees of freedom (Df) come form?
Check the slide ANOVA III 
Those are the numbers used as denominator in the variance formula



ANOVA VI/

ANOVA in R
> summary(a1)

Df Sum Sq Mean Sq F value  Pr(>F)  

group        2 15.882   7.941  4.7699 0.01683 *

Residuals   27 44.951   1.665                  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

What about Mean Sq?
That’s the estimate of variance

• Group = variance between groups
• Residuals = error variance (variance within groups)

F Value?
That’s the ratio between the two variance estimates = F test statistic



Exercise XIII



ANOVA

Test is there any difference between the mean height or shoesize
between different student populations.

Are there any significant differences?
How does the boxplot look like for the same data?

Dataset Customer lists the number of customer questions to 
helpdesk during a period of four months.

Assuming the variable questions is normally distributed, is there any 
difference in the mean number of questions on different days of week or 
different months?
Does a boxplot support this result?

Clover dataset contains leaf area measurements with different 
nitrogen and sulfur treatments.

Do these treatments (analyze independently) affect the leaf area?



Linear regression



Correlation I/VI



Correlation II/VI

Correlation coefficient varies between -1 (perfect negative 
relationship) and +1 (perfect positive relationship).
r = sxy / sx * sy

where sxy = covariance
• For every value of X, subtract from it the mean of all X values. Do the 

same for every Y value. Multiple there results so that each centered X 
value is multiplied by the concommittant centered Y value. Sum over 
the multiplication results. Divide the sum by the number of observation 
subtracted by one.

Correlation is usable only for data that are linearly dependent 
(check the plots). Correlation can be calculated for non-linear 
datasets, but it has no meaning.
Correlation can’t be used the other way around. If the correlation 
is high, it does not necessarily mean that the variables are linearly 
dependent.



Correlation III/VI
Testing the correlation coefficient

T statistic is calculated as the square root of (number of observations - 2) / 
square root of (1 – squared correlation coefficiet) multiplied by the the 
correlation coefficient. This is compared to the t-distribution with n-2 
degrees of freedom.

Calculations in R by hand
> x1<-rnorm(100)

> x2<-x1+rnorm(100, mean=0, sd=0.25)

> y<-rep(0, 100)

> y<-y+rnorm(100, mean=0, sd=0.25)

> cor(x1, x2)

[1] 0.9719912

> 0.9719912 * (sqrt(98)/sqrt(1-0.9719912^2))

[1] 40.94262



Correlation IV/VI
Testing in R automatically

> cor.test(x1, x2)

Pearson's product-moment correlation

data:  x1 and x2 

t = 40.9426, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 
0 

95 percent confidence interval:

0.9585825 0.9811008 

sample estimates:

cor 

0.9719912 



Correlation V/VI

r = 0.9719912 r = -0.9719912 -0.01394637
p-value < 2.2e-16 p-value < 2.2e-16 p-value = 0.8905



Correlation VI/VI

Caveats of testing the correlation coefficients
If there are enought observations, say 1000, for the compared variables, 
even very small coefficients (r = 0.1 or r = 0.01) might come as significant. 
Such small coefficients, even if statistically significant, don’t typically imply 
that the relationship between the variables would be strong.
This is equivalent to the already discussed situation of statistical 
significance versus practical significance.

Correlation coefficients can’t directly be thought to represent causal 
relationships between the variables. 

• The correlation coefficient is exactly the same, even if the order of the 
variables in the test is reversed. 



Linear regression I/

Correlation quantifies the strength of association between two 
linearly dependent variables. 

Using correlation, it is impossible to predict which is the value for the 
second variables, if we know the value of the first variable.

Linear regression tries to build a predictive model that can
be used for predicting the second variable from the first variable
describe the relationship between the variable in a more formal fashion

In linear regression the first variable is called the predictor (or 
independent variable) and the second is called the predicted (or
dependent variable)

So, there is already a postulated division into predicted and predicting 
variables – this was not the case with correlation



Linear regression II/

Linear regression uses a 
formula for a simple line fitted 
into the dataset.
Line can be expressed 
mathematically as

y = a + bx
Often in statistics this is 
written as

y = b0 + b1X
In order to fit the line, we 
need to estimate a and b from 
our data.

This is done using the least 
squares approach.



Linear regression III/

We fit the line so that 
the sum of squared 
distances between 
the line and the 
observations is as 
small as possible.
Sum of squares…
sounds a bit like 
ANOVA… and it is!

The error variance in 
ANOVA is the same 
as the summed 
squared distance 
between the line and 
the observations.



Linear regression IV/

Calculation in R
> y<-rnorm(10, sd=1, mean=0)

> x<-y+rnorm(10, sd=0.25, mean=0)

> lm(y~x)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept)            x  

0.1681       0.7590  



Linear regression V/

Calculation in R
> y<-rnorm(10, sd=1, mean=0)
> x<-y+rnorm(10, sd=0.25, mean=0)
> summary(lm(y~x))

Call:
lm(formula = y ~ x)

Residuals:
Min      1Q  Median      3Q     Max 

-0.2433 -0.1201  0.0488  0.1018  0.2004 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.16807    0.05907   2.845   0.0216 *  
x            0.75899    0.06874  11.041 4.03e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.1647 on 8 degrees of freedom
Multiple R-squared: 0.9384,     Adjusted R-squared: 0.9307 
F-statistic: 121.9 on 1 and 8 DF,  p-value: 4.033e-06

cor(x,y)*cor(x,y)

P-value for the model

P-values for predictors



Linear regression VI/

Plotting the results
> plot(x, y)

> abline(lm(y~x))



Linear regression VII/

Diagnostic plots
Does the model fit the data?

In R
> fit<-lm(y~x)
> plot(fitted(fit), resid(fit))
> qqnorm(resid(fit))
> qqline(resid(fit))



Linear regression VIII/
Linear regression with a categorical variable
> group<-factor(c(rep(1, 10), rep(2, 10), rep(3, 10)))

> y1<- c(rnorm(10, mean=0, sd=1), rnorm(10, mean=2, sd=1), rnorm(10, mean=2, sd=2))

> summary(lm(y1~group))

Call:

lm(formula = y1 ~ group)

Residuals:

Min      1Q  Median      3Q     Max 

-4.0970 -1.2270  0.2277  1.2265  2.4167 

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept)   0.1964     0.5425   0.362  0.72016   

group2        1.6629     0.7672   2.168  0.03918 * 

group3        2.5437     0.7672   3.316  0.00261 **

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.715 on 27 degrees of freedom

Multiple R-squared: 0.2958,     Adjusted R-squared: 0.2436 

F-statistic:  5.67 on 2 and 27 DF,  p-value: 0.008791 



Linear regression IX/
> group<-factor(c(rep(1, 10), rep(2, 10), rep(3, 10)), labels=c(”child”, ”adult”, 

”senior”))

> y2<- c(rnorm(10, mean=0, sd=1), rnorm(10, mean=2, sd=1), rnorm(10, mean=2, sd=2))

> summary(lm(y2~group))
Call:
lm(formula = y2 ~ group)

Residuals:
Min      1Q  Median      3Q     Max 

-2.9529 -0.5609  0.1827  0.9495  1.8933 

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept)   0.4036     0.4039   0.999   0.3266  
groupadult    1.4471     0.5713   2.533   0.0174 *
groupsenior   1.0295     0.5713   1.802   0.0827 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.277 on 27 degrees of freedom
Multiple R-squared: 0.2012,     Adjusted R-squared: 0.142 
F-statistic:   3.4 on 2 and 27 DF,  p-value: 0.04820 

Where has the groupchild disappeared?



Exercise XIV



Linear regression

Using the bioinformatics students dataset model the dependence 
of shoesize on height.

What is correlation between height and shoesize. Is it statistically 
significant? Is is also practically significant?
How much of the variation in shoesize does height explain?
Does the model fit the data well?

• Is there collinearity in the residuals?
• Are the residuals normally distributed?



Comparing categorical variables



Chi square test I/VIII

There are two flawors of Chi Square tests
Goodness of fit test

• In general: are observed frequences as they are expected on the basis 
of some theory?

• Comparing whether the frequency of heads and tails acquired with a 
coin is as expected (half and half)?

• Is the observed distribution of the three possible genotypes os a gene 
as expected (p^2+2pq+q^2)?

Test of independence
• In general: is the distribution to the groups random?
• Is the observed distribution of the genotypes of one gene equal in 

cancer cases and their healthy controls?



Chi square test II/VIII

Goodness of fit
Calling heads and tail 100 times on the same nickel, the following result was 
obtained:

head tail 

46   54 

If the coin is fair (not biases towards either result), the expected frequence 
of both heads and tails is 50%, i.e. 50 heads and 50 tails in this case.
The Chi Square test statistic is calculated as the observed frequency minus 
expected frequency squared divided by the expected frequence. This is 
calculated for all classes, and summed together.
Here: (46-50)^2/50 + (54-50)^2/50 = 16/50 + 16/50 = 32/50 = 0.64.
This test statistic is compared to Chi Square distribution. This distribution is 
defined by its degrees of freedom. For this test the degrees of freedom are 
the number of classes (here two) minus 1, i.e. 2-1 = 1.



Chi square test III/VIII
Goodness of fit in R

Calling heads and tail 100 times on the same nickel, the following result was 
obtained:

head tail 

46   54 

Defining this is R can be done in two different ways. Either using the original 
variable:
x<-round(runif(100, min=0, max=1))

xx<-factor(x, labels=c("head", "tail"))

chisq.test(table(xx))
Chi-squared test for given probabilities

data:  table(xx) 

X-squared = 0.64, df = 1, p-value = 0.4237

Or typing in the table:
• table1<-as.table(c(46,54))

• names(table1)<-c("heads", "tails")

• chisq.test(table1)



Chi square test IV/VIII
Goodness of fit in R

By default R expects that we want to run a goodness of fit test againts a 
uniform distribution.

• Every class is equally probably = they have the same expected 
frequency.

• Therefore, we do not need to specify the expected values.



Chi square test V/VIII
Test of independence

Calling heads and tail 100 times on two nickels, the following result was 
obtained:
> x<-round(runif(200, min=0, max=1))

> c1<-x[1:100]

> c2<-x[101:200]

> c11<-factor(c1, labels=c("head", "tail"))

> c22<-factor(c2, labels=c("head", "tail"))

Coin 1
head tail 

50   50 

Coin 2
head tail 

53   47 

Is the distribution of heads and tails for these two coins the same? 



Chi square test VI/VIII

Observed:
Coin Heads Tails Sum
1 50 50 100
2 53 47 100
Sum 103 97 200

Expected:
Coin Heads Tails
1 100*103 / 200 100*97 / 200
2 103*100 / 200 97*100 / 200

Expected
Coin Heads Tails
1 51.5 48.5
2 51.5 48.5



Chi square test VII/VIII

Test of independence
The test statistic is calculated as for the goodness of fit test, but the degrees 
of freedom are calculated differently.

• Df = (number of columns -1) * (number of rows -1)
• Here Df = (2-1)*(2-1) = 1

Test of independence in R
If there are two vector of equal length, then

> chisq.test(c11, c22)

Pearson's Chi-squared test with Yates' continuity correction

data:  c11 and c22 

X-squared = 1.4452, df = 1, p-value = 0.2293



Chi square test VIII/VIII

Test of independence in R
If the vector are not of equal lenght, then we need to provide the command 
with a table:

> table(c11, c22)
c22

c11    head tail

head   30   20

tail   23   27

> chisq.test(table(c11, c22))

Pearson's Chi-squared test with Yates' continuity correction

data:  table(c11, c22) 

X-squared = 1.4452, df = 1, p-value = 0.2293



Exercise XV



Compare several dice

The Dice dataset contains 120 rolls for four different dice.
Use Chi square test for goodness of fit to see whether some of 
these dice are biased.

These dice (red and blue) have been extensive tested using the board 
game Risk, and would appear to be biased towards higher numbers. At 
least when attacked using these dice, the lecturer has consistently always 
lost the combat even with favourable odds.


